CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 65 results for author: <span class="mathjax">Gremillet, L</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Gremillet%2C+L">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Gremillet, L"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Gremillet%2C+L&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Gremillet, L"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Gremillet%2C+L&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Gremillet%2C+L&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Gremillet%2C+L&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.09267">arXiv:2412.09267</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.09267">pdf</a>, <a href="https://arxiv.org/format/2412.09267">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Characterization and performance of the Apollon main short-pulse laser beam following its commissioning at 2 PW level </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yao%2C+W">Weipeng Yao</a>, <a href="/search/physics?searchtype=author&amp;query=Leli%C3%A8vre%2C+R">Ronan Leli猫vre</a>, <a href="/search/physics?searchtype=author&amp;query=Cohen%2C+I">Itamar Cohen</a>, <a href="/search/physics?searchtype=author&amp;query=Waltenspiel%2C+T">Tessa Waltenspiel</a>, <a href="/search/physics?searchtype=author&amp;query=Allaoua%2C+A">Amokrane Allaoua</a>, <a href="/search/physics?searchtype=author&amp;query=Antici%2C+P">Patrizio Antici</a>, <a href="/search/physics?searchtype=author&amp;query=Ayoul%2C+Y">Yohan Ayoul</a>, <a href="/search/physics?searchtype=author&amp;query=Beck%2C+A">Arie Beck</a>, <a href="/search/physics?searchtype=author&amp;query=Beluze%2C+A">Audrey Beluze</a>, <a href="/search/physics?searchtype=author&amp;query=Blancard%2C+C">Christophe Blancard</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+D">Daniel Cavanna</a>, <a href="/search/physics?searchtype=author&amp;query=Chabanis%2C+M">M茅lanie Chabanis</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+N">Sophia N. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cohen%2C+E">Erez Cohen</a>, <a href="/search/physics?searchtype=author&amp;query=Ducasse%2C+Q">Quentin Ducasse</a>, <a href="/search/physics?searchtype=author&amp;query=Dumergue%2C+M">Mathieu Dumergue</a>, <a href="/search/physics?searchtype=author&amp;query=Hai%2C+F+E">Fouad El Hai</a>, <a href="/search/physics?searchtype=author&amp;query=Evrard%2C+C">Christophe Evrard</a>, <a href="/search/physics?searchtype=author&amp;query=Filippov%2C+E">Evgeny Filippov</a>, <a href="/search/physics?searchtype=author&amp;query=Freneaux%2C+A">Antoine Freneaux</a>, <a href="/search/physics?searchtype=author&amp;query=Gautier%2C+D+C">Donald Cort Gautier</a>, <a href="/search/physics?searchtype=author&amp;query=Gobert%2C+F">Fabrice Gobert</a>, <a href="/search/physics?searchtype=author&amp;query=Goupille%2C+F">Franck Goupille</a>, <a href="/search/physics?searchtype=author&amp;query=Grech%2C+M">Michael Grech</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">Laurent Gremillet</a> , et al. (21 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.09267v1-abstract-short" style="display: inline;"> We present the results of the second commissioning phase of the short-focal-length area of the Apollon laser facility (located in Saclay, France), which was performed with the main laser beam (F1), scaled to a peak power of 2 PetaWatt. Under the conditions that were tested, this beam delivered on-target pulses of maximum energy up to 45 J and 22 fs duration. Several diagnostics were fielded to ass&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09267v1-abstract-full').style.display = 'inline'; document.getElementById('2412.09267v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.09267v1-abstract-full" style="display: none;"> We present the results of the second commissioning phase of the short-focal-length area of the Apollon laser facility (located in Saclay, France), which was performed with the main laser beam (F1), scaled to a peak power of 2 PetaWatt. Under the conditions that were tested, this beam delivered on-target pulses of maximum energy up to 45 J and 22 fs duration. Several diagnostics were fielded to assess the performance of the facility. The on-target focal spot and its spatial stability, as well as the secondary sources produced when irradiating solid targets, have all been characterized, with the goal of helping users design future experiments. The laser-target interaction was characterized, as well as emissions of energetic ions, X-ray and neutrons recorded, all showing good laser-to-target coupling efficiency. Moreover, we demonstrated the simultaneous fielding of F1 with the auxiliary 0.5 PW F2 beam of Apollon, enabling dual beam operation. The present commissioning will be followed in 2025 by a further commissioning stage of F1 at the 8 PW level, en route to the final 10 PW goal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09267v1-abstract-full').style.display = 'none'; document.getElementById('2412.09267v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.13238">arXiv:2408.13238</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.13238">pdf</a>, <a href="https://arxiv.org/format/2408.13238">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Self-triggered strong-field QED collisions in laser-plasma interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Matheron%2C+A">Aim茅 Matheron</a>, <a href="/search/physics?searchtype=author&amp;query=Andriyash%2C+I">Igor Andriyash</a>, <a href="/search/physics?searchtype=author&amp;query=Davoine%2C+X">Xavier Davoine</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">Laurent Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=Pouyez%2C+M">Mattys Pouyez</a>, <a href="/search/physics?searchtype=author&amp;query=Grech%2C+M">Mickael Grech</a>, <a href="/search/physics?searchtype=author&amp;query=Lancia%2C+L">Livia Lancia</a>, <a href="/search/physics?searchtype=author&amp;query=Phuoc%2C+K+T">Kim Ta Phuoc</a>, <a href="/search/physics?searchtype=author&amp;query=Corde%2C+S">S茅bastien Corde</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.13238v1-abstract-short" style="display: inline;"> Exploring quantum electrodynamics in the most extreme conditions, where electron-positron pairs can emerge in the presence of a strong background field, is now becoming possible in Compton collisions between ultraintense lasers and energetic electrons. In the strong-field regime, the colliding electron emits $纬$ rays that decay into pairs in the strong laser field. While the combination of convent&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13238v1-abstract-full').style.display = 'inline'; document.getElementById('2408.13238v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.13238v1-abstract-full" style="display: none;"> Exploring quantum electrodynamics in the most extreme conditions, where electron-positron pairs can emerge in the presence of a strong background field, is now becoming possible in Compton collisions between ultraintense lasers and energetic electrons. In the strong-field regime, the colliding electron emits $纬$ rays that decay into pairs in the strong laser field. While the combination of conventional accelerators and lasers of sufficient power poses significant challenges, laser-plasma accelerators offer a promising alternative for producing the required multi-GeV electron beams. To overcome the complexities of colliding these beams with another ultraintense laser pulse, we propose a novel scheme in which a single laser pulse both accelerates the electrons and collides with them after self-focusing in a dedicated plasma section and reflecting off a plasma mirror. The laser intensity boost in the plasma allows the quantum interaction parameter to be greatly increased. Using full-scale numerical simulations, we demonstrate that a single 100 J laser pulse can achieve a deep quantum regime with electric fields in the electron rest frame as high as $蠂_e\sim 5$ times the Schwinger critical field, resulting in the production of about 40 pC of positrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13238v1-abstract-full').style.display = 'none'; document.getElementById('2408.13238v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.11321">arXiv:2404.11321</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.11321">pdf</a>, <a href="https://arxiv.org/format/2404.11321">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> A &#34;lighthouse&#34; laser-driven staged proton accelerator allowing for ultrafast angular and spectral control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Horn%C3%BD%2C+V">Vojt臎ch Horn媒</a>, <a href="/search/physics?searchtype=author&amp;query=Burdonov%2C+K">Konstantin Burdonov</a>, <a href="/search/physics?searchtype=author&amp;query=Fazzini%2C+A">Alice Fazzini</a>, <a href="/search/physics?searchtype=author&amp;query=Lelasseux%2C+V">Vincent Lelasseux</a>, <a href="/search/physics?searchtype=author&amp;query=Antici%2C+P">Patrizio Antici</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+N">Sophia Nan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Ciardi%2C+A">Andrea Ciardi</a>, <a href="/search/physics?searchtype=author&amp;query=Davoine%2C+X">Xavier Davoine</a>, <a href="/search/physics?searchtype=author&amp;query=d%27Humi%C3%A8res%2C+E">Emmanuel d&#39;Humi猫res</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">Laurent Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=Lecherbourg%2C+L">Ludovic Lecherbourg</a>, <a href="/search/physics?searchtype=author&amp;query=Mathieu%2C+F">Fran莽ois Mathieu</a>, <a href="/search/physics?searchtype=author&amp;query=Papadopoulos%2C+D">Dimitrios Papadopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Yao%2C+W">Weipeng Yao</a>, <a href="/search/physics?searchtype=author&amp;query=Fuchs%2C+J">Julien Fuchs</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.11321v1-abstract-short" style="display: inline;"> Compact laser-plasma acceleration of fast ions has made great strides since its discovery over two decades ago, resulting in the current generation of high-energy ($\geq 100\,\rm MeV$) ultracold beams over ultrashort ($\leq 1\,\rm ps$) durations. To unlock broader applications of these beams, we need the ability to tailor the ion energy spectrum. Here, we present a scheme that achieves precisely t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11321v1-abstract-full').style.display = 'inline'; document.getElementById('2404.11321v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.11321v1-abstract-full" style="display: none;"> Compact laser-plasma acceleration of fast ions has made great strides since its discovery over two decades ago, resulting in the current generation of high-energy ($\geq 100\,\rm MeV$) ultracold beams over ultrashort ($\leq 1\,\rm ps$) durations. To unlock broader applications of these beams, we need the ability to tailor the ion energy spectrum. Here, we present a scheme that achieves precisely this by accelerating protons in a &#34;lighthouse&#34; fashion, whereby the highest-energy component of the beam is emitted in a narrow cone, well separated from the lower-energy components. This is made possible by a two-stage interaction in which the rear surface of the target is first set into rapid motion before the main acceleration phase. This approach offers the additional advantages of leveraging a robust sheath acceleration process in standard micron-thick targets and being optically controllable. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11321v1-abstract-full').style.display = 'none'; document.getElementById('2404.11321v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.19519">arXiv:2403.19519</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.19519">pdf</a>, <a href="https://arxiv.org/format/2403.19519">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Laser Interactions with Gas Jets: EMP Emission and Nozzle Damage </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bradford%2C+P+W">Philip Wykeham Bradford</a>, <a href="/search/physics?searchtype=author&amp;query=Ospina-Bohorquez%2C+V">Valeria Ospina-Bohorquez</a>, <a href="/search/physics?searchtype=author&amp;query=Ehret%2C+M">Michael Ehret</a>, <a href="/search/physics?searchtype=author&amp;query=Henares%2C+J">Jose-Luis Henares</a>, <a href="/search/physics?searchtype=author&amp;query=Puyuelo-Valdes%2C+P">Pilar Puyuelo-Valdes</a>, <a href="/search/physics?searchtype=author&amp;query=Chodukowski%2C+T">Tomasz Chodukowski</a>, <a href="/search/physics?searchtype=author&amp;query=Pisarczyk%2C+T">Tadeusz Pisarczyk</a>, <a href="/search/physics?searchtype=author&amp;query=Rusiniak%2C+Z">Zofia Rusiniak</a>, <a href="/search/physics?searchtype=author&amp;query=Salgado-Lopez%2C+C">Carlos Salgado-Lopez</a>, <a href="/search/physics?searchtype=author&amp;query=Vlachos%2C+C">Christos Vlachos</a>, <a href="/search/physics?searchtype=author&amp;query=Sciscio%2C+M">Massimiliano Sciscio</a>, <a href="/search/physics?searchtype=author&amp;query=Salvadori%2C+M">Martina Salvadori</a>, <a href="/search/physics?searchtype=author&amp;query=Verona%2C+C">Claudio Verona</a>, <a href="/search/physics?searchtype=author&amp;query=Hicks%2C+G">George Hicks</a>, <a href="/search/physics?searchtype=author&amp;query=Ettlinger%2C+O">Oliver Ettlinger</a>, <a href="/search/physics?searchtype=author&amp;query=Najmudin%2C+Z">Zulfikar Najmudin</a>, <a href="/search/physics?searchtype=author&amp;query=Marques%2C+J">Jean-Raphael Marques</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">Laurent Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=Santos%2C+J+J">Joao Jorge Santos</a>, <a href="/search/physics?searchtype=author&amp;query=Consoli%2C+F">Fabrizio Consoli</a>, <a href="/search/physics?searchtype=author&amp;query=Tikhonchuk%2C+V">Vladimir Tikhonchuk</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.19519v3-abstract-short" style="display: inline;"> Understanding the physics of electromagnetic pulse emission and nozzle damage is critical for the long-term operation of laser experiments with gas targets, particularly at facilities looking to produce stable sources of radiation at high repetition rate. We present a theoretical model of plasma formation and electrostatic charging when high-power lasers are focused inside gases. The model can be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19519v3-abstract-full').style.display = 'inline'; document.getElementById('2403.19519v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.19519v3-abstract-full" style="display: none;"> Understanding the physics of electromagnetic pulse emission and nozzle damage is critical for the long-term operation of laser experiments with gas targets, particularly at facilities looking to produce stable sources of radiation at high repetition rate. We present a theoretical model of plasma formation and electrostatic charging when high-power lasers are focused inside gases. The model can be used to estimate the amplitude of gigahertz electromagnetic pulses (EMPs) produced by the laser and the extent of damage to the gas jet nozzle. Looking at a range of laser and target properties relevant to existing high-power laser systems, we find that EMP fields of tens to hundreds of kV/m can be generated several metres from the gas jet. Model predictions are compared with measurements of EMP, plasma formation and nozzle damage from two experiments on the VEGA-3 laser and one experiment on the Vulcan Petawatt laser. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19519v3-abstract-full').style.display = 'none'; document.getElementById('2403.19519v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages (total), 12 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.04187">arXiv:2311.04187</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.04187">pdf</a>, <a href="https://arxiv.org/format/2311.04187">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Laser-driven ion and electron acceleration from near-critical density gas targets: towards high-repetition rate operation in the 1 PW, sub-100 fs laser interaction regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ospina-Boh%C3%B3rquez%2C+V">V. Ospina-Boh贸rquez</a>, <a href="/search/physics?searchtype=author&amp;query=Salgado-L%C3%B3pez%2C+C">C. Salgado-L贸pez</a>, <a href="/search/physics?searchtype=author&amp;query=Ehret%2C+M">M. Ehret</a>, <a href="/search/physics?searchtype=author&amp;query=Malko%2C+S">S. Malko</a>, <a href="/search/physics?searchtype=author&amp;query=Salvadori%2C+M">M. Salvadori</a>, <a href="/search/physics?searchtype=author&amp;query=Pisarczyk%2C+T">T. Pisarczyk</a>, <a href="/search/physics?searchtype=author&amp;query=Chodukowski%2C+T">T. Chodukowski</a>, <a href="/search/physics?searchtype=author&amp;query=Rusiniak%2C+Z">Z. Rusiniak</a>, <a href="/search/physics?searchtype=author&amp;query=Krupka%2C+M">M. Krupka</a>, <a href="/search/physics?searchtype=author&amp;query=Lendrin%2C+P+G">P. GuillonM. Lendrin</a>, <a href="/search/physics?searchtype=author&amp;query=P%C3%A9rez-Callejo%2C+G">G. P茅rez-Callejo</a>, <a href="/search/physics?searchtype=author&amp;query=Vlachos%2C+C">C. Vlachos</a>, <a href="/search/physics?searchtype=author&amp;query=Hannachi%2C+F">F. Hannachi</a>, <a href="/search/physics?searchtype=author&amp;query=Tarisien%2C+M">M. Tarisien</a>, <a href="/search/physics?searchtype=author&amp;query=Consoli%2C+F">F. Consoli</a>, <a href="/search/physics?searchtype=author&amp;query=Verona%2C+C">C. Verona</a>, <a href="/search/physics?searchtype=author&amp;query=Prestopino%2C+G">G. Prestopino</a>, <a href="/search/physics?searchtype=author&amp;query=Dostal%2C+J">J. Dostal</a>, <a href="/search/physics?searchtype=author&amp;query=Dudzak%2C+R">R. Dudzak</a>, <a href="/search/physics?searchtype=author&amp;query=Henares%2C+J+L">J. L. Henares</a>, <a href="/search/physics?searchtype=author&amp;query=Api%C3%B1aniz%2C+J+I">J. I. Api帽aniz</a>, <a href="/search/physics?searchtype=author&amp;query=DeLuis%2C+D">D. DeLuis</a>, <a href="/search/physics?searchtype=author&amp;query=Debayle%2C+A">A. Debayle</a>, <a href="/search/physics?searchtype=author&amp;query=Caron%2C+J">J. Caron</a>, <a href="/search/physics?searchtype=author&amp;query=Ceccotti%2C+T">T. Ceccotti</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.04187v1-abstract-short" style="display: inline;"> Ion acceleration from gaseous targets driven by relativistic-intensity lasers was demonstrated as early as the late 90s, yet most of the experiments conducted to date have involved picosecond-duration, Nd:glass lasers operating at low repetition rate. Here, we present measurements on the interaction of ultraintense ($\sim 10^{20}\,\rm W\,cm^{-2}$, 1 PW), ultrashort ($\sim 70\,\rm fs$) Ti:Sa laser&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04187v1-abstract-full').style.display = 'inline'; document.getElementById('2311.04187v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.04187v1-abstract-full" style="display: none;"> Ion acceleration from gaseous targets driven by relativistic-intensity lasers was demonstrated as early as the late 90s, yet most of the experiments conducted to date have involved picosecond-duration, Nd:glass lasers operating at low repetition rate. Here, we present measurements on the interaction of ultraintense ($\sim 10^{20}\,\rm W\,cm^{-2}$, 1 PW), ultrashort ($\sim 70\,\rm fs$) Ti:Sa laser pulses with near-critical ($\sim 10^{20}\,\rm cm^{-3}$) helium gas jets, a debris-free targetry compatible with high ($\sim 1\,\rm Hz$) repetition rate operation. We provide evidence of $伪$ particles being forward accelerated up to $\sim 2.7\,\rm MeV$ energy with a total flux of $\sim 10^{11}\,\rm sr^{-1}$ as integrated over $&gt;0.1 \,\rm MeV$ energies and detected within a $0.5\,\rm mrad$ solid angle. We also report on on-axis emission of relativistic electrons with an exponentially decaying spectrum characterized by a $\sim 10\,\rm MeV$ slope, i.e., five times larger than the standard ponderomotive scaling. The total charge of these electrons with energy above 2 MeV is estimated to be of $\sim 1 \,\rm nC$, corresponding to $\sim 0.1\,\%$ of the laser drive energy. In addition, we observe the formation of a plasma channel, extending longitudinally across the gas density maximum and expanding radially with time. These results are well captured by large-scale particle-in-cell simulations, which reveal that the detected fast ions most likely originate from reflection off the rapidly expanding channel walls. The latter process is predicted to yield ion energies in the MeV range, which compare well with the measurements. Finally, direct laser acceleration is shown to be the dominant mechanism behind the observed electron energization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04187v1-abstract-full').style.display = 'none'; document.getElementById('2311.04187v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.00366">arXiv:2309.00366</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.00366">pdf</a>, <a href="https://arxiv.org/format/2309.00366">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> High-energy acceleration phenomena in extreme radiation-plasma interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Faure%2C+J+C">J. C. Faure</a>, <a href="/search/physics?searchtype=author&amp;query=Tordeux%2C+D">D. Tordeux</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">L. Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=Lemoine%2C+M">M. Lemoine</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.00366v1-abstract-short" style="display: inline;"> We simulate, using a particle-in-cell code, the chain of acceleration processes at work during the Compton-based interaction of a dilute electron-ion plasma with an extreme-intensity, incoherent gamma-ray flux with a photon density several orders of magnitude above the particle density. The plasma electrons are initially accelerated in the radiative flux direction through Compton scattering. In tu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00366v1-abstract-full').style.display = 'inline'; document.getElementById('2309.00366v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.00366v1-abstract-full" style="display: none;"> We simulate, using a particle-in-cell code, the chain of acceleration processes at work during the Compton-based interaction of a dilute electron-ion plasma with an extreme-intensity, incoherent gamma-ray flux with a photon density several orders of magnitude above the particle density. The plasma electrons are initially accelerated in the radiative flux direction through Compton scattering. In turn, the charge-separation field from the induced current drives forward the plasma ions to near-relativistic speed and accelerates backwards the non-scattered electrons to energies easily exceeding those of the driving photons. The dynamics of those energized electrons is determined by the interplay of electrostatic acceleration, bulk plasma motion, inverse Compton scattering and deflections off the mobile magnetic fluctuations generated by a Weibel-type instability. The latter Fermi-like effect notably gives rise to a forward-directed suprathermal electron tail. We provide simple analytical descriptions for most of those phenomena and examine numerically their sensitivity to the parameters of the problem. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00366v1-abstract-full').style.display = 'none'; document.getElementById('2309.00366v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.16751">arXiv:2308.16751</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.16751">pdf</a>, <a href="https://arxiv.org/format/2308.16751">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Modeling terahertz emissions from energetic electrons and ions in foil targets irradiated by ultraintense femtosecond laser pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Denoual%2C+E">E. Denoual</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&amp;query=Davoine%2C+X">X. Davoine</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">L. Gremillet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.16751v2-abstract-short" style="display: inline;"> Terahertz (THz) emissions from fast electron and ion currents driven in relativistic, femtosecond laser-foil interactions are examined theoretically. We first consider the radiation from the energetic electrons exiting the backside of the target. Our kinetic model takes account of the coherent transition radiation due to these electrons crossing the plasma-vacuum interface as well as of the synchr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.16751v2-abstract-full').style.display = 'inline'; document.getElementById('2308.16751v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.16751v2-abstract-full" style="display: none;"> Terahertz (THz) emissions from fast electron and ion currents driven in relativistic, femtosecond laser-foil interactions are examined theoretically. We first consider the radiation from the energetic electrons exiting the backside of the target. Our kinetic model takes account of the coherent transition radiation due to these electrons crossing the plasma-vacuum interface as well as of the synchrotron radiation due to their deflection and deceleration in the sheath field they set up in vacuum. After showing that both mechanisms tend to largely compensate each other when all the electrons are pulled back into the target, we investigate the scaling of the net radiation with the sheath field strength. We then demonstrate the sensitivity of this radiation to a percent-level fraction of escaping electrons. We also study the influence of the target thickness and laser focusing. The same sheath field that confines most of the fast electrons around the target rapidly sets into motion the surface ions. We describe the THz emission from these accelerated ions and their accompanying hot electrons by means of a plasma expansion model that allows for finite foil size and multidimensional effects. Again, we explore the dependencies of this radiation mechanism on the laser-target parameters. Under conditions typical of current ultrashort laser-solid experiments, we find that the THz radiation from the expanding plasma is much less energetic -- by one to three orders of magnitude -- than that due to the early-time motion of the fast electrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.16751v2-abstract-full').style.display = 'none'; document.getElementById('2308.16751v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05981">arXiv:2304.05981</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.05981">pdf</a>, <a href="https://arxiv.org/ps/2304.05981">ps</a>, <a href="https://arxiv.org/format/2304.05981">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantitative feasibility study of sequential neutron captures using intense lasers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Horn%C3%BD%2C+V">Vojt臎ch Horn媒</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+N">Sophia N. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Davoine%2C+X">Xavier Davoine</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">Laurent Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=Fuchs%2C+J">Julien Fuchs</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05981v2-abstract-short" style="display: inline;"> Deciphering the conditions under which neutron captures occur in the Universe to synthesize heavy elements is an endeavour pursued since the 1950s, but that has proven elusive up to now due to the experimental difficulty of generating the extreme neutron fluxes required. It has been evoked that laser-driven (pulsed) neutron sources could produce neutron beams with characteristics suitable to achie&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05981v2-abstract-full').style.display = 'inline'; document.getElementById('2304.05981v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05981v2-abstract-full" style="display: none;"> Deciphering the conditions under which neutron captures occur in the Universe to synthesize heavy elements is an endeavour pursued since the 1950s, but that has proven elusive up to now due to the experimental difficulty of generating the extreme neutron fluxes required. It has been evoked that laser-driven (pulsed) neutron sources could produce neutron beams with characteristics suitable to achieve nucleosynthesis in the laboratory. In this scheme, the laser first generates an ultra-high-current, high-energy proton beam, which is subsequently converted into a dense neutron beam. Here we model, in a self-consistent manner, the transport of laser-accelerated protons through the neutron converter, the subsequent neutron generation and propagation, and finally the neutron capture reactions in a gold ($^{197}$Au) chosen as an illustrative example. Using the parameters of present-day available lasers, as well as of those foreseeable in the near future, we find that the final yield of the isotopes containing two more neutrons than the seed nuclei is negligible. Our investigation highlights that the areal density of the laser-driven neutron source is a critical quantity and that it would have to be increased by several orders of magnitude over the current state of the art in order to offer realistic prospects for laser-based generation of neutron-rich isotopes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05981v2-abstract-full').style.display = 'none'; document.getElementById('2304.05981v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.11394">arXiv:2303.11394</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.11394">pdf</a>, <a href="https://arxiv.org/format/2303.11394">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Particle acceleration at magnetized, relativistic turbulent shock fronts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bresci%2C+V">Virginia Bresci</a>, <a href="/search/physics?searchtype=author&amp;query=Lemoine%2C+M">Martin Lemoine</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">Laurent Gremillet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.11394v2-abstract-short" style="display: inline;"> The efficiency of particle acceleration at shock waves in relativistic, magnetized astrophysical outflows is a debated topic with far-reaching implications. Here, for the first time, we study the impact of turbulence in the pre-shock plasma. Our simulations demonstrate that, for a mildly relativistic, magnetized pair shock (Lorentz factor $纬_{\rm sh} \simeq 2.7$, magnetization level&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.11394v2-abstract-full').style.display = 'inline'; document.getElementById('2303.11394v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.11394v2-abstract-full" style="display: none;"> The efficiency of particle acceleration at shock waves in relativistic, magnetized astrophysical outflows is a debated topic with far-reaching implications. Here, for the first time, we study the impact of turbulence in the pre-shock plasma. Our simulations demonstrate that, for a mildly relativistic, magnetized pair shock (Lorentz factor $纬_{\rm sh} \simeq 2.7$, magnetization level $蟽\simeq 0.01$), strong turbulence can revive particle acceleration in a superluminal configuration that otherwise prohibits it. Depending on the initial plasma temperature and magnetization, stochastic-shock-drift or diffusive-type acceleration governs particle energization, producing powerlaw spectra $\mathrm{d}N/\mathrm{d}纬\propto 纬^{-s}$ with $s \sim 2.5-3.5$. At larger magnetization levels, stochastic acceleration within the pre-shock turbulence becomes competitive and can even take over shock acceleration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.11394v2-abstract-full').style.display = 'none'; document.getElementById('2303.11394v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.08163">arXiv:2212.08163</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.08163">pdf</a>, <a href="https://arxiv.org/format/2212.08163">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Parametric study on ion acceleration from the interaction of ultra-high intensity laser pulses with near-critical density gas targets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ospina-Boh%C3%B3rquez%2C+V">V. Ospina-Boh贸rquez</a>, <a href="/search/physics?searchtype=author&amp;query=Debayle%2C+A">A. Debayle</a>, <a href="/search/physics?searchtype=author&amp;query=Santos%2C+J+J">J. J. Santos</a>, <a href="/search/physics?searchtype=author&amp;query=Volpe%2C+L">L. Volpe</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">L. Gremillet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.08163v1-abstract-short" style="display: inline;"> We present a parametric study based on 1-D particle-in-cell (PIC) simulations conducted with the objective of understanding the interaction of intense lasers with near-critical non-uniform density gas targets. Specifically, we aim to find an optimal set of experimental parameters regarding the interaction of a $位_L$ = 0.8 $渭$m, $I_L =10^{20}$ W/cm$^2$ ($a_0 = 8.8$), $蟿_L = 30$ fs laser pulse with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.08163v1-abstract-full').style.display = 'inline'; document.getElementById('2212.08163v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.08163v1-abstract-full" style="display: none;"> We present a parametric study based on 1-D particle-in-cell (PIC) simulations conducted with the objective of understanding the interaction of intense lasers with near-critical non-uniform density gas targets. Specifically, we aim to find an optimal set of experimental parameters regarding the interaction of a $位_L$ = 0.8 $渭$m, $I_L =10^{20}$ W/cm$^2$ ($a_0 = 8.8$), $蟿_L = 30$ fs laser pulse with a near-critical non-uniform pure nitrogen gas profile produced by a non commercial gas nozzle. The PIC code Calder developed at CEA was used, and both the maximum electron density and the direct laser contribution to ion acceleration were studied. Shock formation was achieved for a peak electron density $n_e$ ranging between 0.35 $n_c$ and 0.7 $n_c$. In this density interval, the survival of a percentage of the laser pulse until the gas density peak, while being strongly absorbed ($&gt;$90$\%$) and creating a hot electron population in the gas up-ramp, is singled out as a necessary condition for shock formation. Moreover, the laser absorption must give rise to a super ponderomotive heating of the target electrons in order to launch an electrostatic shock inside the plasma. The direct laser effect on ion acceleration consists in a strong initial density perturbation that enhances charge separation while the electron pressure gradients are identified as fundamental for shock formation. The production of a controlled and repetitive gas profile as well as the possibility of performing measurements with statistical meaning are highlighted as fundamental for conducting a thorough experimental study. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.08163v1-abstract-full').style.display = 'none'; document.getElementById('2212.08163v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.06036">arXiv:2211.06036</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.06036">pdf</a>, <a href="https://arxiv.org/format/2211.06036">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.265101">10.1103/PhysRevLett.130.265101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamics of nanosecond laser pulse propagation and of associated instabilities in a magnetized underdense plasma </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yao%2C+W">W. Yao</a>, <a href="/search/physics?searchtype=author&amp;query=Higginson%2C+A">A. Higginson</a>, <a href="/search/physics?searchtype=author&amp;query=Marqu%C3%A8s%2C+J+-">J. -R. Marqu猫s</a>, <a href="/search/physics?searchtype=author&amp;query=Antici%2C+P">P. Antici</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%A9ard%2C+J">J. B茅ard</a>, <a href="/search/physics?searchtype=author&amp;query=Burdonov%2C+K">K. Burdonov</a>, <a href="/search/physics?searchtype=author&amp;query=Borghesi%2C+M">M. Borghesi</a>, <a href="/search/physics?searchtype=author&amp;query=Castan%2C+A">A. Castan</a>, <a href="/search/physics?searchtype=author&amp;query=Ciardi%2C+A">A. Ciardi</a>, <a href="/search/physics?searchtype=author&amp;query=Coleman%2C+B">B. Coleman</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+N">S. N. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=d%27Humi%C3%A8res%2C+E">E. d&#39;Humi猫res</a>, <a href="/search/physics?searchtype=author&amp;query=Gangolf%2C+T">T. Gangolf</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">L. Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=Khiar%2C+B">B. Khiar</a>, <a href="/search/physics?searchtype=author&amp;query=Lancia%2C+L">L. Lancia</a>, <a href="/search/physics?searchtype=author&amp;query=Loiseau%2C+P">P. Loiseau</a>, <a href="/search/physics?searchtype=author&amp;query=Ribeyre%2C+X">X. Ribeyre</a>, <a href="/search/physics?searchtype=author&amp;query=Soloviev%2C+A">A. Soloviev</a>, <a href="/search/physics?searchtype=author&amp;query=Starodubtsev%2C+M">M. Starodubtsev</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Q">Q. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Fuchs%2C+J">J. Fuchs</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.06036v1-abstract-short" style="display: inline;"> The propagation and energy coupling of intense laser beams in plasmas are critical issues in laser-driven inertial confinement fusion. Applying magnetic fields to such a setup has been evoked to enhance fuel confinement and heating, and mitigate laser energy losses. Here we report on experimental measurements demonstrating improved transmission and increased smoothing of a high-power laser beam pr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.06036v1-abstract-full').style.display = 'inline'; document.getElementById('2211.06036v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.06036v1-abstract-full" style="display: none;"> The propagation and energy coupling of intense laser beams in plasmas are critical issues in laser-driven inertial confinement fusion. Applying magnetic fields to such a setup has been evoked to enhance fuel confinement and heating, and mitigate laser energy losses. Here we report on experimental measurements demonstrating improved transmission and increased smoothing of a high-power laser beam propagating in an underdense magnetized plasma. We also measure enhanced backscattering, which our simulations show is due to hot electrons confinement, thus leading to reduced target preheating. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.06036v1-abstract-full').style.display = 'none'; document.getElementById('2211.06036v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.14280">arXiv:2209.14280</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.14280">pdf</a>, <a href="https://arxiv.org/format/2209.14280">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-023-01263-4">10.1038/s42005-023-01263-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing strong-field QED in beam-plasma collisions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Matheron%2C+A">A. Matheron</a>, <a href="/search/physics?searchtype=author&amp;query=Claveria%2C+P+S+M">P. San Miguel Claveria</a>, <a href="/search/physics?searchtype=author&amp;query=Ariniello%2C+R">R. Ariniello</a>, <a href="/search/physics?searchtype=author&amp;query=Ekerfelt%2C+H">H. Ekerfelt</a>, <a href="/search/physics?searchtype=author&amp;query=Fiuza%2C+F">F. Fiuza</a>, <a href="/search/physics?searchtype=author&amp;query=Gessner%2C+S">S. Gessner</a>, <a href="/search/physics?searchtype=author&amp;query=Gilljohann%2C+M+F">M. F. Gilljohann</a>, <a href="/search/physics?searchtype=author&amp;query=Hogan%2C+M+J">M. J. Hogan</a>, <a href="/search/physics?searchtype=author&amp;query=Keitel%2C+C+H">C. H. Keitel</a>, <a href="/search/physics?searchtype=author&amp;query=Knetsch%2C+A">A. Knetsch</a>, <a href="/search/physics?searchtype=author&amp;query=Litos%2C+M">M. Litos</a>, <a href="/search/physics?searchtype=author&amp;query=Mankovska%2C+Y">Y. Mankovska</a>, <a href="/search/physics?searchtype=author&amp;query=Montefiori%2C+S">S. Montefiori</a>, <a href="/search/physics?searchtype=author&amp;query=Nie%2C+Z">Z. Nie</a>, <a href="/search/physics?searchtype=author&amp;query=O%27Shea%2C+B">B. O&#39;Shea</a>, <a href="/search/physics?searchtype=author&amp;query=Peterson%2C+J+R">J. R. Peterson</a>, <a href="/search/physics?searchtype=author&amp;query=Storey%2C+D">D. Storey</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Y">Y. Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">X. Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Zakharova%2C+V">V. Zakharova</a>, <a href="/search/physics?searchtype=author&amp;query=Davoine%2C+X">X. Davoine</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">L. Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=Tamburini%2C+M">M. Tamburini</a>, <a href="/search/physics?searchtype=author&amp;query=Corde%2C+S">S. Corde</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.14280v2-abstract-short" style="display: inline;"> Ongoing progress in laser and accelerator technology opens new possibilities in high-field science, notably to investigate the largely unexplored strong-field quantum electrodynamics (SFQED) regime where electron-positron pairs can be created directly from light-matter or even light-vacuum interactions. Laserless strategies such as beam-beam collisions have also been proposed to access the nonpert&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.14280v2-abstract-full').style.display = 'inline'; document.getElementById('2209.14280v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.14280v2-abstract-full" style="display: none;"> Ongoing progress in laser and accelerator technology opens new possibilities in high-field science, notably to investigate the largely unexplored strong-field quantum electrodynamics (SFQED) regime where electron-positron pairs can be created directly from light-matter or even light-vacuum interactions. Laserless strategies such as beam-beam collisions have also been proposed to access the nonperturbative limit of SFQED. Here we report on a concept to probe SFQED by harnessing the interaction between a high-charge, ultrarelativistic electron beam and a solid conducting target. When impinging onto the target surface, the beam self fields are reflected, partly or fully, depending on the beam shape; in the rest frame of the beam electrons, these fields can exceed the Schwinger field, thus triggering SFQED effects such as quantum nonlinear inverse Compton scattering and nonlinear Breit-Wheeler electron-positron pair creation. Through reduced modeling and kinetic numerical simulations, we show that this single-beam setup can achieve interaction conditions similar to those envisioned in beam-beam collisions, but in a simpler and more controllable way owing to the automatic overlap of the beam and driving fields. This scheme thus eases the way to precision studies of SFQED and is also a promising milestone towards laserless studies of nonperturbative SFQED. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.14280v2-abstract-full').style.display = 'none'; document.getElementById('2209.14280v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun. Phys. 6, 141 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.06272">arXiv:2208.06272</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.06272">pdf</a>, <a href="https://arxiv.org/format/2208.06272">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Optimizing laser coupling, matter heating, and particle acceleration from solids using multiplexed ultraintense lasers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yao%2C+W">Weipeng Yao</a>, <a href="/search/physics?searchtype=author&amp;query=Nakatsutsumi%2C+M">Motoaki Nakatsutsumi</a>, <a href="/search/physics?searchtype=author&amp;query=Buffechoux%2C+S">S茅bastien Buffechoux</a>, <a href="/search/physics?searchtype=author&amp;query=Antici%2C+P">Patrizio Antici</a>, <a href="/search/physics?searchtype=author&amp;query=Borghesi%2C+M">Macro Borghesi</a>, <a href="/search/physics?searchtype=author&amp;query=Ciardi%2C+A">Andrea Ciardi</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+N">Sophia N. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=d%27Humi%C3%A8res%2C+E">Emmanuel d&#39;Humi猫res</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">Laurent Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=Heathcote%2C+R">Robert Heathcote</a>, <a href="/search/physics?searchtype=author&amp;query=Horn%C3%BD%2C+V">Vojt臎ch Horn媒</a>, <a href="/search/physics?searchtype=author&amp;query=McKenna%2C+P">Paul McKenna</a>, <a href="/search/physics?searchtype=author&amp;query=Quinn%2C+M+N">Mark N. Quinn</a>, <a href="/search/physics?searchtype=author&amp;query=Romagnani%2C+L">Lorenzo Romagnani</a>, <a href="/search/physics?searchtype=author&amp;query=Royle%2C+R">Ryan Royle</a>, <a href="/search/physics?searchtype=author&amp;query=Sarri%2C+G">Gianluca Sarri</a>, <a href="/search/physics?searchtype=author&amp;query=Sentoku%2C+Y">Yasuhiko Sentoku</a>, <a href="/search/physics?searchtype=author&amp;query=Schlenvoigt%2C+H">Hans-Peter Schlenvoigt</a>, <a href="/search/physics?searchtype=author&amp;query=Toncian%2C+T">Toma Toncian</a>, <a href="/search/physics?searchtype=author&amp;query=Tresca%2C+O">Olivier Tresca</a>, <a href="/search/physics?searchtype=author&amp;query=Vassura%2C+L">Laura Vassura</a>, <a href="/search/physics?searchtype=author&amp;query=Willi%2C+O">Oswald Willi</a>, <a href="/search/physics?searchtype=author&amp;query=Fuchs%2C+J">Julien Fuchs</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.06272v2-abstract-short" style="display: inline;"> Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations. Here, we investigate how to optimize their coupling with solid targets. Experimentally, we show that overlapping two intense lasers in a mirror-like configuration onto a solid with a large preplasma can greatly improve the generation o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.06272v2-abstract-full').style.display = 'inline'; document.getElementById('2208.06272v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.06272v2-abstract-full" style="display: none;"> Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations. Here, we investigate how to optimize their coupling with solid targets. Experimentally, we show that overlapping two intense lasers in a mirror-like configuration onto a solid with a large preplasma can greatly improve the generation of hot electrons at the target front and ion acceleration at the target backside. The underlying mechanisms are analyzed through multidimensional particle-in-cell simulations, revealing that the self-induced magnetic fields driven by the two laser beams at the target front are susceptible to reconnection, which is one possible mechanism to boost electron energization. In addition, the resistive magnetic field generated during the transport of the hot electrons in the target bulk tends to improve their collimation. Our simulations also indicate that such effects can be further enhanced by overlapping more than two laser beams. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.06272v2-abstract-full').style.display = 'none'; document.getElementById('2208.06272v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.08380">arXiv:2206.08380</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.08380">pdf</a>, <a href="https://arxiv.org/format/2206.08380">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.023028">10.1103/PhysRevD.106.023028 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-resonant particle acceleration in strong turbulence: comparison to kinetic and MHD simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bresci%2C+V">Virginia Bresci</a>, <a href="/search/physics?searchtype=author&amp;query=Lemoine%2C+M">Martin Lemoine</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">Laurent Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=Comisso%2C+L">Luca Comisso</a>, <a href="/search/physics?searchtype=author&amp;query=Sironi%2C+L">Lorenzo Sironi</a>, <a href="/search/physics?searchtype=author&amp;query=Demidem%2C+C">Camilia Demidem</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.08380v1-abstract-short" style="display: inline;"> Collisionless, magnetized turbulence offers a promising framework for the generation of non-thermal high-energy particles in various astrophysical sites. Yet, the detailed mechanism that governs particle acceleration has remained subject to debate. By means of 2D and 3D PIC, as well as 3D (incompressible) magnetohydrodynamic (MHD) simulations, we test here a recent model of non-resonant particle a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.08380v1-abstract-full').style.display = 'inline'; document.getElementById('2206.08380v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.08380v1-abstract-full" style="display: none;"> Collisionless, magnetized turbulence offers a promising framework for the generation of non-thermal high-energy particles in various astrophysical sites. Yet, the detailed mechanism that governs particle acceleration has remained subject to debate. By means of 2D and 3D PIC, as well as 3D (incompressible) magnetohydrodynamic (MHD) simulations, we test here a recent model of non-resonant particle acceleration in strongly magnetized turbulence~\cite{2021PhRvD.104f3020L}, which ascribes the energization of particles to their continuous interaction with the random velocity flow of the turbulence, in the spirit of the original Fermi model. To do so, we compare, for a large number of particles that were tracked in the simulations, the predicted and the observed histories of particles momenta. The predicted history is that derived from the model, after extracting from the simulations, at each point along the particle trajectory, the three force terms that control acceleration: the acceleration of the field line velocity projected along the field line direction, its shear projected along the same direction, and its transverse compressive part. Overall, we find a clear correlation between the model predictions and the numerical experiments, indicating that this non-resonant model can successfully account for the bulk of particle energization through Fermi-type processes in strongly magnetized turbulence. We also observe that the parallel shear contribution tends to dominate the physics of energization in the PIC simulations, while in the MHD incompressible simulation, both the parallel shear and the transverse compressive term provide about equal contributions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.08380v1-abstract-full').style.display = 'none'; document.getElementById('2206.08380v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.00546">arXiv:2204.00546</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.00546">pdf</a>, <a href="https://arxiv.org/format/2204.00546">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ac634f">10.3847/2041-8213/ac634f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Origin of intense electron heating in relativistic blast waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Vanthieghem%2C+A">Arno Vanthieghem</a>, <a href="/search/physics?searchtype=author&amp;query=Lemoine%2C+M">Martin Lemoine</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">Laurent Gremillet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.00546v1-abstract-short" style="display: inline;"> The modeling of gamma-ray burst afterglow emission bears witness to strong electron heating in the precursor of Weibel-mediated, relativistic collisionless shock waves propagating in unmagnetized electron-ion plasmas. In this Letter, we propose a theoretical model, which describes electron heating via a Joule-like process caused by pitch-angle scattering in the decelerating, self-induced microturb&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00546v1-abstract-full').style.display = 'inline'; document.getElementById('2204.00546v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.00546v1-abstract-full" style="display: none;"> The modeling of gamma-ray burst afterglow emission bears witness to strong electron heating in the precursor of Weibel-mediated, relativistic collisionless shock waves propagating in unmagnetized electron-ion plasmas. In this Letter, we propose a theoretical model, which describes electron heating via a Joule-like process caused by pitch-angle scattering in the decelerating, self-induced microturbulence and the coherent charge-separation field induced by the difference in inertia between electrons and ions. The emergence of this electric field across the precursor of electron-ion shocks is confirmed by large-scale particle-in-cell (PIC) simulations. Integrating the model using a Monte Carlo-Poisson method, we compare the main observables to the PIC simulations to conclude that the above mechanism can indeed account for the bulk of electron heating. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00546v1-abstract-full').style.display = 'none'; document.getElementById('2204.00546v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures; to be published in Astrophysical Journal Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.07459">arXiv:2203.07459</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.07459">pdf</a>, <a href="https://arxiv.org/format/2203.07459">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/11/P11008">10.1088/1748-0221/18/11/P11008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Channeling Acceleration in Crystals and Nanostructures and Studies of Solid Plasmas: New Opportunities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gilljohann%2C+M+F">Max F. Gilljohann</a>, <a href="/search/physics?searchtype=author&amp;query=Mankovska%2C+Y">Yuliia Mankovska</a>, <a href="/search/physics?searchtype=author&amp;query=Claveria%2C+P+S+M">Pablo San Miguel Claveria</a>, <a href="/search/physics?searchtype=author&amp;query=Sytov%2C+A">Alexei Sytov</a>, <a href="/search/physics?searchtype=author&amp;query=Bandiera%2C+L">Laura Bandiera</a>, <a href="/search/physics?searchtype=author&amp;query=Ariniello%2C+R">Robert Ariniello</a>, <a href="/search/physics?searchtype=author&amp;query=Davoine%2C+X">Xavier Davoine</a>, <a href="/search/physics?searchtype=author&amp;query=Ekerfelt%2C+H">Henrik Ekerfelt</a>, <a href="/search/physics?searchtype=author&amp;query=Fiuza%2C+F">Frederico Fiuza</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">Laurent Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=Knetsch%2C+A">Alexander Knetsch</a>, <a href="/search/physics?searchtype=author&amp;query=Martinez%2C+B">Bertrand Martinez</a>, <a href="/search/physics?searchtype=author&amp;query=Matheron%2C+A">Aim茅 Matheron</a>, <a href="/search/physics?searchtype=author&amp;query=Piekarz%2C+H">Henryk Piekarz</a>, <a href="/search/physics?searchtype=author&amp;query=Storey%2C+D">Doug Storey</a>, <a href="/search/physics?searchtype=author&amp;query=Taborek%2C+P">Peter Taborek</a>, <a href="/search/physics?searchtype=author&amp;query=Tajima%2C+T">Toshiki Tajima</a>, <a href="/search/physics?searchtype=author&amp;query=Shiltsev%2C+V">Vladimir Shiltsev</a>, <a href="/search/physics?searchtype=author&amp;query=Corde%2C+S">S茅bastien Corde</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.07459v2-abstract-short" style="display: inline;"> Plasma wakefield acceleration (PWFA) has shown illustrious progress and resulted in an impressive demonstration of tens of GeV particle acceleration in meter-long single structures. To reach even higher energies in the 1 TeV to 10 TeV range, a promising scheme is channeling acceleration in solid-density plasmas within crystals or nanostructures. The E336 experiment studies the beam-nanotarget in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07459v2-abstract-full').style.display = 'inline'; document.getElementById('2203.07459v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.07459v2-abstract-full" style="display: none;"> Plasma wakefield acceleration (PWFA) has shown illustrious progress and resulted in an impressive demonstration of tens of GeV particle acceleration in meter-long single structures. To reach even higher energies in the 1 TeV to 10 TeV range, a promising scheme is channeling acceleration in solid-density plasmas within crystals or nanostructures. The E336 experiment studies the beam-nanotarget interaction with the highly compressed electron bunches available at the FACET-II accelerator. These studies furthermore involve an in-depth research on dynamics of beam-plasma instabilities in ultra-dense plasma, its development and suppression in structured media like carbon nanotubes and crystals, and its potential use to transversely modulate the electron bunch. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07459v2-abstract-full').style.display = 'none'; document.getElementById('2203.07459v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to Snowmass&#39;2021 Accelerator Frontier (AF6), 16 pages, 9 Figs</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 18 P11008 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.06549">arXiv:2202.06549</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.06549">pdf</a>, <a href="https://arxiv.org/format/2202.06549">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> High-flux neutron generation by laser-accelerated ions from single- and double-layer targets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Horn%C3%BD%2C+V">Vojt臎ch Horn媒</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+N">Sophia N. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Davoine%2C+X">Xavier Davoine</a>, <a href="/search/physics?searchtype=author&amp;query=Lelasseux%2C+V">Vincent Lelasseux</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">Laurent Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=Fuchs%2C+J">Julien Fuchs</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.06549v4-abstract-short" style="display: inline;"> Contemporary ultraintense, short-pulse laser systems provide extremely compact setups for the production of high-flux neutron beams, such as those required for nondestructive probing of dense matter, research on neutron-induced damage in fusion devices or laboratory astrophysics studies. Here, by coupling particle-in-cell and Monte Carlo numerical simulations, we examine possible strategies to opt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.06549v4-abstract-full').style.display = 'inline'; document.getElementById('2202.06549v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.06549v4-abstract-full" style="display: none;"> Contemporary ultraintense, short-pulse laser systems provide extremely compact setups for the production of high-flux neutron beams, such as those required for nondestructive probing of dense matter, research on neutron-induced damage in fusion devices or laboratory astrophysics studies. Here, by coupling particle-in-cell and Monte Carlo numerical simulations, we examine possible strategies to optimise neutron sources from ion-induced nuclear reactions using 1-PW, 20-fs-class laser systems. To improve the ion acceleration, the laser-irradiated targets are chosen to be ultrathin solid foils, either standing alone or preceded by a plasma layer of near-critical density to enhance the laser focusing. We compare the performance of these single- and double-layer targets, and determine their optimum parameters in terms of energy and angular spectra of the accelerated ions. These are then sent into a converter to generate neutrons via nuclear reactions on beryllium and lead nuclei. Overall, we identify configurations that result in neutron yields as high as $\sim 10^{10}\,\rm n\,sr^{-1}$ in $\sim 1$-cm-thick converters or instantaneous neutron fluxes above $10^{23}\,\rm n\,cm^{-2}\,s^{-1}$ at the backside of $\lesssim 100$-$渭$m-thick converters. Considering a realistic repetition rate of one laser shot per minute, the corresponding time-averaged neutron yields are predicted to reach values ($\gtrsim 10^7\,\rm n \,sr^{-1}\,s^{-1}$) well above the current experimental record, and this even with a mere thin foil as a primary target. A further increase in the time-averaged yield up to above $10^8\,\rm sr^{-1}\,s^{-1}$ is foreseen using double-layer targets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.06549v4-abstract-full').style.display = 'none'; document.getElementById('2202.06549v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 8 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.00685">arXiv:2201.00685</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.00685">pdf</a>, <a href="https://arxiv.org/ps/2201.00685">ps</a>, <a href="https://arxiv.org/format/2201.00685">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0085182">10.1063/5.0085182 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonlinear adiabatic electron plasma waves. II. Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=B%C3%A9nisti%2C+D">D. B茅nisti</a>, <a href="/search/physics?searchtype=author&amp;query=Minenna%2C+D+F+G">D. F. G. Minenna</a>, <a href="/search/physics?searchtype=author&amp;query=Tacu%2C+M">M. Tacu</a>, <a href="/search/physics?searchtype=author&amp;query=Debayle%2C+A">A. Debayle</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">L. Gremillet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.00685v4-abstract-short" style="display: inline;"> In this article, we use the general theory derived in the companion paper [M. Tacu and D. B茅nisti, Phys. Plasmas (2021)] in order to address several long-standing issues regarding nonlinear electron plasma waves (EPW&#39;s). First, we discuss the relevance, and practical usefulness, of stationary solutions to the Vlasov-Poisson system, the so-called Bernstein-Greene-Kruskal modes, to model slowly vary&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.00685v4-abstract-full').style.display = 'inline'; document.getElementById('2201.00685v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.00685v4-abstract-full" style="display: none;"> In this article, we use the general theory derived in the companion paper [M. Tacu and D. B茅nisti, Phys. Plasmas (2021)] in order to address several long-standing issues regarding nonlinear electron plasma waves (EPW&#39;s). First, we discuss the relevance, and practical usefulness, of stationary solutions to the Vlasov-Poisson system, the so-called Bernstein-Greene-Kruskal modes, to model slowly varying waves. Second, we derive an upper bound for the wave breaking limit of an EPW growing in an initially Maxwellian plasma. Moreover, we show a simple dependence of this limit as a function of $k位_D$, $k$ being the wavenumber and $位_D$ the Debye length. Third, we explicitly derive the envelope equation ruling the evolution of a slowly growing plasma wave, up to an amplitude close to the wave breaking limit. Fourth, we estimate the growth of the transverse wavenumbers resulting from wavefront bowing by solving the nonlinear, nonstationary, ray tracing equations for the EPW, together with a simple model for stimulated Raman scattering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.00685v4-abstract-full').style.display = 'none'; document.getElementById('2201.00685v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.04651">arXiv:2111.04651</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.04651">pdf</a>, <a href="https://arxiv.org/format/2111.04651">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.105.035202">10.1103/PhysRevE.105.035202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Saturation of the asymmetric current filamentation instability under conditions relevant to relativistic shock precursors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bresci%2C+V">Virginia Bresci</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">Laurent Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=Lemoine%2C+M">Martin Lemoine</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.04651v1-abstract-short" style="display: inline;"> The current filamentation instability, which generically arises in the counterstreaming of supersonic plasma flows, is known for its ability to convert the free energy associated with anisotropic momentum distributions into kinetic-scale magnetic fields. The saturation of this instability has been extensively studied in symmetric configurations where the interpenetrating plasmas share the same pro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.04651v1-abstract-full').style.display = 'inline'; document.getElementById('2111.04651v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.04651v1-abstract-full" style="display: none;"> The current filamentation instability, which generically arises in the counterstreaming of supersonic plasma flows, is known for its ability to convert the free energy associated with anisotropic momentum distributions into kinetic-scale magnetic fields. The saturation of this instability has been extensively studied in symmetric configurations where the interpenetrating plasmas share the same properties (velocity, density, temperature). In many physical settings, however, the most common configuration is that of asymmetric plasma flows. For instance, the precursor of relativistic collisionless shock waves involves a hot, dilute beam of accelerated particles reflected at the shock front and a cold, dense inflowing background plasma. To determine the appropriate criterion for saturation in this case, we have performed large-scale 2D particle-in-cell simulations of counterstreaming electron-positron pair and electron-ion plasmas. We show that, in interpenetrating pair plasmas, the relevant criterion is that of magnetic trapping as applied to the component (beam or plasma) that carries the larger inertia of the two; namely, the instability growth suddenly slows down once the quiver frequency of those particles equals or exceeds the instability growth rate. We present theoretical approximations for the saturation level. These findings remain valid for electron-ion plasmas provided that electrons and ions are close to equipartition in the plasma flow of larger inertia. Our results can be directly applied to the physics of relativistic, weakly magnetized shock waves, but they can also be generalized to other cases of study. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.04651v1-abstract-full').style.display = 'none'; document.getElementById('2111.04651v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to Physical Review E</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.01336">arXiv:2108.01336</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.01336">pdf</a>, <a href="https://arxiv.org/format/2108.01336">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0065138">10.1063/5.0065138 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterization and performance of the Apollon Short-Focal-Area facility following its commissioning at 1 PW level </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Burdonov%2C+K">K. Burdonov</a>, <a href="/search/physics?searchtype=author&amp;query=Fazzini%2C+A">A. Fazzini</a>, <a href="/search/physics?searchtype=author&amp;query=Lelasseux%2C+V">V. Lelasseux</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+J">J. Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Antici%2C+P">P. Antici</a>, <a href="/search/physics?searchtype=author&amp;query=Ayoul%2C+Y">Y. Ayoul</a>, <a href="/search/physics?searchtype=author&amp;query=Beluze%2C+A">A. Beluze</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+D">D. Cavanna</a>, <a href="/search/physics?searchtype=author&amp;query=Ceccotti%2C+T">T. Ceccotti</a>, <a href="/search/physics?searchtype=author&amp;query=Chabanis%2C+M">M. Chabanis</a>, <a href="/search/physics?searchtype=author&amp;query=Chaleil%2C+A">A. Chaleil</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+N">S. N. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Z. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Consoli%2C+F">F. Consoli</a>, <a href="/search/physics?searchtype=author&amp;query=Cuciuc%2C+M">M. Cuciuc</a>, <a href="/search/physics?searchtype=author&amp;query=Davoine%2C+X">X. Davoine</a>, <a href="/search/physics?searchtype=author&amp;query=Delaneau%2C+J+P">J. P. Delaneau</a>, <a href="/search/physics?searchtype=author&amp;query=d%27Humi%C3%A8res%2C+E">E. d&#39;Humi猫res</a>, <a href="/search/physics?searchtype=author&amp;query=Dubois%2C+J">J-L. Dubois</a>, <a href="/search/physics?searchtype=author&amp;query=Evrard%2C+C">C. Evrard</a>, <a href="/search/physics?searchtype=author&amp;query=Filippov%2C+E">E. Filippov</a>, <a href="/search/physics?searchtype=author&amp;query=Freneaux%2C+A">A. Freneaux</a>, <a href="/search/physics?searchtype=author&amp;query=Forestier-Colleoni%2C+P">P. Forestier-Colleoni</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">L. Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=Horny%2C+V">V. Horny</a> , et al. (23 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.01336v1-abstract-short" style="display: inline;"> We present the results of the first commissioning phase of the ``short focal length&#39;&#39; area (SFA) of the Apollon laser facility (located in Saclay, France), which was performed with the first available laser beam (F2), scaled to a nominal power of one petawatt. Under the conditions that were tested, this beam delivered on target pulses of 10 J average energy and 24 fs duration. Several diagnostics&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01336v1-abstract-full').style.display = 'inline'; document.getElementById('2108.01336v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.01336v1-abstract-full" style="display: none;"> We present the results of the first commissioning phase of the ``short focal length&#39;&#39; area (SFA) of the Apollon laser facility (located in Saclay, France), which was performed with the first available laser beam (F2), scaled to a nominal power of one petawatt. Under the conditions that were tested, this beam delivered on target pulses of 10 J average energy and 24 fs duration. Several diagnostics were fielded to assess the performance of the facility. The on-target focal spot, its spatial stability, the temporal intensity profile prior to the main pulse, as well as the resulting density gradient formed at the irradiated side of solid targets, have been thoroughly characterized, with the goal of helping users design future experiments. Emissions of energetic electrons, ions, and electromagnetic radiation were recorded, showing good laser-to-target coupling efficiency and an overall performance comparable with that of similar international facilities. This will be followed in 2022 by a further commissioning stage at the multi-petawatt level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01336v1-abstract-full').style.display = 'none'; document.getElementById('2108.01336v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.11625">arXiv:2106.11625</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.11625">pdf</a>, <a href="https://arxiv.org/format/2106.11625">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.4.023085">10.1103/PhysRevResearch.4.023085 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spatiotemporal dynamics of ultrarelativistic beam-plasma instabilities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Claveria%2C+P+S+M">P. San Miguel Claveria</a>, <a href="/search/physics?searchtype=author&amp;query=Davoine%2C+X">X. Davoine</a>, <a href="/search/physics?searchtype=author&amp;query=Peterson%2C+J+R">J. R. Peterson</a>, <a href="/search/physics?searchtype=author&amp;query=Gilljohann%2C+M">M. Gilljohann</a>, <a href="/search/physics?searchtype=author&amp;query=Andriyash%2C+I">I. Andriyash</a>, <a href="/search/physics?searchtype=author&amp;query=Ariniello%2C+R">R. Ariniello</a>, <a href="/search/physics?searchtype=author&amp;query=Ekerfelt%2C+H">H. Ekerfelt</a>, <a href="/search/physics?searchtype=author&amp;query=Emma%2C+C">C. Emma</a>, <a href="/search/physics?searchtype=author&amp;query=Faure%2C+J">J. Faure</a>, <a href="/search/physics?searchtype=author&amp;query=Gessner%2C+S">S. Gessner</a>, <a href="/search/physics?searchtype=author&amp;query=Hogan%2C+M">M. Hogan</a>, <a href="/search/physics?searchtype=author&amp;query=Joshi%2C+C">C. Joshi</a>, <a href="/search/physics?searchtype=author&amp;query=Keitel%2C+C+H">C. H. Keitel</a>, <a href="/search/physics?searchtype=author&amp;query=Knetsch%2C+A">A. Knetsch</a>, <a href="/search/physics?searchtype=author&amp;query=Kononenko%2C+O">O. Kononenko</a>, <a href="/search/physics?searchtype=author&amp;query=Litos%2C+M">M. Litos</a>, <a href="/search/physics?searchtype=author&amp;query=Mankovska%2C+Y">Y. Mankovska</a>, <a href="/search/physics?searchtype=author&amp;query=Marsh%2C+K">K. Marsh</a>, <a href="/search/physics?searchtype=author&amp;query=Matheron%2C+A">A. Matheron</a>, <a href="/search/physics?searchtype=author&amp;query=Nie%2C+Z">Z. Nie</a>, <a href="/search/physics?searchtype=author&amp;query=O%27Shea%2C+B">B. O&#39;Shea</a>, <a href="/search/physics?searchtype=author&amp;query=Storey%2C+D">D. Storey</a>, <a href="/search/physics?searchtype=author&amp;query=Vafaei-Najafabadi%2C+N">N. Vafaei-Najafabadi</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Y">Y. Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">X. Xu</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.11625v2-abstract-short" style="display: inline;"> An electron or electron-positron beam streaming through a plasma is notoriously prone to micro-instabilities. For a dilute ultrarelativistic infinite beam, the dominant instability is a mixed mode between longitudinal two-stream and transverse filamentation modes, with a phase velocity oblique to the beam velocity. A spatiotemporal theory describing the linear growth of this oblique mixed instabil&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.11625v2-abstract-full').style.display = 'inline'; document.getElementById('2106.11625v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.11625v2-abstract-full" style="display: none;"> An electron or electron-positron beam streaming through a plasma is notoriously prone to micro-instabilities. For a dilute ultrarelativistic infinite beam, the dominant instability is a mixed mode between longitudinal two-stream and transverse filamentation modes, with a phase velocity oblique to the beam velocity. A spatiotemporal theory describing the linear growth of this oblique mixed instability is proposed, which predicts that spatiotemporal effects generally prevail for finite-length beams, leading to a significantly slower instability evolution than in the usually assumed purely temporal regime. These results are accurately supported by particle-in-cell (PIC) simulations. Furthermore, we show that the self-focusing dynamics caused by the plasma wakefields driven by finite-width beams can compete with the oblique instability. Analyzed through PIC simulations, the interplay of these two processes in realistic systems bears important implications for upcoming accelerator experiments on ultrarelativistic beam-plasma interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.11625v2-abstract-full').style.display = 'none'; document.getElementById('2106.11625v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review RESEARCH 4, 023085 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.11094">arXiv:2105.11094</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.11094">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0060582">10.1063/5.0060582 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Numerical investigation of spallation neutrons generated from petawatt-scale laser-driven proton beams </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Martinez%2C+B">B. Martinez</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+N">S. N. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Bola%C3%B1os%2C+S">S. Bola帽os</a>, <a href="/search/physics?searchtype=author&amp;query=Blanchot%2C+N">N. Blanchot</a>, <a href="/search/physics?searchtype=author&amp;query=Boutoux%2C+G">G. Boutoux</a>, <a href="/search/physics?searchtype=author&amp;query=Cayzac%2C+W">W. Cayzac</a>, <a href="/search/physics?searchtype=author&amp;query=Courtois%2C+C">C. Courtois</a>, <a href="/search/physics?searchtype=author&amp;query=Davoine%2C+X">X. Davoine</a>, <a href="/search/physics?searchtype=author&amp;query=Duval%2C+A">A. Duval</a>, <a href="/search/physics?searchtype=author&amp;query=Horny%2C+V">V. Horny</a>, <a href="/search/physics?searchtype=author&amp;query=Lantuejoul%2C+I">I. Lantuejoul</a>, <a href="/search/physics?searchtype=author&amp;query=Deroff%2C+L+L">L. Le Deroff</a>, <a href="/search/physics?searchtype=author&amp;query=Masson-Laborde%2C+P+E">P. E. Masson-Laborde</a>, <a href="/search/physics?searchtype=author&amp;query=Sary%2C+G">G. Sary</a>, <a href="/search/physics?searchtype=author&amp;query=Vauzour%2C+B">B. Vauzour</a>, <a href="/search/physics?searchtype=author&amp;query=Smets%2C+R">R. Smets</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">L. Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=Fuchs%2C+J">J. Fuchs</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.11094v2-abstract-short" style="display: inline;"> Due to their high cost of acquisition and operation, there are still a limited number of high-yield, high-flux neutron source facilities worldwide. In this context, laser-driven neutron sources offer a promising, cheaper alternative to those based on large-scale accelerators, with, in addition, the potential of generating compact neutron beams of high brightness and ultra-short duration. In partic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.11094v2-abstract-full').style.display = 'inline'; document.getElementById('2105.11094v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.11094v2-abstract-full" style="display: none;"> Due to their high cost of acquisition and operation, there are still a limited number of high-yield, high-flux neutron source facilities worldwide. In this context, laser-driven neutron sources offer a promising, cheaper alternative to those based on large-scale accelerators, with, in addition, the potential of generating compact neutron beams of high brightness and ultra-short duration. In particular, the predicted capability of next-generation petawatt (PW)-class lasers to accelerate protons beyond the 100 MeV range should unlock efficient neutron generation through spallation reactions. In this paper, this scenario is investigated numerically through particle-in-cell and Monte Carlo simulations, modeling, respectively, the laser acceleration of protons from thin-foil targets and their subsequent conversion into neutrons in secondary heavy-ion targets. Laser parameters relevant to the 1 PW LMJ-PETAL and 1-10 PW Apollon systems are considered. Under such conditions, neutron fluxes exceeding $10^{23}\,\rm n\,cm^{-2}\,s^{-1}$ are predicted, opening up attractive fundamental and applicative prospects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.11094v2-abstract-full').style.display = 'none'; document.getElementById('2105.11094v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.09455">arXiv:2012.09455</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.09455">pdf</a>, <a href="https://arxiv.org/format/2012.09455">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Ion acceleration by an ultrashort laser pulse interacting with a near-critical-density gas jet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ehret%2C+M">M. Ehret</a>, <a href="/search/physics?searchtype=author&amp;query=Salgado-Lopez%2C+C">C. Salgado-Lopez</a>, <a href="/search/physics?searchtype=author&amp;query=Ospina-Bohorquez%2C+V">V. Ospina-Bohorquez</a>, <a href="/search/physics?searchtype=author&amp;query=Perez-Hernandez%2C+J+A">J. A. Perez-Hernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Huault%2C+M">M. Huault</a>, <a href="/search/physics?searchtype=author&amp;query=de+Marco%2C+M">M. de Marco</a>, <a href="/search/physics?searchtype=author&amp;query=Apinaniz%2C+J+I">J. I. Apinaniz</a>, <a href="/search/physics?searchtype=author&amp;query=Hannachi%2C+F">F. Hannachi</a>, <a href="/search/physics?searchtype=author&amp;query=De+Luis%2C+D">D. De Luis</a>, <a href="/search/physics?searchtype=author&amp;query=Toro%2C+J+H">J. Hernandez Toro</a>, <a href="/search/physics?searchtype=author&amp;query=Arana%2C+D">D. Arana</a>, <a href="/search/physics?searchtype=author&amp;query=Mendez%2C+C">C. Mendez</a>, <a href="/search/physics?searchtype=author&amp;query=Varela%2C+O">O. Varela</a>, <a href="/search/physics?searchtype=author&amp;query=Debayle%2C+A">A. Debayle</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">L. Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=Nguyen-Bui%2C+T+-">T. -H. Nguyen-Bui</a>, <a href="/search/physics?searchtype=author&amp;query=Olivier%2C+E">E. Olivier</a>, <a href="/search/physics?searchtype=author&amp;query=Revet%2C+G">G. Revet</a>, <a href="/search/physics?searchtype=author&amp;query=Bukharskii%2C+N+D">N. D. Bukharskii</a>, <a href="/search/physics?searchtype=author&amp;query=Larreur%2C+H">H. Larreur</a>, <a href="/search/physics?searchtype=author&amp;query=Caron%2C+J">J. Caron</a>, <a href="/search/physics?searchtype=author&amp;query=Vlachos%2C+C">C. Vlachos</a>, <a href="/search/physics?searchtype=author&amp;query=Ceccotti%2C+T">T. Ceccotti</a>, <a href="/search/physics?searchtype=author&amp;query=Raffestin%2C+D">D. Raffestin</a>, <a href="/search/physics?searchtype=author&amp;query=Nicolai%2C+P">P. Nicolai</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.09455v1-abstract-short" style="display: inline;"> We demonstrate laser-driven Helium ion acceleration with cut-off energies above 25 MeV and peaked ion number above $10^8$ /MeV for 22(2) MeV projectiles from near-critical density gas jet targets. We employed shock gas jet nozzles at the high-repetition-rate (HRR) VEGA-2 laser system with 3 J in pulses of 30 fs focused down to intensities in the range between $9\times10^{19}$ W/cm$^2$ and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.09455v1-abstract-full').style.display = 'inline'; document.getElementById('2012.09455v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.09455v1-abstract-full" style="display: none;"> We demonstrate laser-driven Helium ion acceleration with cut-off energies above 25 MeV and peaked ion number above $10^8$ /MeV for 22(2) MeV projectiles from near-critical density gas jet targets. We employed shock gas jet nozzles at the high-repetition-rate (HRR) VEGA-2 laser system with 3 J in pulses of 30 fs focused down to intensities in the range between $9\times10^{19}$ W/cm$^2$ and $1.2\times10^{20}$ W/cm$^2$. We demonstrate acceleration spectra with minor shot-to-shot changes for small variations in the target gas density profile. Difference in gas profiles arise due to nozzles being exposed to a experimental environment, partially ablating and melting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.09455v1-abstract-full').style.display = 'none'; document.getElementById('2012.09455v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 28 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.06930">arXiv:2009.06930</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.06930">pdf</a>, <a href="https://arxiv.org/format/2009.06930">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/S0022377820001397">10.1017/S0022377820001397 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhanced laser-driven proton acceleration with gas-foil targets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Levy%2C+D">Dan Levy</a>, <a href="/search/physics?searchtype=author&amp;query=Davoine%2C+X">Xavier Davoine</a>, <a href="/search/physics?searchtype=author&amp;query=Debayle%2C+A">Arnaud Debayle</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">Laurent Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=Malka%2C+V">Victor Malka</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.06930v1-abstract-short" style="display: inline;"> We study numerically the mechanisms of proton acceleration in gas-foil targets driven by an ultraintense femtosecond laser pulse. The target consists of a near-critical-density hydrogen gas layer of a few tens of microns attached to a solid carbon foil with a contaminant thin proton layer at its back side. Two-dimensional particle-in-cell simulations show that, at optimal gas density, the maximum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.06930v1-abstract-full').style.display = 'inline'; document.getElementById('2009.06930v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.06930v1-abstract-full" style="display: none;"> We study numerically the mechanisms of proton acceleration in gas-foil targets driven by an ultraintense femtosecond laser pulse. The target consists of a near-critical-density hydrogen gas layer of a few tens of microns attached to a solid carbon foil with a contaminant thin proton layer at its back side. Two-dimensional particle-in-cell simulations show that, at optimal gas density, the maximum energy of the contaminant protons is increased by a factor of $\sim 4$ compared to a single foil target. This improvement originates from the near-complete laser absorption into relativistic electrons in the gas. Several energetic electron populations are identified, and their respective effect on the proton acceleration is quantified by computing the electrostatic fields that they generate at the protons&#39; positions. While each of those electron groups is found to contribute substantially to the overall accelerating field, the dominant one is the relativistic thermal bulk that results from the nonlinear wakefield excited in the gas, as analyzed recently by Debayle et al. [New J. Phys. 19, 123013 (2017)]. Our analysis also reveals the important role of the neighboring ions in the acceleration of the fastest protons, and the onset of multidimensional effects caused by the time-increasing curvature of the proton layer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.06930v1-abstract-full').style.display = 'none'; document.getElementById('2009.06930v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Plasma Phys. (2020), vol. 86, 905860608 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.01808">arXiv:2009.01808</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.01808">pdf</a>, <a href="https://arxiv.org/format/2009.01808">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.064801">10.1103/PhysRevLett.126.064801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extremely Dense Gamma-Ray Pulses in Electron Beam-Multifoil Collisions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sampath%2C+A">Archana Sampath</a>, <a href="/search/physics?searchtype=author&amp;query=Davoine%2C+X">Xavier Davoine</a>, <a href="/search/physics?searchtype=author&amp;query=Corde%2C+S">S茅bastien Corde</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">Laurent Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=Gilljohann%2C+M">Max Gilljohann</a>, <a href="/search/physics?searchtype=author&amp;query=Sangal%2C+M">Maitreyi Sangal</a>, <a href="/search/physics?searchtype=author&amp;query=Keitel%2C+C+H">Christoph H. Keitel</a>, <a href="/search/physics?searchtype=author&amp;query=Ariniello%2C+R">Robert Ariniello</a>, <a href="/search/physics?searchtype=author&amp;query=Cary%2C+J">John Cary</a>, <a href="/search/physics?searchtype=author&amp;query=Ekerfelt%2C+H">Henrik Ekerfelt</a>, <a href="/search/physics?searchtype=author&amp;query=Emma%2C+C">Claudio Emma</a>, <a href="/search/physics?searchtype=author&amp;query=Fiuza%2C+F">Frederico Fiuza</a>, <a href="/search/physics?searchtype=author&amp;query=Fujii%2C+H">Hiroki Fujii</a>, <a href="/search/physics?searchtype=author&amp;query=Hogan%2C+M">Mark Hogan</a>, <a href="/search/physics?searchtype=author&amp;query=Joshi%2C+C">Chan Joshi</a>, <a href="/search/physics?searchtype=author&amp;query=Knetsch%2C+A">Alexander Knetsch</a>, <a href="/search/physics?searchtype=author&amp;query=Kononenko%2C+O">Olena Kononenko</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+V">Valentina Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Litos%2C+M">Mike Litos</a>, <a href="/search/physics?searchtype=author&amp;query=Marsh%2C+K">Kenneth Marsh</a>, <a href="/search/physics?searchtype=author&amp;query=Nie%2C+Z">Zan Nie</a>, <a href="/search/physics?searchtype=author&amp;query=O%27Shea%2C+B">Brendan O&#39;Shea</a>, <a href="/search/physics?searchtype=author&amp;query=Peterson%2C+J+R">J. Ryan Peterson</a>, <a href="/search/physics?searchtype=author&amp;query=Claveria%2C+P+S+M">Pablo San Miguel Claveria</a>, <a href="/search/physics?searchtype=author&amp;query=Storey%2C+D">Doug Storey</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.01808v3-abstract-short" style="display: inline;"> Sources of high-energy photons have important applications in almost all areas of research. However, the photon flux and intensity of existing sources is strongly limited for photon energies above a few hundred keV. Here we show that a high-current ultrarelativistic electron beam interacting with multiple submicrometer-thick conducting foils can undergo strong self-focusing accompanied by efficien&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.01808v3-abstract-full').style.display = 'inline'; document.getElementById('2009.01808v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.01808v3-abstract-full" style="display: none;"> Sources of high-energy photons have important applications in almost all areas of research. However, the photon flux and intensity of existing sources is strongly limited for photon energies above a few hundred keV. Here we show that a high-current ultrarelativistic electron beam interacting with multiple submicrometer-thick conducting foils can undergo strong self-focusing accompanied by efficient emission of gamma-ray synchrotron photons. Physically, self-focusing and high-energy photon emission originate from the beam interaction with the near-field transition radiation accompanying the beam-foil collision. This near field radiation is of amplitude comparable with the beam self-field, and can be strong enough that a single emitted photon can carry away a significant fraction of the emitting electron energy. After beam collision with multiple foils, femtosecond collimated electron and photon beams with number density exceeding that of a solid are obtained. The relative simplicity, unique properties, and high efficiency of this gamma-ray source open up new opportunities for both applied and fundamental research including laserless investigations of strong-field QED processes with a single electron beam. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.01808v3-abstract-full').style.display = 'none'; document.getElementById('2009.01808v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 11 figures, matches published article</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 064801 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.16603">arXiv:2006.16603</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.16603">pdf</a>, <a href="https://arxiv.org/format/2006.16603">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.043341">10.1103/PhysRevResearch.2.043341 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Synchrotron radiation from ultrahigh-intensity laser-plasma interactions and competition with Bremsstrahlung in thin foil targets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Martinez%2C+B">Bertrand Martinez</a>, <a href="/search/physics?searchtype=author&amp;query=d%27Humi%C3%A8res%2C+E">Emmanuel d&#39;Humi猫res</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">Laurent Gremillet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.16603v1-abstract-short" style="display: inline;"> By means of particle-in-cell numerical simulations, we investigate the emission of high-energy photons in laser-plasma interactions under ultrahigh-intensity conditions relevant to multi-petawatt laser systems. We first examine the characteristics of synchrotron radiation from laser-driven plasmas of varying density and size. In particular, we show and explain the dependence of the angular distrib&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.16603v1-abstract-full').style.display = 'inline'; document.getElementById('2006.16603v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.16603v1-abstract-full" style="display: none;"> By means of particle-in-cell numerical simulations, we investigate the emission of high-energy photons in laser-plasma interactions under ultrahigh-intensity conditions relevant to multi-petawatt laser systems. We first examine the characteristics of synchrotron radiation from laser-driven plasmas of varying density and size. In particular, we show and explain the dependence of the angular distribution of the radiated photons on the transparency or opacity of the plasma. We then study the competition of the synchrotron and Bremsstrahlung emissions in copper foil targets irradiated by $10^{22}\,\rm W\,cm^{-2}$, $50 \, \rm fs$ laser pulses. Synchrotron emission is observed to be maximized for target thicknesses of a few $10 \, \rm nm$, close to the relativistic transparency threshold, and to be superseded by Bremsstrahlung in targets a few $渭$m thick. At their best efficiency, both mechanisms are found to radiate about one percent of the laser energy into photons with energies above $10\,\rm keV$. Their energy and angular spectra are thoroughly analyzed in light of the ultrafast target dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.16603v1-abstract-full').style.display = 'none'; document.getElementById('2006.16603v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 2, 043341 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.05425">arXiv:2005.05425</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.05425">pdf</a>, <a href="https://arxiv.org/format/2005.05425">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Terahertz emission from submicron solid targets irradiated by ultraintense femtosecond laser pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=D%C3%A9chard%2C+J">J. D茅chard</a>, <a href="/search/physics?searchtype=author&amp;query=Davoine%2C+X">X. Davoine</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">L. Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%C3%A9%2C+L">L. Berg茅</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.05425v2-abstract-short" style="display: inline;"> Using high-resolution, two-dimensional particle-in-cell simulations, we investigate numerically the mechanisms of terahertz (THz) emissions in submicron-thick carbon solid foils driven by ultraintense ($\sim 10^{20}\,\rm W\,cm^{-2}$), ultrashort ($30\,\rm fs$) laser pulses at normal incidence. The considered range of target thicknesses extends down to the relativistic transparency regime that is k&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.05425v2-abstract-full').style.display = 'inline'; document.getElementById('2005.05425v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.05425v2-abstract-full" style="display: none;"> Using high-resolution, two-dimensional particle-in-cell simulations, we investigate numerically the mechanisms of terahertz (THz) emissions in submicron-thick carbon solid foils driven by ultraintense ($\sim 10^{20}\,\rm W\,cm^{-2}$), ultrashort ($30\,\rm fs$) laser pulses at normal incidence. The considered range of target thicknesses extends down to the relativistic transparency regime that is known to optimize ion acceleration by femtosecond laser pulses. By disentangling the fields emitted by longitudinal and transverse currents, our analysis reveals that, within the first picosecond after the interaction, THz emission occurs in bursts as a result of coherent transition radiation by the recirculating hot electrons and antenna-type emission by the shielding electron currents traveling along the fast-expanding target surfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.05425v2-abstract-full').style.display = 'none'; document.getElementById('2005.05425v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.00953">arXiv:2004.00953</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.00953">pdf</a>, <a href="https://arxiv.org/format/2004.00953">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/S0022377820000847">10.1017/S0022377820000847 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effects of oblique incidence and colliding pulses on laser-driven proton acceleration from relativistically transparent ultrathin targets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ferri%2C+J">Julien Ferri</a>, <a href="/search/physics?searchtype=author&amp;query=Siminos%2C+E">Evangelos Siminos</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">Laurent Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=F%C3%BCl%C3%B6p%2C+T">T眉nde F眉l枚p</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.00953v1-abstract-short" style="display: inline;"> The use of ultrathin solid foils offers optimal conditions for accelerating protons from laser-matter interactions. When the target is thin enough that relativistic self-induced transparency (RSIT) sets in, all of the target electrons get heated to high energies by the laser, which maximizes the accelerating electric field and therefore the final ion energy. In this work, we first investigate how&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.00953v1-abstract-full').style.display = 'inline'; document.getElementById('2004.00953v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.00953v1-abstract-full" style="display: none;"> The use of ultrathin solid foils offers optimal conditions for accelerating protons from laser-matter interactions. When the target is thin enough that relativistic self-induced transparency (RSIT) sets in, all of the target electrons get heated to high energies by the laser, which maximizes the accelerating electric field and therefore the final ion energy. In this work, we first investigate how ion acceleration by ultraintense femtosecond laser pulses in transparent CH$_2$ solid foils is modified when turning from normal to oblique ($45^\circ$) incidence. Due to stronger electron heating, we find that higher proton energies can be obtained at oblique incidence but in thinner optimum targets. We then show that proton acceleration can be further improved by splitting the laser pulse into two half-pulses focused at opposite incidence angles. An increase by $\sim 30\,\%$ in the maximum proton energy and by a factor of $\sim 4$ in the high-energy proton charge is reported compared to the reference case of a single normally incident pulse. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.00953v1-abstract-full').style.display = 'none'; document.getElementById('2004.00953v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.10935">arXiv:2002.10935</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.10935">pdf</a>, <a href="https://arxiv.org/format/2002.10935">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6587/ab9a62">10.1088/1361-6587/ab9a62 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Collisional effects on the electrostatic shock dynamics in thin-foil targets driven by an ultraintense short pulse laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sundstr%C3%B6m%2C+A">Andr茅as Sundstr枚m</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">Laurent Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=Siminos%2C+E">Evangelos Siminos</a>, <a href="/search/physics?searchtype=author&amp;query=Pusztai%2C+I">Istv谩n Pusztai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.10935v3-abstract-short" style="display: inline;"> We numerically investigate the impact of Coulomb collisions on the ion dynamics in high-$Z$, solid density caesium hydride and copper targets, irradiated by high-intensity ($I\approx2{-}5\times10^{20}{\rm\,Wcm^{-2}}$), ultrashort (${\sim}10{\rm\,fs}$), circularly polarized laser pulses, using particle-in-cell simulations. Collisions significantly enhance electron heating, thereby strongly increasi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.10935v3-abstract-full').style.display = 'inline'; document.getElementById('2002.10935v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.10935v3-abstract-full" style="display: none;"> We numerically investigate the impact of Coulomb collisions on the ion dynamics in high-$Z$, solid density caesium hydride and copper targets, irradiated by high-intensity ($I\approx2{-}5\times10^{20}{\rm\,Wcm^{-2}}$), ultrashort (${\sim}10{\rm\,fs}$), circularly polarized laser pulses, using particle-in-cell simulations. Collisions significantly enhance electron heating, thereby strongly increasing the speed of a shock wave launched in the laser-plasma interaction. In the caesium hydride target, collisions between the two ion species heat the protons to ${\sim}100{-}1000{\rm\,eV}$ temperatures. However, in contrast to previous work (A.E. Turrell etal., 2015 Nat. Commun. 6, 8905), this process happens in the upstream only, due to nearly total proton reflection. This difference is ascribed to distinct models used to treat collisions in dense/cold plasmas. In the case of a copper target, ion reflection can start as a self-amplifying process, bootstrapping itself. Afterwards, collisions between the reflected and upstream ions heat these two populations significantly. When increasing the pulse duration to $60{\rm\,fs}$, the shock front more clearly decouples from the laser piston, and so can be studied without direct interference from the laser. The shock wave formed at early times exhibits properties typical of both hydrodynamic and electrostatic shocks, including ion reflection. At late times, the shock is seen to evolve into a hydrodynamic blast wave. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.10935v3-abstract-full').style.display = 'none'; document.getElementById('2002.10935v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Plasma Phys. Control. Fusion 62, 085015 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.09562">arXiv:1911.09562</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.09562">pdf</a>, <a href="https://arxiv.org/format/1911.09562">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/S0022377820000264">10.1017/S0022377820000264 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fast collisional electron heating and relaxation in thin foils driven by a circularly polarized ultraintense short-pulse laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sundstr%C3%B6m%2C+A">Andr茅as Sundstr枚m</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">Laurent Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=Siminos%2C+E">Evangelos Siminos</a>, <a href="/search/physics?searchtype=author&amp;query=Pusztai%2C+I">Istv谩n Pusztai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.09562v3-abstract-short" style="display: inline;"> The creation of well-thermalized, hot and dense plasmas is attractive for warm dense matter studies. We investigate collisionally induced energy absorption of an ultraintense and ultrashort laser pulse in a solid copper target using particle-in-cell simulations. We find that, upon irradiation by a $2\times10^{20}{\rm\,W\,cm^{-2}}$ intensity, $60{\rm\,fs}$ duration, circularly polarized laser pulse&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.09562v3-abstract-full').style.display = 'inline'; document.getElementById('1911.09562v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.09562v3-abstract-full" style="display: none;"> The creation of well-thermalized, hot and dense plasmas is attractive for warm dense matter studies. We investigate collisionally induced energy absorption of an ultraintense and ultrashort laser pulse in a solid copper target using particle-in-cell simulations. We find that, upon irradiation by a $2\times10^{20}{\rm\,W\,cm^{-2}}$ intensity, $60{\rm\,fs}$ duration, circularly polarized laser pulse, the electrons in the collisional simulation rapidly reach a well-thermalized distribution with ${\sim}3.5{\rm\,keV}$ temperature, while in the collisionless simulation the absorption is several orders of magnitude weaker. Circular polarization inhibits the generation of suprathermal electrons, while ensuring efficient bulk heating through inverse bremsstrahlung, a mechanism usually overlooked at relativistic laser intensity. An additional simulation, taking account of both collisional and field ionization, yields similar results: the bulk electrons are heated to ${\sim}2.5{\rm\,keV}$, but with a somewhat lower degree of thermalization than in the pre-set, fixed-ionization case. The collisional absorption mechanism is found to be robust against variations in the laser parameters. At fixed laser pulse energy, increasing the pulse duration rather than the intensity leads to a higher electron temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.09562v3-abstract-full').style.display = 'none'; document.getElementById('1911.09562v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Journal of Plasma Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Plasma Phys. (2020) vol. 86, 755860201 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.12052">arXiv:1907.12052</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.12052">pdf</a>, <a href="https://arxiv.org/format/1907.12052">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.023123">10.1103/PhysRevResearch.2.023123 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing Ultrafast Magnetic-Field Generation by Current Filamentation Instability in Femtosecond Relativistic Laser-Matter Interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Raj%2C+G">G. Raj</a>, <a href="/search/physics?searchtype=author&amp;query=Kononenko%2C+O">O. Kononenko</a>, <a href="/search/physics?searchtype=author&amp;query=Doche%2C+A">A. Doche</a>, <a href="/search/physics?searchtype=author&amp;query=Davoine%2C+X">X. Davoine</a>, <a href="/search/physics?searchtype=author&amp;query=Caizergues%2C+C">C. Caizergues</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y+-">Y. -Y. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Cabadag%2C+J+P+C">J. P. Couperus Cabadag</a>, <a href="/search/physics?searchtype=author&amp;query=Debus%2C+A">A. Debus</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+H">H. Ding</a>, <a href="/search/physics?searchtype=author&amp;query=F%C3%B6rster%2C+M">M. F枚rster</a>, <a href="/search/physics?searchtype=author&amp;query=Gilljohann%2C+M+F">M. F. Gilljohann</a>, <a href="/search/physics?searchtype=author&amp;query=Goddet%2C+J+-">J. -P. Goddet</a>, <a href="/search/physics?searchtype=author&amp;query=Heinemann%2C+T">T. Heinemann</a>, <a href="/search/physics?searchtype=author&amp;query=Kluge%2C+T">T. Kluge</a>, <a href="/search/physics?searchtype=author&amp;query=Kurz%2C+T">T. Kurz</a>, <a href="/search/physics?searchtype=author&amp;query=Pausch%2C+R">R. Pausch</a>, <a href="/search/physics?searchtype=author&amp;query=Rousseau%2C+P">P. Rousseau</a>, <a href="/search/physics?searchtype=author&amp;query=Claveria%2C+P+S+M">P. San Miguel Claveria</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6bel%2C+S">S. Sch枚bel</a>, <a href="/search/physics?searchtype=author&amp;query=Siciak%2C+A">A. Siciak</a>, <a href="/search/physics?searchtype=author&amp;query=Steiniger%2C+K">K. Steiniger</a>, <a href="/search/physics?searchtype=author&amp;query=Tafzi%2C+A">A. Tafzi</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+S">S. Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Hidding%2C+B">B. Hidding</a>, <a href="/search/physics?searchtype=author&amp;query=de+la+Ossa%2C+A+M">A. Martinez de la Ossa</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.12052v1-abstract-short" style="display: inline;"> We present experimental measurements of the femtosecond time-scale generation of strong magnetic-field fluctuations during the interaction of ultrashort, moderately relativistic laser pulses with solid targets. These fields were probed using low-emittance, highly relativistic electron bunches from a laser wakefield accelerator, and a line-integrated $B$-field of $2.70 \pm 0.39\,\rm kT\,渭m$ was mea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.12052v1-abstract-full').style.display = 'inline'; document.getElementById('1907.12052v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.12052v1-abstract-full" style="display: none;"> We present experimental measurements of the femtosecond time-scale generation of strong magnetic-field fluctuations during the interaction of ultrashort, moderately relativistic laser pulses with solid targets. These fields were probed using low-emittance, highly relativistic electron bunches from a laser wakefield accelerator, and a line-integrated $B$-field of $2.70 \pm 0.39\,\rm kT\,渭m$ was measured. Three-dimensional, fully relativistic particle-in-cell simulations indicate that such fluctuations originate from a Weibel-type current filamentation instability developing at submicron scales around the irradiated target surface, and that they grow to amplitudes strong enough to broaden the angular distribution of the probe electron bunch a few tens of femtoseconds after the laser pulse maximum. Our results highlight the potential of wakefield-accelerated electron beams for ultrafast probing of relativistic laser-driven phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.12052v1-abstract-full').style.display = 'none'; document.getElementById('1907.12052v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 2, 023123 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.10294">arXiv:1907.10294</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.10294">pdf</a>, <a href="https://arxiv.org/format/1907.10294">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.100.033210">10.1103/PhysRevE.100.033210 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Physics of relativistic collisionless shocks: III The suprathermal particles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lemoine%2C+M">Martin Lemoine</a>, <a href="/search/physics?searchtype=author&amp;query=Pelletier%2C+G">Guy Pelletier</a>, <a href="/search/physics?searchtype=author&amp;query=Vanthieghem%2C+A">Arno Vanthieghem</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">Laurent Gremillet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.10294v2-abstract-short" style="display: inline;"> In this third paper of a series, we discuss the physics of the population of accelerated particles in the precursor of an unmagnetized, relativistic collisionless pair shock. In particular, we provide a theoretical estimate of their scattering length $l_{scatt}(p)$ in the self-generated electromagnetic turbulence, as well as an estimate of their distribution function. We obtain&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.10294v2-abstract-full').style.display = 'inline'; document.getElementById('1907.10294v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.10294v2-abstract-full" style="display: none;"> In this third paper of a series, we discuss the physics of the population of accelerated particles in the precursor of an unmagnetized, relativistic collisionless pair shock. In particular, we provide a theoretical estimate of their scattering length $l_{scatt}(p)$ in the self-generated electromagnetic turbulence, as well as an estimate of their distribution function. We obtain $l_{scatt}(p) \simeq (纬_p /蔚_B)(p/纬_{\infty} mc)^2 (c/蠅_p)$, with p the particle momentum in the rest frame of the shock front, $蔚_B$ the strength parameter of the microturbulence, $纬_p$ the Lorentz factor of the background plasma relative to the shock front and $纬_{\infty}$ its asymptotic value outside the precursor. We compare this scattering length to large-scale PIC simulations and find good agreement for the various dependencies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.10294v2-abstract-full').style.display = 'none'; document.getElementById('1907.10294v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Phys. Rev. E, submitted; 13 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 100, 033210 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.08219">arXiv:1907.08219</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.08219">pdf</a>, <a href="https://arxiv.org/format/1907.08219">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.100.033209">10.1103/PhysRevE.100.033209 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Physics of relativistic collisionless shocks: II Dynamics of the background plasma </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lemoine%2C+M">M. Lemoine</a>, <a href="/search/physics?searchtype=author&amp;query=Vanthieghem%2C+A">A. Vanthieghem</a>, <a href="/search/physics?searchtype=author&amp;query=Pelletier%2C+G">G. Pelletier</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">L. Gremillet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.08219v2-abstract-short" style="display: inline;"> In this second paper of a series, we discuss the dynamics of a plasma entering the precursor of an unmagnetized, relativistic collisionless pair shock. We discuss how this background plasma is decelerated and heated through its interaction with a microturbulence that results from the growth of a current filamentation instability (CFI) in the shock precursor. We make use, in particular, of the refe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08219v2-abstract-full').style.display = 'inline'; document.getElementById('1907.08219v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.08219v2-abstract-full" style="display: none;"> In this second paper of a series, we discuss the dynamics of a plasma entering the precursor of an unmagnetized, relativistic collisionless pair shock. We discuss how this background plasma is decelerated and heated through its interaction with a microturbulence that results from the growth of a current filamentation instability (CFI) in the shock precursor. We make use, in particular, of the reference frame $\mathcal R_{\rm w}$ in which the turbulence is mostly magnetic. This frame moves at relativistic velocities towards the shock front at rest, decelerating gradually from the far to the near precursor. In a first part, we construct a fluid model to derive the deceleration law of the background plasma expected from the scattering of suprathermal particles off the microturbulence. This law leads to the relationship $纬_{\rm p}\,\sim\,尉_{\rm b}^{-1/2}$ between the background plasma Lorentz factor $纬_{\rm p}$ and the normalized pressure of the beam $尉_{\rm b}$; it is found to match nicely the spatial profiles observed in large-scale 2D3V particle-in-cell simulations. In a second part, we model the dynamics of the background plasma at the kinetic level, incorporating the inertial effects associated with the deceleration of $\mathcal R_{\rm w}$ into a Vlasov-Fokker-Planck equation for pitch-angle diffusion. We show how the effective gravity in $\mathcal R_{\rm w}$ drives the background plasma particles through friction on the microturbulence, leading to efficient plasma heating. Finally, we compare a Monte Carlo simulation of our model with dedicated PIC simulations and conclude that it can satisfactorily reproduce both the heating and the deceleration of the background plasma in the shock precursor, thereby providing a successful 1D description of the shock transition at the microscopic level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08219v2-abstract-full').style.display = 'none'; document.getElementById('1907.08219v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Phys. Rev. E, submitted; 17 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 100, 033209 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.07750">arXiv:1907.07750</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.07750">pdf</a>, <a href="https://arxiv.org/format/1907.07750">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.100.013205">10.1103/PhysRevE.100.013205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Physics of relativistic collisionless shocks: The scattering center frame </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Pelletier%2C+G">G. Pelletier</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">L. Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=Vanthieghem%2C+A">A. Vanthieghem</a>, <a href="/search/physics?searchtype=author&amp;query=Lemoine%2C+M">M. Lemoine</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.07750v2-abstract-short" style="display: inline;"> In this first paper of a series dedicated to the microphysics of unmagnetized, relativistic collisionless pair shocks, we discuss the physics of the Weibel-type transverse current filamentation instability (CFI) that develops in the shock precursor, through the interaction of an ultrarelativistic suprathermal particle beam with the background plasma. We introduce in particular the notion of &#34;Weibe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.07750v2-abstract-full').style.display = 'inline'; document.getElementById('1907.07750v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.07750v2-abstract-full" style="display: none;"> In this first paper of a series dedicated to the microphysics of unmagnetized, relativistic collisionless pair shocks, we discuss the physics of the Weibel-type transverse current filamentation instability (CFI) that develops in the shock precursor, through the interaction of an ultrarelativistic suprathermal particle beam with the background plasma. We introduce in particular the notion of &#34;Weibel frame&#34;, or scattering center frame, in which the microturbulence is of mostly magnetic nature. We calculate the properties of this frame, using first a kinetic formulation of the linear phase of the instability, relying on Maxwell-J眉ttner distribution functions, then using a quasistatic model of the nonlinear stage of the instability. Both methods show that: (i) the Weibel frame moves at subrelativistic velocities relative to the background plasma, therefore at relativistic velocities relative to the shock front; (ii) the velocity of the Weibel frame relative to the background plasma scales with $尉_{\rm b}$, i.e., the pressure of the suprathermal particle beam in units of the momentum flux density incoming into the shock; and (iii), the Weibel frame moves slightly less fast than the background plasma relative to the shock front. Our theoretical results are found to be in satisfactory agreement with the measurements carried out in dedicated large-scale 2D3V PIC simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.07750v2-abstract-full').style.display = 'none'; document.getElementById('1907.07750v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review E 100, 013205 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.07595">arXiv:1907.07595</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.07595">pdf</a>, <a href="https://arxiv.org/format/1907.07595">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.035101">10.1103/PhysRevLett.123.035101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Physics of Weibel-mediated relativistic collisionless shocks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lemoine%2C+M">M. Lemoine</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">L. Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=Pelletier%2C+G">G. Pelletier</a>, <a href="/search/physics?searchtype=author&amp;query=Vanthieghem%2C+A">A. Vanthieghem</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.07595v2-abstract-short" style="display: inline;"> We develop a comprehensive theoretical model of relativistic collisionless pair shocks mediated by the current filamentation instability. We notably characterize the noninertial frame in which this instability is of a mostly magnetic nature, and describe at a microscopic level the deceleration and heating of the incoming background plasma through its collisionless interaction with the electromagne&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.07595v2-abstract-full').style.display = 'inline'; document.getElementById('1907.07595v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.07595v2-abstract-full" style="display: none;"> We develop a comprehensive theoretical model of relativistic collisionless pair shocks mediated by the current filamentation instability. We notably characterize the noninertial frame in which this instability is of a mostly magnetic nature, and describe at a microscopic level the deceleration and heating of the incoming background plasma through its collisionless interaction with the electromagnetic turbulence. Our model compares well to large-scale 2D3V PIC simulations, and provides an important touchstone for the phenomenology of such plasma systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.07595v2-abstract-full').style.display = 'none'; document.getElementById('1907.07595v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Phys. Rev. Lett. 123, 035101 (2019)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.02814">arXiv:1907.02814</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.02814">pdf</a>, <a href="https://arxiv.org/ps/1907.02814">ps</a>, <a href="https://arxiv.org/format/1907.02814">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5118339">10.1063/1.5118339 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-Energy Radiation and Pair Production by Coulomb Processes in Particle-In-Cell Simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Martinez%2C+B">B. Martinez</a>, <a href="/search/physics?searchtype=author&amp;query=Lobet%2C+M">M. Lobet</a>, <a href="/search/physics?searchtype=author&amp;query=Duclous%2C+R">R. Duclous</a>, <a href="/search/physics?searchtype=author&amp;query=d%27Humi%C3%A8res%2C+E">E. d&#39;Humi猫res</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">L. Gremillet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.02814v1-abstract-short" style="display: inline;"> We present a Monte Carlo implementation of the Bremsstrahlung, Bethe-Heitler and Coulomb Trident processes into the particle-in-cell (PIC) simulation framework. In order to address photon and electron-positron pair production in a wide range of physical conditions, we derive Bremsstrahlung and Bethe-Heitler cross sections taking account of screening effects in arbitrarily ionized plasmas. Our calc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.02814v1-abstract-full').style.display = 'inline'; document.getElementById('1907.02814v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.02814v1-abstract-full" style="display: none;"> We present a Monte Carlo implementation of the Bremsstrahlung, Bethe-Heitler and Coulomb Trident processes into the particle-in-cell (PIC) simulation framework. In order to address photon and electron-positron pair production in a wide range of physical conditions, we derive Bremsstrahlung and Bethe-Heitler cross sections taking account of screening effects in arbitrarily ionized plasmas. Our calculations are based on a simple model for the atomic Coulomb potential that describes shielding due to both bound electrons, free electrons and ions. We then describe a pairwise particle interaction algorithm suited to weighted PIC plasma simulations, for which we perform several validation tests. Finally, we carry out a parametric study of photon and pair production during high-energy electron transport through micrometric solid foils. Compared to the zero-dimensional model of J. Myatt et al. [Phys. Rev. E 76, 066409 (2009)], our integrated one-dimensional simulations pinpoint the importance of the electron energy losses resulting from the plasma expansion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.02814v1-abstract-full').style.display = 'none'; document.getElementById('1907.02814v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.11131">arXiv:1905.11131</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.11131">pdf</a>, <a href="https://arxiv.org/format/1905.11131">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Enhancement of laser-driven ion acceleration in non-periodic nanostructured targets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Thiele%2C+I">I. Thiele</a>, <a href="/search/physics?searchtype=author&amp;query=Ferri%2C+J">J. Ferri</a>, <a href="/search/physics?searchtype=author&amp;query=Siminos%2C+E">E. Siminos</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">L. Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=Smetanina%2C+E">E. Smetanina</a>, <a href="/search/physics?searchtype=author&amp;query=Dmitriev%2C+A">A. Dmitriev</a>, <a href="/search/physics?searchtype=author&amp;query=Cantono%2C+G">G. Cantono</a>, <a href="/search/physics?searchtype=author&amp;query=Wahlstr%C3%B6m%2C+C+-">C. -G. Wahlstr枚m</a>, <a href="/search/physics?searchtype=author&amp;query=F%C3%BCl%C3%B6p%2C+T">T. F眉l枚p</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.11131v2-abstract-short" style="display: inline;"> Using particle-in-cell simulations, we demonstrate an improvement of the target normal sheath acceleration (TNSA) of protons in non-periodically nanostructured targets with micron-scale thickness. Compared to standard flat foils, an increase in the proton cutoff energy by up to a factor of two is observed in foils coated with nanocones or perforated with nanoholes. The latter nano-perforated foils&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.11131v2-abstract-full').style.display = 'inline'; document.getElementById('1905.11131v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.11131v2-abstract-full" style="display: none;"> Using particle-in-cell simulations, we demonstrate an improvement of the target normal sheath acceleration (TNSA) of protons in non-periodically nanostructured targets with micron-scale thickness. Compared to standard flat foils, an increase in the proton cutoff energy by up to a factor of two is observed in foils coated with nanocones or perforated with nanoholes. The latter nano-perforated foils yield the highest enhancement, which we show to be robust over a broad range of foil thicknesses and hole diameters. The improvement of TNSA performance results from more efficient hot-electron generation, caused by a more complex laser-electron interaction geometry and increased effective interaction area and duration. We show that TNSA is optimized for a nanohole distribution of relatively low areal density and that is not required to be periodic, thus relaxing the manufacturing constraints. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.11131v2-abstract-full').style.display = 'none'; document.getElementById('1905.11131v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.04429">arXiv:1804.04429</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.04429">pdf</a>, <a href="https://arxiv.org/format/1804.04429">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5033562">10.1063/1.5033562 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stability analysis of a periodic system of relativistic current filaments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Vanthieghem%2C+A">Arno Vanthieghem</a>, <a href="/search/physics?searchtype=author&amp;query=Lemoine%2C+M">Martin Lemoine</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">Laurent Gremillet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.04429v2-abstract-short" style="display: inline;"> The nonlinear evolution of current filaments generated by the Weibel-type filamentation instability is a topic of prime interest in space and laboratory plasma physics. In this paper, we investigate the stability of a stationary periodic chain of nonlinear current filaments in counterstreaming pair plasmas. We make use of a relativistic four-fluid model and apply the Floquet theory to compute the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.04429v2-abstract-full').style.display = 'inline'; document.getElementById('1804.04429v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.04429v2-abstract-full" style="display: none;"> The nonlinear evolution of current filaments generated by the Weibel-type filamentation instability is a topic of prime interest in space and laboratory plasma physics. In this paper, we investigate the stability of a stationary periodic chain of nonlinear current filaments in counterstreaming pair plasmas. We make use of a relativistic four-fluid model and apply the Floquet theory to compute the two-dimensional unstable eigenmodes of the spatially periodic system. We examine three different cases, characterized by various levels of nonlinearity and asymmetry between the plasma streams: a weakly nonlinear symmetric system, prone to purely transverse merging modes; a strongly nonlinear symmetric system, dominated by coherent drift-kink modes whose transverse periodicity is equal to, or an integer fraction of the unperturbed filaments; a moderately nonlinear asymmetric system, subject to a mix of kink and bunching-type perturbations. The growth rates and profiles of the numerically computed eigenmodes agree with particle-in-cell simulation results. In addition, we derive an analytic criterion for the transition between dominant filament-merging and drift-kink instabilites in symmetric two-beam systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.04429v2-abstract-full').style.display = 'none'; document.getElementById('1804.04429v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 24 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.07520">arXiv:1802.07520</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.07520">pdf</a>, <a href="https://arxiv.org/format/1802.07520">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6587/aac5a3">10.1088/1361-6587/aac5a3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Synchrotron emission from nanowire-array targets irradiated by ultraintense laser pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Martinez%2C+B">B. Martinez</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Humi%C3%A8res%2C+E">E. D&#39;Humi猫res</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">L. Gremillet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.07520v2-abstract-short" style="display: inline;"> We present a numerical study, based on two-dimensional particle-in-cell simulations, of the synchrotron emission induced during the interaction of femtosecond laser pulses of intensities $I=10^{21}-10^{23}\,\mathrm{Wcm}^{-2}$ with nanowire arrays. Through an extensive parametric scan on the target parameters, we identify and characterize several dominant radiation mechanisms, mainly depending on t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.07520v2-abstract-full').style.display = 'inline'; document.getElementById('1802.07520v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.07520v2-abstract-full" style="display: none;"> We present a numerical study, based on two-dimensional particle-in-cell simulations, of the synchrotron emission induced during the interaction of femtosecond laser pulses of intensities $I=10^{21}-10^{23}\,\mathrm{Wcm}^{-2}$ with nanowire arrays. Through an extensive parametric scan on the target parameters, we identify and characterize several dominant radiation mechanisms, mainly depending on the transparency or opacity of the plasma produced by the wire expansion. At $I=10^{22}\,\mathrm{Wcm}^{-2}$, the emission of high-energy ($&gt;10\,\mathrm{keV}$) photons attains a maximum conversion efficiency of $\sim 10\%$ for $36-50\,\mathrm{nm}$ wire widths and $1\,渭\mathrm{m}$ interspacing. This maximum radiation yield is similar to that achieved in uniform plasma of same average (sub-solid) density, but nanowire arrays provide efficient radiation sources over a broader parameter range. We examine the variations of the photon spectra with the laser intensity and the wire material. Finally, we demonstrate that the radiation efficiency can be further enhanced by adding a plasma mirror at the backside of the nanowire array. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.07520v2-abstract-full').style.display = 'none'; document.getElementById('1802.07520v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.06999">arXiv:1802.06999</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.06999">pdf</a>, <a href="https://arxiv.org/format/1802.06999">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5026391">10.1063/1.5026391 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Proton acceleration by a pair of successive ultraintense femtosecond laser pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ferri%2C+J">Julien Ferri</a>, <a href="/search/physics?searchtype=author&amp;query=Senje%2C+L">Lovisa Senje</a>, <a href="/search/physics?searchtype=author&amp;query=Dalui%2C+M">Malay Dalui</a>, <a href="/search/physics?searchtype=author&amp;query=Svensson%2C+K">Kristoffer Svensson</a>, <a href="/search/physics?searchtype=author&amp;query=Aurand%2C+B">Bastian Aurand</a>, <a href="/search/physics?searchtype=author&amp;query=Hansson%2C+M">Martin Hansson</a>, <a href="/search/physics?searchtype=author&amp;query=Persson%2C+A">Anders Persson</a>, <a href="/search/physics?searchtype=author&amp;query=Lundh%2C+O">Olle Lundh</a>, <a href="/search/physics?searchtype=author&amp;query=Wahlstr%C3%B6m%2C+C">Claes-G枚ran Wahlstr枚m</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">Laurent Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=Siminos%2C+E">Evangelos Siminos</a>, <a href="/search/physics?searchtype=author&amp;query=DuBois%2C+T">Timothy DuBois</a>, <a href="/search/physics?searchtype=author&amp;query=Yi%2C+L">Longqing Yi</a>, <a href="/search/physics?searchtype=author&amp;query=Martins%2C+J">Joana Martins</a>, <a href="/search/physics?searchtype=author&amp;query=F%C3%BCl%C3%B6p%2C+T">T眉nde F眉l枚p</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.06999v1-abstract-short" style="display: inline;"> We investigate the target normal sheath acceleration of protons in thin aluminum targets irradiated at relativistic intensity by two time-separated ultrashort (35 fs) laser pulses. For identical laser pulses and target thicknesses of 3 and 6 $渭$m, we observe experimentally that the second pulse boosts the maximum energy and charge of the proton beam produced by the first pulse for time delays belo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.06999v1-abstract-full').style.display = 'inline'; document.getElementById('1802.06999v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.06999v1-abstract-full" style="display: none;"> We investigate the target normal sheath acceleration of protons in thin aluminum targets irradiated at relativistic intensity by two time-separated ultrashort (35 fs) laser pulses. For identical laser pulses and target thicknesses of 3 and 6 $渭$m, we observe experimentally that the second pulse boosts the maximum energy and charge of the proton beam produced by the first pulse for time delays below $\sim0.6-1$ ps. By using two-dimensional particle-in-cell simulations we examine the variation of the proton energy spectra with respect to the time-delay between the two pulses. We demonstrate that the expansion of the target front surface caused by the first pulse significantly enhances the hot-electron generation by the second pulse arriving after a few hundreds of fs time delay. This enhancement, however, does not suffice to further accelerate the fastest protons driven by the first pulse once three-dimensional quenching effects have set in. This implies a limit to the maximum time delay that leads to proton energy enhancement, which we theoretically determine. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.06999v1-abstract-full').style.display = 'none'; document.getElementById('1802.06999v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.07175">arXiv:1712.07175</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.07175">pdf</a>, <a href="https://arxiv.org/format/1712.07175">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5018735">10.1063/1.5018735 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Santos%2C+J+J">J. J. Santos</a>, <a href="/search/physics?searchtype=author&amp;query=Bailly-Grandvaux%2C+M">M. Bailly-Grandvaux</a>, <a href="/search/physics?searchtype=author&amp;query=Ehret%2C+M">M. Ehret</a>, <a href="/search/physics?searchtype=author&amp;query=Arefiev%2C+A+V">A. V. Arefiev</a>, <a href="/search/physics?searchtype=author&amp;query=Batani%2C+D">D. Batani</a>, <a href="/search/physics?searchtype=author&amp;query=Beg%2C+F+N">F. N. Beg</a>, <a href="/search/physics?searchtype=author&amp;query=Calisti%2C+A">A. Calisti</a>, <a href="/search/physics?searchtype=author&amp;query=Ferri%2C+S">S. Ferri</a>, <a href="/search/physics?searchtype=author&amp;query=Florido%2C+R">R. Florido</a>, <a href="/search/physics?searchtype=author&amp;query=Forestier-Colleoni%2C+P">P. Forestier-Colleoni</a>, <a href="/search/physics?searchtype=author&amp;query=Fujioka%2C+S">S. Fujioka</a>, <a href="/search/physics?searchtype=author&amp;query=Gigosos%2C+M+A">M. A. Gigosos</a>, <a href="/search/physics?searchtype=author&amp;query=Giuffrida%2C+L">L. Giuffrida</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">L. Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=Honrubia%2C+.+J">. J. Honrubia</a>, <a href="/search/physics?searchtype=author&amp;query=Kojima%2C+S">S. Kojima</a>, <a href="/search/physics?searchtype=author&amp;query=Korneev%2C+P">Ph. Korneev</a>, <a href="/search/physics?searchtype=author&amp;query=Law%2C+K+F+F">K. F. F. Law</a>, <a href="/search/physics?searchtype=author&amp;query=Marqu%C3%A8s%2C+J+-">J. -R. Marqu猫s</a>, <a href="/search/physics?searchtype=author&amp;query=Morace%2C+A">A. Morace</a>, <a href="/search/physics?searchtype=author&amp;query=Moss%C3%A9%2C+C">C. Moss茅</a>, <a href="/search/physics?searchtype=author&amp;query=Peyrusse%2C+O">O. Peyrusse</a>, <a href="/search/physics?searchtype=author&amp;query=Rose%2C+S">S. Rose</a>, <a href="/search/physics?searchtype=author&amp;query=Roth%2C+M">M. Roth</a>, <a href="/search/physics?searchtype=author&amp;query=Sakata%2C+S">S. Sakata</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.07175v1-abstract-short" style="display: inline;"> Powerful laser-plasma processes are explored to generate discharge currents of a few $100\,$kA in coil targets, yielding magnetostatic fields (B-fields) in excess of $0.5\,$kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, describing qualitatively the evolution of the discharge current, the major control parameter is th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.07175v1-abstract-full').style.display = 'inline'; document.getElementById('1712.07175v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.07175v1-abstract-full" style="display: none;"> Powerful laser-plasma processes are explored to generate discharge currents of a few $100\,$kA in coil targets, yielding magnetostatic fields (B-fields) in excess of $0.5\,$kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, describing qualitatively the evolution of the discharge current, the major control parameter is the laser irradiance $I_{\mathrm{las}}位_{\mathrm{las}}^2$. The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and by proton-deflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport into solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at $60 \,\mathrm{渭m}$ depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes and to laboratory astrophysics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.07175v1-abstract-full').style.display = 'none'; document.getElementById('1712.07175v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures, invited APS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.03458">arXiv:1710.03458</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.03458">pdf</a>, <a href="https://arxiv.org/format/1710.03458">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5008806">10.1063/1.5008806 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Origins of plateau formation in ion energy spectra under target normal sheath acceleration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DuBois%2C+T+C">Timothy C. DuBois</a>, <a href="/search/physics?searchtype=author&amp;query=Siminos%2C+E">Evangelos Siminos</a>, <a href="/search/physics?searchtype=author&amp;query=Ferri%2C+J">Julien Ferri</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">Laurent Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=F%C3%BCl%C3%B6p%2C+T">T眉nde F眉l枚p</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.03458v2-abstract-short" style="display: inline;"> Target normal sheath acceleration (TNSA) is a method employed in laser--matter interaction experiments to accelerate light ions (usually protons). Laser setups with durations of a few 10 fs and relatively low intensity contrasts observe plateau regions in their ion energy spectra when shooting on thin foil targets with thicknesses of order 10 $\mathrm渭$m. In this paper we identify a mechanism whic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.03458v2-abstract-full').style.display = 'inline'; document.getElementById('1710.03458v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.03458v2-abstract-full" style="display: none;"> Target normal sheath acceleration (TNSA) is a method employed in laser--matter interaction experiments to accelerate light ions (usually protons). Laser setups with durations of a few 10 fs and relatively low intensity contrasts observe plateau regions in their ion energy spectra when shooting on thin foil targets with thicknesses of order 10 $\mathrm渭$m. In this paper we identify a mechanism which explains this phenomenon using one dimensional particle-in-cell simulations. Fast electrons generated from the laser interaction recirculate back and forth through the target, giving rise to time-oscillating charge and current densities at the target backside. Periodic decreases in the electron density lead to transient disruptions of the TNSA sheath field: peaks in the ion spectra form as a result, which are then spread in energy from a modified potential driven by further electron recirculation. The ratio between the laser pulse duration and the recirculation period (dependent on the target thickness, including the portion of the pre-plasma which is denser than the critical density) determines if a plateau forms in the energy spectra. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.03458v2-abstract-full').style.display = 'none'; document.getElementById('1710.03458v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.06368">arXiv:1709.06368</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.06368">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-017-11589-z">10.1038/s41598-017-11589-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhancing laser-driven proton acceleration by using micro-pillar arrays at high drive energy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Khaghani%2C+D">Dimitri Khaghani</a>, <a href="/search/physics?searchtype=author&amp;query=Lobet%2C+M">Mathieu Lobet</a>, <a href="/search/physics?searchtype=author&amp;query=Borm%2C+B">Bj枚rn Borm</a>, <a href="/search/physics?searchtype=author&amp;query=Burr%2C+L">Lo茂c Burr</a>, <a href="/search/physics?searchtype=author&amp;query=G%C3%A4rtner%2C+F">Felix G盲rtner</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">Laurent Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=Movsesyan%2C+L">Liana Movsesyan</a>, <a href="/search/physics?searchtype=author&amp;query=Rosmej%2C+O">Olga Rosmej</a>, <a href="/search/physics?searchtype=author&amp;query=Toimil-Molares%2C+M+E">Maria Eugenia Toimil-Molares</a>, <a href="/search/physics?searchtype=author&amp;query=Wagner%2C+F">Florian Wagner</a>, <a href="/search/physics?searchtype=author&amp;query=Neumayer%2C+P">Paul Neumayer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.06368v1-abstract-short" style="display: inline;"> The interaction of micro- and nano-structured target surfaces with high-power laser pulses is being widely investigated for its unprecedented absorption efficiency. We have developed vertically aligned metallic micro-pillar arrays for laser-driven proton acceleration experiments. We demonstrate that such targets help strengthen interaction mechanisms when irradiated with high-energy-class laser pu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.06368v1-abstract-full').style.display = 'inline'; document.getElementById('1709.06368v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.06368v1-abstract-full" style="display: none;"> The interaction of micro- and nano-structured target surfaces with high-power laser pulses is being widely investigated for its unprecedented absorption efficiency. We have developed vertically aligned metallic micro-pillar arrays for laser-driven proton acceleration experiments. We demonstrate that such targets help strengthen interaction mechanisms when irradiated with high-energy-class laser pulses of intensities $\sim$ $10^{17-18}$ W/cm$^2$. In comparison with standard planar targets, we witness strongly enhanced hot-electron production and proton acceleration both in terms of maximum energies and particle numbers. Supporting our experimental results, two-dimensional particle-in-cell simulations show an increase in laser energy conversion into hot electrons, leading to stronger acceleration fields. This opens a window of opportunity for further improvements of laser-driven ion acceleration systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.06368v1-abstract-full').style.display = 'none'; document.getElementById('1709.06368v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports 7(1):11366 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.04639">arXiv:1709.04639</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.04639">pdf</a>, <a href="https://arxiv.org/ps/1709.04639">ps</a>, <a href="https://arxiv.org/format/1709.04639">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.144801">10.1103/PhysRevLett.120.144801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sequential terahertz pulse generation by photoionization and coherent transition radiation in underdense relativistic plasmas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=D%C3%A9chard%2C+J">J. D茅chard</a>, <a href="/search/physics?searchtype=author&amp;query=Debayle%2C+A">A. Debayle</a>, <a href="/search/physics?searchtype=author&amp;query=Davoine%2C+X">X. Davoine</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">L. Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%C3%A9%2C+L">L. Berg茅</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.04639v1-abstract-short" style="display: inline;"> Terahertz (THz) emission by two-color, ultrashort optical pulses interacting with underdense helium gases at ultrahigh intensities ($&gt; 10^{19}\,\mathrm{W/cm}^2$) is investigated by means of 3D particle-in-cell simulations. The THz field is shown to be produced by two mechanisms occurring sequentially, namely, photoionization-induced radiation (PIR) by the two-color pulse and coherent transition ra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.04639v1-abstract-full').style.display = 'inline'; document.getElementById('1709.04639v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.04639v1-abstract-full" style="display: none;"> Terahertz (THz) emission by two-color, ultrashort optical pulses interacting with underdense helium gases at ultrahigh intensities ($&gt; 10^{19}\,\mathrm{W/cm}^2$) is investigated by means of 3D particle-in-cell simulations. The THz field is shown to be produced by two mechanisms occurring sequentially, namely, photoionization-induced radiation (PIR) by the two-color pulse and coherent transition radiation (CTR) by the wakefield-accelerated electrons escaping the plasma. For plasmas of atomic densities $&gt; 10^{17}\,\mathrm{cm}^{-3}$, CTR proves to be the dominant process, providing THz bursts with field strength as high as $100\,\mathrm{GV/m}$ and energy in excess of $1\,\mathrm{mJ}$. Analytical models are developed for both the PIR and CTR processes, which correctly reproduce the simulation data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.04639v1-abstract-full').style.display = 'none'; document.getElementById('1709.04639v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 144801 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.02734">arXiv:1609.02734</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.02734">pdf</a>, <a href="https://arxiv.org/format/1609.02734">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.94.063202">10.1103/PhysRevE.94.063202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Theory of terahertz emission from femtosecond-laser-induced micro-plasmas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Thiele%2C+I">I. Thiele</a>, <a href="/search/physics?searchtype=author&amp;query=Nuter%2C+R">R. Nuter</a>, <a href="/search/physics?searchtype=author&amp;query=Bousquet%2C+B">B. Bousquet</a>, <a href="/search/physics?searchtype=author&amp;query=Tikhonchuk%2C+V">V. Tikhonchuk</a>, <a href="/search/physics?searchtype=author&amp;query=Davoine%2C+X">X. Davoine</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">L. Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&amp;query=Skupin%2C+S">S. Skupin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.02734v1-abstract-short" style="display: inline;"> We present a theoretical investigation of terahertz (THz) generation in laser-induced gas plasmas. The work is strongly motivated by recent experimental results on micro-plasmas, but our general findings are not limited to such a configuration. The electrons and ions are created by tunnel-ionization of neutral atoms, and the resulting plasma is heated by collisions. Electrons are driven by electro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.02734v1-abstract-full').style.display = 'inline'; document.getElementById('1609.02734v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.02734v1-abstract-full" style="display: none;"> We present a theoretical investigation of terahertz (THz) generation in laser-induced gas plasmas. The work is strongly motivated by recent experimental results on micro-plasmas, but our general findings are not limited to such a configuration. The electrons and ions are created by tunnel-ionization of neutral atoms, and the resulting plasma is heated by collisions. Electrons are driven by electromagnetic, convective and diffusive sources and produce a macroscopic current which is responsible for THz emission. The model naturally includes both, ionization current and transition-Cherenkov mechanisms for THz emission, which are usually investigated separately in the literature. The latter mechanism is shown to dominate for single-color multi-cycle lasers pulses, where the observed THz radiation originates from longitudinal electron currents. However, we find that the often discussed oscillations at the plasma frequency do not contribute to the THz emission spectrum. In order to predict the scaling of the conversion efficiency with pulse energy and focusing conditions, we propose a simplified description that is in excellent agreement with rigorous particle-in-cell simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.02734v1-abstract-full').style.display = 'none'; document.getElementById('1609.02734v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 94, 063202 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.00768">arXiv:1607.00768</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.00768">pdf</a>, <a href="https://arxiv.org/format/1607.00768">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/0004-637X/827/1/44">10.3847/0004-637X/827/1/44 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Corrugation of relativistic magnetized shock waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lemoine%2C+M">M. Lemoine</a>, <a href="/search/physics?searchtype=author&amp;query=Ramos%2C+O">O. Ramos</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">L. Gremillet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.00768v1-abstract-short" style="display: inline;"> As a shock front interacts with turbulence, it develops corrugation which induces outgoing wave modes in the downstream plasma. For a fast shock wave, the incoming wave modes can either be fast magnetosonic waves originating from downstream, outrunning the shock, or eigenmodes of the upstream plasma drifting through the shock. Using linear perturbation theory in relativistic MHD, this paper provid&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.00768v1-abstract-full').style.display = 'inline'; document.getElementById('1607.00768v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.00768v1-abstract-full" style="display: none;"> As a shock front interacts with turbulence, it develops corrugation which induces outgoing wave modes in the downstream plasma. For a fast shock wave, the incoming wave modes can either be fast magnetosonic waves originating from downstream, outrunning the shock, or eigenmodes of the upstream plasma drifting through the shock. Using linear perturbation theory in relativistic MHD, this paper provides a general analysis of the corrugation of relativistic magnetized fast shock waves resulting from their interaction with small amplitude disturbances. Transfer functions characterizing the linear response for each of the outgoing modes are calculated as a function of the magnetization of the upstream medium and as a function of the nature of the incoming wave. Interestingly, if the latter is an eigenmode of the upstream plasma, we find that there exists a resonance at which the (linear) response of the shock becomes large or even diverges. This result may have profound consequences on the phenomenology of astrophysical relativistic magnetized shock waves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.00768v1-abstract-full').style.display = 'none'; document.getElementById('1607.00768v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures; to appear in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.02301">arXiv:1510.02301</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.02301">pdf</a>, <a href="https://arxiv.org/ps/1510.02301">ps</a>, <a href="https://arxiv.org/format/1510.02301">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevSTAB.20.043401">10.1103/PhysRevSTAB.20.043401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generation of high-energy electron-positron beams in the collision of a laser-accelerated electron beam and a multi-petawatt laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lobet%2C+M">Mathieu Lobet</a>, <a href="/search/physics?searchtype=author&amp;query=Davoine%2C+X">Xavier Davoine</a>, <a href="/search/physics?searchtype=author&amp;query=d%27Humi%C3%A8res%2C+E">Emmanuel d&#39;Humi猫res</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">Laurent Gremillet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.02301v2-abstract-short" style="display: inline;"> Generation of antimatter via the multiphoton Breit-Wheeler process in an all-optical scheme will be made possible on forthcoming high-power laser facilities through the collision of wakefield-accelerated GeV electrons with a counter-propagating laser pulse with $10^{22}$-$10^{23}$ $\mathrm{Wcm}^{-2}$ peak intensity. By means of integrated 3D particle-in-cell simulations, we show that the productio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.02301v2-abstract-full').style.display = 'inline'; document.getElementById('1510.02301v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.02301v2-abstract-full" style="display: none;"> Generation of antimatter via the multiphoton Breit-Wheeler process in an all-optical scheme will be made possible on forthcoming high-power laser facilities through the collision of wakefield-accelerated GeV electrons with a counter-propagating laser pulse with $10^{22}$-$10^{23}$ $\mathrm{Wcm}^{-2}$ peak intensity. By means of integrated 3D particle-in-cell simulations, we show that the production of positron beams with 0.1-1 nC total charge, 100-400 MeV mean energy and 0.01-0.1 rad divergence is within the reach of soon-to-be-available laser systems. The variations of the positron beam&#39;s properties with respect to the laser parameters are also examined. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.02301v2-abstract-full').style.display = 'none'; document.getElementById('1510.02301v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. ST Accel. Beams 20, 043401 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.03283">arXiv:1502.03283</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1502.03283">pdf</a>, <a href="https://arxiv.org/ps/1502.03283">ps</a>, <a href="https://arxiv.org/format/1502.03283">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4913651">10.1063/1.4913651 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonlinear dynamics of the ion Weibel-filamentation instability: an analytical model for the evolution of the plasma and spectral properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ruyer%2C+C">C. Ruyer</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">L. Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=Debayle%2C+A">A. Debayle</a>, <a href="/search/physics?searchtype=author&amp;query=Bonnaud%2C+G">G. Bonnaud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.03283v3-abstract-short" style="display: inline;"> We present a predictive model of the nonlinear phase of the Weibel instability induced by two symmetric, counter-streaming ion beams in the non-relativistic regime. This self-consistent model combines the quasilinear kinetic theory of Davidson et al. [Phys. Fluids 15, 317 (1972)] with a simple description of current filament coalescence. It allows us to follow the evolution of the ion parameters u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.03283v3-abstract-full').style.display = 'inline'; document.getElementById('1502.03283v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.03283v3-abstract-full" style="display: none;"> We present a predictive model of the nonlinear phase of the Weibel instability induced by two symmetric, counter-streaming ion beams in the non-relativistic regime. This self-consistent model combines the quasilinear kinetic theory of Davidson et al. [Phys. Fluids 15, 317 (1972)] with a simple description of current filament coalescence. It allows us to follow the evolution of the ion parameters up to a stage close to complete isotropization, and is thus of prime interest to understand the dynamics of collisionless shock formation. Its predictions are supported by 2-D and 3-D particle-in-cell simulations of the ion Weibel instability. The derived approximate analytical solutions reveal the various dependencies of the ion relaxation to isotropy. In particular, it is found that the influence of the electron screening can affect the results of simulations using an unphysical electron mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.03283v3-abstract-full').style.display = 'none'; document.getElementById('1502.03283v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Phys. Plasmas</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Plasmas 22, 032102 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.00816">arXiv:1502.00816</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1502.00816">pdf</a>, <a href="https://arxiv.org/ps/1502.00816">ps</a>, <a href="https://arxiv.org/format/1502.00816">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4928096">10.1063/1.4928096 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Weibel instability-mediated collisionless shocks in laser-irradiated dense plasmas:Prevailing role of the electrons in the turbulence generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ruyer%2C+C">C. Ruyer</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">L. Gremillet</a>, <a href="/search/physics?searchtype=author&amp;query=Bonnaud%2C+G">G. Bonnaud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.00816v1-abstract-short" style="display: inline;"> We present a particle-in-cell simulation of the generation of a collisionless turbulent shock in a dense plasma driven by an ultra-high-intensity laser pulse. From the linear analysis, we highlight the crucial role of the laser-heated and return-current electrons in triggering a strong Weibel-like instability, giving rise to a magnetic turbulence able to isotropize the target ions. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.00816v1-abstract-full" style="display: none;"> We present a particle-in-cell simulation of the generation of a collisionless turbulent shock in a dense plasma driven by an ultra-high-intensity laser pulse. From the linear analysis, we highlight the crucial role of the laser-heated and return-current electrons in triggering a strong Weibel-like instability, giving rise to a magnetic turbulence able to isotropize the target ions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.00816v1-abstract-full').style.display = 'none'; document.getElementById('1502.00816v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Phys. Plasmas in February 2015</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.4579">arXiv:1412.4579</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.4579">pdf</a>, <a href="https://arxiv.org/ps/1412.4579">ps</a>, <a href="https://arxiv.org/format/1412.4579">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.91.042915">10.1103/PhysRevE.91.042915 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Global change in action due to trapping, how to derive it whatever the rate of variation of the dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Benisti%2C+D">Didier Benisti</a>, <a href="/search/physics?searchtype=author&amp;query=Gremillet%2C+L">Laurent Gremillet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.4579v1-abstract-short" style="display: inline;"> In this paper, we investigate the motion of a set of charged particles acted upon by a growing electrostatic wave, in the limit when the initial wave amplitude is vanishingly small and when all the particles have the same initial action, $I_0$. We show, both theoretically and numerically that, when all the particles have been trapped in the wave potential, the distribution in action exhibits a ver&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.4579v1-abstract-full').style.display = 'inline'; document.getElementById('1412.4579v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.4579v1-abstract-full" style="display: none;"> In this paper, we investigate the motion of a set of charged particles acted upon by a growing electrostatic wave, in the limit when the initial wave amplitude is vanishingly small and when all the particles have the same initial action, $I_0$. We show, both theoretically and numerically that, when all the particles have been trapped in the wave potential, the distribution in action exhibits a very sharp peak about the smallest action. Moreover, as the wave keeps growing, the most probable action tends towards a constant, $I_f$, which we estimate theoretically. In particular, we show that $I_f$ may be calculated very accurately, when the particles&#39; motion before trapping is far from adiabatic, by making use of a perturbation analysis in the wave amplitude. This fills a gap regarding the computation of the action change which, in the past, has only been addressed for slowly varying dynamics. Moreover, when the variations of the dynamics are fast enough, we show that the Fourier components of the particles&#39; distribution function can be calculated by connecting estimates from our perturbation analysis with those obtained by assuming that all the particles have the same constant action, $I=I_f$. This result is used to compute theoretically the imaginary part of the electron susceptibility of an electrostatic wave in a plasma. Moreover, using our formula for the electron susceptibility, we can extend the range in $蔚_a$ (the parameter that quantifies the slowness of the dynamics) for our perturbative estimate of $I_f-I_0$. This range can actually be pushed down to values of $蔚_a$ allowing the use of neo-adiabatic techniques to compute the jump in action. Hence, this paper shows that the action change due to trapping can be calculated theoretically, whatever the rate of variation of the dynamics, by connecting perturbative results with neo-adiabatic ones. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.4579v1-abstract-full').style.display = 'none'; document.getElementById('1412.4579v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Gremillet%2C+L&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Gremillet%2C+L&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Gremillet%2C+L&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10