CINXE.COM
Search results for: bentonite
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: bentonite</title> <meta name="description" content="Search results for: bentonite"> <meta name="keywords" content="bentonite"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="bentonite" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="bentonite"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 69</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: bentonite</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> The Experimental and Modeling Adsorption Properties of Sr2+ on Raw and Purified Bentonite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Khodadadi">A. A. Khodadadi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20C.%20Ravaj"> S. C. Ravaj</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20D.%20Tavildari"> B. D. Tavildari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20B.%20Abdolahi"> M. B. Abdolahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adsorption properties of local bentonite (Semnan Iran) and purified prepared from this bentonite towards Sr2+ adsorption, were investigated by batch equilibration. The influence of equilibration time, adsorption isotherms, kinetic adsorption, solution pH, and presence of EDTA and NaCl on these properties was studied and discussed. Kinetic data were found to be well fitted with a pseudo-second order kinetic model. Sr2+ is preferably adsorbed by bentonite and purified bentonite. The D-R isotherm model has the best fit with experimental data than other adsorption isotherm models. The maximum adsorption of Sr2+ representing the highest negative charge density on the surface of the adsorbent was seen at pH 12. Presence of EDTA and NaCl decreased the amount of Sr2+ adsorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bentonite" title="bentonite">bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=purified%20bentonite" title=" purified bentonite"> purified bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=Sr2%2B" title=" Sr2+"> Sr2+</a>, <a href="https://publications.waset.org/abstracts/search?q=equilibrium%20isotherm" title=" equilibrium isotherm"> equilibrium isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a> </p> <a href="https://publications.waset.org/abstracts/5687/the-experimental-and-modeling-adsorption-properties-of-sr2-on-raw-and-purified-bentonite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Study of Rheological, Physic-Mechanical and Morphological Properties of Nitrile Butadiene Rubber Loaded with Organo-Bentonite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doaa%20S.%20Mahmoud">Doaa S. Mahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Nivin%20M.%20Ahmed"> Nivin M. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Salwa%20H.%20El-Sabbagh"> Salwa H. El-Sabbagh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rheometric characteristics and physicomechanical properties of bentonite / acrylonitrile-butadiene rubber (NBR) were investigated. The influences of adding bentonite (Bt) and / or modified bentonite (organo-Bt) to the rubber were observed. Scanning electron microscopy (SEM) showed that the rubber chains may be confined within the interparticle space and the Bt particles presented a physical dispersion in NBR matrix. Bentonite (Bt) was modified with tetra butyl phosphonium bromide (TBP) in order to produce organo-Bt. The modification was carried out at 0.5, 1 and 2 cation exchange capacity (CEC) of bentonite. Results showed that the maximum torque of organo-Bt / NBR composite increases at high bentonite loading. The scorch time (tS2) and cure time (tC90) of the organo-Bt / NBR composites decreased simultaneously relative to those of the neat NBR. The prepared composite exhibited significant improvement in mechanical compared with that of neat NBR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acrylonitrile-butadiene%20rubber" title="acrylonitrile-butadiene rubber">acrylonitrile-butadiene rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=physico-mechanical%20properties" title=" physico-mechanical properties"> physico-mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/71828/study-of-rheological-physic-mechanical-and-morphological-properties-of-nitrile-butadiene-rubber-loaded-with-organo-bentonite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Influence of Thermal History on the Undrained Shear Strength of the Bentonite-Sand Mixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Ravi">K. Ravi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabu%20Subhash"> Sabu Subhash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Densely compacted bentonite or bentonite–sand mixture has been identified as a suitable buffer in the deep geological repository (DGR) for the safe disposal of high-level nuclear waste (HLW) due to its favourable physicochemical and hydro-mechanical properties. The addition of sand to the bentonite enhances the thermal conductivity and compaction properties and reduces the drying shrinkage of the buffer material. The buffer material may undergo cyclic wetting and drying upon ingress of groundwater from the surrounding rock mass and from evaporation due to high temperature (50–210 °C) derived from the waste canister. The cycles of changes in temperature may result in thermal history, and the hydro-mechanical properties of the buffer material may be affected. This paper examines the influence of thermal history on the undrained shear strength of bentonite and bentonite-sand mixture. Bentonite from Rajasthan state and sand from the Assam state of India are used in this study. The undrained shear strength values are obtained by conducting unconfined compressive strength (UCS) tests on cylindrical specimens (dry densities 1.30 and 1.5 Mg/m3) of bentonite and bentonite-sand mixture consisting of 30 % bentonite+ 70 % sand. The specimens are preheated at temperatures varying from 50-150 °C for one, two and four hours in hot air oven. The results indicate that the undrained shear strength is increased by the thermal history of the buffer material. The specimens of bentonite-sand mixture exhibited more increase in strength compared to the pure bentonite specimens. This indicates that the sand content of the mixture plays a vital role in taking the thermal stresses of the bentonite buffer in DGR conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bentonite" title="bentonite">bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20geological%20repository" title=" deep geological repository"> deep geological repository</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20history" title=" thermal history"> thermal history</a>, <a href="https://publications.waset.org/abstracts/search?q=undrained%20shear%20strength" title=" undrained shear strength"> undrained shear strength</a> </p> <a href="https://publications.waset.org/abstracts/65498/influence-of-thermal-history-on-the-undrained-shear-strength-of-the-bentonite-sand-mixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> An Investigation to Study the Moisture Dependency of Ground Enhancement Compound </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arunima%20Shukla">Arunima Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Almadi"> Vikas Almadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Devesh%20Jaiswal"> Devesh Jaiswal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Saini"> Sunil Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhusan%20S.%20Patil"> Bhusan S. Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lightning protection consists of three main parts; mainly air termination system, down conductor, and earth termination system. Earth termination system is the most important part as earth is the sink and source of charges. Therefore, even when the charges are captured and delivered to the ground, and an easy path is not provided to the charges, earth termination system would lead to problems. Soil has significantly different resistivities ranging from 10 Ωm for wet organic soil to 10000 Ωm for bedrock. Different methods have been discussed and used conventionally such as deep-ground-well method and altering the length of the rod. Those methods are not considered economical. Therefore, it was a general practice to use charcoal along with salt to reduce the soil resistivity. Bentonite is worldwide acceptable material, that had led our interest towards study of bentonite at first. It was concluded that bentonite is a clay which is non-corrosive, environment friendly. Whereas bentonite is suitable only when there is moisture present in the soil, as in the absence of moisture, cracks will appear on the surface which will provide an open passage to the air, resulting into increase in the resistivity. Furthermore, bentonite without moisture does not have enough bonding property, moisture retention, conductivity, and non-leachability. Therefore, bentonite was used along with the other backfill material to overcome the dependency of bentonite on moisture. Different experiments were performed to get the best ratio of bentonite and carbon backfill. It was concluded that properties will highly depend on the quantity of bentonite and carbon-based backfill material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=backfill%20material" title="backfill material">backfill material</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=grounding%20material" title=" grounding material"> grounding material</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20resistivity" title=" low resistivity"> low resistivity</a> </p> <a href="https://publications.waset.org/abstracts/134378/an-investigation-to-study-the-moisture-dependency-of-ground-enhancement-compound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Adsorbent Removal of Oil Spills Using Bentonite Clay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saad%20Mohamed%20Elsaid%20Abdelrahman">Saad Mohamed Elsaid Abdelrahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adsorption method is one of the best modern techniques used in removing pollutants, especially organic hydrocarbon compounds, from polluted water. Through this research, bentonite clay can be used to remove organic hydrocarbon compounds, such as heptane and octane, resulting from oil spills in seawater. Bentonite clay can be obtained from the Kholayaz area, located north of Jeddah, at a distance of 80 km. Chemical analysis shows that bentonite clay consists of a mixture of silica, alumina and oxides of some elements. Bentonite clay can be activated in order to raise its adsorption efficiency and to make it suitable for removing pollutants using an ionic organic solvent. It is necessary to study some of the factors that could be in the efficiency of bentonite clay in removing oily organic compounds, such as the time of contact of the clay with heptane and octane solutions, pH and temperature, in order to reach the highest adsorption capacity of bentonite clay. The temperature can be a few degrees Celsius higher. The adsorption capacity of the clay decreases when the temperature is raised more than 4°C to reach its lowest value at the temperature of 50°C. The results show that the friction time of 30 minutes and the pH of 6.8 is the best conditions to obtain the highest adsorption capacity of the clay, 467 mg in the case of heptane and 385 mg in the case of octane compound. Experiments conducted on bentonite clay were encouraging to select it to remove heavy molecular weight pollutants such as petroleum compounds under study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorbent" title="adsorbent">adsorbent</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite%20clay" title=" bentonite clay"> bentonite clay</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spills" title=" oil spills"> oil spills</a>, <a href="https://publications.waset.org/abstracts/search?q=removal" title=" removal"> removal</a> </p> <a href="https://publications.waset.org/abstracts/163185/adsorbent-removal-of-oil-spills-using-bentonite-clay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Improvement of Oran Sebkha Soil by Dredged Sediments from Chorfa Dam in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Aloui-Labiod">Z. Aloui-Labiod</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Trouzine"> H. Trouzine</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Ghembaza"> M. S. Ghembaza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geotechnical properties of dredged sediment from Chorfa dam in Algeria and their mixtures (5%, 10%, 15%, 20%, and 25%)with bentonite were investigated through with bentonite were investigated through a series of laboratory experimental tests in order to investigate possibilities of their usage as a barrier against the spread out of the Sebkha of Oran in the northwest of Algeria. Grain size and Atterberg limits tests, chemical and mineral analyses, and compaction, vertical swelling, and horizontal and vertical permeability tests were performed on the soils and their mixtures using tap water and the salty Sebkha water. The results indicate that the bentonite specimens remolded and inundated with Sebkha salty water have less swell potential than those prepared with tap water. The addition of bentonite to Chorfa sediment increases the density, limit liquid, specific surface, and swell potential of the mixtures. Compaction tests show a decrease in the optimum moisture and an increase in maximum dry densities as the bentonite content increases. The horizontal and vertical permeabilities decrease relatively with the addition of bentonite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dredged%20sediment" title="dredged sediment">dredged sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=salty%20water" title=" salty water"> salty water</a>, <a href="https://publications.waset.org/abstracts/search?q=barrier" title=" barrier"> barrier</a> </p> <a href="https://publications.waset.org/abstracts/19219/improvement-of-oran-sebkha-soil-by-dredged-sediments-from-chorfa-dam-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Wastewater Treatment by Modified Bentonite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mecabih%20Zohra">Mecabih Zohra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water is such an important element of many manufacturing processes which that use a big amount of chemical substances, It is likely to cause it contamination of water returning to rivers by industrial discharged. These contaminants can be a high in suspended solid and chemical oxygen demand. In this study, urban wastewater of sidi bel abbes city (Algeria) was treated by adsorption using modified bentonite from Magnia (Algeria) by conducting batch experiments to investigate its equilibrium characteristics and kinetics. Purified bentonite is characterized by; CEC, XRF, BET, FITR, XRD, SEM and 27Al spectroscopy. The results showed the removal of suspended solids exceeds 98.47% and COD up to 99.52%, and regarding of sorption efficiencies (qm), the maximum COD sorption efficiencies (qm) calculated using the Langmuir model is 156.23, 64.47 and 17.19 mg/g respectively, for a pH range of 4 to 9. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=COD" title=" COD"> COD</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/168584/wastewater-treatment-by-modified-bentonite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Wastewater Treatment by Modified Bentonite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mecabih%20Zohra">Mecabih Zohra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water is such an important element of many manufacturing processes which that use a big amount of chemical substances, It is likely to cause it contamination of water returning to rivers by industrial discharged. These contaminants can be a high in suspended solid and chemical oxygen demand. In this study, urban wastewater of sidi bel abbes city (Algeria) was treated by adsorption using modified bentonite from Magnia (Algeria) by conducting batch experiments to investigate its equilibrium characteristics and kinetics. Purified bentonite is characterized by; CEC, XRF, BET, FITR, XRD, SEM and 27Al spectroscopy. The results showed the removal of suspended solids exceeds 98.47% and COD up to 99.52%, and regarding of sorption efficiencies (qm), the maximum COD sorption efficiencies (qm) calculated using the Langmuir model is 156.23, 64.47 and 17.19 mg/g respectively, for a pH range of 4 to 9. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=COD" title=" COD"> COD</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/168586/wastewater-treatment-by-modified-bentonite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> The Effect of Salinity and Bentonite on the Hydrous Behaviors and Sodium Content of the Broad Bean Vicia faba var. Semilla violeta</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Nouri">T. Nouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20H.%20A.%20Reguieg"> Y. H. A. Reguieg</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Latigui"> A. Latigui</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ouaini"> A. Ouaini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salinity is considered as the most important abiotic factor. It limits growth and productivity of plants and degrades agricultural soils and ecosystem in arid and semi arid area. The study was conducted on Vicia faba L.’Semilla violeta’. Sowing was realized in plastic pots containing sandy substrates of bentonite 0, 3, 5, 7, and 10% associated with abiotic stresses of salinity corresponding to doses of NaCl, MgCl2 and MgSO4 20, 40, and 60 mmol/l respectively. The purpose of this work is to study the combined effect of salinity and of bentonite on a plant commonly cultivated in Algeria the broad bean Vicia faba has through the chemical and hydrous parameter. The results show that the combined action of strong concentration salt (40 and 60 mmol/l) and of bentonite a reduction of the relative content water reveals, against an increase in the content of hydrous deficit and of sodium. The growth of broad bean is significant in the substrate amended to 5 % of bentonite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salinity" title="salinity">salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=Vicia%20faba%20L" title=" Vicia faba L"> Vicia faba L</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20content" title=" sodium content"> sodium content</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrous%20parameters" title=" hydrous parameters"> hydrous parameters</a> </p> <a href="https://publications.waset.org/abstracts/31285/the-effect-of-salinity-and-bentonite-on-the-hydrous-behaviors-and-sodium-content-of-the-broad-bean-vicia-faba-var-semilla-violeta" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Effect of Bentonite on the Rheological Behavior of Cement Grout in Presence of Superplasticizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Benyounes">K. Benyounes</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benmounah"> A. Benmounah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cement-based grouts has been used successfully to repair cracks in many concrete structures such as bridges, tunnels, buildings and to consolidate soils or rock foundations. In the present study, the rheological characterization of cement grout with water/binder ratio (W/B) is fixed at 0.5. The effect of the replacement of cement by bentonite (2 to 10 % wt) in presence of superplasticizer (0.5 % wt) was investigated. Several rheological tests were carried out by using controlled-stress rheometer equipped with vane geometry in temperature of 20°C. To highlight the influence of bentonite and superplasticizer on the rheological behavior of grout cement, various flow tests in a range of shear rate from 0 to 200 s-1 were observed. Cement grout showed a non-Newtonian viscosity behavior at all concentrations of bentonite. Three parameter model Herschel-Bulkley was chosen for fitting of experimental data. Based on the values of correlation coefficients of the estimated parameters, The Herschel-Bulkley law model well described the rheological behavior of the grouts. Test results showed that the dosage of bentonite increases the viscosity and yield stress of the system and introduces more thixotropy. While the addition of both bentonite and superplasticizer with cement grout improve significantly the fluidity and reduced the yield stress due to the action of dispersion of SP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rheology" title="rheology">rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20grout" title=" cement grout"> cement grout</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=superplasticizer" title=" superplasticizer"> superplasticizer</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20stress" title=" yield stress "> yield stress </a> </p> <a href="https://publications.waset.org/abstracts/18440/effect-of-bentonite-on-the-rheological-behavior-of-cement-grout-in-presence-of-superplasticizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18440.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Modeling the Performance of Natural Sand-Bentonite Barriers after Infiltration with Polar and Non-Polar Hydrocarbon Leachates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Altayeb%20Qasem">Altayeb Qasem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mousa%20Bani%20Baker"> Mousa Bani Baker</a>, <a href="https://publications.waset.org/abstracts/search?q=Amani%20Nawafleh"> Amani Nawafleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The complexity of the sand-bentonite liner barrier system calls for an adequate model that reflects the conditions depending on the barrier materials and the characteristics of the permeates which lead to hydraulic conductivity changes when liners infiltrated with polar, no-polar, miscible and immiscible liquids. This paper is dedicated to developing a model for evaluating the hydraulic conductivity in the form of a simple indicator for the compatibility of the liner versus leachate. Based on two liner compositions (95% sand: 5% bentonite; and 90% sand: 10% bentonite), two pressures (40 kPa and 100 kPa), and three leachates: water, ethanol and biofuel. Two characteristics of the leacahtes were used: viscosity of permeate and its octanol-water partitioning coefficient (Kow). Three characteristics of the liners mixtures were evaluated which had impact on the hydraulic conductivity of the liner system: the initial content of bentonite (%), the free swelling index, and the shrinkage limit of the initial liner’s mixture. Engineers can use this modest tool to predict a potential liner failure in sand-bentonite barriers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liner%20performance" title="liner performance">liner performance</a>, <a href="https://publications.waset.org/abstracts/search?q=sand-bentonite%20barriers" title=" sand-bentonite barriers"> sand-bentonite barriers</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20swelling%20index" title=" free swelling index"> free swelling index</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinkage%20limit" title=" shrinkage limit"> shrinkage limit</a>, <a href="https://publications.waset.org/abstracts/search?q=octanol-water%20partitioning%20coefficient" title=" octanol-water partitioning coefficient"> octanol-water partitioning coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20conductivity" title=" hydraulic conductivity"> hydraulic conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=theoretical%20modeling" title=" theoretical modeling"> theoretical modeling</a> </p> <a href="https://publications.waset.org/abstracts/7476/modeling-the-performance-of-natural-sand-bentonite-barriers-after-infiltration-with-polar-and-non-polar-hydrocarbon-leachates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Effect of Bentonite on Shear Strength of Bushehr Calcareous Sand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arash%20Poordana">Arash Poordana</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Ziaie%20Moayed"> Reza Ziaie Moayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calcareous sands are found most commonly in areas adjacent to crude oil and gas, and particularly around water. These types of soil have high compressibility due to high inter-granular porosity, irregularity, fragility, and especially crushing. Also, based on experience, it has been shown that the behavior of these types of soil is not similar to silica sand in loading. Since the destructive effects of cement on the environment are obvious, other alternatives such as bentonite are popular to be used. Bentonite has always been used commercially in civil engineering projects and according to its low hydraulic conductivity, it is used for landfills, cut-off walls, and nuclear wastelands. In the present study, unconfined compression tests in five ageing periods (1, 3, 7, 14, and 28 days) after mixing different percentages of bentonite (5%, 7.5% and 10%) with Bushehr calcareous sand were performed. The relative density considered for the specimens is 50%. Optimum water content was then added to each specimen accordingly (19%, 18.5%, and 17.5%). The sample preparation method was wet tamping and the specimens were compacted in five layers. It can be concluded from the results that as the bentonite content increases, the unconfined compression strength of the soil increases. Based on the obtained results, 3-day and 7-day ageing periods showed 30% and 50% increase in the shear strength of soil, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compression%20test" title="unconfined compression test">unconfined compression test</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=Bushehr" title=" Bushehr"> Bushehr</a>, <a href="https://publications.waset.org/abstracts/search?q=calcareous%20sand" title=" calcareous sand"> calcareous sand</a> </p> <a href="https://publications.waset.org/abstracts/116286/effect-of-bentonite-on-shear-strength-of-bushehr-calcareous-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Removal of Toxic Ni++ Ions from Wastewater by Nano-Bentonite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Ahmed">A. M. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20A.%20Darwish"> Mona A. Darwish</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Removal of Ni++ ions from aqueous solution by sorption ontoNano-bentonite was investigated. Experiments were carried out as a function amount of Nano-bentonite, pH, concentration of metal, constant time, agitation speed and temperature. The adsorption parameter of metal ions followed the Langmuir Freundlich adsorption isotherm were applied to analyze adsorption data. The adsorption process has fit pseudo-second order kinetic models. Thermodynamics parameters e.g.ΔG*, ΔS °and ΔH ° of adsorption process have also been calculated and the sorption process was found to be endothermic. The adsorption process has fit pseudo-second order kinetic models. Langmuir and Freundich adsorption isotherm models were applied to analyze adsorption data and both were found to be applicable to the adsorption process. Thermodynamic parameters, e.g., ∆G °, ∆S ° and ∆H ° of the on-going adsorption process have also been calculated and the sorption process was found to be endothermic. Finally, it can be seen that Bentonite was found to be more effective for the removal of Ni (II) same with some experimental conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title="waste water">waste water</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/41044/removal-of-toxic-ni-ions-from-wastewater-by-nano-bentonite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Study of the Removal of a Red Dye Acid and Sodium Bentonite Raw </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Ouslimani">N. Ouslimani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20Abadlia"> M. T. Abadlia </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wastewater from manufacturing industries are responsible for many organic micropollutants such as some detergents and dyes. It is estimated that 10-15 % of these chemical compounds in the effluents are discharged. In the method of dyeing the dyes are often used in excess to improve the dye and thereby the waste water are highly concentrated dye. The treatment of effluents containing dye has become a necessity given its negative repercussions on ecosystems mainly due to the pollutant nature of synthetic dyes and particularly soluble dyes such as acid dyes. Technology adsorptive separation is now a separation technologies of the most important treatments. The choice led to the use of bentonite occurs in order to use an equally effective and less costly than replacing charcoal. This choice is also justified by the importance of the material developed by, the possibility of cation exchange and high availability in our country surface. During this study, therefore, we test the clay, the main constituent is montmorillonite, whose most remarkable properties are its swelling resulting from the presence of water in the space between the sheets and the fiber structure to the adsorption of acid dye "red Bemacid. "The study of various parameters i.e. time, temperature, and pH showed that the adsorption is more favorable to the temperature of 19 °C for 240 minutes at a Ph equal to 2.More styles and Langmuir adsorption Freundlich were applied to describe the isotherms. The results show that sodium bentonite seems to affect the ability and effectiveness to adsorb colorant.Les ultimate quantities are respectively 0.629 mg/g and 0.589 mg/g for sodium bentonite and bentonite gross. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bentonite" title="Bentonite">Bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment%20of%20polluted%20water" title=" treatment of polluted water"> treatment of polluted water</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20dyes" title=" acid dyes"> acid dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/24409/study-of-the-removal-of-a-red-dye-acid-and-sodium-bentonite-raw" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Effect of Leachate Presence on Shear Strength Parameters of Bentonite-Amended Zeolite Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ziaie%20Moayed">R. Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Keshavarz%20Hedayati"> H. Keshavarz Hedayati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over recent years, due to increased population and increased waste production, groundwater protection has become more important, therefore, designing engineered barrier systems such as landfill liners to prevent the entry of leachate into groundwater should be done with greater accuracy. These measures generally involve the application of low permeability soils such as clays. Bentonite is a natural clay with low permeability which makes it a suitable soil for using in liners. Also zeolite with high cation exchange capacity can help to reduce of hazardous materials risk. Bentonite expands when wet, absorbing as much as several times its dry mass in water. This property may effect on some structural properties of soil such as shear strength. In present study, shear strength parameters are determined by both leachates polluted and not polluted bentonite-amended zeolite soil with mixing rates (B/Z) of 5%-10% and 20% with unconfined compression test to obtain the differences. It is shown that leachate presence causes reduction in resistance in general. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bentonite" title="bentonite">bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=leachate" title=" leachate"> leachate</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength%20parameters" title=" shear strength parameters"> shear strength parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compression%20test" title=" unconfined compression test"> unconfined compression test</a> </p> <a href="https://publications.waset.org/abstracts/106164/effect-of-leachate-presence-on-shear-strength-parameters-of-bentonite-amended-zeolite-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Nanoindentation Behavior and Physical Properties of Polyvinyl Chloride /Styrene Co-Maleic Anhydride Blend Reinforced by Nano-Bentonite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dalia%20Elsawy%20Abulyazied">Dalia Elsawy Abulyazied</a>, <a href="https://publications.waset.org/abstracts/search?q=Samia%20Mohamad%20Mokhtar"> Samia Mohamad Mokhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Magdy%20Motawie"> Ahmed Magdy Motawie </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article studies the effects of nano-bentonite on the structure and properties of polymer blends nanocomposites, based on polyvinyl chloride (PVC) and styrene co-maleic anhydride (SMA) blend. Modification of Egyptian bentonite (EB) is carried out using organo-modifier namely; octadecylamine (ODA). Octadecylamine bentonite (ODA-B) is characterized using FTIR, XRD and TEM. Nanocomposites of PVC/SMA/ODA-B are prepared by solution intercalation polymerization from 0.50 up to 5 phr. The nanocomposites are characterized by XRD and TEM. Thermal behavior of the nanocomposites is studied. The effect of different content of ODA-B on the nano-mechanical properties is investigated by a nano-indentation test method. Also the swelling and electrical properties of the nanocomposites are measured. The morphology of the nanocomposites shows that ODA-B achieved good dispersion in the PVC/SMA matrix. The thermal stability of the nanocomposites is enhanced due to the presence of the ODA-B. Incorporation of 0.5, 1, 3 and 5 phr. ODA-B into the PVC/SMA blends results in an improvement in nano-hardness of 16%, 76%, 92%, and 68% respectively. The elastic modulus increased by 37% from 4.59 GPa for unreinforced PVC/SMA blend to 6.30 GPa for 3 phr. The cross-link density and the electrical conductivity of the nanocomposites are increased with increasing the content of ODA-B. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PVC" title="PVC">PVC</a>, <a href="https://publications.waset.org/abstracts/search?q=SMA" title=" SMA"> SMA</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-bentonite" title=" nano-bentonite"> nano-bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoindentation" title=" nanoindentation"> nanoindentation</a>, <a href="https://publications.waset.org/abstracts/search?q=crosslink%20density" title=" crosslink density"> crosslink density</a> </p> <a href="https://publications.waset.org/abstracts/23611/nanoindentation-behavior-and-physical-properties-of-polyvinyl-chloride-styrene-co-maleic-anhydride-blend-reinforced-by-nano-bentonite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Valorization of Local Materials in the Waterproofing Technique of Landfills Site "TLS"</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Debieche">M. Debieche</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Kaoua"> F. Kaoua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the use two locals materials abundant in our country, with the view to use a mixture in the waterproofing the landfills. Our interest comes from the necessity to the environment protection, which has recently considerably grown. The site's waterproofing technique, in the landfills sites, is nowadays a very necessary condition to protect the environment, which requires the use of appropriate materials. To this end, an optimal mixture ensuring good performance in terms of hydraulic conductivity, durability and shear strength, mixtures based of sand at different concentrations of sodium bentonite, at compact state are prepared and studied. This study showed that a low permeability of mixture (sand / bentonite) can be achieved 6% of sodium bentonite. This mixture confers also good mechanical behavior, expressed by the recorded, reduction of friction (φ) and the increase of the cohesion (C). Thus, the selected formulation represents an optimal mixture for waterproofing systems. It guarantees an economical and ecological advantages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20conductivity" title="hydraulic conductivity">hydraulic conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20bentonite" title=" sodium bentonite"> sodium bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/32105/valorization-of-local-materials-in-the-waterproofing-technique-of-landfills-site-tls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Photocatalytic Removal of Methylene Blue Dye: Fabrication and Optimization of Adsorbant Material and a Photocatlyst in Unilayer and Bilayer System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Z.%20Mahmood">M. Z. Mahmood</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ismail"> S. Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A reusable immobilized unilayer thin coating of adsorbent material bentonite and photocatalyst (TiO₂) was fabricated on the glass beaker to remove aqueous methylene blue solution. The dye removal efficiency of photocatalyst was much lower with pure titanium dioxide. In the preliminary experiments, different compositions of TiO₂ – bentonite were tested on unilayer and bilayer system, and it was observed that 0.50:0.50 ratios are best for maximum photocatalytic degradation of methylene blue in aqueous medium when applied on unilayer coating system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title=" photocatalyst"> photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82" title=" TiO₂"> TiO₂</a> </p> <a href="https://publications.waset.org/abstracts/116815/photocatalytic-removal-of-methylene-blue-dye-fabrication-and-optimization-of-adsorbant-material-and-a-photocatlyst-in-unilayer-and-bilayer-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Evaluation on Mechanical Stabilities of Clay-Sand Mixtures Used as Engineered Barrier for Radioactive Waste Disposal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20E.%20Osmanlioglu">Ahmet E. Osmanlioglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, natural bentonite was used as natural clay material and samples were taken from the Kalecik district in Ankara. In this research, bentonite is the subject of an analysis from standpoint of assessing the basic properties of engineered barriers with respect to the buffer material. Bentonite and sand mixtures were prepared for tests. Some of clay minerals give relatively higher hydraulic conductivity and lower swelling pressure. Generally, hydraulic conductivity of these type clays is lower than <10-12 m/s. The hydraulic properties of clay-sand mixtures are evaluated to design engineered barrier specifications. Hydraulic conductivities of bentonite-sand mixture were found in the range of 1.2x10-10 to 9.3x10-10 m/s. Optimum B/S mixture ratio was determined as 35% in terms of hydraulic conductivity and mechanical stability. At the second stage of this study, all samples were compacted into cylindrical shape molds (diameter: 50 mm and length: 120 mm). The strength properties of compacted mixtures were better than the compacted bentonite. In addition, the larger content of the quartz sand in the mixture has the greater thermal conductivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=engineered%20barriers" title="engineered barriers">engineered barriers</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20stability" title=" mechanical stability"> mechanical stability</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20waste%20disposal" title=" nuclear waste disposal"> nuclear waste disposal</a> </p> <a href="https://publications.waset.org/abstracts/43160/evaluation-on-mechanical-stabilities-of-clay-sand-mixtures-used-as-engineered-barrier-for-radioactive-waste-disposal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Optimization Study of Adsorption of Nickel(II) on Bentonite </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Medjahed">B. Medjahed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Didi"> M. A. Didi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Guezzen"> B. Guezzen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work concerns with the experimental study of the adsorption of the Ni(II) on bentonite. The effects of various parameters such as contact time, stirring rate, initial concentration of Ni(II), masse of clay, initial pH of aqueous solution and temperature on the adsorption yield, were carried out. The study of the effect of the ionic strength on the yield of adsorption was examined by the identification and the quantification of the present chemical species in the aqueous phase containing the metallic ion Ni(II). The adsorbed species were investigated by a calculation program using CHEAQS V. L20.1 in order to determine the relation between the percentages of the adsorbed species and the adsorption yield. The optimization process was carried out using 2<sup>3</sup> factorial designs. The individual and combined effects of three process parameters, i.e. initial Ni(II) concentration in aqueous solution (2.10<sup>−3</sup> and 5.10<sup>−3</sup> mol/L), initial pH of the solution (2 and 6.5), and mass of bentonite (0.03 and 0.3 g) on Ni(II) adsorption, were studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=factorial%20design" title=" factorial design"> factorial design</a>, <a href="https://publications.waset.org/abstracts/search?q=Nickel%28II%29" title=" Nickel(II)"> Nickel(II)</a> </p> <a href="https://publications.waset.org/abstracts/74678/optimization-study-of-adsorption-of-nickelii-on-bentonite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Evaluation of Drained Shear Strength of Bentonite-Sand Mixtures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navid%20Khayat">Navid Khayat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drained shear strength of saturated soils is fully understood. Shear strength of unsaturated soils is usually expressed in terms of soil suction. Evaluation of shear strength of compacted mixtures of sand-bentonite at optimum water content is main purpose of this research. To prepare the required samples, first, bentonite and sand are mixed in 10, 30, 50 and 70 percent by dry weight and then compacted at the proper optimum water content according to the standard proctor test. The samples were sheared in direct shear machine. Stress-strain relationship of samples indicated a ductile behavior. Most of the samples showed a dilatancy behavior during the shear and the tendency for dilatancy increased with the increase in sand proportion. The results show that with the increase in percentage of sand a decrease in cohesion intercept c' for mixtures and an increase in the angle of internal friction Φ’is observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bentonite" title="bentonite">bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a>, <a href="https://publications.waset.org/abstracts/search?q=drained%20shear%20strength" title=" drained shear strength"> drained shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesion%20intercept" title=" cohesion intercept"> cohesion intercept</a> </p> <a href="https://publications.waset.org/abstracts/3463/evaluation-of-drained-shear-strength-of-bentonite-sand-mixtures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Sorption of Congo Red from Aqueous Solution by Surfactant-Modified Bentonite: Kinetic and Factorial Design Study </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Guezzen">B. Guezzen</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Didi"> M. A. Didi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Medjahed"> B. Medjahed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An organoclay (HDTMA-B) was prepared from sodium bentonite (Na-B). The starting material was modified using the hexadecyltrimethylammonium ion (HDTMA<sup>+</sup>) in the amounts corresponding to 100 % of the CEC value. Batch experiments were carried out in order to model and optimize the sorption of Congo red dye from aqueous solution. The pseudo-first order and pseudo-second order kinetic models have been developed to predict the rate constant and the sorption capacity at equilibrium with the effect of temperature, the solid/solution ratio and the initial dye concentration. The equilibrium time was reached within 60 min. At room temperature (20 °C), optimum dye sorption of 49.4 mg/g (98.9%) was achieved at pH 6.6, sorbent dosage of 1g/L and initial dye concentration of 50 mg/L, using surfactant modified bentonite. The optimization of adsorption parameters mentioned above on dye removal was carried out using Box-Behnken design. The sorption parameters were analyzed statistically by means of variance analysis by using the Statgraphics Centurion XVI software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=dye" title=" dye"> dye</a>, <a href="https://publications.waset.org/abstracts/search?q=factorial%20design" title=" factorial design"> factorial design</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic" title=" kinetic"> kinetic</a>, <a href="https://publications.waset.org/abstracts/search?q=organo-bentonite" title=" organo-bentonite"> organo-bentonite</a> </p> <a href="https://publications.waset.org/abstracts/74711/sorption-of-congo-red-from-aqueous-solution-by-surfactant-modified-bentonite-kinetic-and-factorial-design-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Effect of Fines on Liquefaction Susceptibility of Sandy Soil </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayad%20Salih%20Sabbar">Ayad Salih Sabbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Chegenizadeh"> Amin Chegenizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Nikraz"> Hamid Nikraz </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Investigation of liquefaction susceptibility of materials that have been used in embankments, slopes, dams, and foundations is very essential. Many catastrophic geo-hazards such as flow slides, declination of foundations, and damage to earth structure are associated with static liquefaction that may occur during abrupt shearing of these materials. Many artificial backfill materials are mixtures of sand with fines and other composition. In order to provide some clarifications and evaluations on the role of fines in static liquefaction behaviour of sand sandy soils, the effect of fines on the liquefaction susceptibility of sand was experimentally examined in the present work over a range of fines content, relative density, and initial confining pressure. The results of an experimental study on various sand-fines mixtures are presented. Undrained static triaxial compression tests were conducted on saturated Perth sand containing 5% bentonite at three different relative densities (10, 50, and 90%), and saturated Perth sand containing both 5% bentonite and slag (2%, 4%, and 6%) at single relative density 10%. Undrained static triaxial tests were performed at three different initial confining pressures (100, 150, and 200 kPa). The brittleness index was used to quantify the liquefaction potential of sand-bentonite-slag mixtures. The results demonstrated that the liquefaction susceptibility of sand-5% bentonite mixture was more than liquefaction susceptibility of clean sandy soil. However, liquefaction potential decreased when both of two fines (bentonite and slag) were used. Liquefaction susceptibility of all mixtures decreased with increasing relative density and initial confining pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title="liquefaction">liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=slag" title=" slag"> slag</a>, <a href="https://publications.waset.org/abstracts/search?q=brittleness%20index" title=" brittleness index"> brittleness index</a> </p> <a href="https://publications.waset.org/abstracts/77118/effect-of-fines-on-liquefaction-susceptibility-of-sandy-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> The Influence of Bentonite on the Rheology of Geothermal Grouts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Ghafar">A. N. Ghafar</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Chaudhari"> O. A. Chaudhari</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Oettel"> W. Oettel</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Fontana"> P. Fontana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is a part of the EU project GEOCOND-Advanced materials and processes to improve performance and cost-efficiency of shallow geothermal systems and underground thermal storage. In heat exchange boreholes, to improve the heat transfer between the pipes and the surrounding ground, the space between the pipes and the borehole wall is normally filled with geothermal grout. Traditionally, bentonite has been a crucial component in most commercially available geothermal grouts to assure the required stability and impermeability. The investigations conducted in the early stage of this project during the benchmarking tests on some commercial grouts showed considerable sensitivity of the rheological properties of the tested grouts to the mixing parameters, i.e., mixing time and velocity. Further studies on this matter showed that bentonite, which has been one of the important constituents in most grout mixes, was probably responsible for such behavior. Apparently, proper amount of shear should be applied during the mixing process to sufficiently activate the bentonite. The higher the amount of applied shear the more the activation of bentonite, resulting in change in the grout rheology. This explains why, occasionally in the field applications, the flow properties of the commercially available geothermal grouts using different mixing conditions (mixer type, mixing time, mixing velocity) are completely different than expected. A series of tests were conducted on the grout mixes, with and without bentonite, using different mixing protocols. The aim was to eliminate/reduce the sensitivity of the rheological properties of the geothermal grouts to the mixing parameters by replacing bentonite with polymeric (non-clay) stabilizers. The results showed that by replacing bentonite with a proper polymeric stabilizer, the sensitivity of the grout mix on mixing time and velocity was to a great extent diminished. This can be considered as an alternative for the developers/producers of geothermal grouts to provide enhanced materials with less uncertainty in obtained results in the field applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20properties" title="flow properties">flow properties</a>, <a href="https://publications.waset.org/abstracts/search?q=geothermal%20grout" title=" geothermal grout"> geothermal grout</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing%20time" title=" mixing time"> mixing time</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing%20velocity" title=" mixing velocity"> mixing velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20properties" title=" rheological properties"> rheological properties</a> </p> <a href="https://publications.waset.org/abstracts/110317/the-influence-of-bentonite-on-the-rheology-of-geothermal-grouts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Ability of Bentonite-lactobacillus Rhamnosus GAF06 Mixture to Mitigate Aflatoxin M1 Damages in Balb/C Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amina%20Aloui">Amina Aloui</a>, <a href="https://publications.waset.org/abstracts/search?q=Jalila%20Ben%20Salah-Abb%C3%A8s"> Jalila Ben Salah-Abbès</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellah%20Zinedine"> Abdellah Zinedine</a>, <a href="https://publications.waset.org/abstracts/search?q=Amar%20Riba"> Amar Riba</a>, <a href="https://publications.waset.org/abstracts/search?q=Noel%20Durand"> Noel Durand</a>, <a href="https://publications.waset.org/abstracts/search?q=Catherine%20Brabet"> Catherine Brabet</a>, <a href="https://publications.waset.org/abstracts/search?q=Didier%20Montet"> Didier Montet</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Abb%C3%A8s"> Samir Abbès</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mycotoxin contamination of food and feed-isa globaconcern, both economically and for public health. Aflatoxin M1 (AFM1) is the principal hydroxylated metabolite of aflatoxin B1. It is frequently found in milk and other dairy products. It is responsible for the development of hepatocellular carcinoma and immunotoxic in humans and animals. The reduction of its bioavailabilitybecomesa great demand in order to protect human and animal health. The use of probiotic bacteria and clay are demonstrated to be able to bind AFM1 in vitro. This study aimed to investigate, in vivo, the activity of two-component mixture: L. rhamnosusGAF06 (LR) and bentonite for reducing the oxidative stress and the histological alterationsinduced by AFM1 in the liver andkidneys. For the experiment, male mice were divided into 7 groups (6 mice/group) and treated, orally, by AFM1, alone or in combination with LR and/or bentonite, for 10 days as follows: group 1 control, group 2 treated with LR alone (2.108 CFU/ml), group 3 treated with bentonite alone (1g/kg), group 4 treated with AFM1 alone (100μg/kg), group 5 co-treated with LR+AFM1, group 6 co-treated with bentonite+AFM1, group 7 co-treated with bentonite+LR+AFM1. At the end of the treatment, the mice were sacrificed, and the livers and kidneys were collected for histological assays. Intracellular antioxidant activities and lipid peroxidation were also studied. The results showed that AFM1causeddamage in liver and kidney tissues, being evidence of hepatotoxicity and nephrotoxicity marked by necrotic cells. It increased the MDA level and decreased the antioxidant enzyme activities (SOD) in both organs. In contrast, the co-treatment with AFM1 plus LR and/or bentonitesignificantly improved the hepatic and renal tissues, regulated kidney, and liver antioxidant enzyme activities. This improvement was more remarkable with the administration of LR-bentonite mixture with AFM1.LR and bentonite alone showed to be safe during the treatment. This mixture can be a promising candidate for future applications in biotechnological processes that aimed to detoxify AFM1in food and feed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxin%20M1" title="aflatoxin M1">aflatoxin M1</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20rhamnosus%20GAF06" title=" L. rhamnosus GAF06"> L. rhamnosus GAF06</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=prevention" title=" prevention"> prevention</a> </p> <a href="https://publications.waset.org/abstracts/145449/ability-of-bentonite-lactobacillus-rhamnosus-gaf06-mixture-to-mitigate-aflatoxin-m1-damages-in-balbc-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Study of Strontium Sorption onto Indian Bentonite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pankaj%20Pathak">Pankaj Pathak</a>, <a href="https://publications.waset.org/abstracts/search?q=Susmita%20Sharma"> Susmita Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Incessant industrial growth fulfill the energy demand of present day society, at the same time it produces huge amount of waste which could be hazardous or non-hazardous in nature. These wastes are coming out from different sources viz, nuclear power, thermal power, coal mines which contain different types of contaminants and one of the emergent contaminant is strontium, used in the present study. The isotope of strontium (Sr90) is radioactive in nature with half-life of 28.8 years and permissible limit of strontium in drinking water is 1.5 ppm. Above the permissible limit causes several types of diseases in human being. Therefore, safe disposal of strontium into ground becomes a biggest challenge for the researchers. In this context, bentonite is being used as an efficient material to retain strontium onto ground due to its specific physical, chemical and mineralogical properties which exhibits higher cation exchange capacity and specific surface area. These properties influence the interaction between strontium and bentonite, which is quantified by employing a parameter known as distribution coefficient. Batch test was conducted, and sorption isotherms were modelled at different interaction time. The pseudo first-order and pseudo second order kinetic models have been used to fit experimental data, which helps to determine the sorption rate and mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bentonite" title="bentonite">bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20time" title=" interaction time"> interaction time</a>, <a href="https://publications.waset.org/abstracts/search?q=sorption" title=" sorption"> sorption</a>, <a href="https://publications.waset.org/abstracts/search?q=strontium" title=" strontium"> strontium</a> </p> <a href="https://publications.waset.org/abstracts/65073/study-of-strontium-sorption-onto-indian-bentonite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> The Influence of Viscosifier Concentration on Rheological Properties of Invert Emulsion Mud</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suzan%20Ibrahim">Suzan Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil-based muds are the most regularly used rotary drilling methods in the oil and gas industry. However, they have a negative impact on the environment, which leads to restrictions of their application in many countries of the world. Consequently, looking for new eco-friendly alternative formulations of oil-based drilling fluids for the exploration of troublesome formations. As one of the developments of Novel formulation of environmentally friendly drilling fluids and investigation of the formulation for jatropha oil-based drilling fluid samples at different concentrations of viscosifiers such as low viscosity polyanionic cellulose (PAC- LV), high viscosity polyanionic cellulose (PAC-V) and local Egyptian bentonite. The oil-water ratio was taken as 70:30, which is beneficial in producing a low fluid loss. 15 drilling fluid samples were formulated different concentrations of bentonite, PAC- LV and PAC-V individually and their mud density, rheological properties, electrical stability and filtration loss properties were determined. The rheological performance showed at higher concentrations of viscosifier, the trend of viscosity increment of PAC performed in a similar way to bentonite. The best result of electrical stability by using the lowest concentration of viscosifier was achieved with PAC-V. The lowest fluid loss volumes were obtained by using the highest concentrations (4 g) of viscosifiers. Mud cake thickness of samples increased by using viscosifiers; however, a lower range was achieved compared to API specification. From the overall experiment, it can be concluded that as the concentrations of viscosifier increase, the viscosity trend increase in a similar way to both PAC-V and bentonite. But we must note that the PAC-V is a more environmentally friendly additive and a renewable resource, cheaper than bentonite and improves properties of eco-friendly OBMs well. It is a preferable choice for oil-based drilling fluids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=invert%20emulsion%20mud" title="invert emulsion mud">invert emulsion mud</a>, <a href="https://publications.waset.org/abstracts/search?q=oil-based%20mud" title=" oil-based mud"> oil-based mud</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20properties" title=" rheological properties"> rheological properties</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosifier" title=" viscosifier"> viscosifier</a> </p> <a href="https://publications.waset.org/abstracts/142490/the-influence-of-viscosifier-concentration-on-rheological-properties-of-invert-emulsion-mud" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Removal of Mixed Heavy Metals from Contaminated Clay Soils Using Pulsed Electrokinetic Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuhu%20Dalhat%20Mu%E2%80%99azu">Nuhu Dalhat Mu’azu</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullahi%20Usman"> Abdullahi Usman</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bukhari"> A. Bukhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Hussain%20Essa">Muhammad Hussain Essa</a>, <a href="https://publications.waset.org/abstracts/search?q=Salihu%20Lukman"> Salihu Lukman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrokinetic remediation process was employed for the removal of four (4) heavy metals (Cr, Cu, Hg and Pb) from contaminated clay and bentonite soils under pulsed current supply mode. The effects of voltage gradient, pulse duty cycle and bentonite/clay ratio on the simultaneous removal efficiencies of the heavy metals were investigated. A total of thirteen experiments were designed and conducted according to factorial design with each experiment allowed to continuously ran for 3 weeks. Results obtained showed that increase in bentonite ratio decreased the removal efficiency of the heavy metals with no significant effect on the energy consumption. Conversely, increase in both voltage gradient and pulse duty cycle increased the heavy metals removal efficiencies with increased in energy consumption. Additionally, increase in voltage gradient increased the electrical conductivity and the soil pH due to due to continuous refill and replacement of process fluids as they decomposed under the induced voltage gradient. Under different operating conditions, the maximum removal efficiencies obtained for Cr, Cu, Hg, and Pb were 21.87, 83.2, 62.4, 78.06 and 16.65% respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay" title="clay">clay</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20remediation" title=" soil remediation"> soil remediation</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20contaminants" title=" mixed contaminants"> mixed contaminants</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20electrokinetic-adsorption" title=" and electrokinetic-adsorption"> and electrokinetic-adsorption</a> </p> <a href="https://publications.waset.org/abstracts/30898/removal-of-mixed-heavy-metals-from-contaminated-clay-soils-using-pulsed-electrokinetic-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Nanoindentation and Physical Properties of Polyvinyl Chloride/Styrene Co-Maleic Anhydride Blend Reinforced by Organo-Bentonite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20E.%20Abulyazied">D. E. Abulyazied</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Mokhtar"> S. M. Mokhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Motawie"> A. M. Motawie </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymer blends represent an important class of materials in engineering applications. The incorporation of clay nanofiller may provide new opportunities for this type of materials to enhance their applications. This article reports on the effects of clay on the structure and properties of polymer blends nanocomposites, based on Polyvinyl chloride PVC and styrene co-maleic anhydride SMA blend. Modification of the Egyptian Bentonite EB was carried out using organo-modifier namely; octadecylamine ODA. Before the modification, the cation exchange capacity CEC of the EB was measured. The octadecylamine bentonite ODA-B was characterized using Fourier transform infrared Spectroscopy FTIR, X-Ray Diffraction XRD, and Transition Electron Microscope TEM. A blend of Polyvinyl chloride PVC and styrene co-maleic anhydride SMA (50:50) was prepared in Tetra Hydro Furan (THF). Then nanocomposites of PVC/SMA/ODA-B were prepared by solution intercalation polymerization from 0.50% up to 5% by weight of ODA-B. The nanocomposites are characterized by XRD, TEM. Thermal, nanoindentation, swelling and electrical properties of the nanocomposites were measured. The morphology of the nanocomposites showed that ODA-B achieved good dispersion in the PVC/SMA matrix. Incorporation of 0.5 %, 1%, 3% and 5% by weight nanoclay into the PVC/SMA blends results in an improvement in nanohardness of 16%, 76%, 92%, and 68% respectively. The elastic modulus increased from 4.59 GPa for unreinforced PVC/SMA blend to 6.30 GPa (37% increase) with the introduction of 3% by weight nanoclay. The cross-link density of the nanocomposites increases with increasing the content of ODA-B. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PVC" title="PVC">PVC</a>, <a href="https://publications.waset.org/abstracts/search?q=SMA" title=" SMA"> SMA</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoindentation" title=" nanoindentation"> nanoindentation</a>, <a href="https://publications.waset.org/abstracts/search?q=organo-bentonite" title=" organo-bentonite"> organo-bentonite</a> </p> <a href="https://publications.waset.org/abstracts/14904/nanoindentation-and-physical-properties-of-polyvinyl-chloridestyrene-co-maleic-anhydride-blend-reinforced-by-organo-bentonite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Recovery of Fried Soybean Oil Using Bentonite as an Adsorbent: Optimization, Isotherm and Kinetics Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prakash%20Kumar%20Nayak">Prakash Kumar Nayak</a>, <a href="https://publications.waset.org/abstracts/search?q=Avinash%20Kumar"> Avinash Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Uma%20Dash"> Uma Dash</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalpana%20Rayaguru"> Kalpana Rayaguru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soybean oil is one of the most widely consumed cooking oils, worldwide. Deep-fat frying of foods at higher temperatures adds unique flavour, golden brown colour and crispy texture to foods. But it brings in various changes like hydrolysis, oxidation, hydrogenation and thermal alteration to oil. The presence of Peroxide value (PV) is one of the most important factors affecting the quality of the deep-fat fried oil. Using bentonite as an adsorbent, the PV can be reduced, thereby improving the quality of the soybean oil. In this study, operating parameters like heating time of oil (10, 15, 20, 25 & 30 h), contact time ( 5, 10, 15, 20, 25 h) and concentration of adsorbent (0.25, 0.5, 0.75, 1.0 and 1.25 g/ 100 ml of oil) have been optimized by response surface methodology (RSM) considering percentage reduction of PV as a response. Adsorption data were analysed by fitting with Langmuir and Freundlich isotherm model. The results show that the Langmuir model shows the best fit compared to the Freundlich model. The adsorption process was also found to follow a pseudo-second-order kinetic model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bentonite" title="bentonite">bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=Langmuir%20isotherm" title=" Langmuir isotherm"> Langmuir isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=peroxide%20value" title=" peroxide value"> peroxide value</a>, <a href="https://publications.waset.org/abstracts/search?q=RSM" title=" RSM"> RSM</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean%20oil" title=" soybean oil"> soybean oil</a> </p> <a href="https://publications.waset.org/abstracts/44879/recovery-of-fried-soybean-oil-using-bentonite-as-an-adsorbent-optimization-isotherm-and-kinetics-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bentonite&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bentonite&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bentonite&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>