CINXE.COM

Search results for: yield behavior

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: yield behavior</title> <meta name="description" content="Search results for: yield behavior"> <meta name="keywords" content="yield behavior"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="yield behavior" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="yield behavior"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8676</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: yield behavior</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8436</span> Improving Physicochemical Properties of Milk Powder and Lactose-Free Milk Powder with the Prebiotic Carrier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chanunya%20Fahwan">Chanunya Fahwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Supat%20Chaiyakul"> Supat Chaiyakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A lactose-free diet is imperative for those with lactose intolerance and experiencing milk intolerance. This entails eliminating milk-based products, which may result in dietary and nutritional challenges and the main problems of Lactose hydrolyzed milk powder during production were the adhesion in the drying chamber and low-yield and low-quality powder. The use of lactose-free milk to produce lactose-free milk powder was studied here. Development of two milk powder formulas from cow's milk and lactose-free cow's milk by using a substitute for maltodextrin, Polydextrose (PDX), Resistant Starch (RS), Cellobiose (CB), and Resistant Maltodextrin (RMD) to improve quality and reduce the glycemic index from maltodextrin, which are carriers that were used in industry at three experimental levels 10%, 15% and 20% the properties of milk powder were studied such as color, moisture content, percentage yield (%yield) and solubility index. The experiment revealed that prebiotic carriers could replace maltodextrin and improve quality, such as solubility and percentage yield, and enriched nutrients, such as dietary fiber. CB, RMD, and PDX are three possible carriers, which are applied to both regular cow's milk formula and lactose-free cow milk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lactose-free%20milk%20powder" title="lactose-free milk powder">lactose-free milk powder</a>, <a href="https://publications.waset.org/abstracts/search?q=prebiotic%20carrier" title=" prebiotic carrier"> prebiotic carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=co-particle" title=" co-particle"> co-particle</a>, <a href="https://publications.waset.org/abstracts/search?q=glycemic%20index" title=" glycemic index"> glycemic index</a> </p> <a href="https://publications.waset.org/abstracts/181574/improving-physicochemical-properties-of-milk-powder-and-lactose-free-milk-powder-with-the-prebiotic-carrier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8435</span> Response Surface Methodology to Supercritical Carbon Dioxide Extraction of Microalgal Lipids </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yen-Hui%20Chen">Yen-Hui Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Terry%20Walker"> Terry Walker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the world experiences an energy crisis, investing in sustainable energy resources is a pressing mission for many countries. Microalgae-derived biodiesel has attracted intensive attention as an important biofuel, and microalgae Chlorella protothecoides lipid is recognized as a renewable source for microalgae-derived biodiesel production. Supercritical carbon dioxide (SC-CO₂) is a promising green solvent that may potentially substitute the use of organic solvents for lipid extraction; however, the efficiency of SC-CO₂ extraction may be affected by many variables, including temperature, pressure and extraction time individually or in combination. In this study, response surface methodology (RSM) was used to optimize the process parameters, including temperature, pressure and extraction time, on C. protothecoides lipid yield by SC-CO₂ extraction. A second order polynomial model provided a good fit (R-square value of 0.94) for the C. protothecoides lipid yield. The linear and quadratic terms of temperature, pressure and extraction time—as well as the interaction between temperature and pressure—showed significant effects on lipid yield during extraction. The optimal lipid yield from the model was predicted as the temperature of 59 °C, the pressure of 350.7 bar and the extraction time 2.8 hours. Under these conditions, the experimental lipid yield (25%) was close to the predicted value. The principal fatty acid methyl esters (FAME) of C. protothecoides lipid-derived biodiesel were oleic acid methyl ester (60.1%), linoleic acid methyl ester (18.6%) and palmitic acid methyl ester (11.4%), which made up more than 90% of the total FAMEs. In summary, this study indicated that RSM was useful to characterize the optimization the SC-CO₂ extraction process of C. protothecoides lipid yield, and the second-order polynomial model could be used for predicting and describing the lipid yield very well. In addition, C. protothecoides lipid, extracted by SC-CO₂, was suggested as a potential candidate for microalgae-derived biodiesel production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chlorella%20protothecoides" title="Chlorella protothecoides">Chlorella protothecoides</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgal%20lipids" title=" microalgal lipids"> microalgal lipids</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20carbon%20dioxide%20extraction" title=" supercritical carbon dioxide extraction"> supercritical carbon dioxide extraction</a> </p> <a href="https://publications.waset.org/abstracts/65325/response-surface-methodology-to-supercritical-carbon-dioxide-extraction-of-microalgal-lipids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8434</span> Effect of Band Application of Organic Manures on Growth and Yield of Pigeonpea (Cajanus cajan (L.) Millsp.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20B.%20Kalaghatagi">S. B. Kalaghatagi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Guggari"> A. K. Guggari</a>, <a href="https://publications.waset.org/abstracts/search?q=Pallavi%20S.%20Manikashetti"> Pallavi S. Manikashetti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A field experiment to study the effect of band application of organic manures on growth and yield of pigeon pea was conducted during 2016-17 at Kharif Seed Farm, College of Agriculture, Vijayapura. The experiment was carried out in randomized block design with thirteen treatments viz., T1 to T6 were band application of vermicompost at 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 t ha⁻¹, respectively. The treatments T7 to T12 include band application of sieved FYM at 1, 2, 3, 4, 5 and 6 t ha⁻¹, respectively and were compared with already recommended practice of broadcasting of FYM at 6 t ha⁻¹ (T13); and recommended dose of fertilizer (25:50:0 NPK kg ha⁻¹) was applied commonly to all the treatments. The results revealed that band application of vermicompost (VC) at 3 t ha⁻¹ recorded significantly higher number of pods plant⁻¹ (116), grain weight plant⁻¹ (37.35 g), grain yield (1,647 kg ha⁻¹), stalk yield (2,920 kg ha⁻¹) and harvest index (0.36) and was on par with the band application of VC at 2.0 and 2.5 t ha⁻¹ and sieved FYM at 4.0 and 5.0 t ha⁻¹ as compared to broadcasting of FYM at 6 t ha-1 (99.33, 24.07 g, 1,061 kg ha⁻¹, 2,920 kg ha⁻¹ and 0.36, respectively). Significantly higher net return (Rupees 59,410 ha⁻¹) and benefit cost ratio of 2.92 recorded with band application of VC at 3 t ha⁻¹ over broadcasting of FYM at 6 tonnes per ha (Rupees 25,401 ha⁻¹ and 1.78, respectively). It indicates from the above results that, growing of pigeon pea with band application of VC at 2, 2.5 and 3 t ha⁻¹ and sieved FYM at 4 and 5 t ha⁻¹ leads to saving of 1 tonne of VC and 2 tonnes of FYM per ha. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20manures" title="organic manures">organic manures</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfed%20pigeonpea" title=" rainfed pigeonpea"> rainfed pigeonpea</a>, <a href="https://publications.waset.org/abstracts/search?q=sieved%20FYM" title=" sieved FYM"> sieved FYM</a>, <a href="https://publications.waset.org/abstracts/search?q=vermicompost" title=" vermicompost"> vermicompost</a> </p> <a href="https://publications.waset.org/abstracts/82804/effect-of-band-application-of-organic-manures-on-growth-and-yield-of-pigeonpea-cajanus-cajan-l-millsp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8433</span> Understanding Workplace Behavior through Organizational Culture and Complex Adaptive Systems Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P%C3%A9ter%20Rest%C3%A1s">Péter Restás</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Czibor"> Andrea Czibor</a>, <a href="https://publications.waset.org/abstracts/search?q=Zsolt%20P%C3%A9ter%20Szab%C3%B3"> Zsolt Péter Szabó</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: This article aims to rethink the phenomena of employee behavior as a product of a system. Both organizational culture and Complex Adaptive Systems (CAS) theory emphasize that individual behavior depends on the specific system and the unique organizational culture. These two major theories are both represented in the field of organizational studies; however, they are rarely used together for the comprehensive understanding of workplace behavior. Methodology: By reviewing the literature we use key concepts stemming from organizational culture and CAS theory in order to show the similarities between these theories and create an enriched understanding of employee behavior. Findings: a) Workplace behavior is defined here as social cognition issue. b) Organizations are discussed here as complex systems, and cultures which drive and dictate the cognitive processes of agents in the system. c) Culture gives CAS theory a context which lets us see organizations not just as ever-changing and unpredictable, but as such systems that aim to create and maintain stability by recurring behavior. Conclusion: Applying the knowledge from culture and CAS theory sheds light on our present understanding of employee behavior, also emphasizes the importance of novel ways in organizational research and management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20adaptive%20systems%20theory" title="complex adaptive systems theory">complex adaptive systems theory</a>, <a href="https://publications.waset.org/abstracts/search?q=employee%20behavior" title=" employee behavior"> employee behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=organizational%20culture" title=" organizational culture"> organizational culture</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/91151/understanding-workplace-behavior-through-organizational-culture-and-complex-adaptive-systems-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8432</span> Effects of Lateness Gene on Yield and Related Traits in Indica Rice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20B.%20Rana">B. B. Rana</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Yokota"> M. Yokota</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Shimizu"> Y. Shimizu</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Koide"> Y. Koide</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Takamure"> I. Takamure</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Kawano"> T. Kawano</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Murai"> M. Murai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various genes which control or affect heading time have been found in rice. Out of them, <em>Se1</em> and <em>E1 </em>loci play important roles in determining heading time by controlling photosensitivity. An isogenic-line pair of late and early lines were developed from progenies of the F<sub>1 </sub>from Suweon 258 &times; 36U. A lateness gene tentatively designated as &ldquo;<em>Ex</em>&rdquo; was found to control the difference in heading time between the early and late lines mentioned above. The present study was conducted to examine the effect of <em>Ex</em> on yield and related traits. <em>Indica</em>-type variety Suweon 258 was crossed with 36U, which is an <em>Ur1</em> (Undulate rachis-1) isogenic line of IR36. In the F<sub>2</sub> population, comparatively early-heading, late-heading and intermediate-heading plants were segregated. Segregation similar to that by the three types of heading was observed in the F<sub>3</sub> and later generations. A late-heading plant and an early-heading plant were selected in the F<sub>8</sub> population from an intermediate-heading F<sub>7</sub> plant, for developing L and E of the isogenic-line pair, respectively. Experiments for L and E were conducted by randomized block design with three replications. Transplanting was conducted on May 3 at a planting distance of 30 cm &times; 15 cm with two seedlings per hill to an experimental field of the Faculty of Agriculture, Kochi University. Chemical fertilizers containing N, P<sub>2</sub>O<sub>5 </sub>and K<sub>2</sub>O were applied at the nitrogen levels of 4 g/m<sup>2</sup>, 9 g/m<sup>2</sup> and 18 g/m<sup>2</sup> in total being denoted by &quot;N4&quot;, &quot;N9&quot; and &quot;N18&quot;, respectively. Yield, yield components and other traits were measured. <em>Ex</em> delayed 80%-heading by 17 or 18 days in L as compared with E. In total brown rice yield (g/m<sup>2</sup>), L was 635, 606 and 590, and E was 577, 548 and 501, respectively, at N18, N9 and N4, indicating that <em>Ex</em> increased this trait by 10% to 18%. <em>Ex</em> increased yield-1.5 mm sieve (g/m<sup>2</sup>) b 9% to 15% at the three fertilizer levels. <em>Ex</em> increased the spikelet number per panicle by 16% to 22%. As a result, the spikelet number per m<sup>2 </sup>was increased by 11% to 18% at the three fertilizer levels. <em>Ex</em> decreased 1000-grain weight (g) by 2 to 4%. L was not significantly different from E in ripened-grain percentage, fertilized-spikelet percentage and percentage of ripened grains to fertilized spikelets. Hence, it is inferred that <em>Ex</em> increased yield by increasing spikelet number per panicle. Hence, <em>Ex </em>could be utilized to develop high yielding varieties for warmer districts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heading%20time" title="heading time">heading time</a>, <a href="https://publications.waset.org/abstracts/search?q=lateness%20gene" title=" lateness gene"> lateness gene</a>, <a href="https://publications.waset.org/abstracts/search?q=photosensitivity" title=" photosensitivity"> photosensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20components" title=" yield components"> yield components</a> </p> <a href="https://publications.waset.org/abstracts/71003/effects-of-lateness-gene-on-yield-and-related-traits-in-indica-rice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8431</span> Effect of Be, Zr, and Heat Treatment on Mechanical Behavior of Cast Al-Mg-Zn-Cu Alloys (7075)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20M.%20Tash">Mahmoud M. Tash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was undertaken to investigate the effect of aging parameters (time and temperature) on the mechanical properties of Be-and/or Zr- treated Al-Mg-Zn (7075) alloys. Ultimate tensile strength, 0.5% offset yield strength and % elongation measurements were carried out on specimens prepared from cast and heat treated 7075 alloys containing Be and/or Zr. Different aging treatment were carried out for the as solution treated (SHT) specimens. The specimens were aged at different conditions; Natural and artificial aging was carried out at room temperature, 120C, 150C, 180C and 220C for different periods of time. Duplex aging was performed for SHT conditions (pre-aged at different time and temperature followed by high temperature aging). Ultimate tensile strength, yield strength and % elongation data results as a function of different aging parameters are analysed. A statistical design of experiments (DOE) approach using fractional factorial design is applied to acquire an understanding of the effects of these variables and their interactions on the mechanical properties of Be- and/or Zr- treated 7075 alloys. Mathematical models are developed to relate the alloy mechanical properties with the different aging parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=casting%20aging%20treatment" title="casting aging treatment">casting aging treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Al-Mg-Zn%20alloys" title=" Al-Mg-Zn alloys"> Al-Mg-Zn alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=Be-%20and%2For%20Zr-treatment" title=" Be- and/or Zr-treatment"> Be- and/or Zr-treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20correlation" title=" experimental correlation"> experimental correlation</a> </p> <a href="https://publications.waset.org/abstracts/21737/effect-of-be-zr-and-heat-treatment-on-mechanical-behavior-of-cast-al-mg-zn-cu-alloys-7075" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8430</span> Agronomic Response of Fluted Pumpkin (Telfairia occidentalis Hook. f.) to Planting Densities and Fertilizer Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Falodun%20E.%20J.">Falodun E. J.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ogbeifun%20S.%20O."> Ogbeifun S. O.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objectives of this study were to investigate the yield, nutrient concentration, and uptake of fluted pumpkin (Telfairia occidentalis Hook. f.) in response to spacing and fertilizer application. Two fluted pumpkin plant populations (10,000 and 20,000 plants ha⁻¹), D1 and D2, were evaluated at three levels of NPK fertilizer (F₁, 20 t ha⁻¹ poultry manure, F₂, 300 kg ha⁻¹ NPK 15:15:15 and F₃, 10 t ha⁻¹ poultry manure + 150 kg ha⁻¹ NPK 15:15:15) using a factorial arrangement in a randomized complete block design (RCBD) with three replications. Leaf length, breadth, and the number of leaves were significantly increased at a lower plant population of 10,000 plants ha⁻¹ while herbage yield increased with a higher plant population of 20,000 plants ha⁻¹ using 300 kg ha⁻¹ inorganic NPK 15:15:15 or a combination of 10 t ha⁻¹ poultry manure + 150 kg ha⁻¹ inorganic NPK 15:15:15. Potassium (K) concentration was significantly (p < 0.05) higher at 10,000 plants ha⁻¹ and Iron (Fe) uptake was higher with combine application of organic and inorganic fertilizer (F3). To maximize the good herbage yield of fluted pumpkins, farmers in this locality should adopt a plant population of 20,000 plants ha⁻¹ using 300 kg ha⁻¹ inorganic NPK 15:15:15 (D2F2) or a combination of 10 t ha⁻¹ poultry manure + 150 kg ha⁻¹ inorganic NPK 15:15:15 (D2F3). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fertilizers" title="fertilizers">fertilizers</a>, <a href="https://publications.waset.org/abstracts/search?q=fluted%20pumpkin" title=" fluted pumpkin"> fluted pumpkin</a>, <a href="https://publications.waset.org/abstracts/search?q=herbage%20yield" title=" herbage yield"> herbage yield</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20population" title=" plant population"> plant population</a> </p> <a href="https://publications.waset.org/abstracts/154894/agronomic-response-of-fluted-pumpkin-telfairia-occidentalis-hook-f-to-planting-densities-and-fertilizer-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8429</span> Water Use Efficiency of Sunflower Genotypes Under Drip Irrigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel%20M.%20Mahmoud">Adel M. Mahmoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This Investigation was conducted to determine the productivity and water use efficiency for new sunflower genotypes. Ten sunflower genotypes were evaluated under drip irrigation using two treatments of. Results indicate that decreasing the amount of irrigation water from 1500 to 1130 mm/hectar significantly reduced all studied traits. Mutation (M1-63) surpassed all the other one genotypes in seed yield and WUE. Lines which gave the highest yield of the seed have water use efficiency under drought conditions higher than water use efficiency under normal irrigation. The lowest depression in seed yield due to drought conditions has been registered for Line 20, Line M1-63 and Sakha 53 genotypes (11 , 18 and 16 %, respectively). Genotypes (Line 20 , Line M1-63 and Sakha 53) are more tolerant to drought than others and we can used its in breeding program to develop sunflower hybrids suitable for cultivation under drought condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sunflower%20genotypes" title="sunflower genotypes">sunflower genotypes</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20use%20efficiency" title=" water use efficiency"> water use efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=mutation" title=" mutation"> mutation</a>, <a href="https://publications.waset.org/abstracts/search?q=inbred%20lines" title=" inbred lines"> inbred lines</a> </p> <a href="https://publications.waset.org/abstracts/30773/water-use-efficiency-of-sunflower-genotypes-under-drip-irrigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8428</span> Some Agricultural Characteristics of Cephalaria syriaca Lines Selected from a Population and Developed as Winter Type</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahim%20Ada">Rahim Ada</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Tamko%C3%A7"> Ahmet Tamkoç</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research was conducted in the “Randomized Complete Block Design” with three replications in research field of Agricultural Faculty, Selcuk University, Konya, Turkey. In study, a total of 9 Cephalaria syriaca promised lines (9, 37, 38, 42, Beyaz 4, 5 Beyaz, 13 Beyaz, 27 Beyaz, Başaklar 2), which were taken from Sivas population, and 1 population were evaluated in two growing seasons (2012-13 and 2013-14). According to the results, the highest plant height, first branch height, first head height, number of branches per plant, number of head per plant, head diameter,1000 seed weight, seed yield, oil content and oil yield were obtained respectively from Başaklar 2 (68.37 cm), Başaklar 2 (37.80 cm), Başaklar 2 (54.83 cm), 37 (7.73 number/plant), 42 (18.03 number/plant), 9 (10.30 mm), Başaklar 2 (19.33 g), 27 Beyaz (1254.2 kg ha-1), Başaklar 2 (28.77%), and 27 Beyaz (357.9 kg ha-1). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cephalaria%20syriaca" title="Cephalaria syriaca">Cephalaria syriaca</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=oil" title=" oil"> oil</a>, <a href="https://publications.waset.org/abstracts/search?q=population" title=" population"> population</a> </p> <a href="https://publications.waset.org/abstracts/18938/some-agricultural-characteristics-of-cephalaria-syriaca-lines-selected-from-a-population-and-developed-as-winter-type" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8427</span> The Effects of Fungicide and Genetics on Fungal Diseases on Wheat in Nebraska With Emphasis on Stem Rust</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javed%20Sidiqi">Javed Sidiqi</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Baezinger"> Stephen Baezinger</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Wegulo"> Stephen Wegulo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wheat (Triticum aestivum L.) production continues to be challenged by foliar fungal diseases although significant improvement has been made to manage the diseases through developing resistant varieties and the fungicide use to ensure sufficient wheat is produced to meet the growing population’s need. Significant crop losses have been recorded in the history of grain production and yield losses due to fungal diseases, and the trend continues to threat food security in the world and particularly in the less developed countries. The impact of individual fungal diseases on grain yield has been studied extensively to determine crop losses. However, there is limited research available to find out the combined effects of fungal diseases on grain yield and the ways to effectively manage the diseases. Therefore, the objectives of this research were to study the effect of fungal pathogens on grain yield of pre-released winter wheat genotypes in fungicide treated and untreated plots, and to determine whether S7b gene was present in ‘Gage’ wheat as previously hypothesized. Sixty winter wheat genotypes in fungicide treated and untreated plots were studied across four environments. There was a significant effect of fungicide on grain yield consistently across four environments in three years. Fungicide treated wheat lines demonstrated (4,496 kg/ ha-1) grain yield compared to (3,147 kg/ ha-1) grain yield in untreated wheat lines indicating 43% increased grain yield due to severity of foliar fungal diseases. Furthermore, fungicide application also caused an increase in protein concentration from 153 (g kg-1) to 164 (g kg-1) in treated plots in along with test weight from 73 to 77 (kg hL-1) respectively. Gage wheat variety and ISr7b-Ra were crossed to determine presence of Sr7b in Gage. The F2 and F2:3 segregating families were screened and evaluated for stem rust resistance. The segregation of families fell within 15:1 ratio for two separate resistance genes suggesting that Sr7b segregates independently from an unknown resistance gene in Gage that needs to be characterized for its use in the future wheat breeding program to develop resistant wheat varieties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=funicide" title="funicide">funicide</a>, <a href="https://publications.waset.org/abstracts/search?q=genetics" title=" genetics"> genetics</a>, <a href="https://publications.waset.org/abstracts/search?q=foliar%20diseases" title=" foliar diseases"> foliar diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=grain" title=" grain"> grain</a> </p> <a href="https://publications.waset.org/abstracts/149205/the-effects-of-fungicide-and-genetics-on-fungal-diseases-on-wheat-in-nebraska-with-emphasis-on-stem-rust" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8426</span> Comparative Transcriptome Profiling of Low Light Tolerant and Sensitive Rice Varieties Induced by Low Light Stress at Active Tillering Stage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Darshan%20Panda">Darshan Panda</a>, <a href="https://publications.waset.org/abstracts/search?q=Lambodar%20Behera"> Lambodar Behera</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Baig"> M. J. Baig</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudhanshu%20Sekhar"> Sudhanshu Sekhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low light intensity is a significant limitation for grain yield and quality in rice. However, yield is not significantly reduced in low-light tolerant rice varieties. The work, therefore, planned for comparative transcriptome profiling under low light stress to decipher the genes involved and molecular mechanism of low light tolerance in rice. At the active tillering stage, 50% low light exposure for one day, three days, and five days were given to Swarnaprabha (low light tolerant) and IR8 (low light sensitive) rice varieties. Illumina (HiSeq) platform was used for transcriptome sequencing. A total of 6,652 and 12,042 genes were differentially expressed due to low light intensity in Swarnaprabha and IR8, respectively, as compared to control. CAB, LRP, SBPase, MT15, TF PCL1, and Photosystem I & II complex related gene expressions were mostly increased in Swarnaprabha upon the longer duration of low light exposure, which was not found in IR8 as compared to control. Their expressions were validated by qRT-PCR. The overall study suggested that the maintenance of grain yield in the tolerant variety under low light might be the result of accelerated expression of the genes, which enable the plant to keep the photosynthetic processes moving at the same pace even under low light. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice" title="rice">rice</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20light" title=" low light"> low light</a>, <a href="https://publications.waset.org/abstracts/search?q=photosynthesis" title=" photosynthesis"> photosynthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/141335/comparative-transcriptome-profiling-of-low-light-tolerant-and-sensitive-rice-varieties-induced-by-low-light-stress-at-active-tillering-stage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8425</span> Forage Quality of Chickpea - Barley as Affected by Mixed Cropping System in Water Stress Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Rafiee">Masoud Rafiee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To study the quality response of forage to chickpea-barley mixed cropping under drought stress and vermicompost consumption, an experiment was carried out under well watered and %70 water requirement (stress condition) in RCBD as split plot with four replications in temperate condition of Khorramabad in 2013. Chickpea-barley mix cropping (%100 chickpea, %75:25 chickpea:barley, %50:50 chickpea:barley, %25:75 chickpea:barley, and %100 barley) was studied. Results showed that wet and dry forage yield were significantly affected by environment and decreased in stress condition. Also, crude protein content decreased from %26.2 in well watered to %17.3 in stress condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20protein" title="crude protein">crude protein</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20forage%20yield" title=" wet forage yield"> wet forage yield</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20forage%20yield" title=" dry forage yield"> dry forage yield</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20stress%20condition" title=" water stress condition"> water stress condition</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20watered" title=" well watered"> well watered</a> </p> <a href="https://publications.waset.org/abstracts/31169/forage-quality-of-chickpea-barley-as-affected-by-mixed-cropping-system-in-water-stress-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8424</span> Thermal-Mechanical Analysis of a Bridge Deck to Determine Residual Weld Stresses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evy%20Van%20Puymbroeck">Evy Van Puymbroeck</a>, <a href="https://publications.waset.org/abstracts/search?q=Wim%20Nagy"> Wim Nagy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ken%20Schotte"> Ken Schotte</a>, <a href="https://publications.waset.org/abstracts/search?q=Heng%20Fang"> Heng Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hans%20De%20Backer"> Hans De Backer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The knowledge of residual stresses for welded bridge components is essential to determine the effect of the residual stresses on the fatigue life behavior. The residual stresses of an orthotropic bridge deck are determined by simulating the welding process with finite element modelling. The stiffener is placed on top of the deck plate before welding. A chained thermal-mechanical analysis is set up to determine the distribution of residual stresses for the bridge deck. First, a thermal analysis is used to determine the temperatures of the orthotropic deck for different time steps during the welding process. Twin wire submerged arc welding is used to construct the orthotropic plate. A double ellipsoidal volume heat source model is used to describe the heat flow through a material for a moving heat source. The heat input is used to determine the heat flux which is applied as a thermal load during the thermal analysis. The heat flux for each element is calculated for different time steps to simulate the passage of the welding torch with the considered welding speed. This results in a time dependent heat flux that is applied as a thermal loading. Thermal material behavior is specified by assigning the properties of the material in function of the high temperatures during welding. Isotropic hardening behavior is included in the model. The thermal analysis simulates the heat introduced in the two plates of the orthotropic deck and calculates the temperatures during the welding process. After the calculation of the temperatures introduced during the welding process in the thermal analysis, a subsequent mechanical analysis is performed. For the boundary conditions of the mechanical analysis, the actual welding conditions are considered. Before welding, the stiffener is connected to the deck plate by using tack welds. These tack welds are implemented in the model. The deck plate is allowed to expand freely in an upwards direction while it rests on a firm and flat surface. This behavior is modelled by using grounded springs. Furthermore, symmetry points and lines are used to prevent the model to move freely in other directions. In the thermal analysis, a mechanical material model is used. The calculated temperatures during the thermal analysis are introduced during the mechanical analysis as a time dependent load. The connection of the elements of the two plates in the fusion zone is realized with a glued connection which is activated when the welding temperature is reached. The mechanical analysis results in a distribution of the residual stresses. The distribution of the residual stresses of the orthotropic bridge deck is compared with results from literature. Literature proposes uniform tensile yield stresses in the weld while the finite element modelling showed tensile yield stresses at a short distance from the weld root or the weld toe. The chained thermal-mechanical analysis results in a distribution of residual weld stresses for an orthotropic bridge deck. In future research, the effect of these residual stresses on the fatigue life behavior of welded bridge components can be studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20modelling" title="finite element modelling">finite element modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stresses" title=" residual stresses"> residual stresses</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal-mechanical%20analysis" title=" thermal-mechanical analysis"> thermal-mechanical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=welding%20simulation" title=" welding simulation"> welding simulation</a> </p> <a href="https://publications.waset.org/abstracts/78482/thermal-mechanical-analysis-of-a-bridge-deck-to-determine-residual-weld-stresses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8423</span> Amino Acid Responses of Wheat Cultivars under Glasshouse Drought Accurately Predict Yield-Based Drought Tolerance in the Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arun%20K.%20Yadav">Arun K. Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20J.%20Carroll"> Adam J. Carroll</a>, <a href="https://publications.waset.org/abstracts/search?q=Gonzalo%20M.%20Estavillo"> Gonzalo M. Estavillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Greg%20J.%20Rebetzke"> Greg J. Rebetzke</a>, <a href="https://publications.waset.org/abstracts/search?q=Barry%20J.%20Pogson"> Barry J. Pogson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water limits crop productivity, so selecting for minimal yield-gap in drier environments is critical to mitigate against climate change and land-use pressures. To date, no markers measured in glasshouses have been reported to predict field-based drought tolerance. In the field, the best measure of drought tolerance is yield-gap; but this requires multisite trials that are an order of magnitude more resource intensive and can be impacted by weather variation. We investigated the responses of relative water content (RWC), stomatal conductance (gs), chlorophyll content and metabolites in flag leaves of commercial wheat (Triticum aestivum L.) cultivars to three drought treatments in the glasshouse and field environments. We observed strong genetic associations between glasshouse-based RWC, metabolites and Yield gap-based Drought Tolerance (YDT): the ratio of yield in water-limited versus well-watered conditions across 24 field environments spanning sites and seasons. Critically, RWC response to glasshouse drought was strongly associated with both YDT (r2 = 0.85, p < 8E-6) and RWC under field drought (r2 = 0.77, p < 0.05). Multiple regression analyses revealed that 98% of genetic YDT variance was explained by drought responses of four metabolites: serine, asparagine, methionine and lysine (R2 = 0.98; p < 0.01). Fitted coefficients suggested that, for given levels of serine and asparagine, stronger methionine and lysine accumulation was associated with higher YDT. Collectively, our results demonstrate that high-throughput, targeted metabolic phenotyping of glasshouse-grown plants may be an effective tool for the selection of wheat cultivars with high YDT in the field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drought%20stress" title="drought stress">drought stress</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20yield" title=" grain yield"> grain yield</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolomics" title=" metabolomics"> metabolomics</a>, <a href="https://publications.waset.org/abstracts/search?q=stomatal%20conductance" title=" stomatal conductance"> stomatal conductance</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a> </p> <a href="https://publications.waset.org/abstracts/84496/amino-acid-responses-of-wheat-cultivars-under-glasshouse-drought-accurately-predict-yield-based-drought-tolerance-in-the-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8422</span> Intercropping Sugarcane and Soybean in Lowland and Upland to Support Self Sufficiency of Soybean in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Saeri">Mohammad Saeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Zainal%20Arifin"> Zainal Arifin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to obtain information on technical and social-economic feasibility of sugarcane-soybean. To achieve these objectives, soybeans intercropping study was conducted in sugar cane crops. This assessment was conducted in two locations with different agroecosystem,ie lowland of low plain in Mojokerto, East Java, with altitude of 50m above sea level and upland of medium plain in Malang, East Javawithaltitude of 500 m above the sea level. The design used was Split plot, with the main plots, is the soybean varieties, consisting of: (a) Anjasmoro, (b) Argomulyo, and (c) Dena-1, while the subplot is bio-fertilizer, consisting of : (1) Agrimeth, (2) Agrisoy, and (3) Biovarm. The variables observed were growth, yield and yield components and economic analysis. The yield of soybean in lowland reached 0.74 t/ha of seeds with farm profit of Indonesian Rupiah 359.200. This result is relatively low due to the delay of soybean cultivation from sugar cane soup time so that sugar cane cover soybean cultivation, while in upland obtained 0.92t/ha seeds with farm profit of Indonesian Rupiah 2,015,000. Therefore, it is suggested that soybeans are planted immediately after ratoon cane so that soybean growth can be optimal before the growth of sugarcane cover the soil surface. The yield of sugar cane in the lowland reached 124.5 tons with a profit of Indonesian Rupiah. 21,200,000,- while in upland obtained by sugarcane yield equal to 78,5 ton with profit equal to Indonesian Rupiah 8,900,000,-. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intercropping" title="intercropping">intercropping</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar%20cane" title=" sugar cane"> sugar cane</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean" title=" soybean"> soybean</a>, <a href="https://publications.waset.org/abstracts/search?q=profit" title=" profit"> profit</a>, <a href="https://publications.waset.org/abstracts/search?q=farming" title=" farming"> farming</a> </p> <a href="https://publications.waset.org/abstracts/90591/intercropping-sugarcane-and-soybean-in-lowland-and-upland-to-support-self-sufficiency-of-soybean-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8421</span> Effect of Sowing Dates on Growth, Agronomic Traits and Yield of Tossa Jute (Corchorus olitorius L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amira%20Racha%20Ben%20Yakoub">Amira Racha Ben Yakoub</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ferchichi"> Ali Ferchichi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to investigate the impact of sowing time on growth parameters, the length of the development cycle and yield of tossa jute (Corchorus olitorius L.), a field experiment was conducted from March to May 2011 at the Laboratoire d’Aridoculture et Cultures Oasiennes, ‘Institut des Régions Arides de Médénine’, Tunisia. Results of the experiment revealed that the early sowing (the middle of March, the beginning of April) induced a cycle of more than 100 days to reach the stage maturity and generates a marked drop in production. This period of plantation affects plant development and leads to a sharp drop in performance marked primarily by a reduction in growth, number and size of leaves, number of flowers and pods and weight of different parts of plant. Sowing from the end of April seems appropriate for shortening the development cycle and better profitability than the first two dates. Seeding of C. olitorius during May enhance the development of plants more dense, which explains the superiority of production marked by the increase of seed yield and leaf fresh and dry weight of this leafy vegetables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tossa%20jute%20%28Corchorus%20olitorius%20L%29" title="tossa jute (Corchorus olitorius L)">tossa jute (Corchorus olitorius L)</a>, <a href="https://publications.waset.org/abstracts/search?q=sowing%20date" title=" sowing date"> sowing date</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/14532/effect-of-sowing-dates-on-growth-agronomic-traits-and-yield-of-tossa-jute-corchorus-olitorius-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8420</span> Variability Parameters for Growth and Yield Characters in Fenugreek, Trigonella spp. Genotypes </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anita%20Singh">Anita Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Richa%20Naula"> Richa Naula</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Raghav"> Manoj Raghav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> India is a leading producer and consumer of fenugreek for its culinary uses and medicinal application. In India, most of the people are of vegetarian class. In such a situation, a leafy vegetable, such as fenugreek is of chief concern due to its high nutritional property, medicinal values and industrial uses. One of the most important factors restricting their large scale production and development of superior varieties is that very scanty knowledge about their genetic diversity, inter and intraspecific variability and genetic relationship among the species. Improvement of the crop depends upon the magnitude of genetic variability for economic characters. Therefore, the present research work was carried out to analyse the variability parameters for growth and yield character in twenty-eight fenugreek genotypes along with two standard checks Pant Ragini and Pusa Early Bunching. The experiment was laid out in Randomized Block Design with three replication during rabi season 2015-2016 at Pantnagar Centre for Plant Genetic Resources, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand. The analysis of variance revealed highly significant differences among all the genotypes for all traits. High genotypic and phenotypic coefficient variation were observed for characters, namely the number of primary branches per plant, number of leaves at 30, 45 and 60 DAS, green leaf yield per plant, green leaf yield q/ha . The genetic advance recorded highest in green leaf yield q/ha (33.93) followed by green leaf yield per plant (21.20g). Highest percent of heritability were shown by 1000 seed weight (99.12%) followed by the number of primary branches per plant (97.18%). Green leaf yield q/ha showed high heritability and high genetic advance. These superior genotypes can be further used in crop improvement programs of fenugreek. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20advance" title="genetic advance">genetic advance</a>, <a href="https://publications.waset.org/abstracts/search?q=genotypic%20coefficient%20variation" title=" genotypic coefficient variation"> genotypic coefficient variation</a>, <a href="https://publications.waset.org/abstracts/search?q=heritability" title=" heritability"> heritability</a>, <a href="https://publications.waset.org/abstracts/search?q=phenotypic%20coefficient%20variation" title=" phenotypic coefficient variation "> phenotypic coefficient variation </a> </p> <a href="https://publications.waset.org/abstracts/68953/variability-parameters-for-growth-and-yield-characters-in-fenugreek-trigonella-spp-genotypes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8419</span> Response of Yield and Morphological Characteristic of Rice Cultivars to Heat Stress at Different Growth Stages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Taghi%20Karbalaei%20Aghamolki">Mohammad Taghi Karbalaei Aghamolki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Khanif%20Yusop"> Mohd Khanif Yusop</a>, <a href="https://publications.waset.org/abstracts/search?q=Fateh%20Chand%20Oad"> Fateh Chand Oad</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Zakikhani"> Hamed Zakikhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hawa%20Zee%20Jaafar"> Hawa Zee Jaafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharifh%20Kharidah"> Sharifh Kharidah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hanafi%20Musa"> Mohamed Hanafi Musa</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahram%20Soltani">Shahram Soltani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high temperatures during sensitive growth phases are changing rice morphology as well as influencing yield. In the glass house study, the treatments were: growing conditions [normal growing (32oC+2) and heat stress (38oC+2) day time and 22oC+2 night time], growth stages (booting, flowering and ripening) and four cultivars (Hovaze, Hashemi, Fajr, as exotic and MR219 as indigenous). The heat chamber was prepared covered with plastic, and automatic heater was adjusted at 38oC+2 (day) and 22oC+2 (night) for two weeks in every growth stages. Rice morphological and yield under the influence of heat stress during various growth stages showed taller plants in Hashsemi due to its tall character. The total tillers per hill were significantly higher in Fajr receiving heat stress during booting stage. In all growing conditions and growth stages, Hashemi recorded higher panicle exertion and flag leaf length. The flag leaf width in all situations was found higher in Hovaze. The total tillers per hill were more in Fajr, although heat stress was imposed during booting and flowering stages. The indigenous MR219 in all situations of growing conditions, growth stages recorded higher grain yield. However, its grain yield slightly decreased when heat stress was imposed during booting and flowering. Similar results were found in all other exotic cultivars recording to lower grain yield in the heat stress condition during booting and flowering. However, plants had no effect on heat stress during ripening stage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice" title="rice">rice</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=heat" title=" heat"> heat</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/2332/response-of-yield-and-morphological-characteristic-of-rice-cultivars-to-heat-stress-at-different-growth-stages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8418</span> Population and Age Structure of the Goby Stigmatogobius pleurostigma in the Mekong Delta, Vietnam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Quang%20M.%20Dinh">Quang M. Dinh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stigmatogobius pleurostigma is a commercial fish being caught increasingly in the Mekong Delta. Although it plays an important role for food supply, little is known about this species including morphology, distribution and growth pattern. Meanwhile, its population and age structure is unknown. The present study was conducted in the Mekong Delta to provide new data on population parameters of this goby species. The von Bertalanffy growth parameters were L∞= 8.6 cm, K = 0.83 yr⁻¹, and t0 = -0.07 yr⁻¹ basing on length frequency data analysis of 601 individuals. The fish total length at first capture was 3.8 cm; and fishing, natural and total mortalities of the fish population were 2.31 yr⁻¹, 1.17 yr⁻¹, and 3.48 yr⁻¹ respectively. The maximum fish yield (Eₘₐₓ), economic yield (E₀.₁) and yield of 50% reduction of exploitation (E₅₀) rates were 0.704, 0.555 and 0.335 based on the relative yield-per-recruit and biomass-per-recruit analyses. The fish longevity was 3.61 yr, and growth performance was 1.79. Three fish age groups were recorded in this study (0+, 1+ and 2+). The species is a potential aquaculture candidate because of its high growth parameter. This goby stock was overexploited in the Mekong Delta as its exploitation rate (E=0.34) was higher than E₅₀ (0.335). The mesh size of gillnets should be increased and avoid catching fish in June, recruitment time, for future sustainable fishery management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stigmatogobius%20pleurostigma" title="Stigmatogobius pleurostigma">Stigmatogobius pleurostigma</a>, <a href="https://publications.waset.org/abstracts/search?q=age" title=" age"> age</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20structure" title=" population structure"> population structure</a>, <a href="https://publications.waset.org/abstracts/search?q=Vietnam" title=" Vietnam"> Vietnam</a> </p> <a href="https://publications.waset.org/abstracts/75857/population-and-age-structure-of-the-goby-stigmatogobius-pleurostigma-in-the-mekong-delta-vietnam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8417</span> The Influence of Psychological Capital Dimensions to Performance through OCB with Resistance to Change as Moderating Variable</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bambang%20Suko%20Priyono">Bambang Suko Priyono</a>, <a href="https://publications.waset.org/abstracts/search?q=Tristiana%20Rijanti"> Tristiana Rijanti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines the influence of Psychological Capital Dimensions to Organizational Citizenship Behavior. There are four dimensions of Psychological Capital such as hope, optimism, resilience, and self-efficacy. It also tests the moderation effect of Resistance to Change in the relation between Psychological Capital’s dimensions and Organizational Citizenship Behavior, and the influence of Organizational Citizenship Behavior to employees’ performance. The data from the chosen 160 respondents from Public Service Institution is processed using multiple regression and interaction method. The study results in: 1) Hope positively significantly influences Organizational Citizenship Behavior, 2) Optimism positively significantly influences Organizational Citizenship Behavior, 3) Resilience positively significantly influences Organizational Citizenship Behavior, 4) Self-efficacy positively significantly influences Organizational Citizenship Behavior, 5) Resistance to change is moderating variable between hope and Organizational Citizenship Behavior, 6) Resistance to change is moderating variable between self-efficacy and Organizational Citizenship Behavior, 7) Organizational Citizenship Behavior positively significantly influences performance. On the contrary, resistance to change as a moderating variable is proven for hope and resilience. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organizational%20citizenship%20behavior" title="organizational citizenship behavior">organizational citizenship behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=psychological%20capital%E2%80%99s%20dimensions" title=" psychological capital’s dimensions"> psychological capital’s dimensions</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20resistance%20to%20change" title=" and resistance to change"> and resistance to change</a> </p> <a href="https://publications.waset.org/abstracts/30611/the-influence-of-psychological-capital-dimensions-to-performance-through-ocb-with-resistance-to-change-as-moderating-variable" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">685</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8416</span> Experimental and Computational Analysis of Glass Fiber Reinforced Plastic Beams with Piezoelectric Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Selin%20Kunc">Selin Kunc</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivas%20Koushik%20Gundimeda"> Srinivas Koushik Gundimeda</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20A.%20Gallagher"> John A. Gallagher</a>, <a href="https://publications.waset.org/abstracts/search?q=Roselita%20Fragoudakis"> Roselita Fragoudakis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the behavior of Glass Fiber Reinforced Plastic (GFRP) laminated beams additionally reinforced with piezoelectric fibers. The electromechanical behavior of piezoelectric materials coupled with high strength/low weight GFRP laminated beams can have significant application in a wide range of industries. Energy scavenging through mechanical vibrations is the focus of this study, and possible applications can be seen in the automotive industry. This study examines the behavior of such composite laminates using Classical Lamination Theory (CLT) under three-point bending conditions. Fiber orientation is optimized for the desired stiffness and deflection that yield maximum energy output. Finite element models using ABAQUS/CAE are verified through experimental testing. The optimum stacking sequences examined are [0o]s, [ 0/45o]s, and [45/-45o]s. Results show the superiority of the stacking sequence [0/45o]s, providing higher strength at a lower weight, and maximum energy output. Furthermore, laminated GFRP beams additionally reinforced with piezoelectric fibers can be used under bending to not only replace metallic component while providing similar strength at a lower weight but also provide an energy output. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classical%20lamination%20theory%20%28CLT%29" title="classical lamination theory (CLT)">classical lamination theory (CLT)</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20scavenging" title=" energy scavenging"> energy scavenging</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20fiber%20reinforced%20plastics%20%28GFRP%29" title=" glass fiber reinforced plastics (GFRP)"> glass fiber reinforced plastics (GFRP)</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20fibers" title=" piezoelectric fibers"> piezoelectric fibers</a> </p> <a href="https://publications.waset.org/abstracts/91201/experimental-and-computational-analysis-of-glass-fiber-reinforced-plastic-beams-with-piezoelectric-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8415</span> Evaluation of Drought Tolerant Sunflower Hybrids Indicated Their Broad Adaptability Under Stress Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Rauf">Saeed Rauf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: Drought stress is a major production constraint in sunflowers and causes yield losses under tropical and subtropical environments having high evapo-tranpirational losses. Given the consequences, three trials were designed to evaluate drought-resistant sunflower hybrids. Research Methods: Field trials were conducted under a split-plot arrangement with 17 hybrids and two contrasting regimes at Sargodha, Pakistan and 7 hybrids at Karj, Iran. Water stress condition was simulated by holding water in a stress regime. Hybrids were also screened against five levels of osmotic-ally induced stress, i.e. 0-15%, under a completely randomized design with 3 replications. Findings: Hybrids H1 (C.112.× RH.344) and H3 (C.112.× RSIN.82) showed the highest seed yield ha-1 and early flowering at Karj Iran. Commercial hybrid had the highest CTD (18.2°C) followed by C112 × RH.344 (17.29 °C). Hybrid C.250 × R.SIN.82 had the highest seed yield (m-2), followed by C.112 × RH.365 and C.124 × RSIN.82 under both stress and non-stress regimes at Sargodha, Pakistan. Seedling trial results showed that 6 hybrids only germinated in 5 and 7.5% PEG-induced osmotic stress, respectively. H1 (C.112 × RH.344) and H2 (C.112 × RH.347) had the highest germination% at 5% and 7.5% osmotic stress (OS). Seedling vigor index (SVI) was the highest in H1 (C.112 × RH.344) hybrids at 5% OS, H2 had the highest SVI under 7.5% OS, followed by H3 (C112 × RH344) and H4 (C116 × RH344). Originality/Value: In view of above results, it was concluded that hybrid combination H1 had the highest seed yield under stress conditions in both environments. High seed yield may be due to its better germination and vigor index under stress conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=CTD" title=" CTD"> CTD</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20variability" title=" genetic variability"> genetic variability</a>, <a href="https://publications.waset.org/abstracts/search?q=osmotic%20stress" title=" osmotic stress"> osmotic stress</a> </p> <a href="https://publications.waset.org/abstracts/175408/evaluation-of-drought-tolerant-sunflower-hybrids-indicated-their-broad-adaptability-under-stress-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8414</span> Effects of Tillage and Crop Residues Management in Improving Rainfall-Use Efficiency in Dryland Crops under Sandy Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cosmas%20Parwada">Cosmas Parwada</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronald%20Mandumbu"> Ronald Mandumbu</a>, <a href="https://publications.waset.org/abstracts/search?q=Handseni%20Tibugari"> Handseni Tibugari</a>, <a href="https://publications.waset.org/abstracts/search?q=Trust%20Chinyama"> Trust Chinyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 3-yr field experiment to evaluate effects of tillage and residue management on soil water storage (SWS), grain yield, harvest index (HI) and water use efficiency (WUE) of sorghum was done in sandy soils. Treatments were conventional (CT) and minimum (MT) tillage without residue retention and conventional (CT × RT) and minimum (MT × RT) tillage with residue retention. Change in SWS was higher under CT and MT than in CT × RT and MT × RT, especially in the 0-10 cm soil layer. Grain yield and HI were significantly (P < 0.05) lower in CT and MT than CT × RT and MT × RT. Grain yield and HI were significantly (P < 0.05) positively correlated to WUE but WUE significantly (P < 0.05) negatively correlated to sand (%) particle content. The SWS was lower in winter but higher in summer and was significantly correlated to soil organic carbon (SOC), sand (%), grain yield (t/ha), HI and WUE. The WUE linearly increasing from first to last cropping seasons in tillage with returned residues; higher in CT × RT and MT × RT that promoted SOC buildup than where crop residues were removed. Soil tillage decreased effects of residues on SWS, WUE, grain yield and HI. Minimum tillage coupled to residue retention sustainably enhanced WUE but further research to investigate the interaction effects of the tillage on WUE and soil fertility management is required. Understanding and considering the WUE in crops can be a primary condition for cropping system designs. The findings pave way for further research and crop management programmes, allowing to valorize the water in crop production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evapotranspiration" title="evapotranspiration">evapotranspiration</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltration%20rate" title=" infiltration rate"> infiltration rate</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20mulch" title=" organic mulch"> organic mulch</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20use%20efficiency" title=" water use efficiency"> water use efficiency</a> </p> <a href="https://publications.waset.org/abstracts/95785/effects-of-tillage-and-crop-residues-management-in-improving-rainfall-use-efficiency-in-dryland-crops-under-sandy-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8413</span> Liquid Fuel Production via Catalytic Pyrolysis of Waste Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malee%20Santikunaporn">Malee Santikunaporn</a>, <a href="https://publications.waset.org/abstracts/search?q=Neera%20Wongtyanuwat"> Neera Wongtyanuwat</a>, <a href="https://publications.waset.org/abstracts/search?q=Channarong%20Asavatesanupap"> Channarong Asavatesanupap</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pyrolysis of waste oil is an effective process to produce high quality liquid fuels. In this work, pyrolysis experiments of waste oil over Y zeolite were carried out in a semi-batch reactor under a flow of nitrogen at atmospheric pressure and at different reaction temperatures (350-450 <sup>o</sup>C). The products were gas, liquid fuel, and residue. Only liquid fuel was further characterized for its composition and properties by using gas chromatography, thermogravimetric analyzer, and bomb calorimeter. Experimental results indicated that the pyrolysis reaction temperature significantly affected both yield and composition distribution of pyrolysis oil. An increase in reaction temperature resulted in increased fuel yield, especially gasoline fraction. To obtain high amount of fuel, the optimal reaction temperature should be higher than 350 <sup>o</sup>C. A presence of Y zeolite in the system enhanced the cracking activity. In addition, the pyrolysis oil yield is proportional to the catalyst quantity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gasoline" title="gasoline">gasoline</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel" title=" diesel"> diesel</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20oil" title=" waste oil"> waste oil</a>, <a href="https://publications.waset.org/abstracts/search?q=Y%20zeolite" title=" Y zeolite"> Y zeolite</a> </p> <a href="https://publications.waset.org/abstracts/93363/liquid-fuel-production-via-catalytic-pyrolysis-of-waste-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8412</span> Effect of Pre-Aging and Aging Parameters on Mechanical Behavior of Be-Treated 7075 Aluminum Alloys: Experimental Correlation using Minitab Software</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Tash">M. Tash</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Alkahtani"> S. Alkahtani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was undertaken to investigate the effect of pre-aging and aging parameters (time and temperature) on the mechanical properties of Al-Mg-Zn (7075) alloys. Ultimate tensile strength, 0.5% offset yield strength and % elongation measurements were carried out on specimens prepared from cast and heat treated 7075 alloys. Duplex aging treatments were carried out for the as solution treated (SHT) specimens (pre-aged at different time and temperature followed by high temperature aging). A statistical design of experiments (DOE) approach using fractional factorial design was applied to determine the influence of controlling variables of pre-aging and aging treatment parameters and any interactions between them on the mechanical properties of 7075 alloys. A mathematical models are developed to relate the alloy ultimate tensile strength, yield strength and % elongation with the different pre-aging and aging parameters i.e. Pre-aging Temperature (PA T0C), Pre-aging time (PA t h), Aging temperature (AT0C), Aging time (At h), to acquire an understanding of the effects of these variables and their interactions on the mechanical properties of be-treated 7075 alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aging%20heat%20Treatment" title="aging heat Treatment">aging heat Treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20properties" title=" tensile properties"> tensile properties</a>, <a href="https://publications.waset.org/abstracts/search?q=be-treated%20cast%20Al-Mg-Zn%20%287075%29%20alloys" title=" be-treated cast Al-Mg-Zn (7075) alloys"> be-treated cast Al-Mg-Zn (7075) alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20correlation" title=" experimental correlation"> experimental correlation</a> </p> <a href="https://publications.waset.org/abstracts/7396/effect-of-pre-aging-and-aging-parameters-on-mechanical-behavior-of-be-treated-7075-aluminum-alloys-experimental-correlation-using-minitab-software" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8411</span> Optimizing Nitrogen Fertilizer Application in Rice Cultivation: A Decision Model for Top and Ear Dressing Dosages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ya-Li%20Tsai">Ya-Li Tsai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrogen is a vital element crucial for crop growth, significantly influencing crop yield. In rice cultivation, farmers often apply substantial nitrogen fertilizer to maximize yields. However, excessive nitrogen application increases the risk of lodging and pest infestation, leading to yield losses. Additionally, conventional flooded irrigation methods consume significant water resources, necessitating precise agricultural and intelligent water management systems. In this study, it leveraged physiological data and field images captured by unmanned aerial vehicles, considering fertilizer treatment and irrigation as key factors. Statistical models incorporating rice physiological data, yield, and vegetation indices from image data were developed. Missing physiological data were addressed using multiple imputation and regression methods, and regression models were established using principal component analysis and stepwise regression. Target nitrogen accumulation at key growth stages was identified to optimize fertilizer application, with the difference between actual and target nitrogen accumulation guiding recommendations for ear dressing dosage. Field experiments conducted in 2022 validated the recommended ear dressing dosage, demonstrating no significant difference in final yield compared to traditional fertilizer levels under alternate wetting and drying irrigation. These findings highlight the efficacy of applying recommended dosages based on fertilizer decision models, offering the potential for reduced fertilizer use while maintaining yield in rice cultivation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intelligent%20fertilizer%20management" title="intelligent fertilizer management">intelligent fertilizer management</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20top%20and%20ear%20dressing%20fertilizer" title=" nitrogen top and ear dressing fertilizer"> nitrogen top and ear dressing fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=rice" title=" rice"> rice</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20optimization" title=" yield optimization"> yield optimization</a> </p> <a href="https://publications.waset.org/abstracts/183405/optimizing-nitrogen-fertilizer-application-in-rice-cultivation-a-decision-model-for-top-and-ear-dressing-dosages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8410</span> Yield Enhancement and Reduced Nutrient Removal by Weeds in Winter Irrigated Cotton Using Potassium Salt Based Glyphosate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Viji">N. Viji</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Siddeswaran"> K. Siddeswaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Field experiment was conducted at Eastern Block farm, Department of Farm Management, Tamil Nadu Agricultural University, Coimbatore during winter season of 2011-2012 to evaluate potassium salt based glyphosate (Roundup Crop Shield 460 SL) with and without intercultural operations on seed cotton yield and weed nutrient removal in irrigated cotton. The experiment was laid out in Randomized Block Design with treatments replicated thrice. The treatments consisted of POE glyphosate (Roundup Crop Shield 460 SL) at 1350 (T1), 1800 (T2), 2250 (T3) g a.e. ha-1, 1800 g a.e. ha-1 + IC (T4), PE pendimethalin at 750 g a.i. ha-1 + IC (T5), HW at 35 and 70 DAS + IC (T6), HWW at 35 and 70 DAS + IC (T7), PWW at 35 and 70 DAS + IC (T8), HW at 25 and 45 DAS (T9) and Unweeded control (T10). Among the weed management methods, decreased nutrient removal by weeds were observed with POE glyphosate at 1800 g a.e. ha-1 + IC which was comparable with PE pendimethalin at 750 g a.i. ha-1 + IC. Higher seed cotton yield was obtained with POE glyphosate at 1800 g a.e. ha-1 at 35 and 70 DAS with + IC at 45 and 55 DAS which was comparable with PE pendimethalin at 750 g a.i. ha-1 + IC at 45 and 55 DAS. Comparing treatments without intercultural operation, intercultural operation carried out treatments performed better and recorded more seed cotton yield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cotton" title="cotton">cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=weed" title=" weed"> weed</a>, <a href="https://publications.waset.org/abstracts/search?q=glyphosate" title=" glyphosate"> glyphosate</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient" title=" nutrient"> nutrient</a> </p> <a href="https://publications.waset.org/abstracts/23045/yield-enhancement-and-reduced-nutrient-removal-by-weeds-in-winter-irrigated-cotton-using-potassium-salt-based-glyphosate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">635</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8409</span> Effect of Phosphorus and Potassium Nutrition on Growth, Yield and Minerals Accumulation of Two Soybean Cultivars Differing in Phytate Contents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taliman%20Nisar%20Ahmad">Taliman Nisar Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Hirofume%20Saneoka"> Hirofume Saneoka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A pot experiment was conducted to investigate the effect of phosphorus (P) and potassium (K) nutrition on grain yield, phytic acid and grain quality of high-phytate (Akimaro) and low-phytate line. Phosphorus and potassium were applied as; P₁ (20 kg ha⁻¹) and P₂ (100 kg ha⁻¹), same as K₁ (20 kg ha⁻¹) and K₂ (100 kg ha⁻¹), respectively. Low-phytate soybean had the highest grain yield, and 75% increase was observed compared to the high-phytate under same treatments. Highly significant differences of seed phytate P were observed in both cultivars, and the phytate P in high-phytate was found 39% higher than low-phytate, whereas no significant differences observed in response to P and K treatment. Percentage of phytate P from total P in seeds was 28 to 35% in low-phytate and 72 to 81% in high-phytate in different treatments. The lipid content in low-phytate was found lowered compared to that of high-phytate. Crude protein in grains was also found significantly higher in PK combined. No significant difference was observed in seed calcium (Ca), magnesium (Mg), and Zinc (Zn) in different treatments, but high-phytate showed 87% increase in seed Ca and 76% of Mg compared to low-phytate; however, low-phytate showed 82% increase in Zn content over high-phytate. The result illustrates that low-phytate soybean achieved higher grain yield and grain Pi in response to increased P and K nutrition. To achieve higher yield and quality seeds from the low-phytate soybean, it is recommended that proper phosphorus and potassium nutrition to be applied suggested in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phytic%20acid" title="phytic acid">phytic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=low-phytate%20soybean" title=" low-phytate soybean"> low-phytate soybean</a>, <a href="https://publications.waset.org/abstracts/search?q=high-phytate%20soybean" title=" high-phytate soybean"> high-phytate soybean</a>, <a href="https://publications.waset.org/abstracts/search?q=P%20and%20K%20nutrition" title=" P and K nutrition"> P and K nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20content" title=" protein content"> protein content</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean" title=" soybean"> soybean</a> </p> <a href="https://publications.waset.org/abstracts/101217/effect-of-phosphorus-and-potassium-nutrition-on-growth-yield-and-minerals-accumulation-of-two-soybean-cultivars-differing-in-phytate-contents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8408</span> Genetic Evaluation of Locally Flock Sheep in Gabaraka Village</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salim%20Omar%20Raoof">Salim Omar Raoof</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted in a private local sheep herd at Gabaraka village-Kirkuk-Iraq. Analysis of 77 ewes recorded and 7 Rams of local sheep presented in Gabaraka village farm plain, the age of ewes ranged between (2-4) years. The aim of this study is to investigate the genetic and non-genetic factors (type of birth, sex, and age of dam) affecting daily milk yield (DMY), birth weight (BW), weaning weight (WW) and Gain characteristics of local sheep raised under Iraq conditions, and it also aims at estimating heritability’s, BLUP. The overall mean of daily milk yield, (BW), (WW), and gain. Was 444.15gm,4.92kg,43.08kg, and 38.16kg, respectively. The results showed there was a significant effect of the type of birth and sex on (BW) and (WW). Also, the age of the dam had a significant effect on daily milk yield (BW), (WW), and gain. Generally, the estimate of heritability of DMP, BWT, WWT, and Gain tend to be 0.22, 0.17, 0.27, and 0.22, respectively. The breeding value (BLUP) for rams ranged between (-0.1684 to 0.188), (-0.205 to 0.310), and ( -0.0171 to 0.029) according to growth traits of Lambs BW, WW, and Gain, respectively. It concluded that the selection of ewes and rams at the population level in planned selection schemes is based on BLUP value and heritability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=locally%20sheep" title="locally sheep">locally sheep</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20yield" title=" milk yield"> milk yield</a>, <a href="https://publications.waset.org/abstracts/search?q=Genetic%20parameters" title=" Genetic parameters"> Genetic parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=BLUP%20value" title=" BLUP value"> BLUP value</a> </p> <a href="https://publications.waset.org/abstracts/163362/genetic-evaluation-of-locally-flock-sheep-in-gabaraka-village" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8407</span> Age and Population Structure of the Goby Parapocryptes Serperaster in the Mekong Delta, Vietnam, Based on Length-Frequency and Otolith Analyses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Quang%20Minh%20Dinh">Quang Minh Dinh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian%20Guang%20Qin"> Jian Guang Qin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabine%20Dittmann"> Sabine Dittmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinh%20Dac%20Tran"> Dinh Dac Tran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The age and population structure the dermal gopy Parapocryptes serperaster were studied using length distributions, otolith and von Bertalanffy model in the Mekong Delta over a whole year through monthly sampling. The sex ratio of P. serperaster was near 1:1, and von Bertalanffy growth parameters were L∞= 25.2 cm, K = 0.74 yr-1, and t0 = -0.22 yr-1. Fish size at first entry to fishery was 14.6 cm, and fishing mortality (1.57 yr-1) and natural mortality (1.51 yr-1) accounted for 51% and 49% of the total mortality (3.07 yr-1), respectively. Relative yield-per-recruit and biomass-per-recruit analyses revealed the levels of maximum exploitation yield (Emax = 0.83), maximum economic yield (E0.1 = 0.71) and the yield at 50% reduction of exploitation (E0.5 = 0.37). Otoliths from 164 female and 196 male gobies were readable, and the otolith morphometry data were used for age identification. The mean age estimated by reading otolith annual rings and by analysing length frequency distribution was consistent. This study shows that the otolith morphometry is a reliable method for aging this goby and possibly also applicable for other tropical gobies. The fishery analysis indicates that this goby stock has not been overexploited in the Mekong Delta. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parapcryptes%20serperaster" title="Parapcryptes serperaster">Parapcryptes serperaster</a>, <a href="https://publications.waset.org/abstracts/search?q=otolith" title=" otolith"> otolith</a>, <a href="https://publications.waset.org/abstracts/search?q=age" title=" age"> age</a>, <a href="https://publications.waset.org/abstracts/search?q=pulation%20structure" title=" pulation structure"> pulation structure</a>, <a href="https://publications.waset.org/abstracts/search?q=Vietnam" title=" Vietnam"> Vietnam</a> </p> <a href="https://publications.waset.org/abstracts/22313/age-and-population-structure-of-the-goby-parapocryptes-serperaster-in-the-mekong-delta-vietnam-based-on-length-frequency-and-otolith-analyses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">656</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=yield%20behavior&amp;page=8" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=yield%20behavior&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=yield%20behavior&amp;page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=yield%20behavior&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=yield%20behavior&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=yield%20behavior&amp;page=8">8</a></li> <li class="page-item active"><span class="page-link">9</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=yield%20behavior&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=yield%20behavior&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=yield%20behavior&amp;page=12">12</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=yield%20behavior&amp;page=289">289</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=yield%20behavior&amp;page=290">290</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=yield%20behavior&amp;page=10" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10