CINXE.COM
Search results for: traffic counting device
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: traffic counting device</title> <meta name="description" content="Search results for: traffic counting device"> <meta name="keywords" content="traffic counting device"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="traffic counting device" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="traffic counting device"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3265</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: traffic counting device</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3265</span> Design of Traffic Counting Android Application with Database Management System and Its Comparative Analysis with Traditional Counting Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Nouman">Muhammad Nouman</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahad%20Tiwana"> Fahad Tiwana</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Irfan"> Muhammad Irfan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsin%20Tiwana"> Mohsin Tiwana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traffic congestion has been increasing significantly in major metropolitan areas as a result of increased motorization, urbanization, population growth and changes in the urban density. Traffic congestion compromises efficiency of transport infrastructure and causes multiple traffic concerns; including but not limited to increase of travel time, safety hazards, air pollution, and fuel consumption. Traffic management has become a serious challenge for federal and provincial governments, as well as exasperated commuters. Effective, flexible, efficient and user-friendly traffic information/database management systems characterize traffic conditions by making use of traffic counts for storage, processing, and visualization. While, the emerging data collection technologies continue to proliferate, its accuracy can be guaranteed through the comparison of observed data with the manual handheld counters. This paper presents the design of tablet based manual traffic counting application and framework for development of traffic database management system for Pakistan. The database management system comprises of three components including traffic counting android application; establishing online database and its visualization using Google maps. Oracle relational database was chosen to develop the data structure whereas structured query language (SQL) was adopted to program the system architecture. The GIS application links the data from the database and projects it onto a dynamic map for traffic conditions visualization. The traffic counting device and example of a database application in the real-world problem provided a creative outlet to visualize the uses and advantages of a database management system in real time. Also, traffic data counts by means of handheld tablet/ mobile application can be used for transportation planning and forecasting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manual%20count" title="manual count">manual count</a>, <a href="https://publications.waset.org/abstracts/search?q=emerging%20data%20sources" title=" emerging data sources"> emerging data sources</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20information%20quality" title=" traffic information quality"> traffic information quality</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20surveillance" title=" traffic surveillance"> traffic surveillance</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20counting%20device" title=" traffic counting device"> traffic counting device</a>, <a href="https://publications.waset.org/abstracts/search?q=android%3B%20data%20visualization" title=" android; data visualization"> android; data visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20management" title=" traffic management"> traffic management</a> </p> <a href="https://publications.waset.org/abstracts/101612/design-of-traffic-counting-android-application-with-database-management-system-and-its-comparative-analysis-with-traditional-counting-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3264</span> Robust and Real-Time Traffic Counting System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossam%20M.%20Moftah">Hossam M. Moftah</a>, <a href="https://publications.waset.org/abstracts/search?q=Aboul%20Ella%20Hassanien"> Aboul Ella Hassanien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the recent years the importance of automatic traffic control has increased due to the traffic jams problem especially in big cities for signal control and efficient traffic management. Traffic counting as a kind of traffic control is important to know the road traffic density in real time. This paper presents a fast and robust traffic counting system using different image processing techniques. The proposed system is composed of the following four fundamental building phases: image acquisition, pre-processing, object detection, and finally counting the connected objects. The object detection phase is comprised of the following five steps: subtracting the background, converting the image to binary, closing gaps and connecting nearby blobs, image smoothing to remove noises and very small objects, and detecting the connected objects. Experimental results show the great success of the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20counting" title="traffic counting">traffic counting</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20management" title=" traffic management"> traffic management</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20detection" title=" object detection"> object detection</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a> </p> <a href="https://publications.waset.org/abstracts/43835/robust-and-real-time-traffic-counting-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3263</span> Deep Learning-Based Object Detection on Low Quality Images: A Case Study of Real-Time Traffic Monitoring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jean-Francois%20Rajotte">Jean-Francois Rajotte</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Sotir"> Martin Sotir</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Gouineau"> Frank Gouineau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The installation and management of traffic monitoring devices can be costly from both a financial and resource point of view. It is therefore important to take advantage of in-place infrastructures to extract the most information. Here we show how low-quality urban road traffic images from cameras already available in many cities (such as Montreal, Vancouver, and Toronto) can be used to estimate traffic flow. To this end, we use a pre-trained neural network, developed for object detection, to count vehicles within images. We then compare the results with human annotations gathered through crowdsourcing campaigns. We use this comparison to assess performance and calibrate the neural network annotations. As a use case, we consider six months of continuous monitoring over hundreds of cameras installed in the city of Montreal. We compare the results with city-provided manual traffic counting performed in similar conditions at the same location. The good performance of our system allows us to consider applications which can monitor the traffic conditions in near real-time, making the counting usable for traffic-related services. Furthermore, the resulting annotations pave the way for building a historical vehicle counting dataset to be used for analysing the impact of road traffic on many city-related issues, such as urban planning, security, and pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20monitoring" title="traffic monitoring">traffic monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20annotation" title=" image annotation"> image annotation</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicles" title=" vehicles"> vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=roads" title=" roads"> roads</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20systems" title=" real-time systems"> real-time systems</a> </p> <a href="https://publications.waset.org/abstracts/82867/deep-learning-based-object-detection-on-low-quality-images-a-case-study-of-real-time-traffic-monitoring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3262</span> Distribution of Traffic Volume at Fuel Station during Peak Hour Period on Arterial Road</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surachai%20Ampawasuvan">Surachai Ampawasuvan</a>, <a href="https://publications.waset.org/abstracts/search?q=Supornchai%20Utainarumol"> Supornchai Utainarumol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of fuel station’ customers, who drive on the major arterial road wants to use the stations to fill fuel to their vehicle during their journey to destinations. According to the survey of traffic volume of the vehicle using fuel stations by video cameras, automatic counting tools, or questionnaires, it was found that most users prefer to use fuel stations on holiday rather than on working day. They also prefer to use fuel stations in the morning rather than in the evening. When comparing the ratio of the distribution pattern of traffic volume of the vehicle using fuel stations by video cameras, automatic counting tools, there is no significant difference. However, when comparing the ratio of peak hour (peak hour rate) of the results from questionnaires at 13 to 14 percent with the results obtained by using the methods of the Institute of Transportation Engineering (ITE), it is found that the value is similar. However, it is different from a survey by video camera and automatic traffic counting at 6 to 7 percent of about half. So, this study suggests that in order to forecast trip generation of vehicle using fuel stations on major arterial road which is mostly characterized by Though Traffic, it is recommended to use the value of half of peak hour rate, which would make the forecast for trips generation to be more precise and accurate and compatible to surrounding environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=peak%20rate" title="peak rate">peak rate</a>, <a href="https://publications.waset.org/abstracts/search?q=trips%20generation" title=" trips generation"> trips generation</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20station" title=" fuel station"> fuel station</a>, <a href="https://publications.waset.org/abstracts/search?q=arterial%20road" title=" arterial road"> arterial road</a> </p> <a href="https://publications.waset.org/abstracts/54537/distribution-of-traffic-volume-at-fuel-station-during-peak-hour-period-on-arterial-road" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3261</span> Multiple-Channel Coulter Counter for Cell Sizing and Enumeration </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20Chen">Yu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong-Jin%20Kim"> Seong-Jin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaehoon%20Chung"> Jaehoon Chung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High throughput cells counting and sizing are often required for biomedical applications. Here we report design, fabrication and validating of a micro-machined Coulter counter device with multiple-channel to realize such application for low cost. Multiple vertical through-holes were fabricated on a silicon chip, combined with the PDMS micro-fluidics channel that serves as the sensing channel. In order to avoid the crosstalk introduced by the electrical connection, instead of measuring the current passing through, the potential of each channel is monitored, thus the high throughput is possible. A peak of the output potential can be captured when the cell/particle is passing through the microhole. The device was validated by counting and sizing the polystyrene beads with diameter of 6 μm, 10 μm and 15 μm. With the sampling frequency to be set at 100 kHz, up to 5000 counts/sec for each channel can be realized. The counting and enumeration of MCF7 cancer cells are also demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Coulter%20counter" title="Coulter counter">Coulter counter</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20enumeration" title=" cell enumeration"> cell enumeration</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20through-put" title=" high through-put"> high through-put</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20sizing" title=" cell sizing"> cell sizing</a> </p> <a href="https://publications.waset.org/abstracts/12788/multiple-channel-coulter-counter-for-cell-sizing-and-enumeration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">610</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3260</span> Modelling of Passengers Exchange between Trains and Platforms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guillaume%20Craveur">Guillaume Craveur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The evaluation of the passenger exchange time is necessary for railway operators in order to optimize and dimension rail traffic. Several influential parameters are identified and studied. Each parameter leads to a modeling completed with the buildingEXODUS software. The objective is the modelling of passenger exchanges measured by passenger counting. Population size is dimensioned using passenger counting files which are a report of the train service and contain following useful informations: number of passengers who get on and leave the train, exchange time. These information are collected by sensors placed at the top of each train door. With passenger counting files it is possible to know how many people are engaged in the exchange and how long is the exchange, but it is not possible to know passenger flow of the door. All the information about observed exchanges are thus not available. For this reason and in order to minimize inaccuracies, only short exchanges (less than 30 seconds) with a maximum of people are performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=passengers%20exchange" title="passengers exchange">passengers exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20tools" title=" numerical tools"> numerical tools</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling%20stock" title=" rolling stock"> rolling stock</a>, <a href="https://publications.waset.org/abstracts/search?q=platforms" title=" platforms"> platforms</a> </p> <a href="https://publications.waset.org/abstracts/72046/modelling-of-passengers-exchange-between-trains-and-platforms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3259</span> Efficient Passenger Counting in Public Transport Based on Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chonlakorn%20Wiboonsiriruk">Chonlakorn Wiboonsiriruk</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekachai%20Phaisangittisagul"> Ekachai Phaisangittisagul</a>, <a href="https://publications.waset.org/abstracts/search?q=Chadchai%20Srisurangkul"> Chadchai Srisurangkul</a>, <a href="https://publications.waset.org/abstracts/search?q=Itsuo%20Kumazawa"> Itsuo Kumazawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Public transportation is a crucial aspect of passenger transportation, with buses playing a vital role in the transportation service. Passenger counting is an essential tool for organizing and managing transportation services. However, manual counting is a tedious and time-consuming task, which is why computer vision algorithms are being utilized to make the process more efficient. In this study, different object detection algorithms combined with passenger tracking are investigated to compare passenger counting performance. The system employs the EfficientDet algorithm, which has demonstrated superior performance in terms of speed and accuracy. Our results show that the proposed system can accurately count passengers in varying conditions with an accuracy of 94%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title="computer vision">computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20detection" title=" object detection"> object detection</a>, <a href="https://publications.waset.org/abstracts/search?q=passenger%20counting" title=" passenger counting"> passenger counting</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20transportation" title=" public transportation"> public transportation</a> </p> <a href="https://publications.waset.org/abstracts/167734/efficient-passenger-counting-in-public-transport-based-on-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3258</span> Traffic Analysis and Prediction Using Closed-Circuit Television Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aragorn%20Joaquin%20Pineda%20Dela%20Cruz">Aragorn Joaquin Pineda Dela Cruz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Road traffic congestion is continually deteriorating in Hong Kong. The largest contributing factor is the increase in vehicle fleet size, resulting in higher competition over the utilisation of road space. This study proposes a project that can process closed-circuit television images and videos to provide real-time traffic detection and prediction capabilities. Specifically, a deep-learning model involving computer vision techniques for video and image-based vehicle counting, then a separate model to detect and predict traffic congestion levels based on said data. State-of-the-art object detection models such as You Only Look Once and Faster Region-based Convolutional Neural Networks are tested and compared on closed-circuit television data from various major roads in Hong Kong. It is then used for training in long short-term memory networks to be able to predict traffic conditions in the near future, in an effort to provide more precise and quicker overviews of current and future traffic conditions relative to current solutions such as navigation apps. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intelligent%20transportation%20system" title="intelligent transportation system">intelligent transportation system</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20detection" title=" vehicle detection"> vehicle detection</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20analysis" title=" traffic analysis"> traffic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20prediction" title=" traffic prediction"> traffic prediction</a> </p> <a href="https://publications.waset.org/abstracts/158196/traffic-analysis-and-prediction-using-closed-circuit-television-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3257</span> Sorting Fish by Hu Moments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Hern%C3%A1ndez-Ontiveros">J. M. Hernández-Ontiveros</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20E.%20Garc%C3%ADa-Guerrero"> E. E. García-Guerrero</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Inzunza-Gonz%C3%A1lez"> E. Inzunza-González</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20R.%20L%C3%B3pez-Bonilla"> O. R. López-Bonilla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the implementation of an algorithm that identifies and accounts different fish species: Catfish, Sea bream, Sawfish, Tilapia, and Totoaba. The main contribution of the method is the fusion of the characteristics of invariance to the position, rotation and scale of the Hu moments, with the proper counting of fish. The identification and counting is performed, from an image under different noise conditions. From the experimental results obtained, it is inferred the potentiality of the proposed algorithm to be applied in different scenarios of aquaculture production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=counting%20fish" title="counting fish">counting fish</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20processing" title=" digital image processing"> digital image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=invariant%20moments" title=" invariant moments"> invariant moments</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20recognition" title=" pattern recognition"> pattern recognition</a> </p> <a href="https://publications.waset.org/abstracts/27652/sorting-fish-by-hu-moments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3256</span> Perception of Risk toward Traffic Violence among Road Users in Makassar, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sulasmi%20Sudirman">Sulasmi Sudirman</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachmadanty%20Mujah%20Hartika"> Rachmadanty Mujah Hartika</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traffic violence is currently a big issue in Indonesia. However, the road users perceived risk that is caused by traffic violence is low. The lack of safety driving awareness is one of the factors that road users committed to traffic violence. There are several lists of common traffic violence in Indonesia such as lack of physical fitness, not wearing helmet, unfasten seatbelt, breaking through the traffic light, not holding a driving license, and some more violence. This research sought to explore the perception of road users toward traffic violence. The participants were road users in Makassar, Indonesia who were using cars and motorbikes. The method of the research was a qualitative approach by using a personal interview to collect data. The research showed that there three main ideas of perceiving traffic violence which are motives, environment that supported traffic violence, and reinforcement. The road users committed traffic violence had particular motive, for example, rushing. The road users committed to traffic violence when other road users and significant other did the same. The road users committed traffic violence when the police were not there to give a ticket. It can be concluded that the perception of road users toward traffic violence determined by internal aspect, the social aspect, and regulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=perception" title="perception">perception</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20users" title=" road users"> road users</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic" title=" traffic"> traffic</a>, <a href="https://publications.waset.org/abstracts/search?q=violence" title=" violence"> violence</a> </p> <a href="https://publications.waset.org/abstracts/105587/perception-of-risk-toward-traffic-violence-among-road-users-in-makassar-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3255</span> Implementation of Traffic Engineering Using MPLS Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishal%20H.%20Shukla">Vishal H. Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20B.%20Deshmukh"> Sanjay B. Deshmukh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traffic engineering, at its center, is the ability of moving traffic approximately so that traffic from a congested link is moved onto the unused capacity on another link. Traffic Engineering ensures the best possible use of the resources. Now to support traffic engineering in the today’s network, Multiprotocol Label Switching (MPLS) is being used which is very helpful for reliable packets delivery in an ongoing internet services. Here a topology is been implemented on GNS3 to focus on the analysis of the communication take place from one site to other through the ISP. The comparison is made between the IP network & MPLS network based on Bandwidth & Jitter which are one of the performance parameters using JPERF simulator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GNS3" title="GNS3">GNS3</a>, <a href="https://publications.waset.org/abstracts/search?q=JPERF" title=" JPERF"> JPERF</a>, <a href="https://publications.waset.org/abstracts/search?q=MPLS" title=" MPLS"> MPLS</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20engineering" title=" traffic engineering"> traffic engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=VMware" title=" VMware"> VMware</a> </p> <a href="https://publications.waset.org/abstracts/23898/implementation-of-traffic-engineering-using-mpls-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3254</span> Classification of IoT Traffic Security Attacks Using Deep Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anum%20Ali">Anum Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Kashaf%20ad%20Dooja"> Kashaf ad Dooja</a>, <a href="https://publications.waset.org/abstracts/search?q=Asif%20Saleem"> Asif Saleem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The future smart cities trend will be towards Internet of Things (IoT); IoT creates dynamic connections in a ubiquitous manner. Smart cities offer ease and flexibility for daily life matters. By using small devices that are connected to cloud servers based on IoT, network traffic between these devices is growing exponentially, whose security is a concerned issue, since ratio of cyber attack may make the network traffic vulnerable. This paper discusses the latest machine learning approaches in related work further to tackle the increasing rate of cyber attacks, machine learning algorithm is applied to IoT-based network traffic data. The proposed algorithm train itself on data and identify different sections of devices interaction by using supervised learning which is considered as a classifier related to a specific IoT device class. The simulation results clearly identify the attacks and produce fewer false detections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IoT" title="IoT">IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20security" title=" traffic security"> traffic security</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a> </p> <a href="https://publications.waset.org/abstracts/146890/classification-of-iot-traffic-security-attacks-using-deep-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3253</span> Proposed Alternative System for Existing Traffic Signal System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alluri%20Swaroopa">Alluri Swaroopa</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20V.%20N.%20Prasad"> L. V. N. Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alone with fast urbanization in world, traffic control problem became a big issue in urban construction. Having an efficient and reliable traffic control system is crucial to macro-traffic control. Traffic signal is used to manage conflicting requirement by allocating different sets of mutually compatible traffic movement during distinct time interval. Many approaches have been made proposed to solve this discrete stochastic problem. Recognizing the need to minimize right-of-way impacts while efficiently handling the anticipated high traffic volumes, the proposed alternative system gives effective design. This model allows for increased traffic capacity and reduces delays by eliminating a step in maneuvering through the freeway interchange. The concept proposed in this paper involves construction of bridges and ramps at intersection of four roads to control the vehicular congestion and to prevent traffic breakdown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridges" title="bridges">bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=junctions" title=" junctions"> junctions</a>, <a href="https://publications.waset.org/abstracts/search?q=ramps" title=" ramps"> ramps</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20traffic%20control" title=" urban traffic control"> urban traffic control</a> </p> <a href="https://publications.waset.org/abstracts/27580/proposed-alternative-system-for-existing-traffic-signal-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">553</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3252</span> Counting People Utilizing Space-Time Imagery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Elmarhomy">Ahmed Elmarhomy</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Terada"> K. Terada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An automated method for counting passerby has been proposed using virtual-vertical measurement lines. Space-time image is representing the human regions which are treated using the segmentation process. Different color space has been used to perform the template matching. A proper template matching has been achieved to determine direction and speed of passing people. Distinguish one or two passersby has been investigated using a correlation between passerby speed and the human-pixel area. Finally, the effectiveness of the presented method has been experimentally verified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=counting%20people" title="counting people">counting people</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement%20line" title=" measurement line"> measurement line</a>, <a href="https://publications.waset.org/abstracts/search?q=space-time%20image" title=" space-time image"> space-time image</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=template%20matching" title=" template matching"> template matching</a> </p> <a href="https://publications.waset.org/abstracts/46877/counting-people-utilizing-space-time-imagery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3251</span> Exploring Counting Methods for the Vertices of Certain Polyhedra with Uncertainties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sammani%20Danwawu%20Abdullahi">Sammani Danwawu Abdullahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vertex Enumeration Algorithms explore the methods and procedures of generating the vertices of general polyhedra formed by system of equations or inequalities. These problems of enumerating the extreme points (vertices) of general polyhedra are shown to be NP-Hard. This lead to exploring how to count the vertices of general polyhedra without listing them. This is also shown to be #P-Complete. Some fully polynomial randomized approximation schemes (fpras) of counting the vertices of some special classes of polyhedra associated with Down-Sets, Independent Sets, 2-Knapsack problems and 2 x n transportation problems are presented together with some discovered open problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=counting%20with%20uncertainties" title="counting with uncertainties">counting with uncertainties</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20programming" title=" mathematical programming"> mathematical programming</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=vertex%20enumeration" title=" vertex enumeration"> vertex enumeration</a> </p> <a href="https://publications.waset.org/abstracts/38580/exploring-counting-methods-for-the-vertices-of-certain-polyhedra-with-uncertainties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3250</span> Count of Trees in East Africa with Deep Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nubwimana%20Rachel">Nubwimana Rachel</a>, <a href="https://publications.waset.org/abstracts/search?q=Mugabowindekwe%20Maurice"> Mugabowindekwe Maurice</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trees play a crucial role in maintaining biodiversity and providing various ecological services. Traditional methods of counting trees are time-consuming, and there is a need for more efficient techniques. However, deep learning makes it feasible to identify the multi-scale elements hidden in aerial imagery. This research focuses on the application of deep learning techniques for tree detection and counting in both forest and non-forest areas through the exploration of the deep learning application for automated tree detection and counting using satellite imagery. The objective is to identify the most effective model for automated tree counting. We used different deep learning models such as YOLOV7, SSD, and UNET, along with Generative Adversarial Networks to generate synthetic samples for training and other augmentation techniques, including Random Resized Crop, AutoAugment, and Linear Contrast Enhancement. These models were trained and fine-tuned using satellite imagery to identify and count trees. The performance of the models was assessed through multiple trials; after training and fine-tuning the models, UNET demonstrated the best performance with a validation loss of 0.1211, validation accuracy of 0.9509, and validation precision of 0.9799. This research showcases the success of deep learning in accurate tree counting through remote sensing, particularly with the UNET model. It represents a significant contribution to the field by offering an efficient and precise alternative to conventional tree-counting methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title="remote sensing">remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=tree%20counting" title=" tree counting"> tree counting</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20segmentation" title=" image segmentation"> image segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20detection" title=" object detection"> object detection</a>, <a href="https://publications.waset.org/abstracts/search?q=visualization" title=" visualization"> visualization</a> </p> <a href="https://publications.waset.org/abstracts/177935/count-of-trees-in-east-africa-with-deep-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3249</span> Simulation of Communication and Sensing Device in Automobiles Using VHDL</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anirudh%20Bhaikhel">Anirudh Bhaikhel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The exclusive objective of this paper is to develop a device which can pass on the interpreted result of the sensed information to the interfaced communicable devices to avoid or minimise accidents. This device may also be used in case of emergencies like kidnapping, robberies, medical emergencies etc. The present era has seen a rapid metamorphosis in the automobile industry with increasing use of technology and speed. The increase in purchasing power of customers and price war of automobile companies has made an easy access to the automobile users. The use of automobiles has increased tremendously in last 4-5 years thus causing traffic congestions and thus making vehicles more prone to accidents. This device can be an effective measure to counteract cases of abduction. Risks of accidents can be decreased tremendously through the notifications received by these alerts. It will help to detect the upcoming emergencies. This paper includes the simulation of the communication and sensing device required in automobiles using VHDL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automobiles" title="automobiles">automobiles</a>, <a href="https://publications.waset.org/abstracts/search?q=communication" title=" communication"> communication</a>, <a href="https://publications.waset.org/abstracts/search?q=component" title=" component"> component</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20redundancy%20check%20%28CRC%29" title=" cyclic redundancy check (CRC)"> cyclic redundancy check (CRC)</a>, <a href="https://publications.waset.org/abstracts/search?q=modulo-2%20arithmetic" title=" modulo-2 arithmetic"> modulo-2 arithmetic</a>, <a href="https://publications.waset.org/abstracts/search?q=parity%20bits" title=" parity bits"> parity bits</a>, <a href="https://publications.waset.org/abstracts/search?q=receiver" title=" receiver"> receiver</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=transmitter" title=" transmitter"> transmitter</a>, <a href="https://publications.waset.org/abstracts/search?q=turns" title=" turns"> turns</a>, <a href="https://publications.waset.org/abstracts/search?q=VHDL%20%28VHSIC%20hardware%20descriptive%20language%29" title=" VHDL (VHSIC hardware descriptive language)"> VHDL (VHSIC hardware descriptive language)</a> </p> <a href="https://publications.waset.org/abstracts/10288/simulation-of-communication-and-sensing-device-in-automobiles-using-vhdl" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3248</span> Urban Traffic: Understanding the Traffic Flow Factor Through Fluid Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sathish%20Kumar%20Jayaraj">Sathish Kumar Jayaraj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of urban traffic dynamics, underpinned by the principles of fluid dynamics, offers a distinct perspective to comprehend and enhance the efficiency of traffic flow within bustling cityscapes. Leveraging the concept of the Traffic Flow Factor (TFF) as an analog to the Reynolds number, this research delves into the intricate interplay between traffic density, velocity, and road category, drawing compelling parallels to fluid dynamics phenomena. By introducing the notion of Vehicle Shearing Resistance (VSR) as an analogy to dynamic viscosity, the study sheds light on the multifaceted influence of traffic regulations, lane management, and road infrastructure on the smoothness and resilience of traffic flow. The TFF equation serves as a comprehensive metric for quantifying traffic dynamics, enabling the identification of congestion hotspots, the optimization of traffic signal timings, and the formulation of data-driven traffic management strategies. The study underscores the critical significance of integrating fluid dynamics principles into the domain of urban traffic management, fostering sustainable transportation practices, and paving the way for a more seamless and resilient urban mobility ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20flow%20factor%20%28TFF%29" title="traffic flow factor (TFF)">traffic flow factor (TFF)</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20traffic%20dynamics" title=" urban traffic dynamics"> urban traffic dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20dynamics%20principles" title=" fluid dynamics principles"> fluid dynamics principles</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20shearing%20resistance%20%28VSR%29" title=" vehicle shearing resistance (VSR)"> vehicle shearing resistance (VSR)</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20congestion%20management" title=" traffic congestion management"> traffic congestion management</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20urban%20mobility" title=" sustainable urban mobility"> sustainable urban mobility</a> </p> <a href="https://publications.waset.org/abstracts/182540/urban-traffic-understanding-the-traffic-flow-factor-through-fluid-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3247</span> The Effect of User Comments on Traffic Application Usage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Gokasar">I. Gokasar</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Bakioglu"> G. Bakioglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the unprecedented rates of technological improvements, people start to solve their problems with the help of technological tools. According to application stores and websites in which people evaluate and comment on the traffic apps, there are more than 100 traffic applications which have different features with respect to their purpose of usage ranging from the features of traffic apps for public transit modes to the features of traffic apps for private cars. This study focuses on the top 30 traffic applications which were chosen with respect to their download counts. All data about the traffic applications were obtained from related websites. The purpose of this study is to analyze traffic applications in terms of their categorical attributes with the help of developing a regression model. The analysis results suggest that negative interpretations (e.g., being deficient) does not lead to lower star ratings of the applications. However, those negative interpretations result in a smaller increase in star rate. In addition, women use higher star rates than men for the evaluation of traffic applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20app" title="traffic app">traffic app</a>, <a href="https://publications.waset.org/abstracts/search?q=real%E2%80%93time%20information" title=" real–time information"> real–time information</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20congestion" title=" traffic congestion"> traffic congestion</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20analysis" title=" regression analysis"> regression analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=dummy%20variables" title=" dummy variables"> dummy variables</a> </p> <a href="https://publications.waset.org/abstracts/52331/the-effect-of-user-comments-on-traffic-application-usage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3246</span> Numerical Implementation and Testing of Fractioning Estimator Method for the Box-Counting Dimension of Fractal Objects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abraham%20Ter%C3%A1n%20Salcedo">Abraham Terán Salcedo</a>, <a href="https://publications.waset.org/abstracts/search?q=Didier%20Samayoa%20Ochoa"> Didier Samayoa Ochoa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents a numerical implementation of a method for estimating the box-counting dimension of self-avoiding curves on a planar space, fractal objects captured on digital images; this method is named fractioning estimator. Classical methods of digital image processing, such as noise filtering, contrast manipulation, and thresholding, among others, are used in order to obtain binary images that are suitable for performing the necessary computations of the fractioning estimator. A user interface is developed for performing the image processing operations and testing the fractioning estimator on different captured images of real-life fractal objects. To analyze the results, the estimations obtained through the fractioning estimator are compared to the results obtained through other methods that are already implemented on different available software for computing and estimating the box-counting dimension. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=box-counting" title="box-counting">box-counting</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20processing" title=" digital image processing"> digital image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal%20dimension" title=" fractal dimension"> fractal dimension</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20method" title=" numerical method"> numerical method</a> </p> <a href="https://publications.waset.org/abstracts/160901/numerical-implementation-and-testing-of-fractioning-estimator-method-for-the-box-counting-dimension-of-fractal-objects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3245</span> Investigation of Several New Ionic Liquids’ Behaviour during ²¹⁰PB/²¹⁰BI Cherenkov Counting in Waters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nata%C5%A1a%20Todorovi%C4%87">Nataša Todorović</a>, <a href="https://publications.waset.org/abstracts/search?q=Jovana%20Nikolov"> Jovana Nikolov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivana%20Stojkovi%C4%87"> Ivana Stojković</a>, <a href="https://publications.waset.org/abstracts/search?q=Milan%20Vrane%C5%A1"> Milan Vraneš</a>, <a href="https://publications.waset.org/abstracts/search?q=Jovana%20Pani%C4%87"> Jovana Panić</a>, <a href="https://publications.waset.org/abstracts/search?q=Slobodan%20Gad%C5%BEuri%C4%87"> Slobodan Gadžurić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The detection of ²¹⁰Pb levels in aquatic environments evokes interest in various scientific studies. Its precise determination is important not only for the radiological assessment of drinking waters but also ²¹⁰Pb, and ²¹⁰Po distribution in the marine environment are significant for the assessment of the removal rates of particles from the ocean and particle fluxes during transport along the coast, as well as particulate organic carbon export in the upper ocean. Measurement techniques for ²¹⁰Pb determination, gamma spectrometry, alpha spectrometry, or liquid scintillation counting (LSC) are either time-consuming or demand expensive equipment or complicated chemical pre-treatments. However, one other possibility is to measure ²¹⁰Pb on an LS counter if it is in equilibrium with its progeny ²¹⁰Bi - through the Cherenkov counting method. It is unaffected by the chemical quenching and assumes easy sample preparation but has the drawback of lower counting efficiencies than standard LSC methods, typically from 10% up to 20%. The aim of the presented research in this paper is to investigate the possible increment of detection efficiency of Cherenkov counting during ²¹⁰Pb/²¹⁰Bi detection on an LS counter Quantulus 1220. Considering naturally low levels of ²¹⁰Pb in aqueous samples, the addition of ionic liquids to the counting vials with the analysed samples has the benefit of detection limit’s decrement during ²¹⁰Pb quantification. Our results demonstrated that ionic liquid, 1-butyl-3-methylimidazolium salicylate, is more efficient in Cherenkov counting efficiency increment than the previously explored 2-hydroxypropan-1-amminium salicylate. Consequently, the impact of a few other ionic liquids that were synthesized with the same cation group (1-butyl-3-methylimidazolium benzoate, 1-butyl-3-methylimidazolium 3-hydroxybenzoate, and 1-butyl-3-methylimidazolium 4-hydroxybenzoate) was explored in order to test their potential influence on Cherenkov counting efficiency. It was confirmed that, among the explored ones, only ionic liquids in the form of salicylates exhibit a wavelength shifting effect. Namely, the addition of small amounts (around 0.8 g) of 1-butyl-3-methylimidazolium salicylate increases the detection efficiency from 16% to >70%, consequently reducing the detection threshold by more than four times. Moreover, the addition of ionic liquids could find application in the quantification of other radionuclides besides ²¹⁰Pb/²¹⁰Bi via Cherenkov counting method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20scintillation%20counting" title="liquid scintillation counting">liquid scintillation counting</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquids" title=" ionic liquids"> ionic liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=Cherenkov%20counting" title=" Cherenkov counting"> Cherenkov counting</a>, <a href="https://publications.waset.org/abstracts/search?q=%C2%B2%C2%B9%E2%81%B0PB%2F%C2%B2%C2%B9%E2%81%B0BI%20in%20water" title=" ²¹⁰PB/²¹⁰BI in water"> ²¹⁰PB/²¹⁰BI in water</a> </p> <a href="https://publications.waset.org/abstracts/152211/investigation-of-several-new-ionic-liquids-behaviour-during-21pb21bi-cherenkov-counting-in-waters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3244</span> The Kidney-Spine Traffic System: Future Cities, Ensuring World Class Civic Amenities in Urban India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Srivastava">Abhishek Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeevesh%20Nandan"> Jeevesh Nandan</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Kumar"> Manish Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was taken to analyse the alternative source of traffic system for effective and more convenient traffic flow by reducing points of conflicts as well as angle of conflict and keeping in view to minimize the problem of unnecessarily long waiting time, delays, congestion, traffic jam and geometric delays due to intersection between circular and straight lanes. It is a twin kidney-spine type structure system with special allowance for Highway users for quicker passes. Thus reduction in number and intensity of accidents, significance reduction in traffic jam, conservation of valuable time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20system" title="traffic system">traffic system</a>, <a href="https://publications.waset.org/abstracts/search?q=collision%20reduction%20of%20vehicles" title=" collision reduction of vehicles"> collision reduction of vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=smooth%20flow%20of%20vehicles" title=" smooth flow of vehicles"> smooth flow of vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20jam" title=" traffic jam"> traffic jam</a> </p> <a href="https://publications.waset.org/abstracts/15808/the-kidney-spine-traffic-system-future-cities-ensuring-world-class-civic-amenities-in-urban-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3243</span> Closed Loop Traffic Control System Using PLC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinmay%20Shah">Chinmay Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The project is all about development of a close loop traffic light control system using PLC (Programmable Logic Controller). This project is divided into two parts which are hardware and software. The hardware part for this project is a model of four way junction of a traffic light. Three indicator lamps (Red, Yellow and Green) are installed at each lane for represents as traffic light signal. This traffic control model is a replica of actuated traffic control. Actuated traffic control system is a close loop traffic control system which controls the timing of the indicator lamps depending on the fluidity of traffic for a particular lane. To make it autonomous, in each lane three IR sensors are placed which helps to sense the percentage of traffic present on any particular lane. The IR Sensors and Indicator lamps are connected to LG PLC XGB series. The PLC controls every signal which is coming from the inputs (IR Sensors) to software and display to the outputs (Indicator lamps). Default timing for the indicator lamps is 30 seconds for each lane. But depending on the percentage of traffic present, if the traffic is nearly 30-35%, green lamp will be on for 10 seconds, for 65-70% traffic it will be 20 seconds, for full 100% traffic it will be on for full 30 seconds. The software part that operates with LG PLC is “XG 5000” Programmer. Using this software, the ladder logic diagram is programmed to control the traffic light base on the flow chart. At the end of this project, the traffic light system is actuated successfully by PLC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=close%20loop" title="close loop">close loop</a>, <a href="https://publications.waset.org/abstracts/search?q=IR%20sensor" title=" IR sensor"> IR sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=PLC" title=" PLC"> PLC</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20control%20system" title=" light control system "> light control system </a> </p> <a href="https://publications.waset.org/abstracts/13631/closed-loop-traffic-control-system-using-plc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">571</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3242</span> Distributed Actor System for Traffic Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Wang">Han Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhuoxian%20Dai"> Zhuoxian Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhe%20Zhu"> Zhe Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Zhang"> Hui Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenyu%20Zeng"> Zhenyu Zeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In traditional microscopic traffic simulation, various approaches have been suggested to implement the single-agent behaviors about lane changing and intelligent driver model. However, when it comes to very large metropolitan areas, microscopic traffic simulation requires more resources and become time-consuming, then macroscopic traffic simulation aggregate trends of interests rather than individual vehicle traces. In this paper, we describe the architecture and implementation of the actor system of microscopic traffic simulation, which exploits the distributed architecture of modern-day cloud computing. The results demonstrate that our architecture achieves high-performance and outperforms all the other traditional microscopic software in all tasks. To the best of our knowledge, this the first system that enables single-agent behavior in macroscopic traffic simulation. We thus believe it contributes to a new type of system for traffic simulation, which could provide individual vehicle behaviors in microscopic traffic simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actor%20system" title="actor system">actor system</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20system" title=" distributed system"> distributed system</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20simulation" title=" traffic simulation"> traffic simulation</a> </p> <a href="https://publications.waset.org/abstracts/128664/distributed-actor-system-for-traffic-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3241</span> Artificial Neural Network and Statistical Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Berhanu%20Bekele">Tomas Berhanu Bekele</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traffic congestion is one of the main problems related to transportation in developed as well as developing countries. Traffic control systems are based on the idea of avoiding traffic instabilities and homogenizing traffic flow in such a way that the risk of accidents is minimized and traffic flow is maximized. Lately, Intelligent Transport Systems (ITS) has become an important area of research to solve such road traffic-related issues for making smart decisions. It links people, roads and vehicles together using communication technologies to increase safety and mobility. Moreover, accurate prediction of road traffic is important to manage traffic congestion. The aim of this study is to develop an ANN model for the prediction of traffic flow and to compare the ANN model with the linear regression model of traffic flow predictions. Data extraction was carried out in intervals of 15 minutes from the video player. Video of mixed traffic flow was taken and then counted during office work in order to determine the traffic volume. Vehicles were classified into six categories, namely Car, Motorcycle, Minibus, mid-bus, Bus, and Truck vehicles. The average time taken by each vehicle type to travel the trap length was measured by time displayed on a video screen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intelligent%20transport%20system%20%28ITS%29" title="intelligent transport system (ITS)">intelligent transport system (ITS)</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20flow%20prediction" title=" traffic flow prediction"> traffic flow prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network%20%28ANN%29" title=" artificial neural network (ANN)"> artificial neural network (ANN)</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20regression" title=" linear regression"> linear regression</a> </p> <a href="https://publications.waset.org/abstracts/183194/artificial-neural-network-and-statistical-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3240</span> Assessment and Evaluation of Traffic Noise in Selected Government Healthcare Facilities at Birnin Kebbi, Kebbi State-Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Naziru%20Yahaya">Muhammad Naziru Yahaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Buhari%20Samaila"> Buhari Samaila</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasiru%20Abubakar"> Nasiru Abubakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Noise pollution caused by vehicular movement in urban cities has reached alarming proportions due to continuous increases in vehicles and industrialization. Traffic noise causes deafness, annoyance, and other health challenges. According to World Health Organization recommends 60Db daytime sound levels and 40db night time sound levels in hospitals, schools, and other residential areas. Measurements of traffic noise were taken at six different locations of selected healthcare facilities at Birnin Kebbi (Sir Yahaya Memorial Hospital and Federal Medical Centre Birnin Kebbi). The data was collected in the vicinity of hospitals using the slow setting of the device and pointed at noise sources. An integrated multifunctional sound level GM1352, KK2821163 model, was used for measuring the emitted noise and temperatures. The data was measured and recorded at three different periods of the day 8 am – 12 pm, 3 pm – 6 pm, and 6 pm – 8:30 pm, respectively. The results show that a fair traffic flow producing an average sound level in the order of 38db – 64db was recorded at GOPDF, amenityF, and ante-natalF. Similarly, high traffic noise was observed at GOPDS, amenityS, and Fati-LamiS in the order of 52db – 78db unsatisfactory threshold for human hearing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amenities" title="amenities">amenities</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare" title=" healthcare"> healthcare</a>, <a href="https://publications.waset.org/abstracts/search?q=noise" title=" noise"> noise</a>, <a href="https://publications.waset.org/abstracts/search?q=hospital" title=" hospital"> hospital</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic" title=" traffic"> traffic</a> </p> <a href="https://publications.waset.org/abstracts/158499/assessment-and-evaluation-of-traffic-noise-in-selected-government-healthcare-facilities-at-birnin-kebbi-kebbi-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3239</span> Traffic Light Detection Using Image Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vaishnavi%20Shivde">Vaishnavi Shivde</a>, <a href="https://publications.waset.org/abstracts/search?q=Shrishti%20Sinha"> Shrishti Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Trapti%20Mishra"> Trapti Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20light%20detection" title="traffic light detection">traffic light detection</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20segmentation" title=" image segmentation"> image segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20networks" title=" convolutional neural networks"> convolutional neural networks</a> </p> <a href="https://publications.waset.org/abstracts/137254/traffic-light-detection-using-image-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3238</span> The Influence of Environmental Factors on Honey Bee Activities: A Quantitative Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hung-Jen%20Lin">Hung-Jen Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Hao%20Wang"> Chien-Hao Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Peng%20Huang"> Chien-Peng Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Sheng%20Tseng"> Yu-Sheng Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=En-Cheng%20Yang"> En-Cheng Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Joe-Air%20Jiang"> Joe-Air Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bees’ incoming and outgoing behavior is a decisive index which can indicate the health condition of a colony. Traditional methods for monitoring the behavior of honey bees (Apis mellifera) take too much time and are highly labor-intensive, and the lack of automation and synchronization disables researchers and beekeepers from obtaining real-time information of beehives. To solve these problems, this study proposes to use an Internet of Things (IoT)-based system for counting honey bees’ incoming and outgoing activities using an infrared interruption technique, while environmental factors are recorded simultaneously. The accuracy of the established system is verified by comparing the counting results with the outcomes of manual counting. Moreover, this highly -accurate device is appropriate for providing quantitative information regarding honey bees’ incoming and outgoing behavior. Different statistical analysis methods, including one-way ANOVA and two-way ANOVA, are used to investigate the influence of environmental factors, such as temperature, humidity, illumination and ambient pressure, on bees’ incoming and outgoing behavior. With the real-time data, a standard model is established using the outcomes from analyzing the relationship between environmental factors and bees’ incoming and outgoing behavior. In the future, smart control systems, such as a temperature control system, can also be combined with the proposed system to create an appropriate colony environment. It is expected that the proposed system will make a considerable contribution to the apiculture and researchers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANOVA" title="ANOVA">ANOVA</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20factors" title=" environmental factors"> environmental factors</a>, <a href="https://publications.waset.org/abstracts/search?q=honey%20bee" title=" honey bee"> honey bee</a>, <a href="https://publications.waset.org/abstracts/search?q=incoming%20and%20outgoing%20behavior" title=" incoming and outgoing behavior"> incoming and outgoing behavior</a> </p> <a href="https://publications.waset.org/abstracts/63749/the-influence-of-environmental-factors-on-honey-bee-activities-a-quantitative-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3237</span> Investigation of the Role of Friction in Reducing Pedestrian Injuries in Accidents at Intersections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abbas%20Tabatabaei">Seyed Abbas Tabatabaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Ghanbarzadeh"> Afshin Ghanbarzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Abidizadeh"> Mehdi Abidizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays the subject of road traffic accidents and the high social and economic costs due to them is the most fundamental problem that experts and providers of transport and traffic brought to a challenge. One of the most effective measures is to enhance the skid resistance of road surface. This research aims to study the intersection of one case in Ahwaz and the effect of increasing the skid resistance in reducing pedestrian injuries in accidents at intersections. In this research the device was developed to measure the coefficient of friction and tried the rules and practices of it have a high similarity with the Locked Wheel Trailer. This device includes a steel frame, wheels, hydration systems, and force gauge. The output of the device is that the force gauge registers. By investigate this data and applying the relationships relative surface coefficient of friction is obtained. Friction coefficient data for the current state and the state of the new pavement are obtained and plotted on the graphs based on the graphs we can compare the two situations and speed at the moment of collision between the two modes are compared. The results show that increasing the coefficient of friction to what extent can be effective on the severity and number of accidents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intersection" title="intersection">intersection</a>, <a href="https://publications.waset.org/abstracts/search?q=coefficient%20of%20friction" title=" coefficient of friction"> coefficient of friction</a>, <a href="https://publications.waset.org/abstracts/search?q=skid%20resistance" title=" skid resistance"> skid resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=locked%20wheels" title=" locked wheels"> locked wheels</a>, <a href="https://publications.waset.org/abstracts/search?q=accident" title=" accident"> accident</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian" title=" pedestrian"> pedestrian</a> </p> <a href="https://publications.waset.org/abstracts/15397/investigation-of-the-role-of-friction-in-reducing-pedestrian-injuries-in-accidents-at-intersections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3236</span> Density Based Traffic System Using Pic Microcontroller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tatipamula%20Samiksha%20Goud">Tatipamula Samiksha Goud</a>, <a href="https://publications.waset.org/abstracts/search?q=.A.Naveena">.A.Naveena</a>, <a href="https://publications.waset.org/abstracts/search?q=M.sresta"> M.sresta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traffic congestion is a major issue in many cities throughout the world, particularly in urban areas, and it is past time to switch from a fixed timer mode to an automated system. The current traffic signalling system is a fixed-time system that is inefficient if one lane is more functional than the others. A structure for an intelligent traffic control system is being designed to address this issue. When traffic density is higher on one side of a junction, the signal's green time is extended in comparison to the regular time. This study suggests a technique in which the signal's time duration is assigned based on the amount of traffic present at the time. Infrared sensors can be used to do this. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infrared%20sensors" title="infrared sensors">infrared sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-controllers" title=" micro-controllers"> micro-controllers</a>, <a href="https://publications.waset.org/abstracts/search?q=LEDs" title=" LEDs"> LEDs</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillators" title=" oscillators"> oscillators</a> </p> <a href="https://publications.waset.org/abstracts/152588/density-based-traffic-system-using-pic-microcontroller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=traffic%20counting%20device&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=traffic%20counting%20device&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=traffic%20counting%20device&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=traffic%20counting%20device&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=traffic%20counting%20device&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=traffic%20counting%20device&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=traffic%20counting%20device&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=traffic%20counting%20device&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=traffic%20counting%20device&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=traffic%20counting%20device&page=108">108</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=traffic%20counting%20device&page=109">109</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=traffic%20counting%20device&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>