CINXE.COM
Search results for: crushing
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: crushing</title> <meta name="description" content="Search results for: crushing"> <meta name="keywords" content="crushing"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="crushing" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="crushing"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 83</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: crushing</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Application of Relative Regional Total Energy in Rotary Drums with Axial Segregation Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiuhua%20Miao">Qiuhua Miao</a>, <a href="https://publications.waset.org/abstracts/search?q=Peng%20Huang"> Peng Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yifei%20Ding"> Yifei Ding</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Particles with different properties tend to be unevenly distributed along an axial direction of the rotating drum, which is usually ignored. Therefore, it is important to study the relationship between axial segregation characteristics and particle crushing efficiency in longer drums. In this paper, a relative area total energy (RRTE) index is proposed, which aims to evaluate the overall crushing energy distribution characteristics. Based on numerical simulation verification, the proposed RRTE index can reflect the overall grinding effect more comprehensively, clearly representing crushing energy distribution in different drum areas. Furthermore, the proposed method is applied to the relation between axial segregation and crushing energy in drums. Compared with the radial section, the collision loss energy of the axial section can better reflect the overall crushing effect in long drums. The axial segregation characteristics directly affect the total energy distribution between medium and abrasive, reducing overall crushing efficiency. Therefore, the axial segregation characteristics should be avoided as much as possible in the crushing of the long rotary drum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=relative%20regional%20total%20energy" title="relative regional total energy">relative regional total energy</a>, <a href="https://publications.waset.org/abstracts/search?q=crushing%20energy" title=" crushing energy"> crushing energy</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20segregation%20characteristics" title=" axial segregation characteristics"> axial segregation characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=rotary%20drum" title=" rotary drum"> rotary drum</a> </p> <a href="https://publications.waset.org/abstracts/151343/application-of-relative-regional-total-energy-in-rotary-drums-with-axial-segregation-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> The Effect of the Hexagonal Ring Interior Angle on Energy Absorption Capability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shada%20Bennbaia">Shada Bennbaia</a>, <a href="https://publications.waset.org/abstracts/search?q=Elsadig%20Mahdi"> Elsadig Mahdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the effect of changing the interior angle of a hexagonal passive energy absorber is investigated. Aluminum hexagonal structures have been tested under in-plane quasi-static compression tests. These hexagonal structures are designed to have varying interior angle values to study their crushing behavior and the relationship between the angle and the energy absorption capability. It was found that the structures with angles 40° and 45° showed an almost perfectly stable crushing mechanism with low initial peak force. Thus, hexagonal structures with these angels can be used in the vehicle's crumple zones to absorb energy during collisions. The larger angles required high initial peak force to start crushing, which indicates that these structures are best suited in applications where high load carrying capacity is needed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20absorption" title="energy absorption">energy absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=crushing%20force%20efficiency" title=" crushing force efficiency"> crushing force efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=crushing%20mechanism" title=" crushing mechanism"> crushing mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=hexagonal%20angle" title=" hexagonal angle"> hexagonal angle</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20force" title=" peak force"> peak force</a> </p> <a href="https://publications.waset.org/abstracts/137856/the-effect-of-the-hexagonal-ring-interior-angle-on-energy-absorption-capability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> PM10 Concentration Emitted from Blasting and Crushing Processes of Limestone Mines in Saraburi Province, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanokrat%20Makkwao">Kanokrat Makkwao</a>, <a href="https://publications.waset.org/abstracts/search?q=Tassanee%20Prueksasit"> Tassanee Prueksasit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to investigate PM<sub>10 </sub>emitted from different limestone mines in Saraburi province, Thailand. The blasting and crushing were the main processes selected for PM<sub>10</sub> sampling. PM<sub>10 </sub>was collected in two mines including, a limestone mine for cement manufacturing (mine A) and a limestone mine for construction (mine B). The IMPACT samplers were used to collect PM<sub>10</sub>. At blasting, the points aligning with the upwind and downwind direction were assigned for the sampling. The ranges of PM<sub>10</sub> concentrations at mine A and B were 0.267-5.592 and 0.130-0.325 mg/m³, respectively, and the concentration at blasting from mine A was significantly higher than mine B (p < 0.05). During crushing at mine A, the PM<sub>10</sub> concentration with the range of 1.153-3.716 and 0.085-1.724 mg/m³ at crusher and piles in respectively were observed whereas the PM<sub>10</sub> concentration measured at four sampling points in mine B, including secondary crusher, tertiary crusher, screening point, and piles, were ranged 1.032-16.529, 10.957-74.057, 0.655-4.956, and 0.169-1.699 mg/m³, respectively. The emission of PM<sub>10</sub> concentration at the crushing units was different in the ranges depending on types of machine, its operation, dust collection and control system, and environmental conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PM%E2%82%81%E2%82%80%20concentration" title="PM₁₀ concentration">PM₁₀ concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=limestone%20mines" title=" limestone mines"> limestone mines</a>, <a href="https://publications.waset.org/abstracts/search?q=blasting" title=" blasting"> blasting</a>, <a href="https://publications.waset.org/abstracts/search?q=crushing" title=" crushing"> crushing</a> </p> <a href="https://publications.waset.org/abstracts/133194/pm10-concentration-emitted-from-blasting-and-crushing-processes-of-limestone-mines-in-saraburi-province-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Managing Sunflower Price Risk from a South African Oil Crushing Company’s Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Mokatsanyane">Daniel Mokatsanyane</a>, <a href="https://publications.waset.org/abstracts/search?q=Johnny%20Jansen%20Van%20Rensburg"> Johnny Jansen Van Rensburg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The integral role oil-crushing companies play in sunflower oil production is often overlooked to offer high-quality oil to refineries and end consumers. Sunflower oil crushing companies in South Africa are exposed to price fluctuations resulting from the local and international markets. Hedging instruments enable these companies to hedge themselves against unexpected prices spikes and to ensure sustained profitability. A crushing company is a necessary middleman, and as such, these companies have exposure to the purchasing and selling sides of sunflower. Sunflower oil crushing companies purchase sunflower seeds from farmers or agricultural companies that provide storage facilities. The purchasing price is determined by the supply and demand of sunflower seed, both national and international. When the price of sunflower seeds in South Africa is high but still below import parity, then the crush margins realised by these companies are reduced or even negative at times. There are three main products made by sunflower oil crushing companies, oil, meal, and shells. Profits are realised from selling three products, namely, sunflower oil, meal and shells. However, when selling sunflower oil to refineries, sunflower oil crushing companies needs to hedge themselves against a reduction in vegetable oil prices. Hedging oil prices is often done via futures and is subject to specific volume commitments before a hedge position can be taken in. Furthermore, South African oil-crushing companies hedge sunflower oil with international, Over-the-counter contracts as South Africa is a price taker of sunflower oil and not a price maker. As such, South Africa provides a fraction of the world’s sunflower oil supply and, therefore, has minimal influence on price changes. The advantage of hedging using futures ensures that the sunflower crushing company will know the profits they will realise, but the downside is that they can no longer benefit from a price increase. Alternative hedging instruments like options might pose a solution to the opportunity cost does not go missing and that profit margins are locked in at the best possible prices for the oil crushing company. This paper aims to investigate the possibility of employing options alongside futures to simulate different scenarios to determine if options can bridge the opportunity cost gap. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=derivatives" title="derivatives">derivatives</a>, <a href="https://publications.waset.org/abstracts/search?q=hedging" title=" hedging"> hedging</a>, <a href="https://publications.waset.org/abstracts/search?q=price%20risk" title=" price risk"> price risk</a>, <a href="https://publications.waset.org/abstracts/search?q=sunflower" title=" sunflower"> sunflower</a>, <a href="https://publications.waset.org/abstracts/search?q=sunflower%20oil" title=" sunflower oil"> sunflower oil</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Africa" title=" South Africa"> South Africa</a> </p> <a href="https://publications.waset.org/abstracts/142388/managing-sunflower-price-risk-from-a-south-african-oil-crushing-companys-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Crushing Behaviour of Thin Tubes with Various Corrugated Sections Using Finite Element Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shagil%20Akhtar">Shagil Akhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Muneeb%20Iqbal"> Syed Muneeb Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20R.%20Rahim"> Mohammed R. Rahim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Common steel tubes with similar confines were used in simulation of tubes with distinctive type of corrugated sections. These corrugated cross-sections were arc-tangent, triangular, trapezoidal and square corrugated sections. The outcome of fluctuating structures of tube cross-section shape on the deformation feedback, collapse form and energy absorption characteristics of tubes under quasi-static axial compression have been prepared numerically. The finite element package of ANSYS Workbench was applied in the current analysis. The axial load-displacement products accompanied by the fold formation of disparate tubes were inspected and compared. Deviation of the initial peak load and the mean crushing force of the tubes with distinctive cross-sections were conscientiously examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorbed%20energy" title="absorbed energy">absorbed energy</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20loading" title=" axial loading"> axial loading</a>, <a href="https://publications.waset.org/abstracts/search?q=corrugated%20tubes" title=" corrugated tubes"> corrugated tubes</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20peak%20load" title=" initial peak load"> initial peak load</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20crushing%20force" title=" mean crushing force"> mean crushing force</a> </p> <a href="https://publications.waset.org/abstracts/69172/crushing-behaviour-of-thin-tubes-with-various-corrugated-sections-using-finite-element-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Effect of Stitching Pattern on Composite Tubular Structures Subjected to Quasi-Static Crushing </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Rabiee">Ali Rabiee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hessam%20Ghasemnejad"> Hessam Ghasemnejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extensive experimental investigation on the effect of stitching pattern on tubular composite structures was conducted. The effect of stitching reinforcement through thickness on using glass flux yarn on energy absorption of fiber-reinforced polymer (FRP) was investigated under high speed loading conditions at axial loading. Keeping the mass of the structure at 125 grams and applying different pattern of stitching at various locations in theory enables better energy absorption, and also enables the control over the behaviour of force-crush distance curve. The study consists of simple non-stitch absorber comparison with single and multi-location stitching behaviour and its effect on energy absorption capabilities. The locations of reinforcements are 10 mm, 20 mm, 30 mm, 10-20 mm, 10-30 mm, 20-30 mm, 10-20-30 mm and 10-15-20-25-30-35 mm from the top of the specimen. The effect of through the thickness reinforcements has shown increase in energy absorption capabilities and crushing load. The significance of this is that as the stitching locations are closer, the crushing load increases and consequently energy absorption capabilities are also increased. The implementation of this idea would improve the mean force by applying stitching and controlling the behaviour of force-crush distance curve. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=through-thickness%20stitching" title="through-thickness stitching">through-thickness stitching</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20enforcement%E2%80%8B" title=" 3D enforcement"> 3D enforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20absorption" title=" energy absorption"> energy absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=tubular%20composite%20structures" title=" tubular composite structures"> tubular composite structures</a> </p> <a href="https://publications.waset.org/abstracts/55255/effect-of-stitching-pattern-on-composite-tubular-structures-subjected-to-quasi-static-crushing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Energy Absorption of Circular Thin-Walled Tube with Curved-Crease Patterns under Axial Crushing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Grzegorz%20Dolzyk">Grzegorz Dolzyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungmoon%20Jung"> Sungmoon Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thin-walled tubes are commonly used as energy absorption devices for their excellent mechanical properties and high manufacturability. Techniques such as grooving and pre-folded origami shapes were introduced to circular and polygonal tubes to improve its energy absorption efficiency. This paper examines the energy absorption characteristics of circular tubes with pre-embedded curved-crease pattern. Set of numerical analyzes were conducted with different grooving patterns for tubes with various diameter (D) to thickness (t) ratio. It has been found that even very shallow grooving can positively affect thin wall tubes, leading to increased energy absorption and higher crushing load efficiency. The phenomenon is associated with nonsymmetric deformation that is usually observed for tubes with a high D/t ratio ( > 90). Grooving can redirect a natural mode of post-buckling deformation to a one with a higher number of lobes such that its beneficial and more stable. Also, the opposite effect can be achieved, and highly disrupted deformation can be a cause of reduced energy absorption capabilities. Curved-crease engraved patterns can be used to stabilize and change a form of hazardous post-buckling deformation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20crushing" title="axial crushing">axial crushing</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20absorption" title=" energy absorption"> energy absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=grooving" title=" grooving"> grooving</a>, <a href="https://publications.waset.org/abstracts/search?q=thin-wall%20structures" title=" thin-wall structures"> thin-wall structures</a> </p> <a href="https://publications.waset.org/abstracts/109207/energy-absorption-of-circular-thin-walled-tube-with-curved-crease-patterns-under-axial-crushing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Joint Simulation and Estimation for Geometallurgical Modeling of Crushing Consumption Energy in the Mineral Processing Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzaneh%20Khorram">Farzaneh Khorram</a>, <a href="https://publications.waset.org/abstracts/search?q=Xavier%20Emery"> Xavier Emery</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, it is aimed to create a crushing consumption energy (CCE) block model and determine the blocks with the potential to have the maximum grinding process energy consumption for the study area. For this purpose, a joint estimate (co-kriging) and joint simulation (turning band method and plurigaussian methods) to predict the CCE based on its correlation with SAG power index (SPI), A×B, and ball mill bond work Index (BWI). The analysis shows that TBCOSIM and plurigaussian have the more realistic results compared to cokriging. It seems logical due to the nature of the data geometallurgical and the linearity of the kriging method and the smoothing effect of kriging. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plurigaussian" title="plurigaussian">plurigaussian</a>, <a href="https://publications.waset.org/abstracts/search?q=turning%20band" title=" turning band"> turning band</a>, <a href="https://publications.waset.org/abstracts/search?q=cokriging" title=" cokriging"> cokriging</a>, <a href="https://publications.waset.org/abstracts/search?q=geometallurgy" title=" geometallurgy"> geometallurgy</a> </p> <a href="https://publications.waset.org/abstracts/182716/joint-simulation-and-estimation-for-geometallurgical-modeling-of-crushing-consumption-energy-in-the-mineral-processing-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Confinement of Concrete Filled Steel Tubular Beams Using U-Links</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madiha%20Z.%20Ammari">Madiha Z. Ammari</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Qader%20AlNajmi"> Abdul Qader AlNajmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new system of U-links was used in this study to confine the concrete core in concrete-filled steel beams. This system aims to employ the separation expected between the steel tube and the concrete core in the compression side of the section in the plastic hinge zone. A total of six rectangular CFT beam specimens were tested under flexure using different D/t ratios and different diameters for the U-links to examine their effect on the flexural behavior of these beams. The ultimate flexural strength of the CFT beam specimens with U-links showed an increase of strength about 47% of the specimen with D/t ratio equals 37.5 above standard CFT beam specimen without U-links inside. State of concrete inside the tubes has shown no crushing of concrete when those beams were cut open at the location of the plastic hinge. Strain measurements revealed that the compressive strain of concrete was 5-6 times the concrete crushing strain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete-filled%20tubes" title="concrete-filled tubes">concrete-filled tubes</a>, <a href="https://publications.waset.org/abstracts/search?q=U-links" title=" U-links"> U-links</a>, <a href="https://publications.waset.org/abstracts/search?q=plated%20studies" title=" plated studies"> plated studies</a>, <a href="https://publications.waset.org/abstracts/search?q=beams" title=" beams"> beams</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=confinement" title=" confinement"> confinement</a> </p> <a href="https://publications.waset.org/abstracts/31197/confinement-of-concrete-filled-steel-tubular-beams-using-u-links" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> The Study on Treatment Technology of Fused Carbonized Blast Furnace Slag</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiaxu%20Huang">Jiaxu Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The melt carbonized blast furnace slag containing TiC was produced by carbothermal reduction of high titanium blast furnace slag. The treatment technology of melt carbonized blast furnace slag with TiC as raw material was studied, including the influence of different cooling methods, crushing atmosphere and sieving particle size on the target product TiC in the slag. The results show that air-cooling and water-cooling have little effect on TiC content of molten carbide blast furnace slag, and have great effect on crystal structure and grain size. TiC content in slag is different when carbide blast furnace slag is crushed in argon atmosphere and air atmosphere. After screening, the difference of TiC content of carbide blast furnace slag with different particle size distribution is obvious. The average TiC content of 100-400 mesh carbide blast furnace slag is 14%. And the average TiC content of carbide blast furnace slag with particle size less than 400 mesh is 10.5%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crushing%20atmosphere" title="crushing atmosphere">crushing atmosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20methods" title=" cooling methods"> cooling methods</a>, <a href="https://publications.waset.org/abstracts/search?q=sieving%20particle%20size" title=" sieving particle size"> sieving particle size</a>, <a href="https://publications.waset.org/abstracts/search?q=TiC" title=" TiC"> TiC</a> </p> <a href="https://publications.waset.org/abstracts/108634/the-study-on-treatment-technology-of-fused-carbonized-blast-furnace-slag" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> First Cracking Moments of Hybrid Fiber Reinforced Polymer-Steel Reinforced Concrete Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saruhan%20Kartal">Saruhan Kartal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilker%20Kalkan"> Ilker Kalkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper reports the cracking moment estimates of a set of steel-reinforced, Fiber Reinforced Polymer (FRP)-reinforced and hybrid steel-FRP reinforced concrete beams, calculated from different analytical formulations in the codes, together with the experimental cracking load values. A total of three steel-reinforced, four FRP-reinforced, 12 hybrid FRP-steel over-reinforced and five hybrid FRP-steel under-reinforced concrete beam tests were analyzed within the scope of the study. Glass FRP (GFRP) and Basalt FRP (BFRP) bars were used in the beams as FRP bars. In under-reinforced hybrid beams, rupture of the FRP bars preceded crushing of concrete, while concrete crushing preceded FRP rupture in over-reinforced beams. In both types, steel yielding took place long before the FRP rupture and concrete crushing. The cracking moment mainly depends on two quantities, namely the moment of inertia of the section at the initiation of cracking and the flexural tensile strength of concrete, i.e. the modulus of rupture. In the present study, two different definitions of uncracked moment of inertia, i.e. the gross and the uncracked transformed moments of inertia, were adopted. Two analytical equations for the modulus of rupture (ACI 318M and Eurocode 2) were utilized in the calculations as well as the experimental tensile strength of concrete from prismatic specimen tests. The ACI 318M modulus of rupture expression produced cracking moment estimates closer to the experimental cracking moments of FRP-reinforced and hybrid FRP-steel reinforced concrete beams when used in combination with the uncracked transformed moment of inertia, yet the Eurocode 2 modulus of rupture expression gave more accurate cracking moment estimates in steel-reinforced concrete beams. All of the analytical definitions produced analytical values considerably different from the experimental cracking load values of the solely FRP-reinforced concrete beam specimens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20reinforcement" title="polymer reinforcement">polymer reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=four-point%20bending" title=" four-point bending"> four-point bending</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20use%20of%20reinforcement" title=" hybrid use of reinforcement"> hybrid use of reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=cracking%20moment" title=" cracking moment"> cracking moment</a> </p> <a href="https://publications.waset.org/abstracts/107997/first-cracking-moments-of-hybrid-fiber-reinforced-polymer-steel-reinforced-concrete-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Discrete Element Method Simulation of Crushable Pumice Sand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayed%20Hessam%20Bahmani">Sayed Hessam Bahmani</a>, <a href="https://publications.waset.org/abstracts/search?q=Rolsndo%20P.%20Orense"> Rolsndo P. Orense</a> </p> <p class="card-text"><strong>Abstract:</strong></p> From an engineering point of view, pumice particles are problematic because of their crushability and compressibility due to their vesicular nature. Currently, information on the geotechnical characteristics of pumice sands is limited. While extensive empirical and laboratory tests can be implemented to characterize their behavior, these are generally time-consuming and expensive. These drawbacks have motivated attempts to study the effects of particle breakage of pumice sand through the Discrete Element Method (DEM). This method provides insights into the behavior of crushable granular material at both the micro and macro-level. In this paper, the results of single-particle crushing tests conducted in the laboratory are simulated using DEM through the open-source code YADE. This is done to better understand the parameters necessary to represent the pumice microstructure that governs its crushing features, and to examine how the resulting microstructure evolution affects a particle’s properties. The DEM particle model is then used to simulate the behavior of pumice sand during consolidated drained triaxial tests. The results indicate the importance of incorporating particle porosity and unique surface textures in the material characterization and show that interlocking between the crushed particles significantly influences the drained behavior of the pumice specimen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pumice%20sand" title="pumice sand">pumice sand</a>, <a href="https://publications.waset.org/abstracts/search?q=triaxial%20compression" title=" triaxial compression"> triaxial compression</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20breakage" title=" particle breakage"> particle breakage</a> </p> <a href="https://publications.waset.org/abstracts/137361/discrete-element-method-simulation-of-crushable-pumice-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Comparing the Effectiveness of the Crushing and Grinding Route of Comminution to That of the Mine to Mill Route in Terms of the Percentage of Middlings Present in Processed Lead-Zinc Ore Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinedu%20F.%20Anochie">Chinedu F. Anochie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of gangue particles in recovered metal concentrates has been a serious challenge to ore dressing engineers. Middlings lower the quality of concentrates, and in most cases, drastically affect the smelter terms, owing to exorbitant amounts paid by Mineral Processing industries as treatment charge. Models which encourage optimization of liberation operations have been utilized in most ore beneficiation industries to reduce the presence of locked particles in valuable concentrates. Moreover, methods such as incorporation of regrind mills, scavenger, rougher and cleaner cells, to the milling and flotation plants has been widely employed to tackle these concerns, and to optimize the grade–recovery relationship of metal concentrates. This work compared the crushing and grinding method of liberation, to the mine to mill route, by evaluating the proportion of middlings present in selectively processed complex Pb-Zn ore samples. To establish the effect of size reduction operations on the percentage of locked particles present in recovered concentrates, two similar samples of complex Pb- Zn ores were processed. Following blasting operation, the first ore sample was ground directly in a ball mill (Mine to Mill Route of Comminution), while the other sample was manually crushed, and subsequently ground in the ball mill (Crushing and Grinding Route of Comminution). The two samples were separately sieved in a mesh to obtain the desired representative particle sizes. An equal amount of each sample that would be processed in the flotation circuit was then obtained with the aid of a weighing balance. These weighed fine particles were simultaneously processed in the flotation circuit using the selective flotation technique. Sodium cyanide, Methyl isobutyl carbinol, Sodium ethyl xanthate, Copper sulphate, Sodium hydroxide, Lime and Isopropyl xanthate, were the reagents used to effect differential flotation of the two ore samples. Analysis and calculations showed that the degree of liberation obtained for the ore sample which went through the conventional crushing and grinding route of comminution, was higher than that of the directly milled run off mine (ROM) ore. Similarly, the proportion of middlings obtained from the separated galena (PbS) and sphalerite (ZnS) concentrates, were lower for the crushed and ground ore sample. A concise data which proved that the mine to mill method of size reduction is not the most ideal technique for the recovery of quality metal concentrates has been established. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comminution" title="comminution">comminution</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20of%20liberation" title=" degree of liberation"> degree of liberation</a>, <a href="https://publications.waset.org/abstracts/search?q=middlings" title=" middlings"> middlings</a>, <a href="https://publications.waset.org/abstracts/search?q=mine%20to%20mill" title=" mine to mill"> mine to mill</a> </p> <a href="https://publications.waset.org/abstracts/126873/comparing-the-effectiveness-of-the-crushing-and-grinding-route-of-comminution-to-that-of-the-mine-to-mill-route-in-terms-of-the-percentage-of-middlings-present-in-processed-lead-zinc-ore-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Moisture Impact on the Utilization of Recycled Concrete Fine Aggregate to Produce Mortar </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahimullah%20Habibzai">Rahimullah Habibzai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To achieve a sustainable concrete industry, reduce exploitation of the natural aggregate resources, and mitigate waste concrete environmental burden, one way is to use recycled concrete aggregate. The utilization of low-quality fine aggregate inclusively recycled concrete sand that is produced from crushing waste concrete recently has become a popular and challenging topic among researchers nowadays. This study provides a scientific base for promoting the application of concrete waste as fine aggregate in producing concrete by conducting a comprehensive laboratory program. The mechanical properties of mortar made from recycled concrete fine aggregate (RCFA), that is produced by pulse power crushing concrete waste are satisfactory and capable of being utilized in the construction industry. A better treatment of RCFA particles and enhancing its quality will make it possible to be utilized in producing structural concrete. Pulse power discharge technology is proposed in this research to produce RCFA, which is a more effective and promising technique compared to other recycling methods to generate medium to high-quality recycled concrete fine aggregate with a reduced amount of powder, mitigate the environmental burden, and save more space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20and%20demolition%20waste" title="construction and demolition waste">construction and demolition waste</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20waste%20recycle%20fine%20aggregate" title=" concrete waste recycle fine aggregate"> concrete waste recycle fine aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20power%20discharge" title=" pulse power discharge"> pulse power discharge</a> </p> <a href="https://publications.waset.org/abstracts/130398/moisture-impact-on-the-utilization-of-recycled-concrete-fine-aggregate-to-produce-mortar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Recovery of the Demolition and Construction Waste, Casablanca (Morocco)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morsli%20Mourad">Morsli Mourad</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahiri%20Mohamed"> Tahiri Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Samdi%20Azzeddine"> Samdi Azzeddine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Casablanca is the biggest city in Morocco. It concentrates more than 60% of the economic and industrial activity of the kingdom. Its building and public works (BTP) sector is the leading source of inert waste scattered in open areas. This inert waste is a major challenge for the city of Casablanca, as it is not properly managed, thus causing a significant nuisance for the environment and the health of the population. Hence the vision of our project is to recycle and valorize concrete waste. In this work, we present concrete results in the exploitation of this abundant and permanent deposit. Typical wastes are concrete, clay and concrete bricks, ceramic tiles, marble panels, gypsum, scrap metal, wood . The work performed included: geolocation with a combination of artificial intelligence and Google Earth, estimation of the amount of waste per site, sorting, crushing, grinding, and physicochemical characterization of the samples. Then, we proceeded to the exploitation of the types of substrates to be developed: light cement, coating, and glue for ceramics... The said products were tested and characterized by X-ray fluorescence, specific surface, resistance to bending and crushing, etc. We will present in detail the main results of our research work and also describe the specific properties of each material developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=d%C3%A9chets%20de%20d%C3%A9molition%20et%20des%20chantiers%20de%20construction" title="déchets de démolition et des chantiers de construction">déchets de démolition et des chantiers de construction</a>, <a href="https://publications.waset.org/abstracts/search?q=logiciels%20de%20combinaison%20SIG" title=" logiciels de combinaison SIG"> logiciels de combinaison SIG</a>, <a href="https://publications.waset.org/abstracts/search?q=valorisation%20de%20d%C3%A9chets%20inertes" title=" valorisation de déchets inertes"> valorisation de déchets inertes</a>, <a href="https://publications.waset.org/abstracts/search?q=enduits" title=" enduits"> enduits</a>, <a href="https://publications.waset.org/abstracts/search?q=ciment%20leger" title=" ciment leger"> ciment leger</a>, <a href="https://publications.waset.org/abstracts/search?q=casablanca" title=" casablanca"> casablanca</a> </p> <a href="https://publications.waset.org/abstracts/153706/recovery-of-the-demolition-and-construction-waste-casablanca-morocco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Physical Properties of Crushed Aggregates in Some Selected Quarries in Kwara State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Agbalajobi">S. A. Agbalajobi</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20A.%20Bello"> W. A. Bello</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines rock properties of crushed aggregate in some selected quarries in Kwara state, Nigeria. Some physical properties (chemical composition, mineral composition, particle size distribution) of gneiss sample were determined using ISRM standards. The physicomechanical properties (specific gravity, dry density, porosity, water absorption, point load index, tensile, and compressive strength) of the gneiss rock were evaluated. The analysis on the gneiss samples revealed the mean dry density and the unit weight are 2.52 g/m3, 2.63 g/m3, 2.38 g/m3; and 24.1 kN/m3, 25.78 kN/m3, 23.33 kN/m3, respectively (for locations A,B,C). The water absorption level of the gneiss rock sample ranged from 0.38 % – 0.57 % for the three locations. The mean Schmidt hammer rebound value ranged from 51.0 – 52.4 for the three locations and mean point load index values ranged from 9.89 – 10.56 MPa classified as very high strength while the uniaxial compressive strength of the rock samples revealed that its strength ranged from 120 - 139 MPa (for location A, B, and C) classified as strong rock. The aggregate impact value test and aggregate crushing value test conducted on the gneiss aggregates from the three locations in accordance with British Standard. The gneiss sample from the three locations (A, B, and C) is a good material for the production of construction works such as concrete, bricks, pavement, embankment among others, the compressive strength of the material is within the accepted limit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gneiss" title="gneiss">gneiss</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregate%20impact" title=" aggregate impact"> aggregate impact</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregate%20crushing" title=" aggregate crushing"> aggregate crushing</a>, <a href="https://publications.waset.org/abstracts/search?q=physic-mechanical%20properties" title=" physic-mechanical properties"> physic-mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20hardness" title=" rock hardness"> rock hardness</a> </p> <a href="https://publications.waset.org/abstracts/32845/physical-properties-of-crushed-aggregates-in-some-selected-quarries-in-kwara-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Determination of the Bearing Capacity of Granular Pumice Soils by Laboratory Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20%20Yildiz">Mustafa Yildiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Sinan%20Soganci"> Ali Sinan Soganci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pumice soils are countered in many projects such as transportation roads, channels and residential units throughout the World. The pumice deposits are characterized by the vesicular nature of their particles. When the pumice soils are evaluated considering the geotechnical viewpoint, they differ from silica sands in terms of physical and engineering characteristics. These differences are low grain strength, high friction angle, void ratio and compressibility. At stresses greater than a few hundred kPa, the stress-strain-strength behaviour of these soils is determined by particle crushing. Particle crushing leads to changes in the density and reduction in the components of shear stress due to expansion. In this study, the bearing capacity and behaviour of granular pumice soils compared to sand-gravels were investigated by laboratory model tests. Firstly the geotechnical properties of granular pumice soils were determined; then, the behaviour of pumice soils with an equivalent diameter of sand and gravel soils were investigated by model rectangular and circular foundation types and were compared with each other. For this purpose, basic types of model footing (15*15 cm, 20*20 cm, Φ=15 cm and Φ=20 cm) have been selected. When the experimental results of model bearing capacity are analyzed, the values of sand and gravel bearing capacity tests were found to be 1.0-1.5 times higher than the bearing capacity of pumice the same size. This fact has shown that sand and gravel have a higher bearing capacity than pumice of the similar particle sizes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pumice%20soils" title="pumice soils">pumice soils</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory%20model%20tests" title=" laboratory model tests"> laboratory model tests</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title=" bearing capacity"> bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory%20model%20tests" title=" laboratory model tests"> laboratory model tests</a>, <a href="https://publications.waset.org/abstracts/search?q=Nev%C5%9Fehir" title=" Nevşehir"> Nevşehir</a> </p> <a href="https://publications.waset.org/abstracts/77587/determination-of-the-bearing-capacity-of-granular-pumice-soils-by-laboratory-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Utilization of Rice Husk Ash with Clay to Produce Lightweight Coarse Aggregates for Concrete </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shegufta%20Zahan">Shegufta Zahan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20A.%20Zahin"> Muhammad A. Zahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20M.%20Hossain"> Muhammad M. Hossain</a>, <a href="https://publications.waset.org/abstracts/search?q=Raquib%20Ahsan"> Raquib Ahsan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice Husk Ash (RHA) is one of the agricultural waste byproducts available widely in the world and contains a large amount of silica. In Bangladesh, stones cannot be used as coarse aggregate in infrastructure works as they are not available and need to be imported from abroad. As a result, bricks are mostly used as coarse aggregates in concrete as they are cheaper and easily produced here. Clay is the raw material for producing brick. Due to rapid urban growth and the industrial revolution, demand for brick is increasing, which led to a decrease in the topsoil. This study aims to produce lightweight block aggregates with sufficient strength utilizing RHA at low cost and use them as an ingredient of concrete. RHA, because of its pozzolanic behavior, can be utilized to produce better quality block aggregates at lower cost, replacing clay content in the bricks. The whole study can be divided into three parts. In the first part, characterization tests on RHA and clay were performed to determine their properties. Six different types of RHA from different mills were characterized by XRD and SEM analysis. Their fineness was determined by conducting a fineness test. The result of XRD confirmed the amorphous state of RHA. The characterization test for clay identifies the sample as “silty clay” with a specific gravity of 2.59 and 14% optimum moisture content. In the second part, blocks were produced with six different types of RHA with different combinations by volume with clay. Then mixtures were manually compacted in molds before subjecting them to oven drying at 120 °C for 7 days. After that, dried blocks were placed in a furnace at 1200 °C to produce ultimate blocks. Loss on ignition test, apparent density test, crushing strength test, efflorescence test, and absorption test were conducted on the blocks to compare their performance with the bricks. For 40% of RHA, the crushing strength result was found 60 MPa, where crushing strength for brick was observed 48.1 MPa. In the third part, the crushed blocks were used as coarse aggregate in concrete cylinders and compared them with brick concrete cylinders. Specimens were cured for 7 days and 28 days. The highest compressive strength of block cylinders for 7 days curing was calculated as 26.1 MPa, whereas, for 28 days curing, it was found 34 MPa. On the other hand, for brick cylinders, the value of compressing strength of 7 days and 28 days curing was observed as 20 MPa and 30 MPa, respectively. These research findings can help with the increasing demand for topsoil of the earth, and also turn a waste product into a valuable one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characterization" title="characterization">characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=furnace" title=" furnace"> furnace</a>, <a href="https://publications.waset.org/abstracts/search?q=pozzolanic%20behavior" title=" pozzolanic behavior"> pozzolanic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk%20ash" title=" rice husk ash"> rice husk ash</a> </p> <a href="https://publications.waset.org/abstracts/132122/utilization-of-rice-husk-ash-with-clay-to-produce-lightweight-coarse-aggregates-for-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> An Investigation of the Fracture Behavior of Model MgO-C Refractories Using the Discrete Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J%C3%BAlia%20Cristina%20Bonaldo">Júlia Cristina Bonaldo</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20L.%20Martin"> Christophe L. Martin</a>, <a href="https://publications.waset.org/abstracts/search?q=Martiniano%20Piccico"> Martiniano Piccico</a>, <a href="https://publications.waset.org/abstracts/search?q=Keith%20Beale"> Keith Beale</a>, <a href="https://publications.waset.org/abstracts/search?q=Roop%20Kishore"> Roop Kishore</a>, <a href="https://publications.waset.org/abstracts/search?q=Severine%20Romero-Baivier"> Severine Romero-Baivier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Refractory composite materials employed in steel casting applications are prone to cracking and material damage because of the very high operating temperature (thermal shock) and mismatched properties of the constituent phases. The fracture behavior of a model MgO-C composite refractory is investigated to quantify and characterize its thermal shock resistance, employing a cold crushing test and Brazilian test with fractographic analysis. The discrete element method (DEM) is used to generate numerical refractory composites. The composite in DEM is represented by an assembly of bonded particle clusters forming perfectly spherical aggregates and single spherical particles. For the stresses to converge with a low standard deviation and a minimum number of particles to allow reasonable CPU calculation time, representative volume element (RVE) numerical packings are created with various numbers of particles. Key microscopic properties are calibrated sequentially by comparing stress-strain curves from crushing experimental data. Comparing simulations with experiments also allows for the evaluation of crack propagation, fracture energy, and strength. The crack propagation during Brazilian experimental tests is monitored with digital image correlation (DIC). Simulations and experiments reveal three distinct types of fracture. The crack may spread throughout the aggregate, at the aggregate-matrix interface, or throughout the matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=refractory%20composite" title="refractory composite">refractory composite</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20mechanics" title=" fracture mechanics"> fracture mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20propagation" title=" crack propagation"> crack propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=DEM" title=" DEM"> DEM</a> </p> <a href="https://publications.waset.org/abstracts/172105/an-investigation-of-the-fracture-behavior-of-model-mgo-c-refractories-using-the-discrete-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Design of Hybrid Auxetic Metamaterials for Enhanced Energy Absorption under Compression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ercan%20Karadogan">Ercan Karadogan</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatih%20Usta"> Fatih Usta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Auxetic materials have a negative Poisson’s ratio (NPR), which is not often found in nature. They are metamaterials that have potential applications in many engineering fields. Mechanical metamaterials are synthetically designed structures with unusual mechanical properties. These mechanical properties are dependent on the properties of the matrix structure. They have the following special characteristics, i.e., improved shear modulus, increased energy absorption, and intensive fracture toughness. Non-auxetic materials compress transversely when they are stretched. The system naturally is inclined to keep its density constant. The transversal compression increases the density to balance the loss in the longitudinal direction. This study proposes to improve the crushing performance of hybrid auxetic materials. The re-entrant honeycomb structure has been combined with a star honeycomb, an S-shaped unit cell, a double arrowhead, and a structurally hexagonal re-entrant honeycomb by 9 X 9 cells, i.e., the number of cells is 9 in the lateral direction and 9 in the vertical direction. The Finite Element (FE) and experimental methods have been used to determine the compression behavior of the developed hybrid auxetic structures. The FE models have been developed by using Abaqus software. The specimens made of polymer plastic materials have been 3D printed and subjected to compression loading. The results are compared in terms of specific energy absorption and strength. This paper describes the quasi-static crushing behavior of two types of hybrid lattice structures (auxetic + auxetic and auxetic + non-auxetic). The results show that the developed hybrid structures can be useful to control collapse mechanisms and present larger energy absorption compared to conventional re-entrant auxetic structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auxetic%20materials" title="auxetic materials">auxetic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20behavior" title=" compressive behavior"> compressive behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=metamaterials" title=" metamaterials"> metamaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20Poisson%E2%80%99s%20ratio" title=" negative Poisson’s ratio"> negative Poisson’s ratio</a> </p> <a href="https://publications.waset.org/abstracts/161145/design-of-hybrid-auxetic-metamaterials-for-enhanced-energy-absorption-under-compression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Development of Interaction Diagram for Eccentrically Loaded Reinforced Concrete Sandwich Walls with Different Design Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=May%20Haggag">May Haggag</a>, <a href="https://publications.waset.org/abstracts/search?q=Ezzat%20Fahmy"> Ezzat Fahmy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abdel-Mooty"> Mohamed Abdel-Mooty</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20Safar"> Sherif Safar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sandwich sections have a very complex nature due to variability of behavior of different materials within the section. Cracking, crushing and yielding capacity of constituent materials enforces high complexity of the section. Furthermore, slippage between the different layers adds to the section complex behavior. Conventional methods implemented in current industrial guidelines do not account for the above complexities. Thus, a throughout study is needed to understand the true behavior of the sandwich panels thus, increase the ability to use them effectively and efficiently. The purpose of this paper is to conduct numerical investigation using ANSYS software for the structural behavior of sandwich wall section under eccentric loading. Sandwich walls studied herein are composed of two RC faces, a foam core and linking shear connectors. Faces are modeled using solid elements and reinforcement together with connectors are modeled using link elements. The analysis conducted herein is nonlinear static analysis incorporating material nonlinearity, crashing and crushing of concrete and yielding of steel. The model is validated by comparing it to test results in literature. After validation, the model is used to establish extensive parametric analysis to investigate the effect of three key parameters on the axial force bending moment interaction diagram of the walls. These parameters are the concrete compressive strength, face thickness and number of shear connectors. Furthermore, the results of the parametric study are used to predict a coefficient that links the interaction diagram of a solid wall to that of a sandwich wall. The equation is predicted using the parametric study data and regression analysis. The predicted α was used to construct the interaction diagram of the investigated wall and the results were compared with ANSYS results and showed good agreement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sandwich%20walls" title="sandwich walls">sandwich walls</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20diagrams" title=" interaction diagrams"> interaction diagrams</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=eccentricity" title=" eccentricity"> eccentricity</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete "> reinforced concrete </a> </p> <a href="https://publications.waset.org/abstracts/57934/development-of-interaction-diagram-for-eccentrically-loaded-reinforced-concrete-sandwich-walls-with-different-design-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Analysis of Possibilities for Using Recycled Concrete Aggregate in Concrete Pavement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Pernicova">R. Pernicova</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Dobias"> D. Dobias</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present article describes the limits of using recycled concrete aggregate (denoted as RCA) in the top layer of concrete roads. The main aim of this work is to investigate the possibility of reuse of recycled aggregates obtained by crushing the old concrete roads as a building material in the new top layers of concrete pavements. The paper is based on gathering the current knowledge about how to use recycled concrete aggregate, suitability, and modification of the properties and its standards. Regulations are detailed and described especially for European Union and for Czech Republic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=Czech%20republic" title=" Czech republic"> Czech republic</a>, <a href="https://publications.waset.org/abstracts/search?q=pavements" title=" pavements"> pavements</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20concrete%20aggregate" title=" recycled concrete aggregate"> recycled concrete aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=RCA" title=" RCA"> RCA</a>, <a href="https://publications.waset.org/abstracts/search?q=standards" title=" standards"> standards</a> </p> <a href="https://publications.waset.org/abstracts/50744/analysis-of-possibilities-for-using-recycled-concrete-aggregate-in-concrete-pavement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> A Mathematical Model for Studying Landing Dynamics of a Typical Lunar Soft Lander</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Johns%20Paul">Johns Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=Santhosh%20J.%20Nalluveettil"> Santhosh J. Nalluveettil</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Purushothaman"> P. Purushothaman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Premdas"> M. Premdas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lunar landing is one of the most critical phases of lunar mission. The lander is provided with a soft landing system to prevent structural damage of lunar module by absorbing the landing shock and also assure stability during landing. Presently available software are not capable to simulate the rigid body dynamics coupled with contact simulation and elastic/plastic deformation analysis. Hence a separate mathematical model has been generated for studying the dynamics of a typical lunar soft lander. Parameters used in the analysis includes lunar surface slope, coefficient of friction, initial touchdown velocity (vertical and horizontal), mass and moment of inertia of lander, crushing force due to energy absorbing material in the legs, number of legs and geometry of lander. The mathematical model is capable to simulate plastic and elastic deformation of honey comb, frictional force between landing leg and lunar soil, surface contact simulation, lunar gravitational force, rigid body dynamics and linkage dynamics of inverted tripod landing gear. The non linear differential equations generated for studying the dynamics of lunar lander is solved by numerical method. Matlab programme has been used as a computer tool for solving the numerical equations. The position of each kinematic joint is defined by mathematical equations for the generation of equation of motion. All hinged locations are defined by position vectors with respect to body fixed coordinate. The vehicle rigid body rotations and motions about body coordinate are only due to the external forces and moments arise from footpad reaction force due to impact, footpad frictional force and weight of vehicle. All these force are mathematically simulated for the generation of equation of motion. The validation of mathematical model is done by two different phases. First phase is the validation of plastic deformation of crushable elements by employing conservation of energy principle. The second phase is the validation of rigid body dynamics of model by simulating a lander model in ADAMS software after replacing the crushable elements to elastic spring element. Simulation of plastic deformation along with rigid body dynamics and contact force cannot be modeled in ADAMS. Hence plastic element of primary strut is replaced with a spring element and analysis is carried out in ADAMS software. The same analysis is also carried out using the mathematical model where the simulation of honeycomb crushing is replaced by elastic spring deformation and compared the results with ADAMS analysis. The rotational motion of linkages and 6 degree of freedom motion of lunar Lander about its CG can be validated by ADAMS software by replacing crushing element to spring element. The model is also validated by the drop test results of 4 leg lunar lander. This paper presents the details of mathematical model generated and its validation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=honeycomb" title="honeycomb">honeycomb</a>, <a href="https://publications.waset.org/abstracts/search?q=landing%20leg%20tripod" title=" landing leg tripod"> landing leg tripod</a>, <a href="https://publications.waset.org/abstracts/search?q=lunar%20lander" title=" lunar lander"> lunar lander</a>, <a href="https://publications.waset.org/abstracts/search?q=primary%20link" title=" primary link"> primary link</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20link" title=" secondary link"> secondary link</a> </p> <a href="https://publications.waset.org/abstracts/37327/a-mathematical-model-for-studying-landing-dynamics-of-a-typical-lunar-soft-lander" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Experimental and Numerical Modeling of Dynamic Axial Crushing of a Composite Glass/PEHD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoudi%20Noureddine">Mahmoudi Noureddine</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaou%20Abdellah"> Kaou Abdellah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy absorption is a major requirement for automotive structures. Although crashworthy structures of composite based glass fiber have exhibited energy absorption greater than similar at other composites structures, the crush process in many cases is accompanied by fracture, rather than by plastic deformation. The crash experiments show that the tubes are crushed in progressive manner start from one end of the tubes and delamination takes place between the layers. To better understand details of the crash process, ABAQUS finite element code is used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Energy%20absorption" title="Energy absorption">Energy absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=crash" title=" crash"> crash</a>, <a href="https://publications.waset.org/abstracts/search?q=PEHD" title=" PEHD "> PEHD </a> </p> <a href="https://publications.waset.org/abstracts/23329/experimental-and-numerical-modeling-of-dynamic-axial-crushing-of-a-composite-glasspehd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Research Regarding Resistance Characteristics of Biscuits Assortment Using Cone Penetrometer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%E2%80%93A.%20Constantin">G.–A. Constantin</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Voicu"> G. Voicu</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%E2%80%93M.%20Stefan"> E.–M. Stefan</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Tudor"> P. Tudor</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Paraschiv"> G. Paraschiv</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%E2%80%93G.%20Munteanu"> M.–G. Munteanu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the activity of handling and transport of food products, the products may be subjected to mechanical stresses that may lead to their deterioration by deformation, breaking, or crushing. This is the case for biscuits, regardless of their type (gluten-free or sugary), the addition of ingredients or flour from which they are made. However, gluten-free biscuits have a higher mechanical resistance to breakage or crushing compared to easily shattered sugar biscuits (especially those for children). The paper presents the results of the experimental evaluation of the texture for four varieties of commercial biscuits, using the penetrometer equipped with needle cone at five different additional weights on the cone-rod. The assortments of biscuits tested in the laboratory were Petit Beurre, Picnic, and Maia (all three manufactured by RoStar, Romania) and Sultani diet biscuits, manufactured by Eti Burcak Sultani (Turkey, in packs of 138 g). For the four varieties of biscuits and the five additional weights (50, 77, 100, 150 and 177 g), the experimental data obtained were subjected to regression analysis in the MS Office Excel program, using Velon's relationship (h = a∙ln(t) + b). The regression curves were analysed comparatively in order to identify possible differences and to highlight the variation of the penetration depth h, in relation to the time t. Based on the penetration depth between two-time intervals (every 5 seconds), the curves of variation of the penetration speed in relation to time were then drawn. It was found that Velon's law verifies the experimental data for all assortments of biscuits and for all five additional weights. The correlation coefficient R2 had in most of the analysed cases values over 0.850. The values recorded for the penetration depth were framed, in general, within 45-55 p.u. (penetrometric units) at an additional mass of 50 g, respectively between 155-168 p.u., at an additional mass of 177 g, at Petit Beurre biscuits. For Sultani diet biscuits, the values of the penetration depth were within the limits of 32-35 p.u., at an additional weight of 50 g and between 80-114 p.u., at an additional weight of 177g. The data presented in the paper can be used by both operators on the manufacturing technology flow, as well as by the traders of these food products, in order to establish the most efficient parametric of the working regimes (when packaging and handling). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biscuits%20resistance%2Ftexture" title="biscuits resistance/texture">biscuits resistance/texture</a>, <a href="https://publications.waset.org/abstracts/search?q=penetration%20depth" title=" penetration depth"> penetration depth</a>, <a href="https://publications.waset.org/abstracts/search?q=penetration%20velocity" title=" penetration velocity"> penetration velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=sharp%20pin%20penetrometer" title=" sharp pin penetrometer"> sharp pin penetrometer</a> </p> <a href="https://publications.waset.org/abstracts/125997/research-regarding-resistance-characteristics-of-biscuits-assortment-using-cone-penetrometer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> The Development Status of Terahertz Wave and Its Prospect in Wireless Communication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yiquan%20Liao">Yiquan Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Quanhong%20Jiang"> Quanhong Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since terahertz was observed by German scientists, we have obtained terahertz through different generation technologies of broadband and narrowband. Then, with the development of semiconductor and other technologies, the imaging technology of terahertz has become increasingly perfect. From the earliest application of nondestructive testing in aviation to the present application of information transmission and human safety detection, the role of terahertz will shine in various fields. The weapons produced by terahertz were epoch-making, which is a crushing deterrent against technologically backward countries. At the same time, terahertz technology in the fields of imaging, medical and livelihood, communication and communication are for the well-being of the country and the people. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=terahertz" title="terahertz">terahertz</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging" title=" imaging"> imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=communication" title=" communication"> communication</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20treatment" title=" medical treatment"> medical treatment</a> </p> <a href="https://publications.waset.org/abstracts/166653/the-development-status-of-terahertz-wave-and-its-prospect-in-wireless-communication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Physical Parameters Influencing the Yield of Nigella Sativa Oil Extracted by Hydraulic Pressing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadjadj%20Naima">Hadjadj Naima</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Mahdi"> K. Mahdi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Belhachat"> D. Belhachat</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20S.%20Ait%20Chaouche"> F. S. Ait Chaouche</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ferradji"> A. Ferradji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Nigella Sativa oil yield extracted by hydraulic pressing is influenced by the pressure temperature and size particles. The optimization of oil extraction is investigated. The rate of extraction of the whole seeds is very weak, a crushing of seeds is necessary to facilitate the extraction. This rate augments with the rise of the temperature and the pressure, and decrease of size particles. The best output (66%) is obtained for a granulometry lower than 1mm, a temperature of 50°C and a pressure of 120 bars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil" title="oil">oil</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigella%20sativa" title=" Nigella sativa"> Nigella sativa</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure" title=" pressure"> pressure</a> </p> <a href="https://publications.waset.org/abstracts/31548/physical-parameters-influencing-the-yield-of-nigella-sativa-oil-extracted-by-hydraulic-pressing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> A Study on the Life Prediction Performance Degradation Analysis of the Hydraulic Breaker</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jong%20Won">Jong Won</a>, <a href="https://publications.waset.org/abstracts/search?q=Park"> Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Hyun"> Sung Hyun</a>, <a href="https://publications.waset.org/abstracts/search?q=Kim"> Kim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The kinetic energy to pass subjected to shock and chisel reciprocating piston hydraulic power supplied by the excavator using for the purpose of crushing the rock, and roads, buildings, etc., hydraulic breakers blow. Impact frequency, efficiency measurement of the impact energy, hydraulic breakers, to demonstrate the ability of hydraulic breaker manufacturers and users to a very important item. And difficult in order to confirm the initial performance degradation in the life of the hydraulic breaker has been thought to be a problem.In this study, we measure the efficiency of hydraulic breaker, Impact energy and Impact frequency, the degradation analysis of research to predict the life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impact%20energy" title="impact energy">impact energy</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20%20frequency" title=" impact frequency"> impact frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20breaker" title=" hydraulic breaker"> hydraulic breaker</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20prediction" title=" life prediction"> life prediction</a> </p> <a href="https://publications.waset.org/abstracts/14055/a-study-on-the-life-prediction-performance-degradation-analysis-of-the-hydraulic-breaker" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Crushing Analysis of Foam-Filled Thin-Walled Aluminum Profiles Subjected to Axial Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Micha%C5%82%20Rogala">Michał Rogala</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Gajewski"> Jakub Gajewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the automotive industry develops, passive safety is becoming an increasingly important aspect when designing motor vehicles. A commonly used solution is energy absorption by thin-walled construction. One such structure is a closed thin-walled profile fixed to the vehicle stringers. The article presents numerical tests of conical thin-walled profiles filled with aluminum foam. The columns were loaded axially with constant energy. On the basis of the results obtained, efficiency indicators were calculated. The efficiency of the foam filling was evaluated. Artificial neural networks were used for data analysis. The application of regression analysis was used as a tool to study the relationship between the quantities characteristic of the dynamic crush. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium%20foam" title="aluminium foam">aluminium foam</a>, <a href="https://publications.waset.org/abstracts/search?q=crashworthiness" title=" crashworthiness"> crashworthiness</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=thin-walled%20structure" title=" thin-walled structure"> thin-walled structure</a> </p> <a href="https://publications.waset.org/abstracts/128809/crushing-analysis-of-foam-filled-thin-walled-aluminum-profiles-subjected-to-axial-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Masonry Blocks with Recycled Aggregates and Recycled Glass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Y.%20Matar">Pierre Y. Matar</a>, <a href="https://publications.waset.org/abstracts/search?q=Louay%20S.%20El%20Hassanieh"> Louay S. El Hassanieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Marleine%20F.%20Bayssary"> Marleine F. Bayssary </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The demolished concrete is a major component of the construction and demolition (C&D) waste. The recycled aggregates obtained by crushing the demolished concrete can be used as a substitute of natural aggregates. Another major C&D waste is the flat glass. This glass can be also recycled and used as an aggregate substitute. The objective of this study is to determine the influence of the use of recycled concrete aggregates and recycled glass on the compressive strength and fire resistance of precast concrete masonry blocks. Tests are carried out on four series of blocks whose compositions include different percentages of recycled aggregates and recycled glass and one series of reference blocks whose composition consists of exclusively natural aggregates. The recycled coarse aggregates and recycled glass have 6.3/12.5 mm fraction and the natural aggregates have 0/6.3 mm fraction; no recycled fine aggregates are included in concrete mixes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=precast%20concrete%20blocks" title=" precast concrete blocks"> precast concrete blocks</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20aggregates" title=" recycled aggregates"> recycled aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20glass" title=" recycled glass"> recycled glass</a> </p> <a href="https://publications.waset.org/abstracts/16126/masonry-blocks-with-recycled-aggregates-and-recycled-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">558</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crushing&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crushing&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crushing&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>