CINXE.COM

Search results for: human heart

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: human heart</title> <meta name="description" content="Search results for: human heart"> <meta name="keywords" content="human heart"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="human heart" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="human heart"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9307</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: human heart</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9307</span> HRV Analysis Based Arrhythmic Beat Detection Using kNN Classifier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Onder%20Yakut">Onder Yakut</a>, <a href="https://publications.waset.org/abstracts/search?q=Oguzhan%20Timus"> Oguzhan Timus</a>, <a href="https://publications.waset.org/abstracts/search?q=Emine%20Dogru%20Bolat"> Emine Dogru Bolat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Health diseases have a vital significance affecting human being's life and life quality. Sudden death events can be prevented owing to early diagnosis and treatment methods. Electrical signals, taken from the human being's body using non-invasive methods and showing the heart activity is called Electrocardiogram (ECG). The ECG signal is used for following daily activity of the heart by clinicians. Heart Rate Variability (HRV) is a physiological parameter giving the variation between the heart beats. ECG data taken from MITBIH Arrhythmia Database is used in the model employed in this study. The detection of arrhythmic heart beats is aimed utilizing the features extracted from the HRV time domain parameters. The developed model provides a satisfactory performance with ~89% accuracy, 91.7 % sensitivity and 85% specificity rates for the detection of arrhythmic beats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arrhythmic%20beat%20detection" title="arrhythmic beat detection">arrhythmic beat detection</a>, <a href="https://publications.waset.org/abstracts/search?q=ECG" title=" ECG"> ECG</a>, <a href="https://publications.waset.org/abstracts/search?q=HRV" title=" HRV"> HRV</a>, <a href="https://publications.waset.org/abstracts/search?q=kNN%20classifier" title=" kNN classifier"> kNN classifier</a> </p> <a href="https://publications.waset.org/abstracts/41219/hrv-analysis-based-arrhythmic-beat-detection-using-knn-classifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9306</span> The Most Desirable Individual Relationship</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20%20Babaei">Ali Babaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a significant relationship between Soul Faculties and human relationships. Man has at least three levels of relationship according to three levels of his Faculties: individual (with himself), dual (with another) and collective (with others). Since all human actions are organized by the type of use of their internal faculties, their "hierarchy of relations" is related to the "hierarchy of their Faculties." In the final explanation based on the ontology of Islamic wisdom, one can consider the hierarchy of human Faculties in three levels: 1. senses, 2. intellect and heart, and 3. Soul. The best relationship, in the individual one is that every human being, with healthy senses, achieves both the intellectual growth and the perfection of the heart, which we call "Clear-headed" and "Good-hearted.” The result of human evolution in this two aspects will lead to the development of a powerful personality which can be interpreted as "spiritual prosperity"; having a great soul is the result of such evolution. A smart brain without a "Good-heart"ince can lead to criminality; and mere "Good-heart"ince" without "Clear-head"ince leads to "naivety". “clear-head”ince is achieved through thoughtfulness and study, and "Good-heart"ince through love and worship. So the best way to achieve perfection in a personal relationship is to have a dependable appearance, a coherent thinking <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ontology" title="Ontology ">Ontology </a>, <a href="https://publications.waset.org/abstracts/search?q=good-heartince" title=" good-heartince"> good-heartince</a>, <a href="https://publications.waset.org/abstracts/search?q=wisdom" title=" wisdom"> wisdom</a>, <a href="https://publications.waset.org/abstracts/search?q=relationship" title=" relationship"> relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=clear-head%E2%80%9Dince" title=" clear-head”ince"> clear-head”ince</a>, <a href="https://publications.waset.org/abstracts/search?q=criminality" title=" criminality"> criminality</a>, <a href="https://publications.waset.org/abstracts/search?q=naivety" title=" naivety"> naivety</a> </p> <a href="https://publications.waset.org/abstracts/123319/the-most-desirable-individual-relationship" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9305</span> Design of Demand Pacemaker Using an Embedded Controller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Bala%20Prashanth%20Reddy">C. Bala Prashanth Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Abhinay"> B. Abhinay</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Sreekar"> C. Sreekar</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20V.%20Shobhana%20Priscilla"> D. V. Shobhana Priscilla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The project aims in designing an emergency pacemaker which is capable of giving shocks to a human heart which has stopped working suddenly. A pacemaker is a machine commonly used by cardiologists. This machine is used in order to shock a human’s heart back into usage. The way the heart works is that there are small cells called pacemakers sending electrical pulses to cardiac muscles that tell the heart when to pump blood. When these electrical pulses stop, the heart stops beating. When this happens, a pacemaker is used to shock the heart muscles and the pacemakers back into action. The way this is achieved is by rubbing the two panels of the pacemaker together to create an adequate electrical current, and then the heart gets back to the normal state. The project aims in designing a system which is capable of continuously displaying the heart beat and blood pressure of a person on LCD. The concerned doctor gets the heart beat and also the blood pressure details continuously through the GSM Modem in the form of SMS alerts. In case of abnormal condition, the doctor sends message format regarding the amount of electric shock needed. Automatically the microcontroller gives the input to the pacemaker which in turn gives the shock to the patient. Heart beat monitor and display system is a portable and a best replacement for the old model stethoscope which is less efficient. The heart beat rate is calculated manually using stethoscope where the probability of error is high because the heart beat rate lies in the range of 70 to 90 per minute whose occurrence is less than 1 sec, so this device can be considered as a very good alternative instead of a stethoscope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=missing%20R%20wave" title="missing R wave">missing R wave</a>, <a href="https://publications.waset.org/abstracts/search?q=PWM" title=" PWM"> PWM</a>, <a href="https://publications.waset.org/abstracts/search?q=demand%20pacemaker" title=" demand pacemaker"> demand pacemaker</a>, <a href="https://publications.waset.org/abstracts/search?q=heart" title=" heart"> heart</a> </p> <a href="https://publications.waset.org/abstracts/11057/design-of-demand-pacemaker-using-an-embedded-controller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9304</span> Simulation of Human Heart Activation Based on Diffusion Tensor Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ihab%20Elaff">Ihab Elaff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Simulating the heart’s electrical stimulation is essential in modeling and evaluating the electrophysiology behavior of the heart. For achieving that, there are two structures in concern: the ventricles’ Myocardium, and the ventricles’ Conduction Network. Ventricles’ Myocardium has been modeled as anisotropic material from Diffusion Tensor Imaging (DTI) scan, and the Conduction Network has been extracted from DTI as a case-based structure based on the biological properties of the heart tissues and the working methodology of the Magnetic Resonance Imaging (MRI) scanner. Results of the produced activation were much similar to real measurements of the reference model that was presented in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diffusion%20tensor" title="diffusion tensor">diffusion tensor</a>, <a href="https://publications.waset.org/abstracts/search?q=DTI" title=" DTI"> DTI</a>, <a href="https://publications.waset.org/abstracts/search?q=heart" title=" heart"> heart</a>, <a href="https://publications.waset.org/abstracts/search?q=conduction%20network" title=" conduction network"> conduction network</a>, <a href="https://publications.waset.org/abstracts/search?q=excitation%20propagation" title=" excitation propagation"> excitation propagation</a> </p> <a href="https://publications.waset.org/abstracts/75607/simulation-of-human-heart-activation-based-on-diffusion-tensor-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9303</span> Heart-Rate Resistance Electrocardiogram Identification Based on Slope-Oriented Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tsu-Wang%20Shen">Tsu-Wang Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shan-Chun%20Chang"> Shan-Chun Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Hsien%20Wang"> Chih-Hsien Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Te-Chao%20Fang"> Te-Chao Fang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For electrocardiogram (ECG) biometrics system, it is a tedious process to pre-install user’s high-intensity heart rate (HR) templates in ECG biometric systems. Based on only resting enrollment templates, it is a challenge to identify human by using ECG with the high-intensity HR caused from exercises and stress. This research provides a heartbeat segment method with slope-oriented neural networks against the ECG morphology changes due to high intensity HRs. The method has overall system accuracy at 97.73% which includes six levels of HR intensities. A cumulative match characteristic curve is also used to compare with other traditional ECG biometric methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-intensity%20heart%20rate" title="high-intensity heart rate">high-intensity heart rate</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate%20resistant" title=" heart rate resistant"> heart rate resistant</a>, <a href="https://publications.waset.org/abstracts/search?q=ECG%20human%20identification" title=" ECG human identification"> ECG human identification</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20based%20artificial%20neural%20network" title=" decision based artificial neural network"> decision based artificial neural network</a> </p> <a href="https://publications.waset.org/abstracts/53603/heart-rate-resistance-electrocardiogram-identification-based-on-slope-oriented-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9302</span> Mathematical Based Forecasting of Heart Attack</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Razieh%20Khalafi">Razieh Khalafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Myocardial infarction (MI) or acute myocardial infarction (AMI), commonly known as a heart attack, occurs when blood flow stops to part of the heart causing damage to the heart muscle. An ECG can often show evidence of a previous heart attack or one that's in progress. The patterns on the ECG may indicate which part of your heart has been damaged, as well as the extent of the damage. In chaos theory, the correlation dimension is a measure of the dimensionality of the space occupied by a set of random points, often referred to as a type of fractal dimension. In this research by considering ECG signal as a random walk we work on forecasting the oncoming heart attack by analyzing the ECG signals using the correlation dimension. In order to test the model a set of ECG signals for patients before and after heart attack was used and the strength of model for forecasting the behavior of these signals were checked. Results shows this methodology can forecast the ECG and accordingly heart attack with high accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heart%20attack" title="heart attack">heart attack</a>, <a href="https://publications.waset.org/abstracts/search?q=ECG" title=" ECG"> ECG</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20walk" title=" random walk"> random walk</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation%20dimension" title=" correlation dimension"> correlation dimension</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a> </p> <a href="https://publications.waset.org/abstracts/29782/mathematical-based-forecasting-of-heart-attack" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9301</span> A New Mathematical Method for Heart Attack Forecasting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Razi%20Khalafi">Razi Khalafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Myocardial Infarction (MI) or acute Myocardial Infarction (AMI), commonly known as a heart attack, occurs when blood flow stops to part of the heart causing damage to the heart muscle. An ECG can often show evidence of a previous heart attack or one that's in progress. The patterns on the ECG may indicate which part of your heart has been damaged, as well as the extent of the damage. In chaos theory, the correlation dimension is a measure of the dimensionality of the space occupied by a set of random points, often referred to as a type of fractal dimension. In this research by considering ECG signal as a random walk we work on forecasting the oncoming heart attack by analysing the ECG signals using the correlation dimension. In order to test the model a set of ECG signals for patients before and after heart attack was used and the strength of model for forecasting the behaviour of these signals were checked. Results show this methodology can forecast the ECG and accordingly heart attack with high accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heart%20attack" title="heart attack">heart attack</a>, <a href="https://publications.waset.org/abstracts/search?q=ECG" title=" ECG"> ECG</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20walk" title=" random walk"> random walk</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation%20dimension" title=" correlation dimension"> correlation dimension</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a> </p> <a href="https://publications.waset.org/abstracts/30802/a-new-mathematical-method-for-heart-attack-forecasting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9300</span> Heart Murmurs and Heart Sounds Extraction Using an Algorithm Process Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Mokeddem">Fatima Mokeddem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The phonocardiogram signal (PCG) is a physiological signal that reflects heart mechanical activity, is a promising tool for curious researchers in this field because it is full of indications and useful information for medical diagnosis. PCG segmentation is a basic step to benefit from this signal. Therefore, this paper presents an algorithm that serves the separation of heart sounds and heart murmurs in case they exist in order to use them in several applications and heart sounds analysis. The separation process presents here is founded on three essential steps filtering, envelope detection, and heart sounds segmentation. The algorithm separates the PCG signal into S1 and S2 and extract cardiac murmurs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phonocardiogram%20signal" title="phonocardiogram signal">phonocardiogram signal</a>, <a href="https://publications.waset.org/abstracts/search?q=filtering" title=" filtering"> filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=Envelope" title=" Envelope"> Envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=Detection" title=" Detection"> Detection</a>, <a href="https://publications.waset.org/abstracts/search?q=murmurs" title=" murmurs"> murmurs</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20sounds" title=" heart sounds"> heart sounds</a> </p> <a href="https://publications.waset.org/abstracts/114970/heart-murmurs-and-heart-sounds-extraction-using-an-algorithm-process-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9299</span> Calculation the Left Ventricle Wall Radial Strain and Radial SR Using Tagged Magnetic Resonance Imaging Data (tMRI)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Alenezy">Mohammed Alenezy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The function of cardiac motion can be used as an indicator of the heart abnormality by evaluating longitudinal, circumferential, and Radial Strain of the left ventricle. In this paper, the Radial Strain and SR is studied using tagged MRI (tMRI) data during the cardiac cycle on the mid-ventricle level of the left ventricle. Materials and methods: The short-axis view of the left ventricle of five healthy human (three males and two females) and four healthy male rats were imaged using tagged magnetic resonance imaging (tMRI) technique covering the whole cardiac cycle on the mid-ventricle level. Images were processed using Image J software to calculate the left ventricle wall Radial Strain and radial SR. The left ventricle Radial Strain and radial SR were calculated at the mid-ventricular level during the cardiac cycle. The peak Radial Strain for the human and rat heart was 40.7±1.44, and 46.8±0.68 respectively, and it occurs at 40% of the cardiac cycle for both human and rat heart. The peak diastolic and systolic radial SR for human heart was -1.78 s-1 ± 0.02 s-1 and 1.10±0.08 s-1 respectively, while for rat heart it was -5.16± 0.23s-1 and 4.25±0.02 s-1 respectively. Conclusion: This results show the ability of the tMRI data to characterize the cardiac motion during the cardiac cycle including diastolic and systolic phases which can be used as an indicator of the cardiac dysfunction by estimating the left ventricle Radial Strain and radial SR at different locations of the cardiac tissue. This study approves the validity of the tagged MRI data to describe accurately the cardiac radial motion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=left%20ventricle" title="left ventricle">left ventricle</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20strain" title=" radial strain"> radial strain</a>, <a href="https://publications.waset.org/abstracts/search?q=tagged%20MRI" title=" tagged MRI"> tagged MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiac%20cycle" title=" cardiac cycle"> cardiac cycle</a> </p> <a href="https://publications.waset.org/abstracts/21036/calculation-the-left-ventricle-wall-radial-strain-and-radial-sr-using-tagged-magnetic-resonance-imaging-data-tmri" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9298</span> Study of the Design and Simulation Work for an Artificial Heart</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Eltayeb%20Salih%20Elamin">Mohammed Eltayeb Salih Elamin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study discusses the concept of the artificial heart using engineering concepts, of the fluid mechanics and the characteristics of the non-Newtonian fluid. For the purpose to serve heart patients and improve aspects of their lives and since the Statistics review according to world health organization (WHO) says that heart disease and blood vessels are the first cause of death in the world. Statistics shows that 30% of the death cases in the world by the heart disease, so simply we can consider it as the number one leading cause of death in the entire world is heart failure. And since the heart implantation become a very difficult and not always available, the idea of the artificial heart become very essential. So it’s important that we participate in the developing this idea by searching and finding the weakness point in the earlier designs and hoping for improving it for the best of humanity. In this study a pump was designed in order to pump blood to the human body and taking into account all the factors that allows it to replace the human heart, in order to work at the same characteristics and the efficiency of the human heart. The pump was designed on the idea of the diaphragm pump. Three models of blood obtained from the blood real characteristics and all of these models were simulated in order to study the effect of the pumping work on the fluid. After that, we study the properties of this pump by using Ansys15 software to simulate blood flow inside the pump and the amount of stress that it will go under. The 3D geometries modeling was done using SOLID WORKS and the geometries then imported to Ansys design modeler which is used during the pre-processing procedure. The solver used throughout the study is Ansys FLUENT. This is a tool used to analysis the fluid flow troubles and the general well-known term used for this branch of science is known as Computational Fluid Dynamics (CFD). Basically, Design Modeler used during the pre-processing procedure which is a crucial step before the start of the fluid flow problem. Some of the key operations are the geometry creations which specify the domain of the fluid flow problem. Next is mesh generation which means discretization of the domain to solve governing equations at each cell and later, specify the boundary zones to apply boundary conditions for the problem. Finally, the pre–processed work will be saved at the Ansys workbench for future work continuation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Artificial%20heart" title="Artificial heart">Artificial heart</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamic%20%20%20heart%20chamber" title=" computational fluid dynamic heart chamber"> computational fluid dynamic heart chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=pump" title=" pump "> pump </a> </p> <a href="https://publications.waset.org/abstracts/33147/study-of-the-design-and-simulation-work-for-an-artificial-heart" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9297</span> Real-Time Nonintrusive Heart Rate Measurement: Comparative Case Study of LED Sensorics&#039; Accuracy and Benefits in Heart Monitoring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Goran%20Begovi%C4%87">Goran Begović</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, many researchers are focusing on non-intrusive measuring methods when it comes to human biosignals. These methods provide solutions for everyday use, whether it’s health monitoring or finessing the workout routine. One of the biggest issues with these solutions is that the sensors’ accuracy is highly variable due to many factors, such as ambiental light, skin color diversity, etc. That is why we wanted to explore different outcomes under those kinds of circumstances in order to find the most optimal algorithm(s) for extracting heart rate (HR) information. The optimization of such algorithms can benefit the wider, cheaper, and safer application of home health monitoring, without having to visit medical professionals as often when it comes to observing heart irregularities. In this study, we explored the accuracy of infrared (IR), red, and green LED sensorics in a controlled environment and compared the results with a medically accurate ECG monitoring device. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20science" title="data science">data science</a>, <a href="https://publications.waset.org/abstracts/search?q=ECG" title=" ECG"> ECG</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate" title=" heart rate"> heart rate</a>, <a href="https://publications.waset.org/abstracts/search?q=holter%20monitor" title=" holter monitor"> holter monitor</a>, <a href="https://publications.waset.org/abstracts/search?q=LED%20sensors" title=" LED sensors"> LED sensors</a> </p> <a href="https://publications.waset.org/abstracts/148320/real-time-nonintrusive-heart-rate-measurement-comparative-case-study-of-led-sensorics-accuracy-and-benefits-in-heart-monitoring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9296</span> Intelligent System for Diagnosis Heart Attack Using Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oluwaponmile%20David%20Alao">Oluwaponmile David Alao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Misdiagnosis has been the major problem in health sector. Heart attack has been one of diseases that have high level of misdiagnosis recorded on the part of physicians. In this paper, an intelligent system has been developed for diagnosis of heart attack in the health sector. Dataset of heart attack obtained from UCI repository has been used. This dataset is made up of thirteen attributes which are very vital in diagnosis of heart disease. The system is developed on the multilayer perceptron trained with back propagation neural network then simulated with feed forward neural network and a recognition rate of 87% was obtained which is a good result for diagnosis of heart attack in medical field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heart%20attack" title="heart attack">heart attack</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20system" title=" intelligent system"> intelligent system</a> </p> <a href="https://publications.waset.org/abstracts/33844/intelligent-system-for-diagnosis-heart-attack-using-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">655</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9295</span> A Psychoanalytical Approach to Edgar A. Poe’s Short Story ‘The Tell-Tale Heart’</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Antonio%20N%C3%BA%C3%B1ez">José Antonio Núñez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sigmund Freud’s Theory of Psychoanalysis was a groundbreaking contribution to the province of the human psyche and behavior. Nowadays, psychoanalytic theory is applied to numerous fields. One of them is literature. Literary criticism has put into practice the basis of Freud’s idea to analyze literary works. This essay is about the analysis of Edgar A. Poe’s short story ‘The Tell-Tale Heart,’ under the lens of Freud’s psychoanalytical perspective. In 1919, it was published ‘Das Unheimliche’ (The Uncanny) by Freud. On this article, the famous Austrian psychoanalyst showed his explanations about what he called ‘the uncanny,’ and its relation to the human unconscious. In this paper, Freud’s famous article has been used to analyze Poe’s short story ‘The Tell-Tale Heart,’ and to find the analogies that exist between Poe’s macabre short story and Freud’s theory of ‘the uncanny.’ <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=psychoanalysis" title="psychoanalysis">psychoanalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=theory%20of%20the%20unconscious" title=" theory of the unconscious"> theory of the unconscious</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20uncanny" title=" the uncanny"> the uncanny</a>, <a href="https://publications.waset.org/abstracts/search?q=unheimlich" title=" unheimlich"> unheimlich</a> </p> <a href="https://publications.waset.org/abstracts/71692/a-psychoanalytical-approach-to-edgar-a-poes-short-story-the-tell-tale-heart" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">645</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9294</span> Development of Sleep Quality Index Using Heart Rate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dongjoo%20Kim">Dongjoo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Sik%20Son"> Chang-Sik Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Won-Seok%20Kang"> Won-Seok Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adequate sleep affects various parts of one&rsquo;s overall physical and mental life. As one of the methods in determining the appropriate amount of sleep, this research presents a heart rate based sleep quality index. In order to evaluate sleep quality using the heart rate, sleep data from 280 subjects taken over one month are used. Their sleep data are categorized by a three-part heart rate range. After categorizing, some features are extracted, and the statistical significances are verified for these features. The results show that some features of this sleep quality index model have statistical significance. Thus, this heart rate based sleep quality index may be a useful discriminator of sleep. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sleep" title="sleep">sleep</a>, <a href="https://publications.waset.org/abstracts/search?q=sleep%20quality" title=" sleep quality"> sleep quality</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate" title=" heart rate"> heart rate</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20analysis" title=" statistical analysis"> statistical analysis</a> </p> <a href="https://publications.waset.org/abstracts/52817/development-of-sleep-quality-index-using-heart-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9293</span> Development of Soft-Core System for Heart Rate and Oxygen Saturation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caje%20F.%20Pinto">Caje F. Pinto</a>, <a href="https://publications.waset.org/abstracts/search?q=Jivan%20S.%20Parab"> Jivan S. Parab</a>, <a href="https://publications.waset.org/abstracts/search?q=Gourish%20M.%20Naik"> Gourish M. Naik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is about the development of non-invasive heart rate and oxygen saturation in human blood using Altera NIOS II soft-core processor system. In today&#39;s world, monitoring oxygen saturation and heart rate is very important in hospitals to keep track of low oxygen levels in blood. We have designed an Embedded System On Peripheral Chip (SOPC) reconfigurable system by interfacing two LED&rsquo;s of different wavelengths (660 nm/940 nm) with a single photo-detector to measure the absorptions of hemoglobin species at different wavelengths. The implementation of the interface with Finger Probe and Liquid Crystal Display (LCD) was carried out using NIOS II soft-core system running on Altera NANO DE0 board having target as Cyclone IVE. This designed system is used to monitor oxygen saturation in blood and heart rate for different test subjects. The designed NIOS II processor based non-invasive heart rate and oxygen saturation was verified with another Operon Pulse oximeter for 50 measurements on 10 different subjects. It was found that the readings taken were very close to the Operon Pulse oximeter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heart%20rate" title="heart rate">heart rate</a>, <a href="https://publications.waset.org/abstracts/search?q=NIOS%20II" title=" NIOS II"> NIOS II</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20saturation" title=" oxygen saturation"> oxygen saturation</a>, <a href="https://publications.waset.org/abstracts/search?q=photoplethysmography" title=" photoplethysmography"> photoplethysmography</a>, <a href="https://publications.waset.org/abstracts/search?q=soft-core" title=" soft-core"> soft-core</a>, <a href="https://publications.waset.org/abstracts/search?q=SOPC" title=" SOPC"> SOPC</a> </p> <a href="https://publications.waset.org/abstracts/82788/development-of-soft-core-system-for-heart-rate-and-oxygen-saturation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9292</span> Human Health and Omega 3 Fatty Acids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinpa%20Palmo">Jinpa Palmo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In many research, omega 3 fatty acid which is a polyunsaturated fatty acids is proved to be very important and essential nutrients having many different health benefits but apart from other fatty acids, it cannot be synthesise by our human body. Therefore, we have to get these fatty acids by consuming diets and supplements rich in it. Even though human beings can live by consuming other important nutrients but can live much healthier and longer by consuming omega 3 fatty acids. American heart association AHA recommends for daily intake of omega 3 fatty acids specially by those people with coronary heart disease. Fish considering as nutritional valuable animal is mostly due to its lipid content (fish oil) in which these omega 3 fatty acids are present very significantly. Fish does not actually produce these omega 3 fatty acid in their body, but receive these fatty acids through the food web in which phytoplankton are the chief source of these omega fatty acids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid" title="fatty acid">fatty acid</a>, <a href="https://publications.waset.org/abstracts/search?q=fish" title=" fish"> fish</a>, <a href="https://publications.waset.org/abstracts/search?q=disease" title=" disease"> disease</a>, <a href="https://publications.waset.org/abstracts/search?q=health" title=" health"> health</a> </p> <a href="https://publications.waset.org/abstracts/157895/human-health-and-omega-3-fatty-acids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9291</span> Chest Pain as a Predictor for Heart Issues in Geriatrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leila%20Kargar">Leila Kargar</a>, <a href="https://publications.waset.org/abstracts/search?q=Homa%20Abri"> Homa Abri</a>, <a href="https://publications.waset.org/abstracts/search?q=Golsa%20Safai"> Golsa Safai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The occurrence of chest pain among geriatrics could be considered as a predictor of heart issues. There is a need for attention to this pain among this population. This review paper has tried to collect the recent data with attention to the chest pain among geriatrics. This review paper has focused on specific keywords, including chest pain, heart issues, and geriatrics, among published papers from 2015 till 2020. To collect data for this purpose, Scopus, Web of Sciences, and PubMed were used. After inserting related papers to the Endnote, an independent researcher checked the abstract, and papers with unclear methods or non-English language were excluded. Finally, 7-papers were included in this review paper. The findings of those papers showed that chest pain could be a predictor for heart issues, and also, there is a direct relationship between chest pain and heart issues among geriatrics. So, early detection and an accurate decision could be helpful to prevent heart issues in this population. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pain" title="pain">pain</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20issue" title=" heart issue"> heart issue</a>, <a href="https://publications.waset.org/abstracts/search?q=geriatrics" title=" geriatrics"> geriatrics</a>, <a href="https://publications.waset.org/abstracts/search?q=health" title=" health"> health</a> </p> <a href="https://publications.waset.org/abstracts/140884/chest-pain-as-a-predictor-for-heart-issues-in-geriatrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9290</span> Slovenia in the Heart of Europe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20%C5%BDibert">M. Žibert</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20%C5%A0pindler"> T. Špindler</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Uhan"> S. Uhan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Lisec"> A. Lisec</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We can find Slovenia in the heart of Europe and has really good geographical location. With same slogan are promoted Switzerland, Montenegro, Greece and probably many others. However, from anatomic point of view, injustice is being made to someone because the heart is placed only in left part of chest cavity and there we can`t find place for the entire territory from Switzerland to the south of Balkan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ljubljana" title="Ljubljana">Ljubljana</a>, <a href="https://publications.waset.org/abstracts/search?q=logistics" title=" logistics"> logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=Slovenia" title=" Slovenia"> Slovenia</a>, <a href="https://publications.waset.org/abstracts/search?q=tourism" title=" tourism"> tourism</a> </p> <a href="https://publications.waset.org/abstracts/13625/slovenia-in-the-heart-of-europe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9289</span> Determination of Myocardial Function Using Heart Accumulated Radiopharmaceuticals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20C%20.D.%20Kulathilake">C. C .D. Kulathilake</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jayatilake"> M. Jayatilake</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Takahashi"> T. Takahashi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The myocardium is composed of specialized muscle which relies mainly on fatty acid and sugar metabolism and it is widely contribute to the heart functioning. The changes of the cardiac energy-producing system during heart failure have been proved using autoradiography techniques. This study focused on evaluating sugar and fatty acid metabolism in myocardium as cardiac energy getting system using heart-accumulated radiopharmaceuticals. Two sets of autoradiographs of heart cross sections of Lewis male rats were analyzed and the time- accumulation curve obtained with use of the MATLAB image processing software to evaluate fatty acid and sugar metabolic functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autoradiographs" title="autoradiographs">autoradiographs</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid" title=" fatty acid"> fatty acid</a>, <a href="https://publications.waset.org/abstracts/search?q=radiopharmaceuticals" title=" radiopharmaceuticals"> radiopharmaceuticals</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar" title=" sugar"> sugar</a> </p> <a href="https://publications.waset.org/abstracts/33660/determination-of-myocardial-function-using-heart-accumulated-radiopharmaceuticals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9288</span> Empowering a New Frontier in Heart Disease Detection: Unleashing Quantum Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadia%20Nasrin%20Tisha">Sadia Nasrin Tisha</a>, <a href="https://publications.waset.org/abstracts/search?q=Mushfika%20Sharmin%20Rahman"> Mushfika Sharmin Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Javier%20Orduz"> Javier Orduz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Machine learning is applied in a variety of fields throughout the world. The healthcare sector has benefited enormously from it. One of the most effective approaches for predicting human heart diseases is to use machine learning applications to classify data and predict the outcome as a classification. However, with the rapid advancement of quantum technology, quantum computing has emerged as a potential game-changer for many applications. Quantum algorithms have the potential to execute substantially faster than their classical equivalents, which can lead to significant improvements in computational performance and efficiency. In this study, we applied quantum machine learning concepts to predict coronary heart diseases from text data. We experimented thrice with three different features; and three feature sets. The data set consisted of 100 data points. We pursue to do a comparative analysis of the two approaches, highlighting the potential benefits of quantum machine learning for predicting heart diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20machine%20learning" title="quantum machine learning">quantum machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM" title=" SVM"> SVM</a>, <a href="https://publications.waset.org/abstracts/search?q=QSVM" title=" QSVM"> QSVM</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20product%20state" title=" matrix product state"> matrix product state</a> </p> <a href="https://publications.waset.org/abstracts/171382/empowering-a-new-frontier-in-heart-disease-detection-unleashing-quantum-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9287</span> Poincare Plot for Heart Rate Variability </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mazhar%20B.%20Tayel">Mazhar B. Tayel</a>, <a href="https://publications.waset.org/abstracts/search?q=Eslam%20I.%20AlSaba"> Eslam I. AlSaba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heart is the most important part in any body organisms. It effects and affected by any factor in the body. Therefore, it is a good detector of any matter in the body. When the heart signal is non-stationary signal, therefore, it should be study its variability. So, the Heart Rate Variability (HRV) has attracted considerable attention in psychology, medicine and have become important dependent measure in psychophysiology and behavioral medicine. Quantification and interpretation of heart rate variability. However, remain complex issues are fraught with pitfalls. This paper presents one of the non-linear techniques to analyze HRV. It discusses 'What Poincare plot is?', 'How it is work?', 'its usage benefits especially in HRV', 'the limitation of Poincare cause of standard deviation SD1, SD2', and 'How overcome this limitation by using complex correlation measure (CCM)'. The CCM is most sensitive to changes in temporal structure of the Poincaré plot as compared to SD1 and SD2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heart%20rate%20variability" title="heart rate variability">heart rate variability</a>, <a href="https://publications.waset.org/abstracts/search?q=chaotic%20system" title=" chaotic system"> chaotic system</a>, <a href="https://publications.waset.org/abstracts/search?q=poincare" title=" poincare"> poincare</a>, <a href="https://publications.waset.org/abstracts/search?q=variance" title=" variance"> variance</a>, <a href="https://publications.waset.org/abstracts/search?q=standard%20deviation" title=" standard deviation"> standard deviation</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20correlation%20measure" title=" complex correlation measure"> complex correlation measure</a> </p> <a href="https://publications.waset.org/abstracts/35154/poincare-plot-for-heart-rate-variability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9286</span> Dissection of the Impact of Diabetes Type on Heart Failure across Age Groups: A Systematic Review of Publication Patterns on PubMed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nazanin%20Ahmadi%20Daryakenari">Nazanin Ahmadi Daryakenari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Diabetes significantly influences the risk of heart failure. The interplay between distinct types of diabetes, heart failure, and their distribution across various age groups remains an area of active exploration. This study endeavors to scrutinize the age group distribution in publications addressing Type 1 and Type 2 diabetes and heart failure on PubMed while also examining the evolving publication trends. Methods: We leveraged E-utilities and RegEx to search and extract publication data from PubMed using various mesh terms. Subsequently, we conducted descriptive statistics and t-tests to discern the differences between the two diabetes types and the distribution across age groups. Finally, we analyzed the temporal trends of publications concerning both types of diabetes and heart failure. Results: Our findings revealed a divergence in the age group distribution between Type 1 and Type 2 diabetes within heart failure publications. Publications discussing Type 2 diabetes and heart failure were more predominant among older age groups, whereas those addressing Type 1 diabetes and heart failure displayed a more balanced distribution across all age groups. The t-test revealed no significant difference in the means between the two diabetes types. However, the number of publications exploring the relationship between Type 2 diabetes and heart failure has seen a steady increase over time, suggesting an escalating interest in this area. Conclusion: The dissection of publication patterns on PubMed uncovers a pronounced association between Type 2 diabetes and heart failure within older age groups. This highlights the critical need to comprehend the distinct age group differences when examining diabetes and heart failure to inform and refine targeted prevention and treatment strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Type%201%20diabetes" title="Type 1 diabetes">Type 1 diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=Type%202%20diabetes" title=" Type 2 diabetes"> Type 2 diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20failure" title=" heart failure"> heart failure</a>, <a href="https://publications.waset.org/abstracts/search?q=age%20groups" title=" age groups"> age groups</a>, <a href="https://publications.waset.org/abstracts/search?q=publication%20patterns" title=" publication patterns"> publication patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=PubMed" title=" PubMed"> PubMed</a> </p> <a href="https://publications.waset.org/abstracts/174151/dissection-of-the-impact-of-diabetes-type-on-heart-failure-across-age-groups-a-systematic-review-of-publication-patterns-on-pubmed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9285</span> Heart Attack Prediction Using Several Machine Learning Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suzan%20Anwar">Suzan Anwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Utkarsh%20Goyal"> Utkarsh Goyal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heart rate (HR) is a predictor of cardiovascular, cerebrovascular, and all-cause mortality in the general population, as well as in patients with cardio and cerebrovascular diseases. Machine learning (ML) significantly improves the accuracy of cardiovascular risk prediction, increasing the number of patients identified who could benefit from preventive treatment while avoiding unnecessary treatment of others. This research examines relationship between the individual's various heart health inputs like age, sex, cp, trestbps, thalach, oldpeaketc, and the likelihood of developing heart disease. Machine learning techniques like logistic regression and decision tree, and Python are used. The results of testing and evaluating the model using the Heart Failure Prediction Dataset show the chance of a person having a heart disease with variable accuracy. Logistic regression has yielded an accuracy of 80.48% without data handling. With data handling (normalization, standardscaler), the logistic regression resulted in improved accuracy of 87.80%, decision tree 100%, random forest 100%, and SVM 100%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heart%20rate" title="heart rate">heart rate</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM" title=" SVM"> SVM</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20regression" title=" logistic regression"> logistic regression</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest" title=" random forest"> random forest</a> </p> <a href="https://publications.waset.org/abstracts/150492/heart-attack-prediction-using-several-machine-learning-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9284</span> Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jia%20Xin%20Low">Jia Xin Low</a>, <a href="https://publications.waset.org/abstracts/search?q=Keng%20Wah%20Choo"> Keng Wah Choo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title="convolutional neural network">convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20wavelet%20transform" title=" discrete wavelet transform"> discrete wavelet transform</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20sound%20classification" title=" heart sound classification"> heart sound classification</a> </p> <a href="https://publications.waset.org/abstracts/85039/automatic-classification-of-periodic-heart-sounds-using-convolutional-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9283</span> Personalized Tissues and Organs Replacement – a Peek into the Future</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asaf%20Toker">Asaf Toker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Matricelf developed a technology that enables the production of autologous engineered tissue composed of matrix and cells derived from patients Omentum biopsy. The platform showed remarkable pre-clinical results for several medical conditions. The company recently licensed the technology that enabled scientist at Tel Aviv university that 3D printed a human heart from human cells and matrix for the first time in human history. The company plans to conduct its first human clinical trial for Acute Spinal Cord Injury (SCI) early in 2023. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title="tissue engineering">tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=regenerative%20medicine" title=" regenerative medicine"> regenerative medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=spinal%20Cord%20Injury" title=" spinal Cord Injury"> spinal Cord Injury</a>, <a href="https://publications.waset.org/abstracts/search?q=autologous%20implants" title=" autologous implants"> autologous implants</a>, <a href="https://publications.waset.org/abstracts/search?q=iPSC" title=" iPSC "> iPSC </a> </p> <a href="https://publications.waset.org/abstracts/129599/personalized-tissues-and-organs-replacement-a-peek-into-the-future" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9282</span> Relationship between Different Heart Rate Control Levels and Risk of Heart Failure Rehospitalization in Patients with Persistent Atrial Fibrillation: A Retrospective Cohort Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yongrong%20Liu">Yongrong Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Tang"> Xin Tang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Persistent atrial fibrillation is a common arrhythmia closely related to heart failure. Heart rate control is an essential strategy for treating persistent atrial fibrillation. Still, the understanding of the relationship between different heart rate control levels and the risk of heart failure rehospitalization is limited. Objective: The objective of the study is to determine the relationship between different levels of heart rate control in patients with persistent atrial fibrillation and the risk of readmission for heart failure. Methods: We conducted a retrospective dual-centre cohort study, collecting data from patients with persistent atrial fibrillation who received outpatient treatment at two tertiary hospitals in central and western China from March 2019 to March 2020. The collected data included age, gender, body mass index (BMI), medical history, and hospitalization frequency due to heart failure. Patients were divided into three groups based on their heart rate control levels: Group I with a resting heart rate of less than 80 beats per minute, Group II with a resting heart rate between 80 and 100 beats per minute, and Group III with a resting heart rate greater than 100 beats per minute. The readmission rates due to heart failure within one year after discharge were statistically analyzed using propensity score matching in a 1:1 ratio. Differences in readmission rates among the different groups were compared using one-way ANOVA. The impact of varying levels of heart rate control on the risk of readmission for heart failure was assessed using the Cox proportional hazards model. Binary logistic regression analysis was employed to control for potential confounding factors. Results: We enrolled a total of 1136 patients with persistent atrial fibrillation. The results of the one-way ANOVA showed that there were differences in readmission rates among groups exposed to different levels of heart rate control. The readmission rates due to heart failure for each group were as follows: Group I (n=432): 31 (7.17%); Group II (n=387): 11.11%; Group III (n=317): 90 (28.50%) (F=54.3, P<0.001). After performing 1:1 propensity score matching for the different groups, 223 pairs were obtained. Analysis using the Cox proportional hazards model showed that compared to Group I, the risk of readmission for Group II was 1.372 (95% CI: 1.125-1.682, P<0.001), and for Group III was 2.053 (95% CI: 1.006-5.437, P<0.001). Furthermore, binary logistic regression analysis, including variables such as digoxin, hypertension, smoking, coronary heart disease, and chronic obstructive pulmonary disease as independent variables, revealed that coronary heart disease and COPD also had a significant impact on readmission due to heart failure (p<0.001). Conclusion: The correlation between the heart rate control level of patients with persistent atrial fibrillation and the risk of heart failure rehospitalization is positive. Reasonable heart rate control may significantly reduce the risk of heart failure rehospitalization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heart%20rate%20control%20levels" title="heart rate control levels">heart rate control levels</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20failure%20rehospitalization" title=" heart failure rehospitalization"> heart failure rehospitalization</a>, <a href="https://publications.waset.org/abstracts/search?q=persistent%20atrial%20fibrillation" title=" persistent atrial fibrillation"> persistent atrial fibrillation</a>, <a href="https://publications.waset.org/abstracts/search?q=retrospective%20cohort%20study" title=" retrospective cohort study"> retrospective cohort study</a> </p> <a href="https://publications.waset.org/abstracts/177767/relationship-between-different-heart-rate-control-levels-and-risk-of-heart-failure-rehospitalization-in-patients-with-persistent-atrial-fibrillation-a-retrospective-cohort-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9281</span> Intelligent Prediction System for Diagnosis of Heart Attack</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oluwaponmile%20David%20Alao">Oluwaponmile David Alao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to an increase in the death rate as a result of heart attack. There is need to develop a system that can be useful in the diagnosis of the disease at the medical centre. This system will help in preventing misdiagnosis that may occur from the medical practitioner or the physicians. In this research work, heart disease dataset obtained from UCI repository has been used to develop an intelligent prediction diagnosis system. The system is modeled on a feedforwad neural network and trained with back propagation neural network. A recognition rate of 86% is obtained from the testing of the network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heart%20disease" title="heart disease">heart disease</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction%20system" title=" prediction system"> prediction system</a> </p> <a href="https://publications.waset.org/abstracts/33508/intelligent-prediction-system-for-diagnosis-of-heart-attack" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9280</span> An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing Electrocardiogram Based on ResNet and Bi-Long Short-Term Memory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zhang">Yang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian%20He"> Jian He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper introduces sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for coronary heart disease prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bi-LSTM" title="Bi-LSTM">Bi-LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=CHD" title=" CHD"> CHD</a>, <a href="https://publications.waset.org/abstracts/search?q=ECG" title=" ECG"> ECG</a>, <a href="https://publications.waset.org/abstracts/search?q=ResNet" title=" ResNet"> ResNet</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%C2%A0window" title=" sliding window"> sliding window</a> </p> <a href="https://publications.waset.org/abstracts/165165/an-auxiliary-technique-for-coronary-heart-disease-prediction-by-analyzing-electrocardiogram-based-on-resnet-and-bi-long-short-term-memory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9279</span> Wavelet-Based Classification of Myocardial Ischemia, Arrhythmia, Congestive Heart Failure and Sleep Apnea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Santanu%20Chattopadhyay">Santanu Chattopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Gautam%20Sarkar"> Gautam Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Arabinda%20Das"> Arabinda Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents wavelet based classification of various heart diseases. Electrocardiogram signals of different heart patients have been studied. Statistical natures of electrocardiogram signals for different heart diseases have been compared with the statistical nature of electrocardiograms for normal persons. Under this study four different heart diseases have been considered as follows: Myocardial Ischemia (MI), Congestive Heart Failure (CHF), Arrhythmia and Sleep Apnea. Statistical nature of electrocardiograms for each case has been considered in terms of kurtosis values of two types of wavelet coefficients: approximate and detail. Nine wavelet decomposition levels have been considered in each case. Kurtosis corresponding to both approximate and detail coefficients has been considered for decomposition level one to decomposition level nine. Based on significant difference, few decomposition levels have been chosen and then used for classification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arrhythmia" title="arrhythmia">arrhythmia</a>, <a href="https://publications.waset.org/abstracts/search?q=congestive%20heart%20failure" title=" congestive heart failure"> congestive heart failure</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20wavelet%20transform" title=" discrete wavelet transform"> discrete wavelet transform</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocardiogram" title=" electrocardiogram"> electrocardiogram</a>, <a href="https://publications.waset.org/abstracts/search?q=myocardial%20ischemia" title=" myocardial ischemia"> myocardial ischemia</a>, <a href="https://publications.waset.org/abstracts/search?q=sleep%20apnea" title=" sleep apnea"> sleep apnea</a> </p> <a href="https://publications.waset.org/abstracts/112333/wavelet-based-classification-of-myocardial-ischemia-arrhythmia-congestive-heart-failure-and-sleep-apnea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9278</span> Computational Fluid Dynamics Simulation and Comparison of Flow through Mechanical Heart Valve Using Newtonian and Non-Newtonian Fluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20%C5%A0ediv%C3%BD">D. Šedivý</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Fialov%C3%A1"> S. Fialová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this study is to show differences between the numerical solution of the flow through the artificial heart valve using Newtonian or non-Newtonian fluid. The simulation was carried out by a commercial computational fluid dynamics (CFD) package based on finite-volume method. An aortic bileaflet heart valve (Sorin Bicarbon) was used as a pattern for model of real heart valve replacement. Computed tomography (CT) was used to gain the accurate parameters of the valve. Data from CT were transferred in the commercial 3D designer, where the model for CFD was made. Carreau rheology model was applied as non-Newtonian fluid. Physiological data of cardiac cycle were used as boundary conditions. Outputs were taken the leaflets excursion from opening to closure and the fluid dynamics through the valve. This study also includes experimental measurement of pressure fields in ambience of valve for verification numerical outputs. Results put in evidence a favorable comparison between the computational solutions of flow through the mechanical heart valve using Newtonian and non-Newtonian fluid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20modeling" title="computational modeling">computational modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20mesh" title=" dynamic mesh"> dynamic mesh</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20heart%20valve" title=" mechanical heart valve"> mechanical heart valve</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Newtonian%20fluid" title=" non-Newtonian fluid"> non-Newtonian fluid</a> </p> <a href="https://publications.waset.org/abstracts/70433/computational-fluid-dynamics-simulation-and-comparison-of-flow-through-mechanical-heart-valve-using-newtonian-and-non-newtonian-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=human%20heart&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=human%20heart&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=human%20heart&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=human%20heart&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=human%20heart&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=human%20heart&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=human%20heart&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=human%20heart&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=human%20heart&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=human%20heart&amp;page=310">310</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=human%20heart&amp;page=311">311</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=human%20heart&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10