CINXE.COM
Search results for: laser beam machining
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: laser beam machining</title> <meta name="description" content="Search results for: laser beam machining"> <meta name="keywords" content="laser beam machining"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="laser beam machining" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="laser beam machining"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1957</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: laser beam machining</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1957</span> Axiomatic Design of Laser Beam Machining Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikhil%20Deshpande">Nikhil Deshpande</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Mahajan"> Rahul Mahajan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser Beam Machining (LBM) is a non-traditional machining process that has inherent problems like dross, striation, and Heat Affected Zone (HAZ) which reduce the quality of machining. In the present day scenario, these problems are controlled only by iteratively adjusting a large number of process parameters. This paper applies Axiomatic Design principles to design LBM process so as to eliminate the problem of dross and striation and minimize the effect of HAZ. Process parameters and their ranges are proposed to set-up the LBM process, execute the cut and finish the workpiece so as to obtain the best quality cut. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20beam%20machining" title="laser beam machining">laser beam machining</a>, <a href="https://publications.waset.org/abstracts/search?q=dross" title=" dross"> dross</a>, <a href="https://publications.waset.org/abstracts/search?q=striation" title=" striation"> striation</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20affected%20zone" title=" heat affected zone"> heat affected zone</a>, <a href="https://publications.waset.org/abstracts/search?q=axiomatic%20design" title=" axiomatic design"> axiomatic design</a> </p> <a href="https://publications.waset.org/abstracts/64156/axiomatic-design-of-laser-beam-machining-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1956</span> The Evaluation of Surface Integrity during Machining of Inconel 718 with Various Laser Assistance Strategies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Szymon%20Wojciechowski">Szymon Wojciechowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Damian%20Przestacki"> Damian Przestacki</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadeusz%20Chwalczuk"> Tadeusz Chwalczuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper is focused on the evaluation of surface integrity formed during turning of Inconel 718 with the application of various laser assistance strategies. The primary objective of the work was to determine the relations between the applied machining strategy and the obtained surface integrity, in order to select the effective cutting conditions allowing the obtainment of high surface quality. The carried out experiment included the machining of Inconel 718 in the conventional turning conditions, as well as during the continuous laser assisted machining and sequential laser assistance. The surface integrity was evaluated by the measurements of machined surface topographies, microstructures and the microhardness. Results revealed that surface integrity of Inconel 718 is strongly affected by the selected machining strategy. The significant improvement of the surface roughness formed during machining of Inconel 718, can be reached by the application of simultaneous laser heating and cutting (LAM). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Inconel%20718" title="Inconel 718">Inconel 718</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20assisted%20machining" title=" laser assisted machining"> laser assisted machining</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20integrity" title=" surface integrity"> surface integrity</a>, <a href="https://publications.waset.org/abstracts/search?q=turning" title=" turning"> turning</a> </p> <a href="https://publications.waset.org/abstracts/72088/the-evaluation-of-surface-integrity-during-machining-of-inconel-718-with-various-laser-assistance-strategies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1955</span> Laser Beam Micro-Drilling Effect on Ti-6Al-4V Titanium Alloy Sheet Properties </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Petr%20Homola">Petr Homola</a>, <a href="https://publications.waset.org/abstracts/search?q=Roman%20R%C5%AF%C5%BEek"> Roman Růžek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser beam micro-drilling (LBMD) is one of the most important non-contact machining processes of materials that are difficult to machine by means oeqf conventional machining methods used in various industries. The paper is focused on LBMD knock-down effect on Ti-6Al-4V (Grade 5) titanium alloy sheets properties. Two various process configurations were verified with a focus on laser damages in back-structure parts affected by the process. The effects of the LBMD on the material properties were assessed by means of tensile and fatigue tests and fracture surface analyses. Fatigue limit of LBMD configurations reached a significantly lower value between 15% and 30% of the static strength as compared to the reference raw material with 58% value. The farther back-structure configuration gives a two-fold fatigue life as compared to the closer LBMD configuration at a given stress applied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue" title="fatigue">fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20surface" title=" fracture surface"> fracture surface</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20beam%20micro-drilling" title=" laser beam micro-drilling"> laser beam micro-drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloy" title=" titanium alloy"> titanium alloy</a> </p> <a href="https://publications.waset.org/abstracts/96343/laser-beam-micro-drilling-effect-on-ti-6al-4v-titanium-alloy-sheet-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1954</span> Wobbled Laser Beam Welding for Macro-to Micro-Fabrication Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Vakili-Farahani">Farzad Vakili-Farahani</a>, <a href="https://publications.waset.org/abstracts/search?q=Joern%20Lungershausen"> Joern Lungershausen</a>, <a href="https://publications.waset.org/abstracts/search?q=Kilian%20Wasmer"> Kilian Wasmer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wobbled laser beam welding, fast oscillations of a tiny laser beam within a designed path (weld geometry) during the laser pulse illumination, opens new possibilities to improve the marco-to micro-manufacturing process. The present work introduces the wobbled laser beam welding as a robust welding strategy for improving macro-to micro-fabrication process, e.g., the laser processing for gap-bridging and packaging industry. The typical requisites and relevant equipment for the development of a wobbled laser processing unit are addressed, including a suitable laser source, light delivery system, optics, proper beam deflection system and the design geometry. In addition, experiments have been carried out on titanium plate to compare the results of wobbled laser welding with conventional pulsed laser welding. As compared to the pulsed laser welding, the wobbled laser welding offers a much greater fusion area (i.e. additional molten material) while minimizing the HAZ and provides a better confinement of the material microstructural changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wobbled%20laser%20beam%20welding" title="wobbled laser beam welding">wobbled laser beam welding</a>, <a href="https://publications.waset.org/abstracts/search?q=wobbling%20function" title=" wobbling function"> wobbling function</a>, <a href="https://publications.waset.org/abstracts/search?q=beam%20oscillation" title=" beam oscillation"> beam oscillation</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20welding" title=" micro welding"> micro welding</a> </p> <a href="https://publications.waset.org/abstracts/56603/wobbled-laser-beam-welding-for-macro-to-micro-fabrication-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1953</span> Self-Action Effects of a Non-Gaussian Laser Beam Through Plasma </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Kumar">Sandeep Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveen%20Gupta"> Naveen Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The propagation of the Non-Gaussian laser beam results in strong self-focusing as compare to the Gaussian laser beam, which helps to achieve a prerequisite of the plasma-based electron, Terahertz generation, and higher harmonic generations. The theoretical investigation on the evolution of non-Gaussian laser beam through the collisional plasma with ramped density has been presented. The non-uniform irradiance over the cross-section of the laser beam results in redistribution of the carriers that modifies the optical response of the plasma in such a way that the plasma behaves like a converging lens to the laser beam. The formulation is based on finding a semi-analytical solution of the nonlinear Schrodinger wave equation (NLSE) with the help of variational theory. It has been observed that the decentred parameter ‘q’ of laser and wavenumber of ripples of medium contribute to providing the required conditions for the improvement of self-focusing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-Gaussian%20beam" title="non-Gaussian beam">non-Gaussian beam</a>, <a href="https://publications.waset.org/abstracts/search?q=collisional%20plasma" title=" collisional plasma"> collisional plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20theory" title=" variational theory"> variational theory</a>, <a href="https://publications.waset.org/abstracts/search?q=self-focusing" title=" self-focusing"> self-focusing</a> </p> <a href="https://publications.waset.org/abstracts/124754/self-action-effects-of-a-non-gaussian-laser-beam-through-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1952</span> A Method to Predict the Thermo-Elastic Behavior of Laser-Integrated Machine Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Brecher">C. Brecher</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Fey"> M. Fey</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Du%20Bois-Reymond"> F. Du Bois-Reymond</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Neus"> S. Neus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing has emerged into a fast-growing section within the manufacturing technologies. Established machine tool manufacturers, such as DMG MORI, recently presented machine tools combining milling and laser welding. By this, machine tools can realize a higher degree of flexibility and a shorter production time. Still there are challenges that have to be accounted for in terms of maintaining the necessary machining accuracy - especially due to thermal effects arising through the use of high power laser processing units. To study the thermal behavior of laser-integrated machine tools, it is essential to analyze and simulate the thermal behavior of machine components, individual and assembled. This information will help to design a geometrically stable machine tool under the influence of high power laser processes. This paper presents an approach to decrease the loss of machining precision due to thermal impacts. Real effects of laser machining processes are considered and thus enable an optimized design of the machine tool, respective its components, in the early design phase. Core element of this approach is a matched FEM model considering all relevant variables arising, e.g. laser power, angle of laser beam, reflective coefficients and heat transfer coefficient. Hence, a systematic approach to obtain this matched FEM model is essential. Indicating the thermal behavior of structural components as well as predicting the laser beam path, to determine the relevant beam intensity on the structural components, there are the two constituent aspects of the method. To match the model both aspects of the method have to be combined and verified empirically. In this context, an essential machine component of a five axis machine tool, the turn-swivel table, serves as the demonstration object for the verification process. Therefore, a turn-swivel table test bench as well as an experimental set-up to measure the beam propagation were developed and are described in the paper. In addition to the empirical investigation, a simulative approach of the described types of experimental examination is presented. Concluding, it is shown that the method and a good understanding of the two core aspects, the thermo-elastic machine behavior and the laser beam path, as well as their combination helps designers to minimize the loss of precision in the early stages of the design phase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20beam%20machining" title=" laser beam machining"> laser beam machining</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20tool" title=" machine tool"> machine tool</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20effects" title=" thermal effects"> thermal effects</a> </p> <a href="https://publications.waset.org/abstracts/43054/a-method-to-predict-the-thermo-elastic-behavior-of-laser-integrated-machine-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1951</span> Second Harmonic Generation of Higher-Order Gaussian Laser Beam in Density Rippled Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyoti%20Wadhwa">Jyoti Wadhwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvinder%20Singh"> Arvinder Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents the theoretical investigation of an enhanced second-harmonic generation of higher-order Gaussian laser beam in plasma having a density ramp. The mechanism responsible for the self-focusing of a laser beam in plasma is considered to be the relativistic mass variation of plasma electrons under the effect of a highly intense laser beam. Using the moment theory approach and considering the Wentzel-Kramers-Brillouin approximation for the non-linear Schrodinger wave equation, the differential equation is derived, which governs the spot size of the higher-order Gaussian laser beam in plasma. The nonlinearity induced by the laser beam creates the density gradient in the background plasma electrons, which is responsible for the excitation of the electron plasma wave. The large amplitude electron plasma wave interacts with the fundamental beam, which further produces the coherent radiations with double the frequency of the incident beam. The analysis shows the important role of the different modes of higher-order Gaussian laser beam and density ramp on the efficiency of generated harmonics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20rippled%20plasma" title="density rippled plasma">density rippled plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20order%20Gaussian%20laser%20beam" title=" higher order Gaussian laser beam"> higher order Gaussian laser beam</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20theory%20approach" title=" moment theory approach"> moment theory approach</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20harmonic%20generation." title=" second harmonic generation. "> second harmonic generation. </a> </p> <a href="https://publications.waset.org/abstracts/124846/second-harmonic-generation-of-higher-order-gaussian-laser-beam-in-density-rippled-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1950</span> Modelling and Optimization of Laser Cutting Operations </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hany%20Mohamed%20Abdu">Hany Mohamed Abdu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hassan%20Gadallah"> Mohamed Hassan Gadallah</a>, <a href="https://publications.waset.org/abstracts/search?q=El-Giushi%20Mokhtar"> El-Giushi Mokhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yehia%20Mahmoud%20Ismail"> Yehia Mahmoud Ismail </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser beam cutting is one nontraditional machining process. This paper optimizes the parameters of Laser beam cutting machining parameters of Stainless steel (316L) by considering the effect of input parameters viz. power, oxygen pressure, frequency and cutting speed. Statistical design of experiments are carried in three different levels and process responses such as 'Average kerf taper (Ta)' and 'Surface Roughness (Ra)' are measured accordingly. A quadratic mathematical model (RSM) for each of the responses is developed as a function of the process parameters. Responses predicted by the models (as per Taguchi’s L27 OA) are employed to search for an optimal parametric combination to achieve desired yield of the process. RSM models are developed for mean responses, S/N ratio, and standard deviation of responses. Optimization models are formulated as single objective problem subject to process constraints. Models are formulated based on Analysis of Variance (ANOVA) using MATLAB environment. Optimum solutions are compared with Taguchi Methodology results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20cutting" title=" laser cutting"> laser cutting</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20design" title=" robust design"> robust design</a>, <a href="https://publications.waset.org/abstracts/search?q=kerf%20width" title=" kerf width"> kerf width</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=RSM%20and%20DOE" title=" RSM and DOE"> RSM and DOE</a> </p> <a href="https://publications.waset.org/abstracts/31831/modelling-and-optimization-of-laser-cutting-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">620</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1949</span> Comparison of Two Theories for the Critical Laser Radius in Thermal Quantum Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somaye%20Zare">Somaye Zare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The critical beam radius is a significant factor that predicts the behavior of the laser beam in the plasma, so if the laser beam radius is adequately greater in comparison to it, the beam will experience stable focusing on the plasma; otherwise, the beam will diverge after entering into the plasma. In this work, considering the paraxial approximation and moment theories, the localization of a relativistic laser beam in thermal quantum plasma is investigated. Using the dielectric function obtained in the quantum hydrodynamic model, the mathematical equation for the laser beam width parameter is attained and solved numerically by the fourth-order Runge-Kutta method. The results demonstrate that the stouter focusing effect is occurred in the moment theory compared to the paraxial approximation. Besides, similar to the two theories, with increasing Fermi temperature, plasma density, and laser intensity, the oscillation rate of the beam width parameter growths and focusing length reduces which means improving the focusing effect. Furthermore, it is understood that behaviors of the critical laser radius are different in the two theories, in the paraxial approximation, the critical radius after a minimum value is enhanced with increasing laser intensity, but in the moment theory, with increasing laser intensity, the critical radius decreases until it becomes independent of the laser intensity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20localization" title="laser localization">laser localization</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20plasma" title=" quantum plasma"> quantum plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=paraxial%20approximation" title=" paraxial approximation"> paraxial approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20theory" title=" moment theory"> moment theory</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20hydrodynamic%20model" title=" quantum hydrodynamic model"> quantum hydrodynamic model</a> </p> <a href="https://publications.waset.org/abstracts/171090/comparison-of-two-theories-for-the-critical-laser-radius-in-thermal-quantum-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1948</span> Numerical Simulation of Laser Propagation through Turbulent Atmosphere Using Zernike Polynomials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Moradi%20%E2%80%8E">Mohammad Moradi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, propagation of a laser beam through turbulent atmosphere is evaluated. At first the laser beam is simulated and then turbulent atmosphere will be simulated by using Zernike polynomials. Some parameter like intensity, PSF will be measured for four wavelengths in different Cn2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20beam%20propagation" title="laser beam propagation">laser beam propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20screen" title=" phase screen"> phase screen</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20atmosphere" title=" turbulent atmosphere"> turbulent atmosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=Zernike%20%E2%80%8Epolynomials" title=" Zernike polynomials"> Zernike polynomials</a> </p> <a href="https://publications.waset.org/abstracts/35907/numerical-simulation-of-laser-propagation-through-turbulent-atmosphere-using-zernike-polynomials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1947</span> Laser Beam Bending via Lenses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Remzi%20Yildirim">Remzi Yildirim</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatih.%20V.%20%C3%87elebi"> Fatih. V. Çelebi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Haldun%20G%C3%B6kta%C5%9F"> H. Haldun Göktaş</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Behzat%20%C5%9Eahin"> A. Behzat Şahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is about a single component cylindrical structured lens with gradient curve which we used for bending laser beams. It operates under atmospheric conditions and bends the laser beam independent of temperature, pressure, polarity, polarization, magnetic field, electric field, radioactivity, and gravity. A single piece cylindrical lens that can bend laser beams is invented. Lenses are made of transparent, tinted or colored glasses and used for undermining or absorbing the energy of the laser beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser" title="laser">laser</a>, <a href="https://publications.waset.org/abstracts/search?q=bending" title=" bending"> bending</a>, <a href="https://publications.waset.org/abstracts/search?q=lens" title=" lens"> lens</a>, <a href="https://publications.waset.org/abstracts/search?q=light" title=" light"> light</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20optics" title=" nonlinear optics"> nonlinear optics</a> </p> <a href="https://publications.waset.org/abstracts/22254/laser-beam-bending-via-lenses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1946</span> The Inverse Problem in Energy Beam Processes Using Discrete Adjoint Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aitor%20Bilbao">Aitor Bilbao</a>, <a href="https://publications.waset.org/abstracts/search?q=Dragos%20Axinte"> Dragos Axinte</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Billingham"> John Billingham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inverse problem in Energy Beam (EB) Processes consists of defining the control parameters, in particular the 2D beam path (position and orientation of the beam as a function of time), to arrive at a prescribed solution (freeform surface). This inverse problem is well understood for conventional machining, because the cutting tool geometry is well defined and the material removal is a time independent process. In contrast, EB machining is achieved through the local interaction of a beam of particular characteristics (e.g. energy distribution), which leads to a surface-dependent removal rate. Furthermore, EB machining is a time-dependent process in which not only the beam varies with the dwell time, but any acceleration/deceleration of the machine/beam delivery system, when performing raster paths will influence the actual geometry of the surface to be generated. Two different EB processes, Abrasive Water Machining (AWJM) and Pulsed Laser Ablation (PLA), are studied. Even though they are considered as independent different technologies, both can be described as time-dependent processes. AWJM can be considered as a continuous process and the etched material depends on the feed speed of the jet at each instant during the process. On the other hand, PLA processes are usually defined as discrete systems and the total removed material is calculated by the summation of the different pulses shot during the process. The overlapping of these shots depends on the feed speed and the frequency between two consecutive shots. However, if the feed speed is sufficiently slow compared with the frequency, then consecutive shots are close enough and the behaviour can be similar to a continuous process. Using this approximation a generic continuous model can be described for both processes. The inverse problem is usually solved for this kind of process by simply controlling dwell time in proportion to the required depth of milling at each single pixel on the surface using a linear model of the process. However, this approach does not always lead to the good solution since linear models are only valid when shallow surfaces are etched. The solution of the inverse problem is improved by using a discrete adjoint optimization algorithm. Moreover, the calculation of the Jacobian matrix consumes less computation time than finite difference approaches. The influence of the dynamics of the machine on the actual movement of the jet is also important and should be taken into account. When the parameters of the controller are not known or cannot be changed, a simple approximation is used for the choice of the slope of a step profile. Several experimental tests are performed for both technologies to show the usefulness of this approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abrasive%20waterjet%20machining" title="abrasive waterjet machining">abrasive waterjet machining</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20beam%20processes" title=" energy beam processes"> energy beam processes</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20problem" title=" inverse problem"> inverse problem</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed%20laser%20ablation" title=" pulsed laser ablation"> pulsed laser ablation</a> </p> <a href="https://publications.waset.org/abstracts/49076/the-inverse-problem-in-energy-beam-processes-using-discrete-adjoint-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1945</span> An Integrated Approach for Optimal Selection of Machining Parameters in Laser Micro-Machining Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Gopala%20Krishna">A. Gopala Krishna</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Lakshmi%20Chaitanya"> M. Lakshmi Chaitanya</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Kalyana%20Manohar"> V. Kalyana Manohar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the existent analysis, laser micro machining (LMM) of Silicon carbide (SiCp) reinforced Aluminum 7075 Metal Matrix Composite (Al7075/SiCp MMC) was studied. While machining, Because of the intense heat generated, A layer gets formed on the work piece surface which is called recast layer and this layer is detrimental to the surface quality of the component. The recast layer needs to be as small as possible for precise applications. Therefore, The height of recast layer and the depth of groove which are conflicting in nature were considered as the significant manufacturing criteria, Which determines the pursuit of a machining process obtained in LMM of Al7075/10%SiCp composite. The present work formulates the depth of groove and height of recast layer in relation to the machining parameters using the Response Surface Methodology (RSM) and correspondingly, The formulated mathematical models were put to use for optimization. Since the effect of machining parameters on the depth of groove and height of recast layer was contradictory, The problem was explicated as a multi objective optimization problem. Moreover, An evolutionary Non-dominated sorting genetic algorithm (NSGA-II) was employed to optimize the model established by RSM. Subsequently this algorithm was also adapted to achieve the Pareto optimal set of solutions that provide a detailed illustration for making the optimal solutions. Eventually experiments were conducted to affirm the results obtained from RSM and NSGA-II. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laser%20Micro%20Machining%20%28LMM%29" title="Laser Micro Machining (LMM)">Laser Micro Machining (LMM)</a>, <a href="https://publications.waset.org/abstracts/search?q=depth%20of%20groove" title=" depth of groove"> depth of groove</a>, <a href="https://publications.waset.org/abstracts/search?q=Height%20of%20recast%20layer" title=" Height of recast layer"> Height of recast layer</a>, <a href="https://publications.waset.org/abstracts/search?q=Response%20Surface%20Methodology%20%28RSM%29" title=" Response Surface Methodology (RSM)"> Response Surface Methodology (RSM)</a>, <a href="https://publications.waset.org/abstracts/search?q=non-dominated%20sorting%20genetic%20algorithm" title=" non-dominated sorting genetic algorithm"> non-dominated sorting genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/1651/an-integrated-approach-for-optimal-selection-of-machining-parameters-in-laser-micro-machining-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1944</span> Investigation of Beam Defocusing Impact in Millisecond Laser Drilling for Variable Operational Currents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saad%20Nawaz">Saad Nawaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Gang">Yu Gang</a>, <a href="https://publications.waset.org/abstracts/search?q=Baber%20Saeed%20Olakh"> Baber Saeed Olakh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bilal%20Awan"> M. Bilal Awan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Owing to its exceptional performance and precision, laser drilling is being widely used in modern manufacturing industries. This experimental study mainly addressed the defocusing of laser beam along with different operational currents. The performance has been evaluated in terms of tapering phenomena, entrance and exit diameters etc. The operational currents have direct influence on laser power which ultimately affected the shape of the drilled hole. Different operational currents in low, medium and high ranges are used for laser drilling of 18CrNi8. Experiment results have depicted that there is an increase in entrance diameter with an increase in defocusing distance. However, the exit diameter first decreases and then increases with respect to increasing defocusing length. The evolution of drilled hole from tapered to straight hole has been explained with defocusing at different levels. The optimum parametric combinations for attaining perfect shape of drilled hole is proposed along with lower heat treatment effects for higher process efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=millisecond%20laser" title="millisecond laser">millisecond laser</a>, <a href="https://publications.waset.org/abstracts/search?q=defocusing%20beam" title=" defocusing beam"> defocusing beam</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20current" title=" operational current"> operational current</a>, <a href="https://publications.waset.org/abstracts/search?q=keyhole%20profile" title=" keyhole profile"> keyhole profile</a>, <a href="https://publications.waset.org/abstracts/search?q=recast%20layer" title=" recast layer"> recast layer</a> </p> <a href="https://publications.waset.org/abstracts/96126/investigation-of-beam-defocusing-impact-in-millisecond-laser-drilling-for-variable-operational-currents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1943</span> The Effect of Simultaneous Application of Laser Beam and Magnet in Treatment of Intervertebral Disc Herniation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Moghtaderi">Alireza Moghtaderi</a>, <a href="https://publications.waset.org/abstracts/search?q=Negin%20Khakpour"> Negin Khakpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Disc Herniation is a common complication in the society and it is one of the main reasons for referring to physical medicine and rehabilitation clinics. Despite of various methods proposed for treatingthis disease, still there is disagreement on success of these methods especially in non-surgical methods, and thus current study aims at determining effect of laser beam and magnet on treatment of Intervertebral Disc Herniation. During a clinical trial study, 80 patients with Intervertebral Disc Herniation underwent a combined package of treatment including magnet, laser beam, PRP and Prolotherapy during 6 months. Average age of patients was 51.25 ± 10.7 with range of 25 – 71 years. 30 men (37.5%) and 50 women (62.5%) took part in the study. average weight of patients was 64.3 ± 7.2 with range of 49 – 79 kg. highest level of Disc Herniation was L5 – S1 with frequency of 17 cases (21.3%). Disc Herniation was severe in 30 cases before treatment, but it reduced to 3 casesafter treatment. This study indicates effect of combined treatment using non-invasive laser beam and magnet therapy on disco genic diseases and mechanical pains of spine is highly effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hallux" title="hallux">hallux</a>, <a href="https://publications.waset.org/abstracts/search?q=valgus" title=" valgus"> valgus</a>, <a href="https://publications.waset.org/abstracts/search?q=botulinum%20toxin%20a" title=" botulinum toxin a"> botulinum toxin a</a>, <a href="https://publications.waset.org/abstracts/search?q=pain" title=" pain"> pain</a> </p> <a href="https://publications.waset.org/abstracts/149944/the-effect-of-simultaneous-application-of-laser-beam-and-magnet-in-treatment-of-intervertebral-disc-herniation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1942</span> Beam Spatio-Temporal Multiplexing Approach for Improving Control Accuracy of High Contrast Pulse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ping%20Li">Ping Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Bing%20Feng"> Bing Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Junpu%20Zhao"> Junpu Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xudong%20Xie"> Xudong Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Dangpeng%20Xu"> Dangpeng Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuixing%20Zheng"> Kuixing Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Qihua%20Zhu"> Qihua Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaofeng%20Wei"> Xiaofeng Wei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In laser driven inertial confinement fusion (ICF), the control of the temporal shape of the laser pulse is a key point to ensure an optimal interaction of laser-target. One of the main difficulties in controlling the temporal shape is the foot part control accuracy of high contrast pulse. Based on the analysis of pulse perturbation in the process of amplification and frequency conversion in high power lasers, an approach of beam spatio-temporal multiplexing is proposed to improve the control precision of high contrast pulse. In the approach, the foot and peak part of high contrast pulse are controlled independently, which propagate separately in the near field, and combine together in the far field to form the required pulse shape. For high contrast pulse, the beam area ratio of the two parts is optimized, and then beam fluence and intensity of the foot part are increased, which brings great convenience to the control of pulse. Meanwhile, the near field distribution of the two parts is also carefully designed to make sure their F-numbers are the same, which is another important parameter for laser-target interaction. The integrated calculation results show that for a pulse with a contrast of up to 500, the deviation of foot part can be improved from 20% to 5% by using beam spatio-temporal multiplexing approach with beam area ratio of 1/20, which is almost the same as that of peak part. The research results are expected to bring a breakthrough in power balance of high power laser facility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inertial%20confinement%20fusion" title="inertial confinement fusion">inertial confinement fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20pulse%20control" title=" laser pulse control"> laser pulse control</a>, <a href="https://publications.waset.org/abstracts/search?q=beam%20spatio-temporal%20multiplexing" title=" beam spatio-temporal multiplexing"> beam spatio-temporal multiplexing</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20balance" title=" power balance"> power balance</a> </p> <a href="https://publications.waset.org/abstracts/103616/beam-spatio-temporal-multiplexing-approach-for-improving-control-accuracy-of-high-contrast-pulse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1941</span> Laser Light Bending via Lenses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Remzi%20Yildirim">Remzi Yildirim</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatih%20V.%20%C3%87elebi"> Fatih V. Çelebi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Haldun%20G%C3%B6kta%C5%9F"> H. Haldun Göktaş</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Behzat%20%C5%9Eahin"> A. Behzat Şahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is about a single component cylindrical structured lens with gradient curve which we used for bending laser beams. It operates under atmospheric conditions and bends the laser beam independent of temperature, pressure, polarity, polarization, magnetic field, electric field, radioactivity, and gravity. A single piece cylindrical lens that can bend laser beams is invented. Lenses are made of transparent, tinted or colored glasses and used for undermining or absorbing the energy of the laser beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser" title="laser">laser</a>, <a href="https://publications.waset.org/abstracts/search?q=bending" title=" bending"> bending</a>, <a href="https://publications.waset.org/abstracts/search?q=lens" title=" lens"> lens</a>, <a href="https://publications.waset.org/abstracts/search?q=light" title=" light"> light</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20optics" title=" nonlinear optics"> nonlinear optics</a> </p> <a href="https://publications.waset.org/abstracts/22251/laser-light-bending-via-lenses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">703</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1940</span> Stimulated Raman Scattering of Ultra Intense Hollow Gaussian Beam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prerana%20Sharma">Prerana Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of relativistic nonlinearity on stimulated Raman scattering of the propagating laser beam carrying null intensity in center (hollow Gaussian beam) by excited plasma wave are studied in a collisionless plasma. The construction of the equations is done employing the fluid theory which is developed with partial differential equation and Maxwell’s equations. The analysis is done using eikonal method. The phenonmenon of Stimulated Raman scattering is shown along with the excitation of seed plasma wave. The power of plasma wave and back reflectivity is observed for higher order of hollow Gaussian beam. Back reflectivity is studied numerically for various orders of HGLB with different value of plasma density, laser power and beam radius. Numerical analysis shows that these parameters play vital role on reflectivity characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hollow%20Gaussian%20beam" title="Hollow Gaussian beam">Hollow Gaussian beam</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic%20nonlinearity" title=" relativistic nonlinearity"> relativistic nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20physics" title=" plasma physics"> plasma physics</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20scattering" title=" Raman scattering"> Raman scattering</a> </p> <a href="https://publications.waset.org/abstracts/15768/stimulated-raman-scattering-of-ultra-intense-hollow-gaussian-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">638</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1939</span> Effects of Two Cross Focused Intense Laser Beams On THz Generation in Rippled Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Kumar">Sandeep Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveen%20Gupta"> Naveen Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Terahertz (THz) generation has been investigated by beating two cosh-Gaussian laser beams of the same amplitude but different wavenumbers and frequencies through rippled collisionless plasma. The ponderomotive force is operative which is induced due to the intensity gradient of the laser beam over the cross-section area of the wavefront. The electrons evacuate towards a low-intensity regime, which modifies the dielectric function of the medium and results in cross focusing of cosh-Gaussian laser beams. The evolution of spot size of laser beams has been studied by solving nonlinear Schrodinger wave equation (NLSE) with variational technique. The laser beams impart oscillations to electrons which are enhanced with ripple density. The nonlinear oscillatory motion of electrons gives rise to a nonlinear current density driving THz radiation. It has been observed that the periodicity of the ripple density helps to enhance the THz radiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rippled%20collisionless%20plasma" title="rippled collisionless plasma">rippled collisionless plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=cosh-gaussian%20laser%20beam" title=" cosh-gaussian laser beam"> cosh-gaussian laser beam</a>, <a href="https://publications.waset.org/abstracts/search?q=ponderomotive%20force" title=" ponderomotive force"> ponderomotive force</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20technique" title=" variational technique"> variational technique</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20current%20density" title=" nonlinear current density"> nonlinear current density</a> </p> <a href="https://publications.waset.org/abstracts/139951/effects-of-two-cross-focused-intense-laser-beams-on-thz-generation-in-rippled-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1938</span> Laser Additive Manufacturing: A Literature Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pranav%20Mohan%20Parki">Pranav Mohan Parki</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Mallika%20Parveen"> C. Mallika Parveen</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahseen%20Ahmad%20Khan"> Tahseen Ahmad Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihika%20Shivkumar"> Mihika Shivkumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing (AM) is one of the several manufacturing processes in use today. AM comprises of techniques such as ‘Selective Laser Sintering’ and ‘Selective Laser Melting’ etc. along with other equipment and materials has been developed way back in 1980s, although major use of these methods has risen during the last decade. AM seems to be the most efficient way when compared to the traditional machining procedures. Still many problems continue to hinder its progress to becoming the most widely used of all. This paper contributes to the better understanding of AM and also aims at providing viable solutions to these problems, which may further help in enabling AM to become the most flaw free production method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing%20%28AM%29" title="additive manufacturing (AM)">additive manufacturing (AM)</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=prototype" title=" prototype"> prototype</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20sintering" title=" laser sintering"> laser sintering</a> </p> <a href="https://publications.waset.org/abstracts/44548/laser-additive-manufacturing-a-literature-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1937</span> Simultaneous Measurement of Displacement and Roll Angle of Object</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Furutani">R. Furutani</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Ishii"> K. Ishii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser interferometers are now widely used for length and displacement measurement. In conventional methods, the optical path difference between two mirrors, one of which is a reference mirror and the other is a target mirror, is measured, as in Michelson interferometry, or two target mirrors are set up and the optical path difference between the two targets is measured, as in differential interferometry. In these interferometers, the two laser beams pass through different optical elements so that the measurement result is affected by the vibration and other effects in the optical paths. In addition, it is difficult to measure the roll angle around the optical axis. The proposed interferometer simultaneously measures both the translational motion along the optical axis and the roll motion around it by combining the retroreflective principle of the ball lens (BL) and the polarization. This interferometer detects the interferogram by the two beams traveling along the identical optical path from the beam source to BL. This principle is expected to reduce external influences by using the interferogram between the two lasers in an identical optical path. The proposed interferometer uses a BL so that the reflected light from the lens travels on the identical optical path as the incident light. After reaching the aperture of the He-Ne laser oscillator, the reflected light is reflected by a mirror with a very high reflectivity installed in the aperture and is irradiated back toward the BL. Both the first laser beam that enters the BL and the second laser beam that enters the BL after the round trip interferes with each other, enabling the measurement of displacement along the optical axis. In addition, for the measurement of the roll motion, a quarter-wave plate is installed on the optical path to change the polarization state of the laser. The polarization states of the first laser beam and second laser beam are different by the roll angle of the target. As a result, this system can measure the displacement and the roll angle of BL simultaneously. It was verified by the simulation and the experiment that the proposed optical system could measure the displacement and the roll angle simultaneously. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=common%20path%20interferometer" title="common path interferometer">common path interferometer</a>, <a href="https://publications.waset.org/abstracts/search?q=displacement%20measurement" title=" displacement measurement"> displacement measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20interferometer" title=" laser interferometer"> laser interferometer</a>, <a href="https://publications.waset.org/abstracts/search?q=simultaneous%20measurement" title=" simultaneous measurement"> simultaneous measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=roll%20angle%20measurement" title=" roll angle measurement"> roll angle measurement</a> </p> <a href="https://publications.waset.org/abstracts/165172/simultaneous-measurement-of-displacement-and-roll-angle-of-object" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1936</span> Microstructures and Mechanical Property of ti6al4v - a Comparison between Selective Laser Melting, Electron Beam Melting and Spark Plasma Sintering </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javad%20Karimi">Javad Karimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Prashanth%20Konda%20Gokuldoss"> Prashanth Konda Gokuldoss</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microstructural inhomogeneity in additively manufactured materials affects the material properties. The present study aims in minimizing such microstructural inhomogeneity in Ti6Al4V alloy fabricated using selective laser melting (SLM) from the gas atomized powder. A detailed and systematic study of the effect of remelting on the microstructure and mechanical properties of Ti6Al4V manufactured by SLM was compared with electron beam melting and spark plasma sintering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20laser%20melting" title=" selective laser melting"> selective laser melting</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti6Al4V" title=" Ti6Al4V"> Ti6Al4V</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/129821/microstructures-and-mechanical-property-of-ti6al4v-a-comparison-between-selective-laser-melting-electron-beam-melting-and-spark-plasma-sintering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1935</span> Noncritical Phase-Matched Fourth Harmonic Generation of Converging Beam by Deuterated Potassium Dihydrogen Phosphate Crystal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiangxu%20Chai">Xiangxu Chai</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Feng"> Bin Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping%20Li"> Ping Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Deyan%20Zhu"> Deyan Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Liquan%20Wang"> Liquan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Guanzhong%20Wang"> Guanzhong Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yukun%20Jing"> Yukun Jing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In high power large-aperture laser systems, such as the inertial confinement fusion project, the Nd: glass laser (1053nm) is usually needed to be converted to ultraviolet (UV) light and the fourth harmonic generation (FHG) is one of the most favorite candidates to achieve UV light. Deuterated potassium dihydrogen phosphate (DKDP) crystal is an optimal choice for converting the Nd: glass radiation to the fourth harmonic laser by noncritical phase matching (NCPM). To reduce the damage probability of focusing lens, the DKDP crystal is suggested to be set before the focusing lens. And a converging beam enters the FHG crystal consequently. In this paper, we simulate the process of FHG in the scheme and the dependence of FHG efficiency on the lens’ F is derived. Besides, DKDP crystal with gradient deuterium is proposed to realize the NCPM FHG of the converging beam. At every position, the phase matching is achieved by adjusting the deuterium level, and the FHG efficiency increases as a result. The relation of the lens’ F with the deuterium gradient is investigated as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fourth%20harmonic%20generation" title="fourth harmonic generation">fourth harmonic generation</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20induced%20damage" title=" laser induced damage"> laser induced damage</a>, <a href="https://publications.waset.org/abstracts/search?q=converging%20beam" title=" converging beam"> converging beam</a>, <a href="https://publications.waset.org/abstracts/search?q=DKDP%20crystal" title=" DKDP crystal"> DKDP crystal</a> </p> <a href="https://publications.waset.org/abstracts/103692/noncritical-phase-matched-fourth-harmonic-generation-of-converging-beam-by-deuterated-potassium-dihydrogen-phosphate-crystal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1934</span> Probabilistic Modeling Laser Transmitter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Kang">H. S. Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coupled electrical and optical model for conversion of electrical energy into coherent optical energy for transmitter-receiver link by solid state device is presented. Probability distribution for travelling laser beam switching time intervals and the number of switchings in the time interval is obtained. Selector function mapping is employed to regulate optical data transmission speed. It is established that regulated laser transmission from PhotoActive Laser transmitter follows principal of invariance. This considerably simplifies design of PhotoActive Laser Transmission networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20mathematics" title="computational mathematics">computational mathematics</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20Markov%20chain%20methods" title=" finite difference Markov chain methods"> finite difference Markov chain methods</a>, <a href="https://publications.waset.org/abstracts/search?q=sequence%20spaces" title=" sequence spaces"> sequence spaces</a>, <a href="https://publications.waset.org/abstracts/search?q=singularly%20perturbed%20differential%20equations" title=" singularly perturbed differential equations"> singularly perturbed differential equations</a> </p> <a href="https://publications.waset.org/abstracts/8445/probabilistic-modeling-laser-transmitter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1933</span> Surface Roughness Formed during Hybrid Turning of Inconel Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawel%20Twardowski">Pawel Twardowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadeusz%20Chwalczuk"> Tadeusz Chwalczuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Szymon%20Wojciechowski"> Szymon Wojciechowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inconel 718 is a material characterized by the unique mechanical properties, high temperature strength, high thermal conductivity and the corrosion resistance. However, these features affect the low machinability of this material, which is usually manifested by the intense tool wear and low surface finish. Therefore, this paper is focused on the evaluation of surface roughness during hybrid machining of Inconel 718. The primary aim of the study was to determine the relations between the vibrations generated during hybrid turning and the formed surface roughness. Moreover, the comparison of tested machining techniques in terms of vibrations, tool wear and surface roughness has been made. The conducted tests included the face turning of Inconel 718 with laser assistance in the range of variable cutting speeds. The surface roughness was inspected with the application of stylus profile meter and accelerations of vibrations were measured with the use of three-component piezoelectric accelerometer. The carried out research shows that application of laser assisted machining can contribute to the reduction of surface roughness and cutting vibrations, in comparison to conventional turning. Moreover, the obtained results enable the selection of effective cutting speed allowing the improvement of surface finish and cutting dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20machining" title="hybrid machining">hybrid machining</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel%20alloys" title=" nickel alloys"> nickel alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=turning" title=" turning"> turning</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrations" title=" vibrations"> vibrations</a> </p> <a href="https://publications.waset.org/abstracts/72095/surface-roughness-formed-during-hybrid-turning-of-inconel-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1932</span> Nonlinear Optical Properties for Three Level Atoms at Resonance and Off-Resonance with Laser Coupled Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suad%20M.%20Abuzariba">Suad M. Abuzariba</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20O.%20Mafaa"> Eman O. Mafaa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For three level atom interacts with a laser beam, the effect of changing resonance and off-resonance frequencies has been studied. Furthermore, a clear distortion has been seen in both the real and imaginary parts of the electric susceptibility with increasing the frequency of the coupled laser beams so that reaching the off-resonance interaction. With increasing the Rabi frequency of the laser pulse that in resonance with the lower transition the distortion will produce a new peak in the electric susceptibility parts, in both the real and imaginary ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20susceptibility" title="electric susceptibility">electric susceptibility</a>, <a href="https://publications.waset.org/abstracts/search?q=resonance%20frequency%20off-resonance%20frequency" title=" resonance frequency off-resonance frequency"> resonance frequency off-resonance frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=three%20level%20atom" title=" three level atom"> three level atom</a>, <a href="https://publications.waset.org/abstracts/search?q=laser" title=" laser"> laser</a> </p> <a href="https://publications.waset.org/abstracts/64970/nonlinear-optical-properties-for-three-level-atoms-at-resonance-and-off-resonance-with-laser-coupled-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1931</span> Interferometric Demodulation Scheme Using a Mode-Locker Fiber Laser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liang%20Zhang">Liang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuanfu%20Lu"> Yuanfu Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuming%20Dong"> Yuming Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Guohua%20Jiao"> Guohua Jiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Chen"> Wei Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiancheng%20Lv"> Jiancheng Lv</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We demonstrated an interferometric demodulation scheme using a mode-locked fiber laser. The mode-locked fiber laser is launched into a two-beam interferometer. When the ratio between the fiber path imbalance of interferometer and the laser cavity length is close to an integer, an interferometric fringe emerges as a result of vernier effect, and then the phase shift of the interferometer can be demodulated. The mode-locked fiber laser provides a large bandwidth and reduces the cost for wavelength division multiplexion (WDM). The proposed interferometric demodulation scheme can be further applied in multi-point sensing system such as fiber optics hydrophone array, seismic wave detection network with high sensitivity and low cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20sensing" title="fiber sensing">fiber sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=interferometric%20demodulation" title=" interferometric demodulation"> interferometric demodulation</a>, <a href="https://publications.waset.org/abstracts/search?q=mode-locked%20fiber%20laser" title=" mode-locked fiber laser"> mode-locked fiber laser</a>, <a href="https://publications.waset.org/abstracts/search?q=vernier%20effect" title=" vernier effect"> vernier effect</a> </p> <a href="https://publications.waset.org/abstracts/48278/interferometric-demodulation-scheme-using-a-mode-locker-fiber-laser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1930</span> Flexible Integration of Airbag Weakening Lines in Interior Components: Airbag Weakening with Jenoptik Laser Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Markus%20Remm">Markus Remm</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Dienert"> Sebastian Dienert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vehicle interiors are not only changing in terms of design and functionality but also due to new driving situations in which, for example, autonomous operating modes are possible. Flexible seating positions are changing the requirements for passive safety system behavior and location in the interior of a vehicle. With fully autonomous driving, the driver can, for example, leave the position behind the steering wheel and take a seated position facing backward. Since autonomous and non-autonomous vehicles will share the same road network for the foreseeable future, accidents cannot be avoided, which makes the use of passive safety systems indispensable. With JENOPTIK-VOTAN® A technology, the trend towards flexible predetermined airbag weakening lines is enabled. With the help of laser beams, the predetermined weakening lines are introduced from the backside of the components so that they are absolutely invisible. This machining process is sensor-controlled and guarantees that a small residual wall thickness remains for the best quality and reliability for airbag weakening lines. Due to the wide processing range of the laser, the processing of almost all materials is possible. A CO₂ laser is used for many plastics, natural fiber materials, foams, foils and material composites. A femtosecond laser is used for natural materials and textiles that are very heat-sensitive. This laser type has extremely short laser pulses with very high energy densities. Supported by a high-precision and fast movement of the laser beam by a laser scanner system, the so-called cold ablation is enabled to predetermine weakening lines layer by layer until the desired residual wall thickness remains. In that way, for example, genuine leather can be processed in a material-friendly and process-reliable manner without design implications to the components A-Side. Passive safety in the vehicle is increased through the interaction of modern airbag technology and high-precision laser airbag weakening. The JENOPTIK-VOTAN® A product family has been representing this for more than 25 years and is pointing the way to the future with new and innovative technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20freedom" title="design freedom">design freedom</a>, <a href="https://publications.waset.org/abstracts/search?q=interior%20material%20processing" title=" interior material processing"> interior material processing</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20technology" title=" laser technology"> laser technology</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20safety" title=" passive safety"> passive safety</a> </p> <a href="https://publications.waset.org/abstracts/157323/flexible-integration-of-airbag-weakening-lines-in-interior-components-airbag-weakening-with-jenoptik-laser-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1929</span> An Experimental Study on Ultrasonic Machining of Pure Titanium Using Full Factorial Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jatinder%20Kumar">Jatinder Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultrasonic machining is one of the most widely used non-traditional machining processes for machining of materials that are relatively brittle, hard and fragile such as advanced ceramics, refractories, crystals, quartz etc. There is a considerable lack of research on its application to the cost-effective machining of tough materials such as titanium. In this investigation, the application of USM process for machining of titanium (ASTM Grade-I) has been explored. Experiments have been conducted to assess the effect of different parameters of USM process on machining rate and tool wear rate as response characteristics. The process parameters that were included in this study are: abrasive grit size, tool material and power rating of the ultrasonic machine. It has been concluded that titanium is fairly machinable with USM process. Significant improvement in the machining rate can be realized by manipulating the process parameters and obtaining the optimum combination of these parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abrasive%20grit%20size" title="abrasive grit size">abrasive grit size</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20material" title=" tool material"> tool material</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20machining" title=" ultrasonic machining"> ultrasonic machining</a> </p> <a href="https://publications.waset.org/abstracts/4089/an-experimental-study-on-ultrasonic-machining-of-pure-titanium-using-full-factorial-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1928</span> Influence of Build Orientation on Machinability of Selective Laser Melted Titanium Alloy-Ti-6Al-4V</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manikandakumar%20Shunmugavel">Manikandakumar Shunmugavel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashwin%20Polishetty"> Ashwin Polishetty</a>, <a href="https://publications.waset.org/abstracts/search?q=Moshe%20Goldberg"> Moshe Goldberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Junior%20Nomani"> Junior Nomani</a>, <a href="https://publications.waset.org/abstracts/search?q=Guy%20Littlefair"> Guy Littlefair</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Selective laser melting (SLM), a promising additive manufacturing (AM) technology, has a huge potential in the fabrication of Ti-6Al-4V near-net shape components. However, poor surface finish of the components fabricated from this technology requires secondary machining to achieve the desired accuracy and tolerance. Therefore, a systematic understanding of the machinability of SLM fabricated Ti-6Al-4V components is paramount to improve the productivity and product quality. Considering the significance of machining in SLM fabricated Ti-6Al-4V components, this research aim is to study the influence of build orientation on machinability characteristics by performing low speed orthogonal cutting tests. In addition, the machinability of SLM fabricated Ti-6Al-4V is compared with conventionally produced wrought Ti-6Al-4V to understand the influence of SLM technology on machining. This paper is an attempt to provide evidence to the hypothesis associated that build orientation influences cutting forces, chip formation and surface integrity during orthogonal cutting of SLM Ti-6Al-4V samples. Results obtained from the low speed orthogonal cutting tests highlight the practical importance of microstructure and build orientation on machinability of SLM Ti-6Al-4V. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=build%20orientation" title=" build orientation"> build orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=machinability" title=" machinability"> machinability</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloys%20%28Ti-6Al-4V%29" title=" titanium alloys (Ti-6Al-4V)"> titanium alloys (Ti-6Al-4V)</a> </p> <a href="https://publications.waset.org/abstracts/68719/influence-of-build-orientation-on-machinability-of-selective-laser-melted-titanium-alloy-ti-6al-4v" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20beam%20machining&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20beam%20machining&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20beam%20machining&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20beam%20machining&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20beam%20machining&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20beam%20machining&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20beam%20machining&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20beam%20machining&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20beam%20machining&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20beam%20machining&page=65">65</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20beam%20machining&page=66">66</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20beam%20machining&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>