CINXE.COM
Search results for: lanthanum hydroxide
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: lanthanum hydroxide</title> <meta name="description" content="Search results for: lanthanum hydroxide"> <meta name="keywords" content="lanthanum hydroxide"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="lanthanum hydroxide" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="lanthanum hydroxide"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 282</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: lanthanum hydroxide</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">282</span> Study on the Controlled Growth of Lanthanum Hydroxide and Manganese Oxide Nano Composite under the Presence of Cationic Surfactant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Kumar%20Verma">Neeraj Kumar Verma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lanthanum hydroxide and manganese oxide nanocomposite are synthesized by chemical routes. Physical characterization is done by TEM to look at the size and dispersion of the nanoparticles in the composite. Chemical characterization is done by X-ray diffraction technique and FTIR to ascertain the attachment of the functionalities and bond stretching. Further thermal analysis is done by thermogravimetric analysis to find the tendency of the thermal decomposition in the elevated temperature range of 0-1000°C. Proper analysis and correlation of the various results obtained suggested the controlled growth of crystalline without agglomeration and good stability in the various temperature ranges of the composite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM" title=" TEM"> TEM</a>, <a href="https://publications.waset.org/abstracts/search?q=lanthanum%20hydroxide" title=" lanthanum hydroxide"> lanthanum hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=manganese%20oxide" title=" manganese oxide"> manganese oxide</a> </p> <a href="https://publications.waset.org/abstracts/25803/study-on-the-controlled-growth-of-lanthanum-hydroxide-and-manganese-oxide-nano-composite-under-the-presence-of-cationic-surfactant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">281</span> Efficacy of Combined CHAp and Lanthanum Carbonate in Therapy for Hyperphosphatemia </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andreea%20C%C3%A2r%C3%A2c">Andreea Cârâc</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Morosan"> Elena Morosan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Corina%20Ionita"> Ana Corina Ionita</a>, <a href="https://publications.waset.org/abstracts/search?q=Rica%20Bosencu"> Rica Bosencu</a>, <a href="https://publications.waset.org/abstracts/search?q=Geta%20Carac"> Geta Carac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lanthanum carbonate exhibits a considerable ability to bind phosphate and the substitution of Ca2+ ions by divalent or trivalent lanthanide metal ions attracted attention during the past few years. Although Lanthanum carbonate has not been approved by the FDA for treatment of hyperphosphatemia, we prospectively evaluated the efficacy of the combination of Calcium hydroxyapatite and Lanthanum carbonate for the treatment of hyperphosphatemia on mice. Calcium hydroxyapatite commonly referred as CHAp is a bioceramic material and is one of the most important implantable materials due to its biocompatibility and osteoconductivity. We prepared calcium hydroxyapatite and lanthanum carbonate. CHAp was prepared by co-precipitation method using Ca(OH)2, H3PO4, NH4OH with calcination at 1200ºC. Lanthanum carbonate was prepared by chemical method using NaHCO3 and LaCl3 at low pH environment , ph below 4.0 The confirmation of both substances structures was made using XRD characterization, FTIR spectra and SEM /EDX analysis. The study group included 20 subjects-mice divided into four groups according to the administered substance: lanthanum carbonate (group A), lanthanum carbonate + CHAp (group B), CHAp (group C) and salt water (group D). The results indicate a phosphate decrease when subjects (mice) were treated with CHAp and lanthanum carbonate (0.5 % CMC), in a single dose of 1500 mg/kg. Serum phosphate concentration decreased [from 4.5 ± 0.8 mg/dL) to 4.05 ± 0.2 mg/dL), P < 0.01] in group A and to 3.6 ± 0.2 mg/dL] only after the 24 hours of combination therapy. The combination of CHAp and lanthanum carbonate is a suitable regimen for hyperphosphatemia treatment subjects because it avoids both the hypercalcemia of CaCO3 and the adverse effects of CHAp. The ability of CHAp to decrease the serum phosphate concentration is 1/3 that of lanthanum carbonate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20hydroxyapatite" title="calcium hydroxyapatite">calcium hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperphosphatemia" title=" hyperphosphatemia"> hyperphosphatemia</a>, <a href="https://publications.waset.org/abstracts/search?q=lanthanum%20carbonate" title=" lanthanum carbonate"> lanthanum carbonate</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphate" title=" phosphate"> phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=structures" title=" structures"> structures</a> </p> <a href="https://publications.waset.org/abstracts/16361/efficacy-of-combined-chap-and-lanthanum-carbonate-in-therapy-for-hyperphosphatemia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">280</span> Synthesis, Structure and Functional Characteristics of Solid Electrolytes Based on Lanthanum Niobates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20V.%20Morozova">Maria V. Morozova</a>, <a href="https://publications.waset.org/abstracts/search?q=Yulia%20V.%20Emelyanova"> Yulia V. Emelyanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Anastasia%20A.%20Levina"> Anastasia A. Levina</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20S.%20Buyanova"> Elena S. Buyanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoya%20A.%20Mikhaylovskaya"> Zoya A. Mikhaylovskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20A.%20Petrova"> Sofia A. Petrova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The solid solutions of lanthanum niobates substituted by yttrium, bismuth and tungsten were synthesized. The structure of the solid solutions is either LaNbO4-based monoclinic or BiNbO4-based triclinic. The series where niobium is substituted by tungsten on B site reveals phase-modulated structure. The values of cell parameters decrease with increasing the dopant concentration for all samples except the tungsten series although the latter show higher total conductivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impedance%20spectroscopy" title="impedance spectroscopy">impedance spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=LaNbO4" title=" LaNbO4"> LaNbO4</a>, <a href="https://publications.waset.org/abstracts/search?q=lanthanum%20ortho-niobates" title=" lanthanum ortho-niobates"> lanthanum ortho-niobates</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20electrolyte" title=" solid electrolyte"> solid electrolyte</a> </p> <a href="https://publications.waset.org/abstracts/38426/synthesis-structure-and-functional-characteristics-of-solid-electrolytes-based-on-lanthanum-niobates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">279</span> Some Observations on the Preparation of Zinc Hydroxide Nitrate Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20Ivanov">Krasimir Ivanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Elitsa%20Kolentsova"> Elitsa Kolentsova</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Nguyen"> Nguyen Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Peltekov"> Alexander Peltekov</a>, <a href="https://publications.waset.org/abstracts/search?q=Violina%20Angelova"> Violina Angelova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nanosized zinc hydroxide nitrate has been recently estimated as perspective foliar fertilizer, which has improved zinc solubility, but low phytotoxicity, in comparison with ZnO and other Zn containing compounds. The main problem is obtaining of stable particles with dimensions less than 100 nm. This work studies the effect of preparation conditions on the chemical compositions and particle size of the zinc hydroxide nitrates, prepared by precipitation. Zn(NO3)2.6H2O and NaOH with concentrations, ranged from 0.2 to 3.2M and the initial OH/Zn ratio from 0.5 to 1.6 were used at temperatures from 20 to 60 °C. All samples were characterized in detail by X-ray diffraction, scanning electron microscopy, differential thermal analysis and ICP. Stability and distribution of the zinc hydroxide nitrate particles were estimated too. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zinc%20hydroxide%20nitrate" title="zinc hydroxide nitrate">zinc hydroxide nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=preparation" title=" preparation"> preparation</a>, <a href="https://publications.waset.org/abstracts/search?q=foliar%20fertilizer" title=" foliar fertilizer"> foliar fertilizer</a> </p> <a href="https://publications.waset.org/abstracts/53436/some-observations-on-the-preparation-of-zinc-hydroxide-nitrate-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">278</span> Synthesis of La0.8Sr0.05Ca0.15Fe0.8Co0.2O3-δ -Ce0.9Gd0.1O1.95 Composite Cathode Material for Solid Oxide Fuel Cell with Lanthanum and Cerium Recycled from Wasted Glass Polishing Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jun-Lun%20Jiang">Jun-Lun Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Bing-Sheng%20Yu"> Bing-Sheng Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Processing of flat-panel displays generates huge amount of wasted glass polishing powder, with high concentration of cerium and other elements such as lanthanum. According to the current statistics, consumption of polishing powder was approximately ten thousand tons per year in the world. Nevertheless, wasted polishing powder was usually buried or burned. If the lanthanum and cerium compounds in the wasted polishing powder could be recycled, that will greatly reduce enterprise cost and implement waste circulation. Cathodes of SOFCs are the principal consisting of rare earth elements such as lanthanum and cerium. In this study, we recycled the lanthanum and cerium from wasted glass polishing powder by acid-solution method, and synthesized La0.8Sr0.05Ca0.15Fe0.8Co0.8O3-δ and Gd0.1Ce0.9O2 (LSCCF-GDC) composite cathode material for SOFCs by glycinenitrate combustion (GNP) method. The results show that the recovery rates of lanthanum and cerium could accomplish up to 80% and 100% under 10N nitric acid solution within one hour. Comparing with the XRD data of the commercial LSCCF-GDC powder and the LSCCF-GDC product synthesized with chemicals, we find that the LSCCF-GDC was successfully synthesized with the recycled La & Ce solution by GNP method. The effect of adding ammonia to the product was also discussed, the grain size is finer and recovery rate of the product is higher without the addition of ammonia to the solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass%20polishing%20powder" title="glass polishing powder">glass polishing powder</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20solution" title=" acid solution"> acid solution</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20cathodes%20of%20solid%20oxide%20fuel" title=" composite cathodes of solid oxide fuel"> composite cathodes of solid oxide fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20%28SOFC%29" title=" cell (SOFC)"> cell (SOFC)</a>, <a href="https://publications.waset.org/abstracts/search?q=perovskite" title=" perovskite"> perovskite</a>, <a href="https://publications.waset.org/abstracts/search?q=glycine-nitrate%20combustion%28GNP%29%20method" title=" glycine-nitrate combustion(GNP) method"> glycine-nitrate combustion(GNP) method</a> </p> <a href="https://publications.waset.org/abstracts/44834/synthesis-of-la08sr005ca015fe08co02o3-d-ce09gd01o195-composite-cathode-material-for-solid-oxide-fuel-cell-with-lanthanum-and-cerium-recycled-from-wasted-glass-polishing-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">277</span> Lanthanum Strontium Titanate Based Anode Materials for Intermediate Temperature Solid Oxide Fuel Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Saurabh%20Singh">A. Saurabh Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Raghvendra"> B. Raghvendra</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Prabhakar%20Singh"> C. Prabhakar Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid Oxide Fuel Cells (SOFCs) are one of the most attractive electrochemical energy conversion systems, as these devices present a clean energy production, thus promising high efficiencies and low environmental impact. The electrodes are the main components that decisively control the performance of a SOFC. Conventional, anode materials (like Ni-YSZ) are operates at very high temperature. Therefore, cost-effective materials which operate at relatively lower temperatures are still required. In present study, we have synthesized La doped Strontium Titanate via solid state reaction route. The structural, microstructural and density of the pellet have been investigated employing XRD, SEM and Archimedes Principle, respectively. The electrical conductivity of the systems has been determined by impedance spectroscopy techniques. The electrical conductivity of the Lanthanum Strontium Titanate (LST) has been found to be higher than the composite Ni-YSZ system at 700 °C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IT-SOFC" title="IT-SOFC">IT-SOFC</a>, <a href="https://publications.waset.org/abstracts/search?q=LST" title=" LST"> LST</a>, <a href="https://publications.waset.org/abstracts/search?q=Lanthanum%20Strontium%20Titanate" title=" Lanthanum Strontium Titanate"> Lanthanum Strontium Titanate</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a> </p> <a href="https://publications.waset.org/abstracts/21206/lanthanum-strontium-titanate-based-anode-materials-for-intermediate-temperature-solid-oxide-fuel-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">276</span> The Different Roles between Sodium and Potassium Ions in Ion Exchange of WO3/SiO2 Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kritsada%20Pipitthapan">Kritsada Pipitthapan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> WO3/SiO2 catalysts were modified by an ion exchange method with sodium hydroxide or potassium hydroxide solution. The performance of the modified catalysts was tested in the metathesis of ethylene and trans-2-butene to propylene. During ion exchange, sodium and potassium ions played different roles. Sodium modified catalysts revealed constant trans-2-butene conversion and propylene selectivity when the concentrations of sodium in the solution were varied. In contrast, potassium modified catalysts showed reduction of the conversion and increase of the selectivity. From these results, potassium hydroxide may affect the transformation of tungsten oxide active species, resulting in the decrease in conversion whereas sodium hydroxide did not. Moreover, the modification of catalysts by this method improved the catalyst stability by lowering the amount of coke deposited on the catalyst surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20sites" title="acid sites">acid sites</a>, <a href="https://publications.waset.org/abstracts/search?q=alkali%20metal" title=" alkali metal"> alkali metal</a>, <a href="https://publications.waset.org/abstracts/search?q=isomerization" title=" isomerization"> isomerization</a>, <a href="https://publications.waset.org/abstracts/search?q=metathesis" title=" metathesis "> metathesis </a> </p> <a href="https://publications.waset.org/abstracts/25493/the-different-roles-between-sodium-and-potassium-ions-in-ion-exchange-of-wo3sio2-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">275</span> Fluoride as Obturating Material in Primary Teeth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Ameer%20Haider%20Jafri">Syed Ameer Haider Jafri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The primary goal of a root canal treatment in deciduous teeth is to eliminate infection and to retain the tooth in a functional state until it gets physiologically exfoliated and replaced by permanent successor. Important requisite of a root canal filling material for primary teeth is that, it should resorb at a similar rate as the roots of primary tooth, be harmless to the periapical tissue and to the permanent tooth germ, resorb readily if pushed beyond the apex, be antiseptic, radio-opaque, should not shrink, adhere to the walls, not discolor the tooth and easy to fill & remove, if required at any stage. Presently available, commonly used obturating materials for primary teeth are zinc oxide eugenol, calcium hydroxide and iodoform based pastes. None of these materials so far meet the ideal requirement of root canal filling material. So in search of ideal obturating material, this study was planed, in which mixture of calcium hydroxide, zinc oxide & sodium fluoride and mixture of calcium hydroxide & sodium fluoride was compared clinically and radiographically with calcium hydroxide for the obturation of root canals of 75 carious exposed primary mandibular second molars of 59 children aged 4-9 years. All the three material shows good results, but after a follow-up of 9 months mixture of calcium hydroxide, two percent sodium fluoride & zinc oxide powder closely follow the resorption of root, mixture of calcium hydroxide, two percent sodium fluoride follow resorption of root in the beginning but later on majority of cases shows faster resorption whereas calcium hydroxide starts depleting from the canal from the beginning even as early as 3 months. Thus mixture of calcium hydroxide, two percent sodium fluoride & zinc oxide found to be best obturaring material for primary tooth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=obturating%20material" title="obturating material">obturating material</a>, <a href="https://publications.waset.org/abstracts/search?q=primary%20teeth" title=" primary teeth"> primary teeth</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20canal%20treatment" title=" root canal treatment"> root canal treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=success%20rate" title=" success rate"> success rate</a> </p> <a href="https://publications.waset.org/abstracts/58937/fluoride-as-obturating-material-in-primary-teeth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">274</span> Fabrication of Biosensor Based on Layered Double Hydroxide/Polypyrrole/Carbon Paste Electrode for Determination of Anti-Hypertensive and Prostatic Hyperplasia Drug Terazosin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amira%20M.%20Hassanein">Amira M. Hassanein</a>, <a href="https://publications.waset.org/abstracts/search?q=Nehal%20A.%20Salahuddin"> Nehal A. Salahuddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Atsunori%20Matsuda"> Atsunori Matsuda</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshiaki%20Hattori"> Toshiaki Hattori</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20N.%20Elfiky"> Mona N. Elfiky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New insights into the design of highly sensitive, carbon-based electrochemical sensors are presented in this work. This was achieved by exploring the interesting properties of conductive (Mg/Al) layered double hydroxide- Dodecyl Sulphate/Polypyrrole nanocomposites which were synthesized by in-situ polymerization of pyrrole during the assembly of (Mg/Al) layered double hydroxide, and by employing the anionic surfactant Dodecyl sulphate as a modifier. The morphology and surface area of the nanocomposites changed with the percentage of Pyrrole. Under optimal conditions, the modified carbon paste electrode successfully achieved detection limits of 0.057 and 0.134 nmol.L-1 of Terazosin hydrochloride in pharmaceutical formulation and spiked human serum fluid, respectively. Moreover, the sensors are highly stable, reusable, and free from interference by other commonly present excipients in drug formulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=layered%20double%20hydroxide" title="layered double hydroxide">layered double hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=polypyrrole" title=" polypyrrole"> polypyrrole</a>, <a href="https://publications.waset.org/abstracts/search?q=terazosin%20hydrochloride" title=" terazosin hydrochloride"> terazosin hydrochloride</a>, <a href="https://publications.waset.org/abstracts/search?q=square-wave%20adsorptive%20anodic%20stripping%20voltammetry" title=" square-wave adsorptive anodic stripping voltammetry"> square-wave adsorptive anodic stripping voltammetry</a> </p> <a href="https://publications.waset.org/abstracts/79856/fabrication-of-biosensor-based-on-layered-double-hydroxidepolypyrrolecarbon-paste-electrode-for-determination-of-anti-hypertensive-and-prostatic-hyperplasia-drug-terazosin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">273</span> Graphene-Oxide-Supported Coal-Layered Double Hydroxides: Synthesis and Characterizations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaeel%20A.%20Al%20Thabaiti">Shaeel A. Al Thabaiti</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulaiman%20N.%20Basahel"> Sulaiman N. Basahel</a>, <a href="https://publications.waset.org/abstracts/search?q=Salem%20M.%20Bawaked"> Salem M. Bawaked</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Mokhtar"> Mohamed Mokhtar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanosheets for cobalt-layered double hydroxide (Co-Al-LDH)/GO were successfully synthesized with different Co:M g:Al ratios (0:3:1, 1.5:1.5:1, and 3:0:1). The layered double hydroxide structure and morphology were determined using x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Temperature prgrammed reduction (TPR) of Co-Al-LDH showed reduction peaks at lower temperature which indicates the ease reducibility of this particular sample. The thermal behaviour was studied using thermal graviemetric technique (TG), and the BET-surface area was determined using N2 physisorption at -196°C. The C-C coupling reaction was carried out over all the investigated catalysts. The Mg–Al LDH catalyst without Co ions is inactive, but the isomorphic substitution of Mg by Co ions (Co:Mg:Al = 1.5:1.5:1) in the cationic sheet resulted in 88% conversion of iodobenzene under reflux. LDH/GO hybrid is up to 2 times higher activity than for the unsupported LDH. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=co-precipitation" title=" co-precipitation"> co-precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=layer%20double%20hydroxide" title=" layer double hydroxide"> layer double hydroxide</a> </p> <a href="https://publications.waset.org/abstracts/67980/graphene-oxide-supported-coal-layered-double-hydroxides-synthesis-and-characterizations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">272</span> Effect of Zinc Oxide Nanoparticles along with Sodium Hydroxide on Self-Cleaning and Antibacterial Properties of Polyethylene Terephthalate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mirjalili">Mohammad Mirjalili</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Mohammdi"> Maryam Mohammdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Loghman%20Karimi"> Loghman Karimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, synthesis of zinc oxide nanoparticles was carried out along with the hydrolysis of Polyethylene terephthalate using sodium hydroxide to increase the surface activity and enhance the nanoparticles adsorption. The polyester fabrics were treated with zinc acetate and sodium hydroxide at ultrasound bath, resulting in the formation of ZnO nanospheres. The presence of zinc oxide on the surface of the polyethylene terephthalate was confirmed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The self-cleaning property of treated polyethylene terephthalate was evaluated through discoloring methylene blue stain under sunlight irradiation. The antibacterial activities of the samples against two common pathogenic bacteria including Escherichia coli and Staphylococcus aureus were also assessed. The results indicated that the photocatalytic and antibacterial activities of the ultrasound treated polyethylene terephthalate improved significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title="zinc oxide">zinc oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene%20terephthalate" title=" polyethylene terephthalate"> polyethylene terephthalate</a>, <a href="https://publications.waset.org/abstracts/search?q=self-cleaning" title=" self-cleaning"> self-cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title=" antibacterial"> antibacterial</a> </p> <a href="https://publications.waset.org/abstracts/57213/effect-of-zinc-oxide-nanoparticles-along-with-sodium-hydroxide-on-self-cleaning-and-antibacterial-properties-of-polyethylene-terephthalate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">271</span> Determination of Bisphenol A and Uric Acid by Modified Single-Walled Carbon Nanotube with Magnesium Layered Hydroxide 3-(4-Methoxyphenyl)Propionic Acid Nanocomposite </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Illyas%20Md%20Isa">Illyas Md Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Musfirah%20Che%20Sobry"> Maryam Musfirah Che Sobry</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Syahrizal%20Ahmad"> Mohamad Syahrizal Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurashikin%20Abd%20Azis"> Nurashikin Abd Azis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A single-walled carbon nanotube (SWCNT) that has been modified with magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite was proposed for the determination of uric acid and bisphenol A by square wave voltammetry. The results obtained denote that MLH-MPP nanocomposites enhance the sensitivity of the voltammetry detection responses. The best performance is shown by the modified carbon nanotube paste electrode (CNTPE) with the composition of single-walled carbon nanotube: magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite at 100:15 (% w/w). The linear range where the sensor works well is within the concentration 1.0 10-7 – 1.0 10-4 and 3.0 10-7 – 1.0 10-4 for uric acid and bisphenol A respectively with the limit of detection of 1.0 10-7 M for both organics. The interferences of uric acid and bisphenol A with other organic were studied and most of them did not interfere. The results shown for each experimental parameter on the proposed CNTPE showed that it has high sensitivity, good selectivity, repeatability and reproducibility. Therefore, the modified CNTPE can be used for the determination of uric acid and bisphenol A in real samples such as blood, plastic bottles and foods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bisphenol%20A" title="bisphenol A">bisphenol A</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20layered%20hydroxide%203-%284-methoxyphenyl%29propionic%20acid%20nanocomposite" title=" magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite"> magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanocomposite" title=" Nanocomposite"> Nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=uric%20acid" title=" uric acid"> uric acid</a> </p> <a href="https://publications.waset.org/abstracts/84874/determination-of-bisphenol-a-and-uric-acid-by-modified-single-walled-carbon-nanotube-with-magnesium-layered-hydroxide-3-4-methoxyphenylpropionic-acid-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">270</span> Comparison of Different Activators Impact on the Alkali-Activated Aluminium-Silicate Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laura%20Dembovska">Laura Dembovska</a>, <a href="https://publications.waset.org/abstracts/search?q=Ina%20Pundiene"> Ina Pundiene</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20Bajare"> Diana Bajare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alkali-activated aluminium-silicate composites (AASC) can be used in the production of innovative materials with a wide range of properties and applications. AASC are associated with low CO₂ emissions; in the production process, it is possible to use industrial by-products and waste, thereby minimizing the use of a non-renewable natural resource. This study deals with the preparation of heat-resistant porous AASC based on chamotte for high-temperature applications up to 1200°C. Different fillers, aluminium scrap recycling waste as pores forming agent and alkali activation with 6M sodium hydroxide (NaOH) and potassium hydroxide (KOH) solution were used. Sodium hydroxide (NaOH) is widely used for the synthesis of AASC compared to potassium hydroxide (KOH), but comparison of using different activator for geopolymer synthesis is not well established. Changes in chemical composition of AASC during heating were identified and quantitatively analyzed by using DTA, dimension changes during the heating process were determined by using HTOM, pore microstructure was examined by SEM, and mineralogical composition of AASC was determined by XRD. Lightweight porous AASC activated with NaOH have been obtained with density in range from 600 to 880 kg/m³ and compressive strength from 0.8 to 2.7 MPa, but for AAM activated with KOH density was in range from 750 to 850 kg/m³ and compressive strength from 0.7 to 2.1 MPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20activation" title="alkali activation">alkali activation</a>, <a href="https://publications.waset.org/abstracts/search?q=alkali%20activated%20materials" title=" alkali activated materials"> alkali activated materials</a>, <a href="https://publications.waset.org/abstracts/search?q=elevated%20temperature%20application" title=" elevated temperature application"> elevated temperature application</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20resistance" title=" heat resistance"> heat resistance</a> </p> <a href="https://publications.waset.org/abstracts/82266/comparison-of-different-activators-impact-on-the-alkali-activated-aluminium-silicate-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">269</span> Flow Performance of Hybrid Cement Based Mortars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Abdollahnejad">Z. Abdollahnejad</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kheradmand"> M. Kheradmand</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Pacheco%20Torgal"> F. Pacheco Torgal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The workability of hybrid alkaline cements is a field of knowledge that still needs further research efforts. This paper reports experimental results of 32 hybrid cement mixes regarding the joint effect of sodium hydroxide concentration, the use of a commercial superplasticizer and a biopolymer on the flow and compressive strength performance. The results show that the use of commercial admixtures led to a slightly increase in the flow of mortars with lower sodium hydroxide concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste%20reuse" title="waste reuse">waste reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20glass" title=" waste glass"> waste glass</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20cement" title=" hybrid cement"> hybrid cement</a>, <a href="https://publications.waset.org/abstracts/search?q=biopolymer" title=" biopolymer"> biopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=polycarboxylate" title=" polycarboxylate"> polycarboxylate</a>, <a href="https://publications.waset.org/abstracts/search?q=flow" title=" flow"> flow</a> </p> <a href="https://publications.waset.org/abstracts/65025/flow-performance-of-hybrid-cement-based-mortars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">268</span> Chemical Durability of Textured Glass-coat Suitable for Building Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adejo%20Andrew%20Ojonugwa">Adejo Andrew Ojonugwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Jomboh%20Jeff%20Kator"> Jomboh Jeff Kator</a>, <a href="https://publications.waset.org/abstracts/search?q=Garkida%20Adele%20Dzikwi"> Garkida Adele Dzikwi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the behaviour of textured glass coat to chemical reactions upon application. Samples of textured glass coat developed from mixed post consumer glass were subjected to pH test (ASTM D5464), Chemical resistance test (ASTM D3260 and D1308), Adhesion test (ASTM D3359), and Abrasion test (ASTM D4060). Results shows a pH of 8.50, Chemical resistance of 5% flick rate when reacted with Sodium hydroxide (NaOH), a 3%, 5%, 10%, and 15% discolouration when reacted with Magnesium hydroxide (Mg(OH)2), Hydrogen fluoride (HF), Potassium hydroxide (KOH) and NaOH respectively, an adhesion of 4A and abrasion of 0.2g. The results confirm that the developed textured glass coat is in line with the standard pH range of 8-9, resistant to acid and base except for HF, NaOH, and Mg(OH)₂, good adhesion and abrasion properties, thereby making the coat resistant to chemical degradation and a good engineering material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20durability" title="chemical durability">chemical durability</a>, <a href="https://publications.waset.org/abstracts/search?q=glass-coat" title=" glass-coat"> glass-coat</a>, <a href="https://publications.waset.org/abstracts/search?q=building" title=" building"> building</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a> </p> <a href="https://publications.waset.org/abstracts/157990/chemical-durability-of-textured-glass-coat-suitable-for-building-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">267</span> Nickel Catalyst Promoted with Lanthanum- Alumina for Dry Reforming of Methane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radia%20Imane%20Fertout">Radia Imane Fertout</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the reaction of dry reforming of methane (DRM) has attracted much attention due to its environmental and industrial importance. Various catalysts, including Ni-based catalysts, have been investigated for the DRM. Doping Ni/Al₂O₃ by lanthanum and alkaline earth element may strongly influence solid-state reaction and increases the stability of catalysts due to the lower density and high basicity of these oxides. The effect of SrO on the activity and stability of Ni/Al₂O₃-La₂O₃ in dry reforming of methane was investigated. These catalysts have been prepared with the impregnation method, calcined in air at 450 and 650°C, then characterized by BET surface area, X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques and tested in DRM. The results showed that the addition of strontium to Ni/Al2O₃-La₂O₃ decreased the specific surface area. XRD results revealed the presence of different phases of Al₂O₃, La(OH)₃, La₂O₂CO₃, and SrCO₃. The catalytic evaluation results showed that adding SrO increased the catalytic activity and stability, that explained by the strong basicity of strontium. SEM analysis after the reaction indicates the formation of carbon over the spent catalyst and that the addition of strontium stabilized the surface of the catalyst. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dry%20reforming%20of%20methane" title="dry reforming of methane">dry reforming of methane</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni%2FAl%E2%82%82O%E2%82%83-La%E2%82%82O%E2%82%83%20catalyst" title=" Ni/Al₂O₃-La₂O₃ catalyst"> Ni/Al₂O₃-La₂O₃ catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=strontium" title=" strontium"> strontium</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a> </p> <a href="https://publications.waset.org/abstracts/162255/nickel-catalyst-promoted-with-lanthanum-alumina-for-dry-reforming-of-methane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">266</span> Optimization of Pretreatment Process of Napier Grass for Improved Sugar Yield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shashikant%20Kumar">Shashikant Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandraraj%20K."> Chandraraj K.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Perennial grasses have presented interesting choices in the current demand for renewable and sustainable energy sources to alleviate the load of the global energy problem. The perennial grass Napier grass (Pennisetum purpureum Schumach) is a promising feedstock for the production of cellulosic ethanol. The conversion of biomass into glucose and xylose is a crucial stage in the production of bioethanol, and it necessitates optimal pretreatment. Alkali treatment, among the several pretreatments available, effectively reduces lignin concentration and crystallinity of cellulose. Response surface methodology was used to optimize the alkali pretreatment of Napier grass for maximal reducing sugar production. The combined effects of three independent variables, viz. sodium hydroxide concentration, temperature, and reaction time, were studied. A second-order polynomial equation was used to fit the observed data. Maximum reducing sugar (590.54 mg/g) was obtained under the following conditions: 1.6 % sodium hydroxide, a reaction period of 30 min., and 120˚C. The results showed that Napier grass is a desirable feedstock for bioethanol production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Napier%20grass" title="Napier grass">Napier grass</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide" title=" sodium hydroxide"> sodium hydroxide</a> </p> <a href="https://publications.waset.org/abstracts/152783/optimization-of-pretreatment-process-of-napier-grass-for-improved-sugar-yield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">265</span> Comparison of the Hydration Products of Commercial and Experimental Calcium Silicate Cement: The Preliminary Observational Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seok%20Woo%20Chang">Seok Woo Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: The objective of this study was to compare and evaluate the hydration products of commercial and experimental calcium silicate cement. Materials and Methods: The commercial calcium silicate cement (ProRoot MTA, Dentsply) and experimental calcium silicate cement (n=10) were mixed with distilled water (water/powder ratio = 20 w/w) and stirred at room temperature for 10 hours. These mixtures were dispersed on wafer and dried for 12 hours at room temperature. Thereafter, the dried specimens were examined with Scanning Electron Microscope (SEM). Electron Dispersive Spectrometry (EDS) was also carried out. Results: The commercial calcium silicate cement (ProRoot MTA) and experimental calcium silicate cement both showed precipitation of rod-like and globule-like crystals. Based on EDS analysis, these precipitates were supposed to be calcium hydroxide or calcium silicate hydrates. The degree of formation of these precipitates was higher in commercial MTA. Conclusions: Based on the results, both commercial and experimental calcium silicate cement had ability to produce calcium hydroxide or calcium silicate hydrate precipitates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20silicate%20cement" title="calcium silicate cement">calcium silicate cement</a>, <a href="https://publications.waset.org/abstracts/search?q=ProRoot%20MTA" title=" ProRoot MTA"> ProRoot MTA</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation" title=" precipitation"> precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20hydroxide" title=" calcium hydroxide"> calcium hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20silicate%20hydrate" title=" calcium silicate hydrate"> calcium silicate hydrate</a> </p> <a href="https://publications.waset.org/abstracts/8741/comparison-of-the-hydration-products-of-commercial-and-experimental-calcium-silicate-cement-the-preliminary-observational-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">264</span> Effect of Sodium Hydroxide on Geotechnical Properties of Soft Soil in Kathmandu Valley</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bal%20Deep%20Sharma">Bal Deep Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Ray%20Yadav"> Suresh Ray Yadav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Local soils are often chosen due to their widespread availability and low cost. However, these soils typically have poor durability, which can lead to significant limitations in their use for construction. To address this issue, various soil stabilization techniques have been developed and used over the years. This study investigates the viability of employing the mineral polymerization (MIP) technique to stabilize black soils, intending to enhance their suitability for construction applications. This technique involves the microstructural transformation of certain clay minerals into solid and stable compounds exhibiting characteristics similar to hydroxy sodalite, feldspathoid, or zeolite. This transformation occurs through the action of an alkaline reactant at atmospheric pressure and low temperature. The soil sample was characterized using grain size distribution, Atterberg limit test, organic content test, and pH-value tests. The unconfined compressive strength of the soil specimens, prepared with varying percentages of sodium hydroxide as an additive and sand as a filler by weight, was determined at the optimum moisture content. The unconfined compressive strength of the specimens was tested under three different conditions: dry, wet, and cycling. The maximum unconfined compressive strengths were 77.568 kg/cm², 38.85 kg/cm², and 56.3 kg/cm² for the dry, wet, and cycling specimens, respectively, while the unconfined compressive strength of the untreated soil was 7.38 kg/cm². The minimum unconfined compressive strength of the wet and cycling specimens was greater than that of the untreated soil. Based on these findings, it can be concluded that these soils can be effectively used as construction material after treatment with sodium hydroxide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20stabilization%20technique" title="soil stabilization technique">soil stabilization technique</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20soil%20treatment" title=" soft soil treatment"> soft soil treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide" title=" sodium hydroxide"> sodium hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compressive%20strength" title=" unconfined compressive strength"> unconfined compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/183467/effect-of-sodium-hydroxide-on-geotechnical-properties-of-soft-soil-in-kathmandu-valley" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">263</span> Thermal Processing of Zn-Bi Layered Double Hydroxide ZnO Doped Bismuth for a Photo-Catalytic Efficiency under Light Visible</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benyamina%20Imane">Benyamina Imane</a>, <a href="https://publications.waset.org/abstracts/search?q=Benalioua%20Bahia"> Benalioua Bahia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansour%20Meriem"> Mansour Meriem</a>, <a href="https://publications.waset.org/abstracts/search?q=Bentouami%20Abdelhadi"> Bentouami Abdelhadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to use a synthetic route of the layered double hydroxide as a method of zinc oxide by doping a transition metal. The material is heat-treated at different temperatures then tested on the photo-fading of an acid dye indigo carmine under visible radiation compared with ZnO. The photo catalytic efficiency of Bi-ZnO in a visible light of 500 W was tested on photo-bleaching of an indigoid dye in comparison with the commercial ZnO. Indeed, a complete discoloration of indigo carmine solution of 16 mg / L was obtained after 40 and 120 minutes of irradiation in the presence of ZnO and ZnO-Bi respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LDH" title="LDH">LDH</a>, <a href="https://publications.waset.org/abstracts/search?q=POA" title=" POA"> POA</a>, <a href="https://publications.waset.org/abstracts/search?q=photo-catalysis" title=" photo-catalysis"> photo-catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Bi-ZnO%20doping" title=" Bi-ZnO doping"> Bi-ZnO doping</a> </p> <a href="https://publications.waset.org/abstracts/33450/thermal-processing-of-zn-bi-layered-double-hydroxide-zno-doped-bismuth-for-a-photo-catalytic-efficiency-under-light-visible" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">262</span> 316L Passive Film Modification During Pitting Corrosion Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amina%20Sriba">Amina Sriba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, interactions between the chemical elements forming the passive film of welded austenitic stainless steel during pitting corrosion are studied. We pay special attention to the chemical elements chromium, molybdenum, iron, nickel, and silicon since they make up the passive film that covers the fusion zone's surface in the welded joint. Molybdenum and chromium are typically the two essential components that control the three crucial stages of pit formation. It was found that while the involvement of chromium is more prominent during the propagation of a pit that has already begun, the enrichment of the molybdenum element in the passive film becomes apparent from the first stage of pit initiation. Additionally, during the pitting corrosion process, there was a noticeable fluctuation in the quantities of the produced oxides and hydroxide species from zone to zone. Regarding the formed hydroxide species, we clearly see that Nickel hydroxides are added to those of Chromium to constitute the outer layer in the passive film of the fusion zone sample, compared to the base metal sample, where only Chromium hydroxide formed on its surface during the pitting corrosion process. This reaction is caused by the preferential dissolution of the austenite phase instead of ferrite in the fusion zone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fusion%20zone" title="fusion zone">fusion zone</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20film" title=" passive film"> passive film</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20elements" title=" chemical elements"> chemical elements</a>, <a href="https://publications.waset.org/abstracts/search?q=pit" title=" pit"> pit</a> </p> <a href="https://publications.waset.org/abstracts/186833/316l-passive-film-modification-during-pitting-corrosion-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">53</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">261</span> NiAl-Layered Double Hydroxide: Preparation, Characterization and Applications in Photo-Catalysis and Hydrogen Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Farghali">Ahmed Farghali</a>, <a href="https://publications.waset.org/abstracts/search?q=Heba%20Amar"> Heba Amar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Khedr"> Mohamed Khedr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> NiAl-Layered Double Hydroxide (NiAl-LDH), one of anionic functional layered materials, has been prepared by a simple co-precipitation process. X-ray diffraction patterns confirm the formation of the desired compounds of NiAl hydroxide single phase and the crystallite size was found to be about 4.6 nm. The morphology of the prepared samples was investigated using scanning electron microscopy and the layered structure was appeared under the transmission electron microscope. The thermal stability and the function groups of NiAl-LDH were investigated using thermal gravimetric analysis (TGA) and Fourier transform infrared (FTIR) respectively. NiAl-LDH was investigated as a photo-catalyst for the degradation of some toxic dyes such as toluidine blue and bromopyrogallol red. It shows good catalytic efficiency in visible light and even in dark. For the first time NiAl-LDH was used for hydrogen storage application. NiAl-LDH samples were exposed to 20 bar applied hydrogen pressure at room temperature, 100 and -193 oC. NiAl-LDH samples appear to have feasible hydrogen storage capacity. It was capable to adsorb 0.1wt% at room temperature, 0.15 wt% at 100oC and storage capacity reached 0.3 wt% at -193 oC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NiAl-LDH" title="NiAl-LDH">NiAl-LDH</a>, <a href="https://publications.waset.org/abstracts/search?q=preparation" title=" preparation"> preparation</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=photo-catalysis" title=" photo-catalysis"> photo-catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20storage" title=" hydrogen storage"> hydrogen storage</a> </p> <a href="https://publications.waset.org/abstracts/62871/nial-layered-double-hydroxide-preparation-characterization-and-applications-in-photo-catalysis-and-hydrogen-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">260</span> Mass Transfer Studies of Carbon Dioxide Absorption in Sodium Hydroxide in Millichannels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Durgadevi">A. Durgadevi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Pushpavanam"> S. Pushpavanam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, absorption studies are done by conducting experiments of 99.9 (v/v%) pure CO₂ with various concentrations of sodium hydroxide solutions in a T-junction glass circular milli-channel. The gas gets absorbed in the aqueous phase resulting in the shrinking of slugs. This phenomenon is used to develop a lumped parameter model. Using this model, the chemical dissolution dynamics and the mass transfer characteristics of the CO₂-NaOH system is analysed. The liquid side mass transfer coefficient is determined with the help of the experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorption" title="absorption">absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolution%20dynamics" title=" dissolution dynamics"> dissolution dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=lumped%20parameter%20model" title=" lumped parameter model"> lumped parameter model</a>, <a href="https://publications.waset.org/abstracts/search?q=milli-channel" title=" milli-channel"> milli-channel</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20transfer%20coefficient" title=" mass transfer coefficient"> mass transfer coefficient</a> </p> <a href="https://publications.waset.org/abstracts/75631/mass-transfer-studies-of-carbon-dioxide-absorption-in-sodium-hydroxide-in-millichannels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">259</span> The Effect of Potassium Hydroxide on Fine Soil Treated with Olivine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelmaoula%20Mahamoud%20Tahir">Abdelmaoula Mahamoud Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Sedat%20Sert"> Sedat Sert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The possibility of improving the shear strength of unsaturated clayey soil with the addition of olivine was investigated in this paper. Unconsolidated undrained triaxial tests (UU), under different cell pressures (namely: 100 kPa and 200 kPa), with varying percentages of olivine (10% and 20% by weight) and with one day, 28 days, and 56 days curing times, were performed to determine the shear strength of the soil. The increase in strength was observed as a function of the increase in olivine content. An olivine content of 25% was determined as the optimum value to achieve the targeted improvement for both cure times. A comparative study was also conducted between clay samples treated with only olivine and others in the presence of potassium hydroxide (KOH). Clay samples treated with olivine and activated with potassium hydroxide (KOH) had higher shear strength than non-activated olivine-treated samples. It was determined that the strength of the clay samples treated with only olivine did not increase over time and added resistance only with the high specific gravity of olivine. On the other hand, the samples activated with potassium hydroxide (KOH) added to the resistance with high specific gravity and the chemical bonds of olivine. Morphological and mineralogical analyzes were carried out in this study to see and analyze the chemical bonds formed after the reaction. The main components of this improvement were the formation of magnesium-aluminate-hydrate and magnesium-silicate-hydrate. Compared to older methods such as cement addition, these results show that in stabilizing clayey soils, olivine additive offers an energy-efficient alternative for reducing carbon dioxide emissions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ground%20stabilization" title="ground stabilization">ground stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a>, <a href="https://publications.waset.org/abstracts/search?q=olivine%20additive" title=" olivine additive"> olivine additive</a>, <a href="https://publications.waset.org/abstracts/search?q=KOH" title=" KOH"> KOH</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/158574/the-effect-of-potassium-hydroxide-on-fine-soil-treated-with-olivine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">258</span> Selective Oxidation of Ammonia to Nitrogen over Nickel Oxide-hydroxide /Graphite Prepared with an Electro Deposition Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marzieh%20Joda">Marzieh Joda</a>, <a href="https://publications.waset.org/abstracts/search?q=Narges%20Fallah"> Narges Fallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Neda%20Afsham"> Neda Afsham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphite-supported two different of morphology α and β -Ni (OH)₂ electrodes were prepared by electrochemical deposition at appropriate potentials with regard to Ni (II)/Ni (III) redox couple under alkaline and acidic conditions, respectively, for selective oxidation of ammonia to nitrogen in the direct electro-oxidation process. Cyclic voltammetry (CV) of the electrolyte containing NH₃ indicated mediation of electron transfer by Ni (OH)₂ and the electrode surface was analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectrometer (RS), and X-ray photoelectron spectroscopy (XPS). Results of surface characterization indicated the presence of α polymorphs which is the stable phase of Ni (OH)₂ /Graphite. Cyclic voltammograms gave information on the nature of electron transfer between nitrogen species and working electrode and revealed that the potential has depended on both nature ammonia oxidation and that of concentration. The mechanism of selective ammonia conversion to nitrogen and byproducts, namely NO₂- and NO₃- was established by Cyclic voltammograms and current efficiency. The removal efficiency and selective conversion of ammonia (0.1 M KNO₃ + 0.01 M Ni(NO₃)₂, pH 11, 250°C) on Nickel Oxide-hydroxide /Graphite was determined based on potential controlled experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Electro%20deposition" title="Electro deposition">Electro deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=Nickel%20oxide-hydroxide" title=" Nickel oxide-hydroxide"> Nickel oxide-hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=Nitrogen%20selectivity" title=" Nitrogen selectivity"> Nitrogen selectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammonia%20oxidation" title=" Ammonia oxidation"> Ammonia oxidation</a> </p> <a href="https://publications.waset.org/abstracts/132084/selective-oxidation-of-ammonia-to-nitrogen-over-nickel-oxide-hydroxide-graphite-prepared-with-an-electro-deposition-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">257</span> Pretreatment of Aquatic Weed Typha latifolia with Sodium Bisulphate for Enhanced Acid and Enzyme Hydrolysis for Production of Xylitol and Bioethanol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyosthna%20Khanna%20Goli">Jyosthna Khanna Goli</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaik%20Naseeruddin"> Shaik Naseeruddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hameeda%20Bee"> Hameeda Bee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Employing lignocellulosic biomass in fermentative production of xylitol and bioethanol is gaining interest as it is renewable, cheap, and abundantly available. Xylitol is a polyol, gaining its importance in the food and pharmacological industry due to its low calorific value and anti-cariogenic nature. Bioethanol from lignocellulosic biomass is widely accepted as an alternative fuel for transportation with reduced CO₂ emissions, thus reducing the greenhouse effect. Typha latifolia, an aquatic weed, was found to be promising lignocellulosic substrate as it posses a high amount of sugars and does not compete with arable lands and interfere with food and feed competition. In the present study, xylose from hemicellulosic fraction of typha is converted to xylitol by isolate Jfh5 (Candida. tropicalis) and cellulose part to ethanol using Saccharomyces cerevisiaeVS3. Initially, alkali pretreatment of typha using sodium hydroxide, potassium hydroxide, ammonium hydroxide, calcium hydroxide, sodium bisulphate and sodium dithionate for overnight (18h) at room temperature (28 ± 2°C), resulted in maximum delignification of 75% with 2% (v/v) sodium bisulphate. Later, pretreated biomass was subjected to acid hydrolysis with 1%, 1.5%, 2%, and 3% H₂SO₄ at 110 °C and 121°C for 30 and 60 min, respectively. 2% H₂SO₄ at 121°C for 60 min was found to release 13.5 g /l sugars, which on detoxification and fermentation produced 8.1g/l xylitol with yield and productivity of 0.65g/g and 0.112g/l/h respectively. Further enzymatic hydrolysis of the residual substrate obtained after acid hydrolysis released 11g/l sugar, which on fermentation with VS3 produced 4.9g/l ethanol with yield and productivity of 0.22g/g and 0.136g/l/h respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delignification" title="delignification">delignification</a>, <a href="https://publications.waset.org/abstracts/search?q=xylitol" title=" xylitol"> xylitol</a>, <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title=" bioethanol"> bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20hydrolysis" title=" acid hydrolysis"> acid hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20hydrolysis" title=" enzyme hydrolysis"> enzyme hydrolysis</a> </p> <a href="https://publications.waset.org/abstracts/121313/pretreatment-of-aquatic-weed-typha-latifolia-with-sodium-bisulphate-for-enhanced-acid-and-enzyme-hydrolysis-for-production-of-xylitol-and-bioethanol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">256</span> The Effects of Gas Metal Arc Welding Parameters on the Corrosion Behaviour of Austenitic Stainless Steel Immersed in Aqueous Sodium Hydroxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20M.%20B.%20Omiogbemi">I. M. B. Omiogbemi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Yawas"> D. S. Yawas</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20M.%20Dagwa"> I. M. Dagwa</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20G.%20Okibe"> F. G. Okibe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work present the effects of some gas metal arc welding parameters on the corrosion behavior of austenitic stainless steel, exposed to 0.5M sodium hydroxide at ambient temperatures (298K) using conventional weight loss determination, together with surface morphology evaluation by scanning electron microscopy and the application of factorial design of experiment to determine welding conditions which enhance the integrity of the welded stainless steel. The welding variables evaluated include speed, voltage and current. Different samples of the welded stainless steels were immersed in the corrosion environment for 8, 16, 24, 32 and 40 days and weight loss determined. From the results, it was found that increase in welding current and speed at constant voltage gave the optimum performance of the austenitic stainless steel in the environment. At a of speed 40cm/min, 110Amp current and voltage of 230 volt the welded stainless steel showed only a 0.0015mg loss in weight after 40 days. Pit-like openings were observed on the surface of the metals indicating corrosion but were minimal at the optimum conditions. It was concluded from the research that relatively high welding speed and current at a constant voltage gives a good welded austenitic stainless steel with better integrity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=welding" title="welding">welding</a>, <a href="https://publications.waset.org/abstracts/search?q=current" title=" current"> current</a>, <a href="https://publications.waset.org/abstracts/search?q=speed" title=" speed"> speed</a>, <a href="https://publications.waset.org/abstracts/search?q=austenitic%20stainless%20steel" title=" austenitic stainless steel"> austenitic stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide" title=" sodium hydroxide"> sodium hydroxide</a> </p> <a href="https://publications.waset.org/abstracts/41028/the-effects-of-gas-metal-arc-welding-parameters-on-the-corrosion-behaviour-of-austenitic-stainless-steel-immersed-in-aqueous-sodium-hydroxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">255</span> Doping ZnO with Bi through Synthesis of Layered Double Hydroxide Application of Photo-Catalytic Degradation of Indigoid Dye in the Visible Light </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Benyamina">I. Benyamina</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Benalioua"> B. Benalioua</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mansour"> M. Mansour</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bentouami"> A. Bentouami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to use a synthetic of the layered double hydroxide as a method of doping of zinc by transition metal. The choice of dopant metal being bismuth. The material has been heat treated at different temperatures then tested on the Photo discoloration of indigo carmine under visible irradiation. In contrast, the diffuse reflectance spectroscopic analysis of the UV-visible heat treated material exhibits an absorbance in the visible unlike ZnO and TiO2 P25. This property let the photocatalytic activity of Bi-ZnO under visible irradiation. Indeed, the photocatalytic effectiveness of Bi-ZnO in a visible light was proved by the total discoloration of indigo carmine solution with intial concentration of 16 mg/L after 90 minutes, whereas the TiO2 P25 and ZnO their discolorations are obtained after 120 minutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photo-catalysis" title="photo-catalysis">photo-catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=doping" title=" doping"> doping</a>, <a href="https://publications.waset.org/abstracts/search?q=AOP" title=" AOP"> AOP</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO" title=" ZnO"> ZnO</a> </p> <a href="https://publications.waset.org/abstracts/24191/doping-zno-with-bi-through-synthesis-of-layered-double-hydroxide-application-of-photo-catalytic-degradation-of-indigoid-dye-in-the-visible-light" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">254</span> Effect of Fiber Content and Chemical Treatment on Hardness of Bagasse Fiber Reinforced Epoxy Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Varun%20Mittal">Varun Mittal</a>, <a href="https://publications.waset.org/abstracts/search?q=Shishir%20Sinha"> Shishir Sinha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present experimental study focused on the hardness behavior of bagasse fiber-epoxy composites. The relationship between bagasse fiber content and effect of chemical treatment on bagasse fiber as a function of Brinell hardness of bagasse fiber epoxy was investigated. Bagasse fiber was treated with sodium hydroxide followed by acrylic acid before they were reinforced with epoxy resin. Compared hardness properties with the untreated bagasse filled epoxy composites. It was observed that Brinell hardness increased up to 15 wt% fiber content and further decreases, however, chemical treatment also improved the hardness properties of composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bagasse%20fiber" title="bagasse fiber">bagasse fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide" title=" sodium hydroxide"> sodium hydroxide</a> </p> <a href="https://publications.waset.org/abstracts/52160/effect-of-fiber-content-and-chemical-treatment-on-hardness-of-bagasse-fiber-reinforced-epoxy-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">253</span> Efficient Ni(II)-Containing Layered Triple Hydroxide-Based Catalysts: Synthesis, Characterisation and Their Role in the Heck Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabor%20Varga">Gabor Varga</a>, <a href="https://publications.waset.org/abstracts/search?q=Krisztina%20Karadi"> Krisztina Karadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoltan%20Konya"> Zoltan Konya</a>, <a href="https://publications.waset.org/abstracts/search?q=Akos%20Kukovecz"> Akos Kukovecz</a>, <a href="https://publications.waset.org/abstracts/search?q=Pal%20Sipos"> Pal Sipos</a>, <a href="https://publications.waset.org/abstracts/search?q=Istvan%20Palinko"> Istvan Palinko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nickel can efficiently replace palladium in the Heck, Suzuki and Negishi reactions. This study focuses on the synthesis and catalytic application of Ni(II)-containing layered double hydroxides (LDHs) and layered triple hydroxides (LTHs). Our goals were to incorporate Ni(II) ions among the layers of LDHs or LTHs, or binding it to their surface or building it into their layers in such a way that their catalytic activities are maintained or even increased. The LDHs and LTHs were prepared by the co-precipitation method using ethylene glycol as co-solvent. In several cases, post-synthetic modifications (e.g., thermal treatment) were performed. After optimizing the synthesis conditions, the composites displayed good crystallinity and were free of byproducts. The success of the syntheses and the post-synthetic modifications was confirmed by relevant characterization methods (XRD, SEM, SEM-EDX and combined IR techniques). Catalytic activities of the produced and well-characterized solids were investigated through the Heck reaction. The composites behaved as efficient, recyclable catalysts in the Heck reaction between 4-bromoanisole and styrene. Through varying the reaction parameters, we were able to obtain acceptable conversions under mild conditions. Our study highlights the possibility of the application of Ni(II)-containing composites as efficient catalysts in coupling reactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=layered%20double%20hydroxide" title="layered double hydroxide">layered double hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=layered%20triple%20hydroxide" title=" layered triple hydroxide"> layered triple hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20catalysis" title=" heterogeneous catalysis"> heterogeneous catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=heck%20reaction" title=" heck reaction"> heck reaction</a> </p> <a href="https://publications.waset.org/abstracts/95373/efficient-niii-containing-layered-triple-hydroxide-based-catalysts-synthesis-characterisation-and-their-role-in-the-heck-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lanthanum%20hydroxide&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lanthanum%20hydroxide&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lanthanum%20hydroxide&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lanthanum%20hydroxide&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lanthanum%20hydroxide&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lanthanum%20hydroxide&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lanthanum%20hydroxide&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lanthanum%20hydroxide&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lanthanum%20hydroxide&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lanthanum%20hydroxide&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>