CINXE.COM

Search results for: flood resilience

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: flood resilience</title> <meta name="description" content="Search results for: flood resilience"> <meta name="keywords" content="flood resilience"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="flood resilience" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="flood resilience"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1325</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: flood resilience</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1325</span> Role of Support, Experience and Education in Livelihood Resilience</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madhuri">Madhuri</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20R.%20Tewari"> H. R. Tewari</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20K.%20Bhowmick"> P. K. Bhowmick</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study attempts to find out the role of the community and the government support, flood experience, flood education, and education of the male-headed households in their livelihood resilience. The study is based on a randomly drawn sample of 472 households from the river basins of Ganga and Kosi in the district of Bhagalpur, Bihar. Structural equation modeling (SEM) and analysis of variance (ANOVA) methods are used to analyze the data. The findings of the study reveal that the role(s) of the community support though is found to be more significant in comparison to the government supports for its stand by position in rescue and livelihood resilience of the affected households whereas the government support arrives late and in far less quantity than what is required. However, the government's support is equally vital due its control over resources, which essentially needed in rescue and rehabilitation of the affected households. The study unravels the strategic value of households' indigenous knowledge and their flood experience in livelihood resilience. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20education" title="flood education">flood education</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20experience" title=" flood experience"> flood experience</a>, <a href="https://publications.waset.org/abstracts/search?q=livelihood%20resilience" title=" livelihood resilience"> livelihood resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=community%20support" title=" community support"> community support</a>, <a href="https://publications.waset.org/abstracts/search?q=government%20support" title=" government support"> government support</a> </p> <a href="https://publications.waset.org/abstracts/16564/role-of-support-experience-and-education-in-livelihood-resilience" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1324</span> Climate Change and Urban Flooding: The Need to Rethinking Urban Flood Management through Resilience</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Hettiarachchi">Suresh Hettiarachchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Conrad%20Wasko"> Conrad Wasko</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Sharma"> Ashish Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ever changing and expanding urban landscape increases the stress on urban systems to support and maintain safe and functional living spaces. Flooding presents one of the more serious threats to this safety, putting a larger number of people in harm’s way in congested urban settings. Climate change is adding to this stress by creating a dichotomy in the urban flood response. On the one hand, climate change is causing storms to intensify, resulting in more destructive, rarer floods, while on the other hand, longer dry periods are decreasing the severity of more frequent, less intense floods. This variability is creating a need to be more agile and innovative in how we design for and manage urban flooding. Here, we argue that to cope with this challenge climate change brings, we need to move towards urban flood management through resilience rather than flood prevention. We also argue that dealing with the larger variation in flood response to climate change means that we need to look at flooding from all aspects rather than the single-dimensional focus of flood depths and extents. In essence, we need to rethink how we manage flooding in the urban space. This change in our thought process and approach to flood management requires a practical way to assess and quantify resilience that is built into the urban landscape so that informed decision-making can support the required changes in planning and infrastructure design. Towards that end, we propose a Simple Urban Flood Resilience Index (SUFRI) based on a robust definition of resilience as a tool to assess flood resilience. The application of a simple resilience index such as the SUFRI can provide a practical tool that considers urban flood management in a multi-dimensional way and can present solutions that were not previously considered. When such an index is grounded on a clear and relevant definition of resilience, it can be a reliable and defensible way to assess and assist the process of adapting to the increasing challenges in urban flood management with climate change. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20flood%20resilience" title="urban flood resilience">urban flood resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20management" title=" flood management"> flood management</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20modelling" title=" flood modelling"> flood modelling</a> </p> <a href="https://publications.waset.org/abstracts/182887/climate-change-and-urban-flooding-the-need-to-rethinking-urban-flood-management-through-resilience" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1323</span> Resilience Perspective on Response Strategies for Super-Standard Rain and Flood Disasters: A Case Study of the “Zhengzhou 7.20 Heavy Rain” Event</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luojie%20Tang">Luojie Tang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article takes the "7.20 Heavy Rainstorm in Zhengzhou" as a starting point, collects relevant disaster data, reproduces the entire process of the disaster, and identifies the main problems exposed by the city in responding to super-standard rain and flood disasters. Based on the review of resilience theory, the article proposes a shift in thinking about the response to super-standard rain and flood disasters from the perspective of resilience, clarifies the differences in the emphasis on resilience at different stages of disasters, and preliminarily constructs a response system for super-standard rain and flood disasters based on the guidance of resilience theory. Finally, combined with the highlighted problems in the 7.20 Heavy Rainstorm in Zhengzhou, the article proposes targeted response strategies from three perspectives: institutional management, technological support, and infrastructure, under the perspective of resilience. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resilient%20city" title="resilient city">resilient city</a>, <a href="https://publications.waset.org/abstracts/search?q=exceedance-based%20stormwater%20management" title=" exceedance-based stormwater management"> exceedance-based stormwater management</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster%20risk%20reduction" title=" disaster risk reduction"> disaster risk reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=megalopolis" title=" megalopolis"> megalopolis</a> </p> <a href="https://publications.waset.org/abstracts/165248/resilience-perspective-on-response-strategies-for-super-standard-rain-and-flood-disasters-a-case-study-of-the-zhengzhou-720-heavy-rain-event" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1322</span> Learning from Flood: A Case Study of a Frequently Flooded Village in Hubei, China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Da%20Kuang">Da Kuang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Resilience is a hotly debated topic in many research fields (e.g., engineering, ecology, society, psychology). In flood management studies, we are experiencing the paradigm shift from flood resistance to flood resilience. Flood resilience refers to tolerate flooding through adaptation or transformation. It is increasingly argued that our city as a social-ecological system holds the ability to learn from experience and adapt to flood rather than simply resist it. This research aims to investigate what kinds of adaptation knowledge the frequently flooded village learned from past experience and its advantages and limitations in coping with floods. The study area – Xinnongcun village, located in the west of Wuhan city, is a linear village and continuously suffered from both flash flood and drainage flood during the past 30 years. We have a field trip to the site in June 2017 and conducted semi-structured interviews with local residents. Our research summarizes two types of adaptation knowledge that people learned from the past floods. Firstly, at the village scale, it has formed a collective urban form which could help people live during both flood and dry season. All houses and front yards were elevated about 2m higher than the road. All the front yards in the village are linked and there is no barrier. During flooding time, people walk to neighbors through houses yards and boat to outside village on the lower road. Secondly, at individual scale, local people learned tacit knowledge of preparedness and emergency response to flood. Regarding the advantages and limitations, the adaptation knowledge could effectively help people to live with flood and reduce the chances of getting injuries. However, it cannot reduce local farmers’ losses on their agricultural land. After flood, it is impossible for local people to recover to the pre-disaster state as flood emerges during June and July will result in no harvest. Therefore, we argue that learning from past flood experience could increase people’s adaptive capacity. However, once the adaptive capacity cannot reduce people’s losses, it requires a transformation to a better regime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptation" title="adaptation">adaptation</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20resilience" title=" flood resilience"> flood resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=tacit%20knowledge" title=" tacit knowledge"> tacit knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=transformation" title=" transformation"> transformation</a> </p> <a href="https://publications.waset.org/abstracts/80551/learning-from-flood-a-case-study-of-a-frequently-flooded-village-in-hubei-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1321</span> [Keynote Talk]: Unlocking Transformational Resilience in the Aftermath of a Flood Disaster: A Case Study from Cumbria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kate%20Crinion">Kate Crinion</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20%20Haran"> Martin Haran</a>, <a href="https://publications.waset.org/abstracts/search?q=Stanley%20McGreal"> Stanley McGreal</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20McIlhatton"> David McIlhatton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Past research has demonstrated that disasters are continuing to escalate in frequency and magnitude worldwide, representing a key concern for the global community. Understanding and responding to the increasing risk posed by disaster events has become a key concern for disaster managers. An emerging trend within literature, acknowledges the need to move beyond a state of coping and reinstatement of the status quo, towards incremental adaptive change and transformational actions for long-term sustainable development. As such, a growing interest in research concerns the understanding of the change required to address ever increasing and unpredictable disaster events. Capturing transformational capacity and resilience, however is not without its difficulties and explains the dearth in attempts to capture this capacity. Adopting a case study approach, this research seeks to enhance an awareness of transformational resilience by identifying key components and indicators that determine the resilience of flood-affected communities within Cumbria. Grounding and testing a theoretical resilience framework within the case studies, permits the identification of how perceptions of risk influence community resilience actions. Further, it assesses how levels of social capital and connectedness impacts upon the extent of interplay between resources and capacities that drive transformational resilience. Thus, this research seeks to expand the existing body of knowledge by enhancing the awareness of resilience in post-disaster affected communities, by investigating indicators of community capacity building and resilience actions that facilitate transformational resilience during the recovery and reconstruction phase of a flood disaster. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capacity%20building" title="capacity building">capacity building</a>, <a href="https://publications.waset.org/abstracts/search?q=community" title=" community"> community</a>, <a href="https://publications.waset.org/abstracts/search?q=flooding" title=" flooding"> flooding</a>, <a href="https://publications.waset.org/abstracts/search?q=transformational%20resilience" title=" transformational resilience "> transformational resilience </a> </p> <a href="https://publications.waset.org/abstracts/68498/keynote-talk-unlocking-transformational-resilience-in-the-aftermath-of-a-flood-disaster-a-case-study-from-cumbria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1320</span> Urban Flood Resilience Comprehensive Assessment of &quot;720&quot; Rainstorm in Zhengzhou Based on Multiple Factors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meiyan%20Gao">Meiyan Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zongmin%20Wang"> Zongmin Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Haibo%20Yang"> Haibo Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiuhua%20Liang"> Qiuhua Liang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Under the background of global climate change and rapid development of modern urbanization, the frequency of climate disasters such as extreme precipitation in cities around the world is gradually increasing. In this paper, Hi-PIMS model is used to simulate the "720" flood in Zhengzhou, and the continuous stages of flood resilience are determined with the urban flood stages are divided. The flood resilience curve under the influence of multiple factors were determined and the urban flood toughness was evaluated by combining the results of resilience curves. The flood resilience of urban unit grid was evaluated based on economy, population, road network, hospital distribution and land use type. Firstly, the rainfall data of meteorological stations near Zhengzhou and the remote sensing rainfall data from July 17 to 22, 2021 were collected. The Kriging interpolation method was used to expand the rainfall data of Zhengzhou. According to the rainfall data, the flood process generated by four rainfall events in Zhengzhou was reproduced. Based on the results of the inundation range and inundation depth in different areas, the flood process was divided into four stages: absorption, resistance, overload and recovery based on the once in 50 years rainfall standard. At the same time, based on the levels of slope, GDP, population, hospital affected area, land use type, road network density and other aspects, the resilience curve was applied to evaluate the urban flood resilience of different regional units, and the difference of flood process of different precipitation in "720" rainstorm in Zhengzhou was analyzed. Faced with more than 1,000 years of rainstorm, most areas are quickly entering the stage of overload. The influence levels of factors in different areas are different, some areas with ramps or higher terrain have better resilience, and restore normal social order faster, that is, the recovery stage needs shorter time. Some low-lying areas or special terrain, such as tunnels, will enter the overload stage faster in the case of heavy rainfall. As a result, high levels of flood protection, water level warning systems and faster emergency response are needed in areas with low resilience and high risk. The building density of built-up area, population of densely populated area and road network density all have a certain negative impact on urban flood resistance, and the positive impact of slope on flood resilience is also very obvious. While hospitals can have positive effects on medical treatment, they also have negative effects such as population density and asset density when they encounter floods. The result of a separate comparison of the unit grid of hospitals shows that the resilience of hospitals in the distribution range is low when they encounter floods. Therefore, in addition to improving the flood resistance capacity of cities, through reasonable planning can also increase the flood response capacity of cities. Changes in these influencing factors can further improve urban flood resilience, such as raise design standards and the temporary water storage area when floods occur, train the response speed of emergency personnel and adjust emergency support equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20flood%20resilience" title="urban flood resilience">urban flood resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=resilience%20assessment" title=" resilience assessment"> resilience assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20model" title=" hydrodynamic model"> hydrodynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=resilience%20curve" title=" resilience curve"> resilience curve</a> </p> <a href="https://publications.waset.org/abstracts/182830/urban-flood-resilience-comprehensive-assessment-of-720-rainstorm-in-zhengzhou-based-on-multiple-factors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1319</span> Knowledge Integration from Concept to Practice: An Exploratory Study of Designing a Flood Resilient Urban Park in Viet Nam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=To%20Quyen%20Le">To Quyen Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Oswald%20Devisch"> Oswald Devisch</a>, <a href="https://publications.waset.org/abstracts/search?q=Tu%20Anh%20Trinh"> Tu Anh Trinh</a>, <a href="https://publications.waset.org/abstracts/search?q=Els%20Hannes"> Els Hannes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urban centres worldwide are affected differently by flooding. In Vietnam this impact is increasingly negative caused by a process of rapid urbanisation. Traditional spatial planning and flood mitigation planning are not able to deal with this growing threat. This article therefore proposes to focus on increasing the participation of local communities in flood control and management. It explores, on the basis of a design studio exercise, how lay knowledge on flooding can be integrated within planning processes. The article presents a theoretical basis for the structured criterion for site selection for a flood resilient urban park from the perspective of science, then discloses the tacit and explicit knowledge of the flood-prone area and finally integrates this knowledge into the design strategies for flood resilient urban park design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytic%20hierarchy%20process" title="analytic hierarchy process">analytic hierarchy process</a>, <a href="https://publications.waset.org/abstracts/search?q=AHP" title=" AHP"> AHP</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20resilience" title=" design resilience"> design resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20resilient%20urban%20park" title=" flood resilient urban park"> flood resilient urban park</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20integration" title=" knowledge integration"> knowledge integration</a> </p> <a href="https://publications.waset.org/abstracts/130957/knowledge-integration-from-concept-to-practice-an-exploratory-study-of-designing-a-flood-resilient-urban-park-in-viet-nam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1318</span> The Relevance of Community Involvement in Flood Risk Governance Towards Resilience to Groundwater Flooding. A Case Study of Project Groundwater Buckinghamshire, UK</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Claude%20Nsobya">Claude Nsobya</a>, <a href="https://publications.waset.org/abstracts/search?q=Alice%20Moncaster"> Alice Moncaster</a>, <a href="https://publications.waset.org/abstracts/search?q=Karen%20Potter"> Karen Potter</a>, <a href="https://publications.waset.org/abstracts/search?q=Jed%20Ramsay"> Jed Ramsay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The shift in Flood Risk Governance (FRG) has moved away from traditional approaches that solely relied on centralized decision-making and structural flood defenses. Instead, there is now the adoption of integrated flood risk management measures that involve various actors and stakeholders. This new approach emphasizes people-centered approaches, including adaptation and learning. This shift to a diversity of FRG approaches has been identified as a significant factor in enhancing resilience. Resilience here refers to a community's ability to withstand, absorb, recover, adapt, and potentially transform in the face of flood events. It is argued that if the FRG merely focused on the conventional 'fighting the water' - flood defense - communities would not be resilient. The move to these people-centered approaches also implies that communities will be more involved in FRG. It is suggested that effective flood risk governance influences resilience through meaningful community involvement, and effective community engagement is vital in shaping community resilience to floods. Successful community participation not only uses context-specific indigenous knowledge but also develops a sense of ownership and responsibility. Through capacity development initiatives, it can also raise awareness and all these help in building resilience. Recent Flood Risk Management (FRM) projects have thus had increasing community involvement, with varied conceptualizations of such community engagement in the academic literature on FRM. In the context of overland floods, there has been a substantial body of literature on Flood Risk Governance and Management. Yet, groundwater flooding has gotten little attention despite its unique qualities, such as its persistence for weeks or months, slow onset, and near-invisibility. There has been a little study in this area on how successful community involvement in Flood Risk Governance may improve community resilience to groundwater flooding in particular. This paper focuses on a case study of a flood risk management project in the United Kingdom. Buckinghamshire Council is leading Project Groundwater, which is one of 25 significant initiatives sponsored by England's Department for Environment, Food and Rural Affairs (DEFRA) Flood and Coastal Resilience Innovation Programme. DEFRA awarded Buckinghamshire Council and other councils 150 million to collaborate with communities and implement innovative methods to increase resilience to groundwater flooding. Based on a literature review, this paper proposes a new paradigm for effective community engagement in Flood Risk Governance (FRG). This study contends that effective community participation can have an impact on various resilience capacities identified in the literature, including social capital, institutional capital, physical capital, natural capital, human capital, and economic capital. In the case of social capital, for example, successful community engagement can influence social capital through the process of social learning as well as through developing social networks and trust values, which are vital in influencing communities' capacity to resist, absorb, recover, and adapt. The study examines community engagement in Project Groundwater using surveys with local communities and documentary analysis to test this notion. The outcomes of the study will inform community involvement activities in Project Groundwater and may shape DEFRA policies and guidelines for community engagement in FRM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20risk%20governance" title="flood risk governance">flood risk governance</a>, <a href="https://publications.waset.org/abstracts/search?q=community" title=" community"> community</a>, <a href="https://publications.waset.org/abstracts/search?q=resilience" title=" resilience"> resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20flooding" title=" groundwater flooding"> groundwater flooding</a> </p> <a href="https://publications.waset.org/abstracts/168574/the-relevance-of-community-involvement-in-flood-risk-governance-towards-resilience-to-groundwater-flooding-a-case-study-of-project-groundwater-buckinghamshire-uk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1317</span> The Ongoing Impact of Secondary Stressors on Businesses in Northern Ireland Affected by Flood Events</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jill%20Stephenson">Jill Stephenson</a>, <a href="https://publications.waset.org/abstracts/search?q=Marie%20Vaganay"> Marie Vaganay</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Cameron"> Robert Cameron</a>, <a href="https://publications.waset.org/abstracts/search?q=Caoimhe%20McGurk"> Caoimhe McGurk</a>, <a href="https://publications.waset.org/abstracts/search?q=Neil%20Hewitt"> Neil Hewitt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: The key aim of the research was to identify the secondary stressors experienced by businesses affected by single or repeated flooding and to determine to what extent businesses were affected by these stressors, along with any resulting impact on health. Additionally, the research aimed to establish the likelihood of businesses being re-exposed to the secondary stressors through assessing awareness of flood risk, implementation of property protection measures and level of community resilience. Design/methodology/approach: The chosen research method involved the distribution of a questionnaire survey to businesses affected by either single or repeated flood events. The questionnaire included the Impact of Event Scale (a 15-item self-report measure which assesses subjective distress caused by traumatic events). Findings: 55 completed questionnaires were returned by flood impacted businesses. 89% of the businesses had sustained internal flooding while 11% had experienced external flooding. The results established that the key secondary stressors experienced by businesses, in order of priority, were: flood damage, fear of reoccurring flooding, prevention of access to the premise/closure, loss of income, repair works, length of closure and insurance issues. There was a lack of preparedness for potential future floods and consequent vulnerability to the emergence of secondary stressors among flood affected businesses, as flood resistance or flood resilience measures had only been implemented by 11% and 13% respectively. In relation to the psychological repercussions, the Impact of Event scores suggested that potential prevalence of post-traumatic stress disorder (PTSD) was noted among 8 out of 55 respondents (l5%). Originality/value: The results improve understanding of the enduring repercussions of flood events on businesses, indicating that not only residents may be susceptible to the detrimental health impacts of flood events and single flood events may be just as likely as reoccurring flooding to contribute to ongoing stress. Lack of financial resources is a possible explanation for the lack of implementation of property protection measures among businesses, despite 49% experiencing flooding on multiple occasions. Therefore it is recommended that policymakers should consider potential sources of financial support or grants towards flood defences for flood impacted businesses. Any form of assistance should be made available to businesses at the earliest opportunity as there was no significant association between the time of the last flood event and the likelihood of experiencing PTSD symptoms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20event" title="flood event">flood event</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20resilience" title=" flood resilience"> flood resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20resistance" title=" flood resistance"> flood resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=PTSD" title=" PTSD"> PTSD</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20stressors" title=" secondary stressors"> secondary stressors</a> </p> <a href="https://publications.waset.org/abstracts/35138/the-ongoing-impact-of-secondary-stressors-on-businesses-in-northern-ireland-affected-by-flood-events" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1316</span> Designing an Agent-Based Model of SMEs to Assess Flood Response Strategies and Resilience</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Li">C. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Coates"> G. Coates</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Johnson"> N. Johnson</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mc%20Guinness"> M. Mc Guinness</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the UK, flooding is responsible for significant losses to the economy due to the impact on businesses, the vast majority of which are Small and Medium Enterprises (SMEs). Businesses of this nature tend to lack formal plans to aid their response to and recovery from disruptive events such as flooding. This paper reports on work on how an agent-based model (ABM) is being developed based on interview data gathered from SMEs at-risk of flooding and/or have direct experience of flooding. The ABM will enable simulations to be performed allowing investigations of different response strategies which SMEs may employ to lessen the impact of flooding, thus strengthening their resilience. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABM" title="ABM">ABM</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20response" title=" flood response"> flood response</a>, <a href="https://publications.waset.org/abstracts/search?q=SMEs" title=" SMEs"> SMEs</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20continuity" title=" business continuity"> business continuity</a> </p> <a href="https://publications.waset.org/abstracts/13770/designing-an-agent-based-model-of-smes-to-assess-flood-response-strategies-and-resilience" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1315</span> Research Methods and Design Strategies to Improve Resilience in Coastal and Estuary Cities </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irene%20Perez%20Lopez">Irene Perez Lopez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Delta and estuary cities are spaces constantly evolving, incessantly altered by the ever-changing actions of water transformation. Strategies that incorporate comprehensive and integrated approaches to planning and design with water will play a powerful role in defining new types of flood defense. These strategies will encourage more resilient and active urban environments, allowing for new spatial and functional programs. This abstract presents the undergoing research in Newcastle, the first urbanized delta in New South Wales (Australia), and the region's second-biggest catchment and estuary. The research methodology is organized in three phases: 1) a projective cartography that analyses maps and data across the region's recorded history, identifying past and present constraints, and predicting future conditions. The cartography aids to identify worst-case scenarios, revealing the implications of land reclamation that have not considered the confronting evolution of climate change and its conflicts with inhabitation; 2) the cartographic studies identify the areas under threat and form the basis for further interdisciplinary research, complimented by community consultation, to reduce flood risk and increase urban resilience and livability; 3) a speculative or prospective phase of design with water to generate evidence-based guidelines that strengthen urban resilience of shorelines and flood prone areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coastal%20defense" title="coastal defense">coastal defense</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20resilience" title=" urban resilience"> urban resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping" title=" mapping"> mapping</a> </p> <a href="https://publications.waset.org/abstracts/118723/research-methods-and-design-strategies-to-improve-resilience-in-coastal-and-estuary-cities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1314</span> Resilience Building, the Case of Dire Dawa Community, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Getachew%20Demesa%20Bexa">Getachew Demesa Bexa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building resilience to withstand extreme weather events through reduction and mitigation measures towards predicted disasters with appropriate contingency plans complemented by timely and effective emergency response demands committed and integrated/coordinated efforts. The 2006 flood disaster that claimed more than 200 people in Dire Dawa town shifted the paradigm from reactive to proactive engagement among government, NGOs and communities to contain future disasters through resilience building. Dire Dawa CMDRR Association is a model community organization that demonstrated the basic minimum and turning adversity into opportunity by mobilizing vulnerable community members. Meanwhile the birth of African Centre for Disaster Risk Management is a milestone in changing the image of the country and beyond in resilience building while linking relief and development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dire%20Dawa" title="Dire Dawa">Dire Dawa</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster" title=" disaster"> disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=resilience" title=" resilience"> resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20management" title=" risk management"> risk management</a> </p> <a href="https://publications.waset.org/abstracts/27890/resilience-building-the-case-of-dire-dawa-community-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1313</span> Developing Cause-effect Model of Urban Resilience versus Flood in Karaj City using TOPSIS and Shannon Entropy Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Saber%20Eslamlou">Mohammad Saber Eslamlou</a>, <a href="https://publications.waset.org/abstracts/search?q=Manouchehr%20Tabibian"> Manouchehr Tabibian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahta%20Mirmoghtadaei"> Mahta Mirmoghtadaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The history of urban development and the increasing complexities of urban life have long been intertwined with different natural and man-made disasters. Sometimes, these unpleasant events have destroyed the cities forever. The growth of the urban population and the increase of social and economic resources in the cities increased the importance of developing a holistic approach to dealing with unknown urban disasters. As a result, the interest in resilience has increased in most of the scientific fields, and the urban planning literature has been enriched with the studies of the social, economic, infrastructural, and physical abilities of the cities. In this regard, different conceptual frameworks and patterns have been developed focusing on dimensions of resilience and different kinds of disasters. As the most frequent and likely natural disaster in Iran is flooding, the present study aims to develop a cause-effect model of urban resilience against flood in Karaj City. In this theoretical study, desk research and documentary studies were used to find the elements and dimensions of urban resilience. In this regard, 6 dimensions and 32 elements were found for urban resilience and a questionnaire was made by considering the requirements of TOPSIS techniques (pairwise comparison). The sample of the research consisted of 10 participants who were faculty members, academicians, board members of research centers, managers of the Ministry of Road and Urban Development, board members of New Towns Development Company, experts, and practitioners of consulting companies who had scientific and research backgrounds. The gathered data in this survey were analyzed using TOPSIS and Shannon Entropy techniques. The results show that Infrastructure/Physical, Social, Organizational/ Institutional, Structural/Physical, Economic, and Environmental dimensions are the most effective factors in urban resilience against floods in Karaj, respectively. Finally, a comprehensive model and a systematic framework of factors that affect the urban resilience of Karaj against floods was developed. This cause – effect model shows how different factors are related and influence each other, based on their connected structure and preferences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20resilience" title="urban resilience">urban resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=TOPSIS" title=" TOPSIS"> TOPSIS</a>, <a href="https://publications.waset.org/abstracts/search?q=Shannon%20entropy" title=" Shannon entropy"> Shannon entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=cause-effect%20model%20of%20resilience" title=" cause-effect model of resilience"> cause-effect model of resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=flood" title=" flood"> flood</a> </p> <a href="https://publications.waset.org/abstracts/182222/developing-cause-effect-model-of-urban-resilience-versus-flood-in-karaj-city-using-topsis-and-shannon-entropy-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1312</span> Amphibious Architecture: A Benchmark for Mitigating Flood Risk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lara%20Leite%20Barbosa">Lara Leite Barbosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20Imperadori"> Marco Imperadori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article aims to define strategies for applying innovative technology so that housing in regions subject to floods can be more resilient to disasters. Based on case studies of seven amphibious and floating projects, it proposes design guidelines to implement this practice. Its originality consists of transposing a technology developed for fluctuating buildings for housing types in regions affected by flood disasters. The proposal could be replicated in other contexts, endowing vulnerable households with the ability to resist rising water levels after a flood. The results of this study are design guidelines to adapt for houses in areas subject to flooding, contributing to the mitigation of this disaster. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amphibious%20housing" title="amphibious housing">amphibious housing</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster%20resilience" title=" disaster resilience"> disaster resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20architecture" title=" floating architecture"> floating architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20mitigation" title=" flood mitigation"> flood mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=post-disaster%20reconstruction" title=" post-disaster reconstruction"> post-disaster reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/133172/amphibious-architecture-a-benchmark-for-mitigating-flood-risk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1311</span> A Topology-Based Dynamic Repair Strategy for Enhancing Urban Road Network Resilience under Flooding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xuhui%20Lin">Xuhui Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiuchen%20Lu"> Qiuchen Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi%20An"> Yi An</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Yang"> Tao Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As global climate change intensifies, extreme weather events such as floods increasingly threaten urban infrastructure, making the vulnerability of urban road networks a pressing issue. Existing static repair strategies fail to adapt to the rapid changes in road network conditions during flood events, leading to inefficient resource allocation and suboptimal recovery. The main research gap lies in the lack of repair strategies that consider both the dynamic characteristics of networks and the progression of flood propagation. This paper proposes a topology-based dynamic repair strategy that adjusts repair priorities based on real-time changes in flood propagation and traffic demand. Specifically, a novel method is developed to assess and enhance the resilience of urban road networks during flood events. The method combines road network topological analysis, flood propagation modelling, and traffic flow simulation, introducing a local importance metric to dynamically evaluate the significance of road segments across different spatial and temporal scales. Using London's road network and rainfall data as a case study, the effectiveness of this dynamic strategy is compared to traditional and Transport for London (TFL) strategies. The most significant highlight of the research is that the dynamic strategy substantially reduced the number of stranded vehicles across different traffic demand periods, improving efficiency by up to 35.2%. The advantage of this method lies in its ability to adapt in real-time to changes in network conditions, enabling more precise resource allocation and more efficient repair processes. This dynamic strategy offers significant value to urban planners, traffic management departments, and emergency response teams, helping them better respond to extreme weather events like floods, enhance overall urban resilience, and reduce economic losses and social impacts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Urban%20resilience" title="Urban resilience">Urban resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20networks" title=" road networks"> road networks</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20response" title=" flood response"> flood response</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20repair%20strategy" title=" dynamic repair strategy"> dynamic repair strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20analysis" title=" topological analysis"> topological analysis</a> </p> <a href="https://publications.waset.org/abstracts/187662/a-topology-based-dynamic-repair-strategy-for-enhancing-urban-road-network-resilience-under-flooding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">35</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1310</span> Rethinking Everyday Urban Spaces Using Principles of Resilient Urbanism: A Case of Flooding in Thiruvalla</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prejily%20Thomas%20John">Prejily Thomas John</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flooding of urban areas often has an adverse impact on the dense population residing in cities. The vulnerable areas are the most affected due to flooding, which even results in loss of life. The increasing trend of urban floods is a universal phenomenon and leads to a vital loss in the physical, economic, social, and environmental dimensions. The shift from floods being natural disasters to man-made disasters due to unplanned urban growth is evident from national and international reports. Thiruvalla, bordered by the Manimala River in the Pathanamthitta district, is an important urban node and a drainage point of various estuaries. The city is often faced with flash floods and overflow from rivers since it is a low-lying land. The need for urban flood resilience for planned urban development is a necessity for livability in consideration of the topography. The paper focuses on developing an urban design framework in everyday urban spaces through the principles of resilient urbanism. The principles guide the creation of flood-resilient spaces and productive urban landscapes for the city to enable better and safer living conditions. A flood-resilient city not only prepares the city for disasters but also improves the ecological and economic conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=everyday%20urban%20spaces" title="everyday urban spaces">everyday urban spaces</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20resilience" title=" flood resilience"> flood resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=resilient%20urbanism" title=" resilient urbanism"> resilient urbanism</a>, <a href="https://publications.waset.org/abstracts/search?q=productive%20urban%20landscapes" title=" productive urban landscapes"> productive urban landscapes</a> </p> <a href="https://publications.waset.org/abstracts/155993/rethinking-everyday-urban-spaces-using-principles-of-resilient-urbanism-a-case-of-flooding-in-thiruvalla" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1309</span> Collective Potential: A Network of Acupuncture Interventions for Flood Resilience</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sachini%20Wickramanayaka">Sachini Wickramanayaka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The occurrence of natural disasters has increased in an alarming rate in recent times due to escalating effects of climate change. One such natural disaster that has continued to grow in frequency and intensity is ‘flooding’, adversely affecting communities around the globe. This is an exploration on how architecture can intervene and facilitate in preserving communities in the face of disaster, specifically in battling floods. ‘Resilience’ is one of the concepts that have been brought forward to be instilled in vulnerable communities to lower the impact from such disasters as a preventative and coping mechanism. While there are number of ways to achieve resilience in the built environment, this paper aims to create a synthesis between resilience and ‘urban acupuncture’. It will consider strengthening communities from within, by layering a network of relatively small-scale, fast phased interventions on pre-existing conventional flood preventative large-scale engineering infrastructure.By investigating ‘The Woodlands’, a planned neighborhood as a case study, this paper will argue that large-scale water management solutions while extremely important will not suffice as a single solution particularly during a time of frequent and extreme weather events. The different projects will try to synthesize non-architectural aspects such as neighborhood aspirations, requirements, potential and awareness into a network of architectural forms that would collectively increase neighborhood resiliency to floods. A mapping study of the selected study area will identify the problematic areas that flood in the neighborhood while the empirical data from previously implemented case studies will assess the success of each solution.If successful the different solutions for each of the identified problem areas will exhibithow flooding and water management can be integrated as part and parcel of daily life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acupuncture" title="acupuncture">acupuncture</a>, <a href="https://publications.waset.org/abstracts/search?q=architecture" title=" architecture"> architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=resiliency" title=" resiliency"> resiliency</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-interventions" title=" micro-interventions"> micro-interventions</a>, <a href="https://publications.waset.org/abstracts/search?q=neighborhood" title=" neighborhood"> neighborhood</a> </p> <a href="https://publications.waset.org/abstracts/91681/collective-potential-a-network-of-acupuncture-interventions-for-flood-resilience" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1308</span> Flood Hazard and Risk Mapping to Assess Ice-Jam Flood Mitigation Measures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karl-Erich%20Lindenschmidt">Karl-Erich Lindenschmidt</a>, <a href="https://publications.waset.org/abstracts/search?q=Apurba%20Das"> Apurba Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Joel%20Trudell"> Joel Trudell</a>, <a href="https://publications.waset.org/abstracts/search?q=Keanne%20Russell"> Keanne Russell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this presentation, we explore options for mitigating ice-jam flooding along the Athabasca River in western Canada. Not only flood hazard, expressed in this case as the probability of flood depths and extents being exceeded, but also flood risk, in which annual expected damages are calculated. Flood risk is calculated, which allows a cost-benefit analysis to be made so that decisions on the best mitigation options are not based solely on flood hazard but also on the costs related to flood damages and the benefits of mitigation. The river ice model is used to simulate extreme ice-jam flood events with which scenarios are run to determine flood exposure and damages in flood-prone areas along the river. We will concentrate on three mitigation options – the placement of a dike, artificial breakage of the ice cover along the river, the installation of an ice-control structure, and the construction of a reservoir. However, any mitigation option is not totally failsafe. For example, dikes can still be overtopped and breached, and ice jams may still occur in areas of the river where ice covers have been artificially broken up. Hence, for all options, it is recommended that zoning of building developments away from greater flood hazard areas be upheld. Flood mitigation can have a negative effect of giving inhabitants a false sense of security that flooding may not happen again, leading to zoning policies being relaxed. (Text adapted from Lindenschmidt [2022] "Ice Destabilization Study - Phase 2", submitted to the Regional Municipality of Wood Buffalo, Alberta, Canada) <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ice%20jam" title="ice jam">ice jam</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20hazard" title=" flood hazard"> flood hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20risk%20river%20ice%20modelling" title=" flood risk river ice modelling"> flood risk river ice modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20risk" title=" flood risk"> flood risk</a> </p> <a href="https://publications.waset.org/abstracts/147292/flood-hazard-and-risk-mapping-to-assess-ice-jam-flood-mitigation-measures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1307</span> Portable Water Treatment for Flood Resilience</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Abbassi%20Monjezi">Alireza Abbassi Monjezi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hasan%20Shaheed"> Mohammad Hasan Shaheed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flood, caused by excessive rainfall, monsoon, cyclone and tsunami is a common disaster in many countries of the world especially sea connected low-lying countries. A stand-alone self-powered water filtration module for decontamination of floodwater has been designed and modeled. A combination forward osmosis – low pressure reverse osmosis (FO-LPRO) system powered by solar photovoltaic-thermal (PVT) energy is investigated which could overcome the main barriers to water supply for remote areas and ensure off-grid filtration. The proposed system is designed to be small scale and portable to provide on-site potable water to communities that are no longer themselves mobile nor can be reached quickly by the aid agencies. FO is an osmotically driven process that uses osmotic pressure gradients to drive water across a controlled pore membrane from a feed solution (low osmotic pressure) to a draw solution (high osmotic pressure). This drops the demand for high hydraulic pressures and therefore the energy demand. There is also a tendency for lower fouling, easier fouling layer removal and higher water recovery. In addition, the efficiency of the PVT unit will be maximized through freshwater cooling which is integrated into the system. A filtration module with the capacity of 5 m3/day is modeled to treat floodwater and provide drinking water. The module can be used as a tool for disaster relief, particularly in the aftermath of flood and tsunami events. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20resilience" title="flood resilience">flood resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20desalination" title=" membrane desalination"> membrane desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=portable%20water%20treatment" title=" portable water treatment"> portable water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a> </p> <a href="https://publications.waset.org/abstracts/63182/portable-water-treatment-for-flood-resilience" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1306</span> Flood Planning Based on Risk Optimization: A Case Study in Phan-Calo River Basin in Vinh Phuc Province, Vietnam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Quang%20Kim">Nguyen Quang Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Thu%20Hien"> Nguyen Thu Hien</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Thien%20Dung"> Nguyen Thien Dung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flood disasters are increasing worldwide in both frequency and magnitude. Every year in Vietnam, flood causes great damage to people, property, and environmental degradation. The flood risk management policy in Vietnam is currently updated. The planning of flood mitigation strategies is reviewed to make a decision how to reach sustainable flood risk reduction. This paper discusses the basic approach where the measures of flood protection are chosen based on minimizing the present value of expected monetary expenses, total residual risk and costs of flood control measures. This approach will be proposed and demonstrated in a case study for flood risk management in Vinh Phuc province of Vietnam. Research also proposed the framework to find a solution of optimal protection level and optimal measures of the flood. It provides an explicit economic basis for flood risk management plans and interactive effects of options for flood damage reduction. The results of the case study are demonstrated and discussed which would provide the processing of actions helped decision makers to choose flood risk reduction investment options. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drainage%20plan" title="drainage plan">drainage plan</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20planning" title=" flood planning"> flood planning</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20risk" title=" flood risk"> flood risk</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20risk" title=" residual risk"> residual risk</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20optimization" title=" risk optimization"> risk optimization</a> </p> <a href="https://publications.waset.org/abstracts/87574/flood-planning-based-on-risk-optimization-a-case-study-in-phan-calo-river-basin-in-vinh-phuc-province-vietnam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1305</span> Changes in Religious Belief after Flood Disasters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sapora%20Sipon">Sapora Sipon</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Fo%E2%80%99ad%20Sakdan"> Mohd Fo’ad Sakdan</a>, <a href="https://publications.waset.org/abstracts/search?q=Che%20Su%20Mustaffa"> Che Su Mustaffa</a>, <a href="https://publications.waset.org/abstracts/search?q=Najib%20Ahmad%20Marzuki"> Najib Ahmad Marzuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Sukeri%20Khalid"> Mohamad Sukeri Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Taib%20Ariffin"> Mohd Taib Ariffin</a>, <a href="https://publications.waset.org/abstracts/search?q=Husni%20Mohd%20Radzi"> Husni Mohd Radzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Salhah%20Abdullah"> Salhah Abdullah </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flood disasters occur throughout the world including Malaysia. The major flood disaster that hit Malaysia in the 2014-2015 episodes proved the psychosocial and mental health consequences such as vivid images of destruction, upheaval, death and loss of lives. Flood, flood survivors reported that flood has changed one looks at their religious belief. The main objective of this paper is to investigate the changes in religious belief after the 2014-2015 Malaysia flood disaster. The total population of 1300 respondents who experienced the 2014-2015 Malaysia flood were surveyed a month after the disaster. The questionnaires were used to measure religiosity and stress. The results provide compelling evidence that religion played an important role in the lives of Malaysia flood disasters’ survivor where more than half of the respondents (>75%) experiencing the strengthening of their religious belief. It was also reported the victims’ strengthening of their religious belief proved to be a powerful factor in reducing stress in the aftermath of the flood. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=religious%20belief" title="religious belief">religious belief</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20disaster" title=" flood disaster"> flood disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=humanity" title=" humanity"> humanity</a>, <a href="https://publications.waset.org/abstracts/search?q=society" title=" society"> society</a> </p> <a href="https://publications.waset.org/abstracts/30104/changes-in-religious-belief-after-flood-disasters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1304</span> The Study of Flood Resilient House in Ebo-Town</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alagie%20Salieu%20Nankey">Alagie Salieu Nankey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flood-resistant house is the key mechanism to withstand flood hazards in Ebo-Town. It emerged simple yet powerful way of mitigating flooding in the community of Ebo- Town. Even though there are different types of buildings, little is known yet how and why flood affects building severely. In this paper, we examine three different types of flood-resistant buildings that are suitable for Ebo Town. We gather content and contextual features from six (6) respondents and used this data set to identify factors that are significantly associated with the flood-resistant house. Moreover, we built a suitable design concept. We found that amongst all the theories studied in the literature study Slit or Elevated House is the most suitable building design in Ebo-Town and Pile foundation is the most appropriate foundation type in the study area. Amongst contextual features, local materials are the most economical materials for the proposed design. This research proposes a framework that explains the theoretical relationships between flood hazard zones and flood-resistant houses in Ebo Town. Moreover, this research informs the design of sense-making and analytics tools for the resistant house. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood-resistant" title="flood-resistant">flood-resistant</a>, <a href="https://publications.waset.org/abstracts/search?q=slit" title=" slit"> slit</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20hazard%20zone" title=" flood hazard zone"> flood hazard zone</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20foundation" title=" pile foundation"> pile foundation</a> </p> <a href="https://publications.waset.org/abstracts/187058/the-study-of-flood-resilient-house-in-ebo-town" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">44</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1303</span> Planning Strategies for Urban Flood Mitigation through Different Case Studies of Best Practices across the World</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bismina%20Akbar">Bismina Akbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Smitha%20M.%20V."> Smitha M. V.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flooding is a global phenomenon that causes widespread devastation, economic damage, and loss of human lives. In the past twenty years, the number of reported flood events has increased significantly. Millions of people around the globe are at risk of flooding from coastal, dam breaks, groundwater, and urban surface water and wastewater sources. Climate change is one of the important causes for them since it affects, directly and indirectly, the river network. Although the contribution of climate change is undeniable, human contributions are there to increase the frequency of floods. There are different types of floods, such as Flash floods, Coastal floods, Urban floods, River (or fluvial) floods, and Ponding (or pluvial flooding). This study focuses on formulating mitigation strategies for urban flood risk reduction through analysis of different best practice case studies, including China, Japan, Indonesia, and Brazil. The mitigation measures suggest that apart from the structural and non-structural measures, environmental considerations like blue-green solutions are beneficial for flood risk reduction. And also, Risk-Informed Master plans are essential nowadays to take risk-based decision processes that enable more sustainability and resilience. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hazard" title="hazard">hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigation" title=" mitigation"> mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20reduction" title=" risk reduction"> risk reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20flood" title=" urban flood"> urban flood</a> </p> <a href="https://publications.waset.org/abstracts/150322/planning-strategies-for-urban-flood-mitigation-through-different-case-studies-of-best-practices-across-the-world" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1302</span> Dams Operation Management Criteria during Floods: Case Study of Dez Dam in Southwest Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Heidari">Ali Heidari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the principles for improving flood mitigation operation in multipurpose dams and maximizing reservoir performance during flood occurrence with a focus on the real-time operation of gated spillways. The criteria of operation include the safety of dams during flood management, minimizing the downstream flood risk by decreasing the flood hazard and fulfilling water supply and other purposes of the dam operation in mid and long terms horizons. The parameters deemed to be important include flood inflow, outlet capacity restrictions, downstream flood inundation damages, economic revenue of dam operation, and environmental and sedimentation restrictions. A simulation model was used to determine the real-time release of the Dez dam located in the Dez rivers in southwest Iran, considering the gate regulation curves for the gated spillway. The results of the simulation model show that there is a possibility to improve the current procedures used in the real-time operation of the dams, particularly using gate regulation curves and early flood forecasting system results. The Dez dam operation data shows that in one of the best flood control records, % 17 of the total active volume and flood control pool of the reservoir have not been used in decreasing the downstream flood hazard despite the availability of a flood forecasting system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dam%20operation" title="dam operation">dam operation</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20control%20criteria" title=" flood control criteria"> flood control criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=Dez%20dam" title=" Dez dam"> Dez dam</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a> </p> <a href="https://publications.waset.org/abstracts/151404/dams-operation-management-criteria-during-floods-case-study-of-dez-dam-in-southwest-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1301</span> Climate Change Adaptation in the U.S. Coastal Zone: Data, Policy, and Moving Away from Moral Hazard</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Ruppert">Thomas Ruppert</a>, <a href="https://publications.waset.org/abstracts/search?q=Shana%20Jones"> Shana Jones</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Scott%20Pippin"> J. Scott Pippin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> State and federal government agencies within the United States have recently invested substantial resources into studies of future flood risk conditions associated with climate change and sea-level rise. A review of numerous case studies has uncovered several key themes that speak to an overall incoherence within current flood risk assessment procedures in the U.S. context. First, there are substantial local differences in the quality of available information about basic infrastructure, particularly with regard to local stormwater features and essential facilities that are fundamental components of effective flood hazard planning and mitigation. Second, there can be substantial mismatch between regulatory Flood Insurance Rate Maps (FIRMs) as produced by the National Flood Insurance Program (NFIP) and other 'current condition' flood assessment approaches. This is of particular concern in areas where FIRMs already seem to underestimate extant flood risk, which can only be expected to become a greater concern if future FIRMs do not appropriately account for changing climate conditions. Moreover, while there are incentives within the NFIP’s Community Rating System (CRS) to develop enhanced assessments that include future flood risk projections from climate change, the incentive structures seem to have counterintuitive implications that would tend to promote moral hazard. In particular, a technical finding of higher future risk seems to make it easier for a community to qualify for flood insurance savings, with much of these prospective savings applied to individual properties that have the most physical risk of flooding. However, there is at least some case study evidence to indicate that recognition of these issues is prompting broader discussion about the need to move beyond FIRMs as a standalone local flood planning standard. The paper concludes with approaches for developing climate adaptation and flood resilience strategies in the U.S. that move away from the social welfare model being applied through NFIP and toward more of an informed risk approach that transfers much of the investment responsibility over to individual private property owners. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change%20adaptation" title="climate change adaptation">climate change adaptation</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20risk" title=" flood risk"> flood risk</a>, <a href="https://publications.waset.org/abstracts/search?q=moral%20hazard" title=" moral hazard"> moral hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=sea-level%20rise" title=" sea-level rise"> sea-level rise</a> </p> <a href="https://publications.waset.org/abstracts/119049/climate-change-adaptation-in-the-us-coastal-zone-data-policy-and-moving-away-from-moral-hazard" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1300</span> Study on Disaster Prevention Plan for an Electronic Industry in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Pullteap">S. Pullteap</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Pathomsuriyaporn"> M. Pathomsuriyaporn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, a study of employee&rsquo;s opinion to the factors that affect to the flood preventive and the corrective action plan in an electronic industry at the Sharp Manufacturing (Thailand) Co., Ltd. has been investigated. The surveys data of 175 workers and supervisors have, however, been selected for data analysis. The results is shown that the employees emphasize about the needs in a subsidy at the time of disaster at high levels of 77.8%, as the plan focusing on flood prevention of the rehabilitation equipment is valued at the intermediate level, which is 79.8%. Demonstration of the hypothesis has found that the different education levels has thus been affected to the needs factor at the flood disaster time. Moreover, most respondents give priority to flood disaster risk management factor. Consequently, we found that the flood prevention plan is valued at high level, especially on information monitoring, which is 93.4% for the supervisor item. The respondents largely assume that the flood will have impacts on the industry, up to 80%, thus to focus on flood management plans is enormous. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20prevention%20plan" title="flood prevention plan">flood prevention plan</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20event" title=" flood event"> flood event</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20industrial%20plant" title=" electronic industrial plant"> electronic industrial plant</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster" title=" disaster"> disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20management" title=" risk management"> risk management</a> </p> <a href="https://publications.waset.org/abstracts/2039/study-on-disaster-prevention-plan-for-an-electronic-industry-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1299</span> Measuring Organizational Resiliency for Flood Response in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudha%20Arlikatti">Sudha Arlikatti</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Siebeneck"> Laura Siebeneck</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20A.%20Andrew"> Simon A. Andrew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research is to measure organizational resiliency through five attributes namely, rapidity, redundancy, resourcefulness, and robustness and to provide recommendations for resiliency building in flood risk communities. The research was conducted in Thailand following the severe floods of 2011 triggered by Tropical Storm Nock-ten. The floods lasted over eight months starting in June 2011 affecting 65 of the country’s 76 provinces and over 12 million people. Funding from a US National Science Foundation grant was used to collect ephemeral data in rural (Ayutthaya), suburban (Pathum Thani), and urban (Bangkok) provinces of Thailand. Semi-structured face-to-face interviews were conducted in Thai with 44 contacts from public, private, and non-profit organizations including universities, schools, automobile companies, vendors, tourist agencies, monks from temples, faith based organizations, and government agencies. Multiple triangulations were used to analyze the data by identifying selective themes from the qualitative data, validated with quantitative data and news media reports. This helped to obtain a more comprehensive view of how organizations in different geographic settings varied in their understanding of what enhanced or hindered their resilience and consequently their speed and capacities to respond. The findings suggest that the urban province of Bangkok scored highest in resourcefulness, rapidity of response, robustness, and ability to rebound. This is not surprising considering that it is the country’s capital and the seat of government, economic, military and tourism sectors. However, contrary to expectations all 44 respondents noted that the rural province of Ayutthaya was the fastest to recover amongst the three. Its organizations scored high on redundancy and rapidity of response due to the strength of social networks, a flood disaster sub-culture due to annual flooding, and the help provided by monks from and faith based organizations. Organizations in the suburban community of Pathum Thani scored lowest on rapidity of response and resourcefulness due to limited and ambiguous warnings, lack of prior flood experience and controversies that government flood protection works like sandbagging favored the capital city of Bangkok over them. Such a micro-level examination of organizational resilience in rural, suburban and urban areas in a country through mixed methods studies has its merits in getting a nuanced understanding of the importance of disaster subcultures and religious norms for resilience. This can help refocus attention on the strengths of social networks and social capital, for flood mitigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disaster%20subculture" title="disaster subculture">disaster subculture</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20response" title=" flood response"> flood response</a>, <a href="https://publications.waset.org/abstracts/search?q=organizational%20resilience" title=" organizational resilience"> organizational resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=Thailand%20floods" title=" Thailand floods"> Thailand floods</a>, <a href="https://publications.waset.org/abstracts/search?q=religious%20beliefs%20and%20response" title=" religious beliefs and response"> religious beliefs and response</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20capital%20and%20disasters" title=" social capital and disasters"> social capital and disasters</a> </p> <a href="https://publications.waset.org/abstracts/90488/measuring-organizational-resiliency-for-flood-response-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1298</span> Flood Disaster Prevention and Mitigation in Nigeria Using Geographic Information System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dinebari%20Akpee">Dinebari Akpee</a>, <a href="https://publications.waset.org/abstracts/search?q=Friday%20Aabe%20Gaage"> Friday Aabe Gaage</a>, <a href="https://publications.waset.org/abstracts/search?q=Florence%20Fred%20Nwaigwu"> Florence Fred Nwaigwu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural disasters like flood affect many parts of the world including developing countries like Nigeria. As a result, many human lives are lost, properties damaged and so much money is lost in infrastructure damages. These hazards and losses can be mitigated and reduced by providing reliable spatial information to the generality of the people through about flood risks through flood inundation maps. Flood inundation maps are very crucial for emergency action plans, urban planning, ecological studies and insurance rates. Nigeria experience her worst flood in her entire history this year. Many cities were submerged and completely under water due to torrential rainfall. Poor city planning, lack of effective development control among others contributes to the problem too. Geographic information system (GIS) can be used to visualize the extent of flooding, analyze flood maps to produce flood damaged estimation maps and flood risk maps. In this research, the under listed steps were taken in preparation of flood risk maps for the study area: (1) Digitization of topographic data and preparation of digital elevation model using ArcGIS (2) Flood simulation using hydraulic model and integration and (3) Integration of the first two steps to produce flood risk maps. The results shows that GIS can play crucial role in Flood disaster control and mitigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20disaster" title="flood disaster">flood disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20maps" title=" risk maps"> risk maps</a>, <a href="https://publications.waset.org/abstracts/search?q=geographic%20information%20system" title=" geographic information system"> geographic information system</a>, <a href="https://publications.waset.org/abstracts/search?q=hazards" title=" hazards"> hazards</a> </p> <a href="https://publications.waset.org/abstracts/80830/flood-disaster-prevention-and-mitigation-in-nigeria-using-geographic-information-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1297</span> Urban Resilience and Planning in the Perspective of Community </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xu%20Tao">Xu Tao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yilun%20Xu"> Yilun Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dingwei%20Xiang"> Dingwei Xiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaofei%20Sun"> Yaofei Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urban community is constitute the entire city and its management ‘cell’, let ‘cells’ with growth and self-regeneration capacity and persistence, to allow the city with infinite vigor and vitality of the source; with toughness community mankind's adaptation to the basic unit of social risk, toughness of the city from the community to create a point of building is urban toughness of top-down construction mode of supplement, is of positive significance on the toughness of the urban construction. Based on the basic concept of resilience, this paper reviews the research on the four main areas of the study of urban resilience (i.e., the engineering toughness, ecological resilience, economic resilience, and social resilience, etc.). Studies and comments and summarizes the basic characteristic and main content of the four kind of toughness. Based on, from the city - community level and community level for building community resilience, including the level of urban community and create a Unicom, inclusiveness and openness of the community; community-level lifted from the four angles of the engineering community toughness, ecological toughness, resilience, social resilience, mainly including enhanced the toughness of the infrastructure, green infrastructure of toughness, resilience, social network and social relations, building with a sense of belonging, inclusive, multicultural community. Finally, summarize and prospect the resilience of the community. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resilience" title="resilience">resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=community%20resilience" title=" community resilience"> community resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20resilience" title=" urban resilience"> urban resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20strategies" title=" construction strategies"> construction strategies</a> </p> <a href="https://publications.waset.org/abstracts/92979/urban-resilience-and-planning-in-the-perspective-of-community" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1296</span> Impact of Global Warming on the Total Flood Duration and Flood Recession Time in the Meghna Basin Using Hydrodynamic Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karan%20Gupta">Karan Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The floods cause huge loos each year, and their impact gets manifold with the increase of total duration of flood as well as recession time. Moreover, floods have increased in recent years due to climate change in floodplains. In the context of global climate change, the agreement in Paris convention (2015) stated to keep the increase in global average temperature well below 2°C and keep it at the limit of 1.5°C. Thus, this study investigates the impact of increasing temperature on the stage, discharge as well as total flood duration and recession time in the Meghna River basin in Bangladesh. This study considers the 100-year return period flood flows in the Meghna river under the specific warming levels (SWLs) of 1.5°C, 2°C, and 4°C. The results showed that the rate of increase of duration of flood is nearly 50% lesser at ∆T = 1.5°C as compared to ∆T = 2°C, whereas the rate of increase of duration of recession is 75% lower at ∆T = 1.5°C as compared to ∆T = 2°C. Understanding the change of total duration of flood as well as recession time of the flood gives a better insight to effectively plan for flood mitigation measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood" title="flood">flood</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=Paris%20convention" title=" Paris convention"> Paris convention</a>, <a href="https://publications.waset.org/abstracts/search?q=Bangladesh" title=" Bangladesh"> Bangladesh</a>, <a href="https://publications.waset.org/abstracts/search?q=inundation%20duration" title=" inundation duration"> inundation duration</a>, <a href="https://publications.waset.org/abstracts/search?q=recession%20duration" title=" recession duration"> recession duration</a> </p> <a href="https://publications.waset.org/abstracts/135260/impact-of-global-warming-on-the-total-flood-duration-and-flood-recession-time-in-the-meghna-basin-using-hydrodynamic-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flood%20resilience&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flood%20resilience&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flood%20resilience&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flood%20resilience&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flood%20resilience&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flood%20resilience&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flood%20resilience&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flood%20resilience&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flood%20resilience&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flood%20resilience&amp;page=44">44</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flood%20resilience&amp;page=45">45</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flood%20resilience&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10