CINXE.COM
Search results for: solar domestic hot water and combisystems
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: solar domestic hot water and combisystems</title> <meta name="description" content="Search results for: solar domestic hot water and combisystems"> <meta name="keywords" content="solar domestic hot water and combisystems"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="solar domestic hot water and combisystems" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="solar domestic hot water and combisystems"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10849</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: solar domestic hot water and combisystems</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10849</span> Solar System with Plate Heat Exchanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christer%20Frennfelt">Christer Frennfelt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar heating is the most environmentally friendly way to heat water. Brazed Plate Heat Exchangers (BPHEs) are a key component in many solar heating applications for harvesting solar energy into accumulator tanks, producing hot tap water, and heating pools. The combination of high capacity in a compact format, efficient heat transfer, and fast response makes the BPHE the ideal heat exchanger for solar thermal systems. Solar heating is common as a standalone heat source, and as an add-on heat source for boilers, heat pumps, or district heating systems. An accumulator provides the possibility to store heat, which enables combination of different heat sources to a larger extent. In turn this works as protection to reduced access to energy or increased energy prices. For example heat from solar panels is preferably stored during the day for use at night. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=district%20heating%20and%20cooling" title="district heating and cooling">district heating and cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20storage" title=" thermal storage"> thermal storage</a>, <a href="https://publications.waset.org/abstracts/search?q=brazed%20plate%20heat%20exchanger" title=" brazed plate heat exchanger"> brazed plate heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20domestic%20hot%20water%20and%20combisystems" title=" solar domestic hot water and combisystems"> solar domestic hot water and combisystems</a> </p> <a href="https://publications.waset.org/abstracts/48183/solar-system-with-plate-heat-exchanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10848</span> A Platform to Analyze Controllers for Solar Hot Water Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aziz%20Ahmad">Aziz Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillermo%20Ramirez-Prado"> Guillermo Ramirez-Prado</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Governments around the world encourage the use of solar water heating in residential houses due to the low maintenance requirements and efficiency of the solar collector water heating systems. The aim of this work is to study a domestic solar water heating system in a residential building to develop a model of the entire solar water heating system including flat-plate solar collector and storage tank. The proposed model is adaptable to any households and location. The model can be used to test different types of controllers and can provide efficiency as well as economic analysis. The proposed model is based on the heat and mass transfer equations along with assumptions applied in the model which can be modified for a variety of different solar water heating systems and sizes. Simulation results of the model were compared with the actual system which shows similar trends. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20thermal%20systems" title="solar thermal systems">solar thermal systems</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20water%20heating" title=" solar water heating"> solar water heating</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20collector%20model" title=" solar collector model"> solar collector model</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20water%20tank%20model" title=" hot water tank model"> hot water tank model</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20controllers" title=" solar controllers"> solar controllers</a> </p> <a href="https://publications.waset.org/abstracts/108490/a-platform-to-analyze-controllers-for-solar-hot-water-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10847</span> Technical and Economical Feasibility Analysis of Solar Water Pumping System - Case Study in Iran </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Gharib">A. Gharib</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Moradi"> M. Moradi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The technical analysis of using solar energy and electricity for water pumping in the Khuzestan province in Iran is investigated. For this purpose, the ecological conditions such as the weather data, air clearness and sunshine hours are analyzed. The nature of groundwater in the region was examined in terms of depth, static and dynamic head, water pumping rate. Three configurations for solar water pumping system were studied in this thesis; AC solar water pumping with a storage battery, AC solar water pumping with a storage tank, and DC direct solar water pumping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=technical%20and%20economic%20feasibility" title="technical and economic feasibility">technical and economic feasibility</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20systems" title=" photovoltaic systems"> photovoltaic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20water%20pumping%20system" title=" solar water pumping system"> solar water pumping system</a> </p> <a href="https://publications.waset.org/abstracts/34030/technical-and-economical-feasibility-analysis-of-solar-water-pumping-system-case-study-in-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">570</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10846</span> CO2 Mitigation by Promoting Solar Heating in Housing Sector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Sahnoune">F. Sahnoune</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Madani"> M. Madani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zelmat"> M. Zelmat</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Belhamel"> M. Belhamel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Home heating and generation of domestic hot water are nowadays important items of expenditure and energy consumption. These are also a major source of pollution and emission of greenhouse gases (GHG). Algeria, like other countries of the southern shore of the Mediterranean has an enormous solar potential (more than 3000 hours of sunshine/year). This potential can be exploited in reducing GHG emissions and contribute to climate change adaptation. This work presents the environmental impact of introduction of solar heating in an individual house in Algerian climate conditions. For this purpose, we determined energy needs for heating and domestic hot water taking into account the thermic heat losses of the no isolated house. Based on these needs, sizing of the solar system was carried out. To compare the performances of solar and classic systems, we conducted also an economic evaluation what is very important for countries like Algeria where conventional energy is subsidized. The study clearly show that environmental and economic benefits are in favor of solar heating development in particular in countries where the thermal insulation of the building and energy efficiency are poorly developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2%20mitigation" title="CO2 mitigation">CO2 mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20heating" title=" solar heating"> solar heating</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a> </p> <a href="https://publications.waset.org/abstracts/16868/co2-mitigation-by-promoting-solar-heating-in-housing-sector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10845</span> Domestic Solar Hot Water Systems in Order to Reduce the Electricity Peak Demand in Assalouyeh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roya%20Moradifar">Roya Moradifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Bijan%20Honarvar"> Bijan Honarvar</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoumeh%20Zabihi"> Masoumeh Zabihi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The personal residential camps of South Pars gas complex are one of the few places where electric energy is used for the bath water heating. The widespread use of these devices is mainly responsible for the high peak of the electricity demand in the residential sector. In an attempt to deal with this issue, to reduce the electricity usage of the hot water, as an option, solar hot water systems have been proposed. However, despite the high incidence of solar radiation on the Assaloyeh about 20 MJ/m²/day, currently, there is no technical assessment quantifying the economic benefits on the region. The present study estimates the economic impacts resulting by the deployment of solar hot water systems in residential camp. Hence, the feasibility study allows assessing the potential of solar water heating as an alternative to reduce the peak on the electricity demand. In order to examine the potential of using solar energy in Bidkhoon residential camp two solar water heater packages as pilots were installed for restaurant and building. Restaurant package was damaged due to maintenance problems, but for the building package, we achieved the result of the solar fraction total 83percent and max energy saving 2895 kWh, the maximum reduction in CO₂ emissions calculated as 1634.5 kg. The results of this study can be used as a support tool to spread the use solar water heaters and create policies for South Pars Gas Complex. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20energy" title="electrical energy">electrical energy</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20water" title=" hot water"> hot water</a>, <a href="https://publications.waset.org/abstracts/search?q=solar" title=" solar"> solar</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Pars%20Gas%20complex" title=" South Pars Gas complex"> South Pars Gas complex</a> </p> <a href="https://publications.waset.org/abstracts/72068/domestic-solar-hot-water-systems-in-order-to-reduce-the-electricity-peak-demand-in-assalouyeh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10844</span> Technical Feasibility Analysis of PV Water Pumping System in Khuzestan Province-Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.Goodarzi">M.Goodarzi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.Mohammadi"> M.Mohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rezaee"> M. Rezaee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The technical analysis of using solar energy and electricity for water pumping in the Khuzestan province in Iran is investigated. For this purpose, the ecological conditions such as the weather data, air clearness and sunshine hours are analyzed. The nature of groundwater in the region was examined in terms of depth, static and dynamic head, water pumping rate.Three configurations for solar water pumping system were studied in this thesis; AC solar water pumping with storage battery, AC solar water pumping with storage tank and DC direct solar water pumping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=technical%20feasibility" title="technical feasibility">technical feasibility</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20systems" title=" photovoltaic systems"> photovoltaic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20water%20pumping%20system" title=" photovoltaic water pumping system"> photovoltaic water pumping system</a> </p> <a href="https://publications.waset.org/abstracts/18930/technical-feasibility-analysis-of-pv-water-pumping-system-in-khuzestan-province-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">630</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10843</span> Passive Solar Techniques to Improve Thermal Comfort and Reduce Energy Consumption of Domestic Use</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naci%20Kalkan">Naci Kalkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ihsan%20Dagtekin"> Ihsan Dagtekin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Passive design responds to improve indoor thermal comfort and minimize the energy consumption. The present research analyzed the how efficiently passive solar technologies generate heating and cooling and provide the system integration for domestic applications. In addition to this, the aim of this study is to increase the efficiency of solar systems system with integration some innovation and optimization. As a result, outputs of the project might start a new sector to provide environmentally friendly and cheap cooling for domestic use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=passive%20solar%20systems" title="passive solar systems">passive solar systems</a>, <a href="https://publications.waset.org/abstracts/search?q=heating" title=" heating"> heating</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling" title=" cooling"> cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=ventilation%20systems" title=" ventilation systems"> ventilation systems</a> </p> <a href="https://publications.waset.org/abstracts/49506/passive-solar-techniques-to-improve-thermal-comfort-and-reduce-energy-consumption-of-domestic-use" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10842</span> Experimental Study on Modified Double Slope Solar Still and Modified Basin Type Double Slope Multiwick Solar Still</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piyush%20Pal">Piyush Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Dev"> Rahul Dev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water is essential for life and fresh water is a finite resource that is becoming scarce day by day even though it is recycled by hydrological cycle. The fresh water reserves are being polluted due to expanding irrigation, industries, urban population and its development. Contaminated water leads to several health problems. With the increasing demand of fresh water, solar distillation is an alternate solution which uses solar energy to evaporate water and then to condense it, thereby collecting distilled water within or outside the same system to use it as potable water. The structure that houses the process is known as a 'solar still'. In this paper, ‘Modified double slope solar still (MDSSS)’ & 'Modified double slope basin type multiwick solar still (MDSBMSS)' have been designed to convert saline, brackish water into drinking water. In this work two different modified solar stills are fabricated to study the performance of these solar stills. For modification of solar stills, Fibre Reinforced Plastic (FRP) and Acrylic sheets are used. The experiments in MDSBMSS and MDSSS was carried on 10 September 2015 & 5 November 2015 respectively. Performances of the stills were investigated. The amount of distillate has been found 3624 Ml/day in MDSBMSS on 10 September 2015 and 2400 Ml/day in MDSSS on 5 November 2015. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contaminated%20water" title="contaminated water">contaminated water</a>, <a href="https://publications.waset.org/abstracts/search?q=conventional%20solar%20still" title=" conventional solar still"> conventional solar still</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20solar%20still" title=" modified solar still"> modified solar still</a>, <a href="https://publications.waset.org/abstracts/search?q=wick" title=" wick"> wick</a> </p> <a href="https://publications.waset.org/abstracts/37145/experimental-study-on-modified-double-slope-solar-still-and-modified-basin-type-double-slope-multiwick-solar-still" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10841</span> Addressing the Water Shortage in Beijing: Increasing Water Use Efficiency in Domestic Sector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chenhong%20Peng">Chenhong Peng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Beijing, the capital city of China, is running out of water. The water resource per capita in Beijing is only 106 cubic meter, accounts for 5% of the country’s average level and less than 2% of the world average level. The tension between water supply and demand is extremely serious. For one hand, the surface and ground water have been over-exploited during the last decades; for the other hand, water demand keep increasing as the result of population and economic growth. There is a massive gap between water supply and demand. This paper will focus on addressing the water shortage in Beijing city by increasing water use efficiency in domestic sector. First, we will emphasize on the changing structure of water supply and demand in Beijing under the economic development and restructure during the last decade. Second, by analyzing the water use efficiency in agriculture, industry and domestic sectors in Beijing, we identify that the key determinant for addressing the water crisis is to increase the water use efficiency in domestic sector. Third, this article will explore the two primary causes for the water use inefficiency in Beijing: The ineffective water pricing policy and the poor water education and communication policy. Finally, policy recommendation will offered to improve the water use efficiency in domestic sector by making and implementing an effective water pricing policy and people-engaged water education and communication policy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beijing" title="Beijing">Beijing</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20use%20efficiency" title=" water use efficiency"> water use efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=domestic%20sector" title=" domestic sector"> domestic sector</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20pricing%20policy" title=" water pricing policy"> water pricing policy</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20education%20policy" title=" water education policy"> water education policy</a> </p> <a href="https://publications.waset.org/abstracts/22092/addressing-the-water-shortage-in-beijing-increasing-water-use-efficiency-in-domestic-sector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10840</span> Performance Evaluation of Thermosiphon Based Solar Water Heater in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dnyandip%20K.%20Bhamare">Dnyandip K. Bhamare</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20K%20Rathod"> Manish K Rathod</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyotirmay%20Banerjee"> Jyotirmay Banerjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to study performance of a thermosiphon solar water heating system with the help of the proposed analytical model. This proposed model predicts the temperature and mass flow rate in a thermosiphon solar water heating system depending on radiation intensity and ambient temperature. The performance of the thermosiphon solar water heating system is evaluated in the Indian context. For this, eight cities in India are selected considering radiation intensity and geographical positions. Predicted performance at various cities reveals the potential for thermosiphon solar water in India. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20water%20heater" title="solar water heater">solar water heater</a>, <a href="https://publications.waset.org/abstracts/search?q=collector%20outlet%20temperature" title=" collector outlet temperature"> collector outlet temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=thermosyphon" title=" thermosyphon"> thermosyphon</a>, <a href="https://publications.waset.org/abstracts/search?q=India" title=" India"> India</a> </p> <a href="https://publications.waset.org/abstracts/86520/performance-evaluation-of-thermosiphon-based-solar-water-heater-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10839</span> Comparing the Motion of Solar System with Water Droplet Motion to Predict the Future of Solar System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Areena%20Bhatti">Areena Bhatti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The geometric arrangement of planet and moon is the result of a self-organizing system. In our solar system, the planets and moons are constantly orbiting around the sun. The aim of this theory is to compare the motion of a solar system with the motion of water droplet when poured into a water body. The basic methodology is to compare both motions to know how they are related to each other. The difference between both systems will be that one is extremely fast, and the other is extremely slow. The role of this theory is that by looking at the fast system we can conclude how slow the system will get to an end. Just like ripples are formed around water droplet that move away from the droplet and water droplet forming those ripples become small in size will tell us how solar system will behave in the same way. So it is concluded that large and small systems can work under the same process but with different motions of time, and motion of the solar system is the slowest form of water droplet motion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=motion" title="motion">motion</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=sun" title=" sun"> sun</a>, <a href="https://publications.waset.org/abstracts/search?q=time" title=" time"> time</a> </p> <a href="https://publications.waset.org/abstracts/111769/comparing-the-motion-of-solar-system-with-water-droplet-motion-to-predict-the-future-of-solar-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10838</span> Characterization of Solar Panel Efficiency Using Sun Tracking Device and Cooling System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20B.%20G.%20Ibarra">J. B. G. Ibarra</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20A.%20Gagui"> J. M. A. Gagui</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20J.%20T.%20Jonson"> E. J. T. Jonson</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20V.%20Lim"> J. A. V. Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focused on studying the performance of the solar panels that were equipped with water-spray cooling system, solar tracking system, and combination of both systems. The efficiencies were compared with the solar panels without any efficiency improvement technique. The efficiency of each setup was computed on an hourly basis every day for a month. The study compared the efficiencies and combined systems that significantly improved at a specific time of the day. The data showed that the solar tracking system had the highest efficiency during 6:00 AM to 7:45 AM. Then after 7:45 AM, the combination of both solar tracking and water-spray cooling system was the most efficient to use up to 12:00 NN. Meanwhile, from 12:00 NN to 12:45 PM, the water-spray cooling system had the significant contribution on efficiency. From 12:45 PM up to 4:30 PM, the combination of both systems was the most efficient, and lastly, from 4:30 PM to 6:00 PM, the solar tracking system was the best to use. The study intended to use solar tracking or water-spray cooling system or combined systems alternately to improve the solar panel efficiency on a specific time of the day. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20panel%20efficiency" title="solar panel efficiency">solar panel efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20panel%20efficiency%20technique" title=" solar panel efficiency technique"> solar panel efficiency technique</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20tracking%20system" title=" solar tracking system"> solar tracking system</a>, <a href="https://publications.waset.org/abstracts/search?q=water-spray%20cooling%20system" title=" water-spray cooling system"> water-spray cooling system</a> </p> <a href="https://publications.waset.org/abstracts/122446/characterization-of-solar-panel-efficiency-using-sun-tracking-device-and-cooling-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10837</span> Parametric Study of a Solar-Heating-And-Cooling System with Hybrid Photovoltaic/Thermal Collectors in North China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruobing%20Liang">Ruobing Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jili%20Zhang"> Jili Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao%20Zhou"> Chao Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A solar-heating-and-cooling (SHC) system, consisting of a hybrid photovoltaic/ thermal collector array, a hot water storage tank, and an absorption chiller unit is designed and modeled to satisfy thermal loads (space heating, domestic hot water, and space cooling). The system is applied for Dalian, China, a location with cold climate conditions, where cooling demand is moderate, while space heating demand is slightly high. The study investigates the potential of a solar system installed and operated onsite in a detached single-family household to satisfy all necessary thermal loads. The hot water storage tank is also connected to an auxiliary heater (electric boiler) to supplement solar heating, when needed. The main purpose of the study is to model the overall system and contact a parametric study that will determine the optimum economic system performance in terms of design parameters. The system is compared, through a cost analysis, to an electric heat pump (EHP) system. This paper will give the optimum system combination of solar collector area and volumetric capacity of the hot water storage tank, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorption%20chiller" title="absorption chiller">absorption chiller</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20PVT%20collector" title=" solar PVT collector"> solar PVT collector</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20heating%20and%20cooling" title=" solar heating and cooling"> solar heating and cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20air-conditioning" title=" solar air-conditioning"> solar air-conditioning</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20study" title=" parametric study"> parametric study</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20analysis" title=" cost analysis"> cost analysis</a> </p> <a href="https://publications.waset.org/abstracts/36328/parametric-study-of-a-solar-heating-and-cooling-system-with-hybrid-photovoltaicthermal-collectors-in-north-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10836</span> A Performance Analysis Study of an Active Solar Still Integrating Fin at the Basin Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Ansari">O. Ansari</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Hafs"> H. Hafs</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bah"> A. Bah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Asbik"> M. Asbik</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Malha"> M. Malha</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bakhouya"> M. Bakhouya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water is one of the most important and vulnerable natural resources due to human activities and climate change. Water-level continues declining year after year and it is primarily caused by sustained, extensive, and traditional usage methods. Improving water utilization becomes an urgent issue in order satisfy the increasing population needs. Desalination of seawater or brackish water could help in increasing water potential. However, a cost-effective desalination process is required. The most appropriate method for performing this desalination is solar-driven distillation, given its simplicity, low cost and especially the availability of the solar energy source. The main objective of this paper is to demonstrate the influence of coupling integrated basin plate by fins with preheating by solar collector on the performance of solar still. The energy balance equations for the various elements of the solar still are introduced. A numerical example is used to show the efficiency of the proposed solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20solar%20still" title="active solar still">active solar still</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination" title=" desalination"> desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=fins" title=" fins"> fins</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20collector" title=" solar collector"> solar collector</a> </p> <a href="https://publications.waset.org/abstracts/79883/a-performance-analysis-study-of-an-active-solar-still-integrating-fin-at-the-basin-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10835</span> Theoretical Investigation of Thermal Properties of Nanofluids with Application to Solar Collector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reema%20Jain">Reema Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanofluids are emergent fluids that exhibit thermal properties superior than that of the conventional fluid. Nanofluids are suspensions of nanoparticles in fluids that show significant enhancement of their properties at modest nanoparticle concentrations. Solar collectors are commonly used in areas such as industries, heating, and cooling for domestic purpose, thermal power plants, solar cooker, automobiles, etc. Performance and efficiency of solar collectors depend upon various factors like collector & receiver material, solar radiation intensity, nature of working fluid, etc. The properties of working fluid which flow through the collectors greatly affects its performance. In this research work, a theoretical effort has been made to enhance the efficiency and improve the performance of solar collector by using Nano fluids instead of conventional fluid like water as working fluid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofluids" title="nanofluids">nanofluids</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20collector" title=" solar collector"> solar collector</a> </p> <a href="https://publications.waset.org/abstracts/58406/theoretical-investigation-of-thermal-properties-of-nanofluids-with-application-to-solar-collector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10834</span> Design, Construction, Technical and Economic Evaluation of a Solar Water Desalination Device with Two Heat Exchangers and a Photovoltaic System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Bakhtiarzadeh">Mehdi Bakhtiarzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Efatnejad"> Reza Efatnejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Kambiz%20Rezapour%20Rezapour"> Kambiz Rezapour Rezapour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the limited resources of fossil fuels and their harmful effects on the environment and human health, research on renewable energy applications in industrial and scientific communities has become particularly important. Only one percent of freshwater resources are available for use in the domestic, agricultural, and industrial sectors. On the other hand, the rapid growth of industry and the increase of population in most countries of the world, including Iran, have led to an increase in demand for freshwater. Among renewable energies, there is the potential of solar energy in Iran. As a result, solar distillation systems can be used as a solution to supply fresh water in remote rural areas. Therefore, in the present study, a solar water desalination device was designed and manufactured using two heat exchangers and a photovoltaic system. Its evaluation was done during September and October of 2020. During the evaluation of the device, environmental variables such as total solar radiation, ambient temperature and cooling tower temperature were recorded at intervals of one hour from 9 am to 5 pm. The effect of these variables on solar concentrator performance, heat exchanger, and daily freshwater production was evaluated. The results showed that using two heat exchangers and a photovoltaic system has led to the daily production of 5 liters of fresh water and 46% economic efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20water%20desalination" title="solar water desalination">solar water desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20system" title=" photovoltaic system"> photovoltaic system</a>, <a href="https://publications.waset.org/abstracts/search?q=technical%20and%20economic%20evaluation" title=" technical and economic evaluation"> technical and economic evaluation</a> </p> <a href="https://publications.waset.org/abstracts/137704/design-construction-technical-and-economic-evaluation-of-a-solar-water-desalination-device-with-two-heat-exchangers-and-a-photovoltaic-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10833</span> Integration of Icf Walls as Diurnal Solar Thermal Storage with Microchannel Solar Assisted Heat Pump for Space Heating and Domestic Hot Water Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Emamjome%20Kashan">Mohammad Emamjome Kashan</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20S.%20Fung"> Alan S. Fung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Canada, more than 32% of the total energy demand is related to the building sector. Therefore, there is a great opportunity for Greenhouse Gases (GHG) reduction by integrating solar collectors to provide building heating load and domestic hot water (DHW). Despite the cold winter weather, Canada has a good number of sunny and clear days that can be considered for diurnal solar thermal energy storage. Due to the energy mismatch between building heating load and solar irradiation availability, relatively big storage tanks are usually needed to store solar thermal energy during the daytime and then use it at night. On the other hand, water tanks occupy huge space, especially in big cities, space is relatively expensive. This project investigates the possibility of using a specific building construction material (ICF – Insulated Concrete Form) as diurnal solar thermal energy storage that is integrated with a heat pump and microchannel solar thermal collector (MCST). Not much literature has studied the application of building pre-existing walls as active solar thermal energy storage as a feasible and industrialized solution for the solar thermal mismatch. By using ICF walls that are integrated into the building envelope, instead of big storage tanks, excess solar energy can be stored in the concrete of the ICF wall that consists of EPS insulation layers on both sides to store the thermal energy. In this study, two solar-based systems are designed and simulated inTransient Systems Simulation Program(TRNSYS)to compare ICF wall thermal storage benefits over the system without ICF walls. In this study, the heating load and DHW of a Canadian single-family house located in London, Ontario, are provided by solar-based systems. The proposed system integrates the MCST collector, a water-to-water HP, a preheat tank, the main tank, fan coils (to deliver the building heating load), and ICF walls. During the day, excess solar energy is stored in the ICF walls (charging cycle). Thermal energy can be restored from the ICF walls when the preheat tank temperature drops below the ICF wall (discharging process) to increase the COP of the heat pump. The evaporator of the heat pump is taking is coupled with the preheat tank. The provided warm water by the heat pump is stored in the second tank. Fan coil units are in contact with the tank to provide a building heating load. DHW is also delivered is provided from the main tank. It is investigated that the system with ICF walls with an average solar fraction of 82%- 88% can cover the whole heating demand+DHW of nine months and has a 10-15% higher average solar fraction than the system without ICF walls. Sensitivity analysis for different parameters influencing the solar fraction is discussed in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=net-zero%20building" title="net-zero building">net-zero building</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20thermal%20storage" title=" solar thermal storage"> solar thermal storage</a>, <a href="https://publications.waset.org/abstracts/search?q=microchannel%20solar%20thermal%20collector" title=" microchannel solar thermal collector"> microchannel solar thermal collector</a> </p> <a href="https://publications.waset.org/abstracts/156072/integration-of-icf-walls-as-diurnal-solar-thermal-storage-with-microchannel-solar-assisted-heat-pump-for-space-heating-and-domestic-hot-water-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10832</span> Control Strategy of Solar Thermal Cooling System under the Indonesia Climate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Budihardjo%20Sarwo%20Sastrosudiro">Budihardjo Sarwo Sastrosudiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnas%20Lubis"> Arnas Lubis</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Idrus%20Alhamid"> Muhammad Idrus Alhamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasruddin%20Jusuf"> Nasruddin Jusuf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar thermal cooling system was installed on Mechanical Research Center (MRC) Building that is located in Universitas Indonesia, Depok, Indonesia. It is the first cooling system in Indonesia that utilizes solar energy as energy input combined with natural gas; therefore, the control system must be appropriated with the climates. In order to stabilize the cooling capacity and also to maximize the use of solar energy, the system applies some controllers. Constant flow rate and on/off controller are applied for the hot water, chilled water and cooling water pumps. The hot water circulated by pump when the solar radiation is over than 400W/m<sup>2</sup>, and the chilled water is continually circulated by pump and its temperature is kept constant 7 °C by absorption chiller. The cooling water is also continually circulated until the outlet temperature of cooling tower below than 27 <sup>o</sup>C. Furthermore, the three-way valve is used to control the hot water for generate vapor on absorption chiller. The system performance using that control system is shown in this study results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorption%20chiller" title="absorption chiller">absorption chiller</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20system" title=" control system"> control system</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cooling" title=" solar cooling"> solar cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a> </p> <a href="https://publications.waset.org/abstracts/43453/control-strategy-of-solar-thermal-cooling-system-under-the-indonesia-climate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10831</span> Stand Alone Multiple Trough Solar Desalination with Heat Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abderrahmane%20Diaf">Abderrahmane Diaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Benabdellaziz"> Kamel Benabdellaziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Remote arid areas of the vast expanses of the African deserts hold huge subterranean reserves of brackish water resources waiting for economic development. This work presents design guidelines as well as initial performance data of new autonomous solar desalination equipment which could help local communities produce their own fresh water using solar energy only and, why not, contribute to transforming desert lands into lush gardens. The output of solar distillation equipment is typically low and in the range of 3 l/m2/day on the average. This new design with an integrated, water-based, environmentally-friendly solar heat storage system produced 5 l/m2/day in early spring weather. Equipment output during summer exceeded 9 liters per m2 per day. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiple%20trough%20distillation" title="multiple trough distillation">multiple trough distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20desalination" title=" solar desalination"> solar desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20distillation%20with%20heat%20storage" title=" solar distillation with heat storage"> solar distillation with heat storage</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20based%20heat%20storage%20system" title=" water based heat storage system"> water based heat storage system</a> </p> <a href="https://publications.waset.org/abstracts/30827/stand-alone-multiple-trough-solar-desalination-with-heat-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10830</span> Analysis of the Performance of a Solar Water Heating System with Flat Collector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Georgi%20Vendramin">Georgi Vendramin</a>, <a href="https://publications.waset.org/abstracts/search?q=Aurea%20L%C3%BAcia"> Aurea Lúcia</a>, <a href="https://publications.waset.org/abstracts/search?q=Yamamoto"> Yamamoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Itsuo"> Carlos Itsuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Camargo%20Nogueira"> Camargo Nogueira</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Eduardo"> Carlos Eduardo</a>, <a href="https://publications.waset.org/abstracts/search?q=Lenz"> Lenz</a>, <a href="https://publications.waset.org/abstracts/search?q=Anderson%20Miguel"> Anderson Miguel</a>, <a href="https://publications.waset.org/abstracts/search?q=Souza%20Melegari"> Souza Melegari</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20N."> Samuel N.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thermal performance of a solar water heating with 1.00 m2 flat plate collectors in Cascavel-PR, is which presented in this article, paper presents the solution to leverage the marketing of solar heating systems through detailed constituent materials of the solar collector studies, these abundant materials in construction, such as expanded polyethylene, PVC, aluminum and glass tubes, mixing them with new materials to minimize loss of efficiency while decreasing its cost. The system was tested during months and the collector obtained maximum recorded temperature of outlet fluid of 55 °C, while the maximum temperature of the water at the bottom of the hot water tank was 35 °C. The average daily energy collected was 19 6 MJ/d; the energy supplied by the solar plate was 16.2 MJ/d; the loss in the feed pipe was 3.2 MJ/d; the solar fraction was 32.2%, the efficiency of the collector was 45.6% and the efficiency of the system was 37.8%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycling%20materials" title="recycling materials">recycling materials</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20collector" title=" solar collector"> solar collector</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20water%20heating%20system" title=" solar water heating system"> solar water heating system</a> </p> <a href="https://publications.waset.org/abstracts/18285/analysis-of-the-performance-of-a-solar-water-heating-system-with-flat-collector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">597</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10829</span> CFD Analysis of Passive Cooling Building by Using Solar Chimney for Mild or Warm Climates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naci%20Kalkan">Naci Kalkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ihsan%20Dagtekin"> Ihsan Dagtekin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research presents the design and analysis of solar air-conditioning systems particularly solar chimney which is a passive strategy for natural ventilation, and demonstrates the structures of these systems’ using Computational Fluid Dynamic (CFD) and finally compares the results with several examples, which have been studied experimentally and carried out previously. In order to improve the performance of solar chimney system, highly efficient sub-system components are considered for the design. The general purpose of the research is to understand how efficiently solar chimney systems generate cooling, and is to improve the efficient of such systems for integration with existing and future domestic buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20and%20passive%20solar%20technologies" title="active and passive solar technologies">active and passive solar technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cooling%20system" title=" solar cooling system"> solar cooling system</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20chimney" title=" solar chimney"> solar chimney</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20ventilation" title=" natural ventilation"> natural ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=cavity%20depth" title=" cavity depth"> cavity depth</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20models%20for%20solar%20chimney" title=" CFD models for solar chimney"> CFD models for solar chimney</a> </p> <a href="https://publications.waset.org/abstracts/33632/cfd-analysis-of-passive-cooling-building-by-using-solar-chimney-for-mild-or-warm-climates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">574</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10828</span> Solar Heating System to Promote the Disinfection of Water </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elmo%20Thiago%20Lins%20C%C3%B6uras%20Ford">Elmo Thiago Lins Cöuras Ford</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Alessandra%20Carvalho%20do%20Vale"> Valentina Alessandra Carvalho do Vale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It presents a heating system using low cost alternative solar collectors to promote the disinfection of water in low income communities that take water contaminated by bacteria. The system consists of two solar collectors, with total area of 4 m² and was built using PET bottles and cans of beer and soft drinks. Each collector is made up of 8 PVC tubes, connected in series and work in continuous flow. It will determine the flux the most appropriate to generate the temperature to promote the disinfection. It will be presented results of the efficiency and thermal loss of system and results of analysis of water after undergoing the process of heating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Disinfection%20of%20water" title="Disinfection of water">Disinfection of water</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20heating%20system" title=" solar heating system"> solar heating system</a>, <a href="https://publications.waset.org/abstracts/search?q=poor%20communities" title=" poor communities"> poor communities</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedicine" title=" biomedicine"> biomedicine</a> </p> <a href="https://publications.waset.org/abstracts/18673/solar-heating-system-to-promote-the-disinfection-of-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18673.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10827</span> Solar Aided Vacuum Desalination of Sea-Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miraz%20Hafiz%20Rossy">Miraz Hafiz Rossy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As part of planning to address shortfalls in fresh water supply for the world, Sea water can be a huge source of fresh water. But Desalinating sea water to get fresh water could require a lots of fossil fuels. To save the fossil fuel in terms of save the green world but meet the up growing need for fresh water, a very useful but energy efficient method needs to be introduced. Vacuum desalination of sea water using only the Renewable energy can be an effective solution to this issue. Taking advantage of sensitivity of water's boiling point to air pressure a vacuum desalination water treatment plant can be designed which would only use sea water as feed water and solar energy as fuel to produce fresh drinking water. The study indicates that reducing the air pressure to a certain value water can be boiled at very low temperature. Using solar energy to provide the condensation and the vacuum creation would be very useful and efficient. Compared to existing resources, desalination is considered to be expensive, but using only renewable energy the cost can be reduced significantly. Despite its very few drawbacks, it can be considered a possible solution to the world's fresh water shortages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desalination" title="desalination">desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=scarcity%20of%20fresh%20water" title=" scarcity of fresh water"> scarcity of fresh water</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20purification" title=" water purification"> water purification</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/73292/solar-aided-vacuum-desalination-of-sea-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10826</span> Solar Heating System to Promote the Disinfection </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elmo%20Thiago%20Lins%20C%C3%B6uras%20Ford">Elmo Thiago Lins Cöuras Ford</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Alessandra%20Carvalho%20do%20Vale"> Valentina Alessandra Carvalho do Vale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It presents a heating system using low cost alternative solar collectors to promote the disinfection of water in low income communities that take water contaminated by bacteria. The system consists of two solar collectors, with total area of 4 m² and was built using PET bottles and cans of beer and soft drinks. Each collector is made up of 8 PVC tubes, connected in series and work in continuous flow. It will determine the flux the most appropriate to generate the temperature to promote the disinfection. Will be presented results of the efficiency and thermal loss of system and results of analysis of water after undergoing the process of heating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disinfection%20of%20water" title="disinfection of water">disinfection of water</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20heating%20system" title=" solar heating system"> solar heating system</a>, <a href="https://publications.waset.org/abstracts/search?q=poor%20communities" title=" poor communities"> poor communities</a>, <a href="https://publications.waset.org/abstracts/search?q=PVC" title=" PVC"> PVC</a> </p> <a href="https://publications.waset.org/abstracts/19626/solar-heating-system-to-promote-the-disinfection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10825</span> Technical Analysis of Combined Solar Water Heating Systems for Cold Climate Regions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Lotfizadeh">Hossein Lotfizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20McDonald"> André McDonald</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Kumar"> Amit Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Renewable energy resources, which can supplement space and water heating for residential buildings, can have a noticeable impact on natural gas consumption and air pollution. This study considers a technical analysis of a combined solar water heating system with evacuated tube solar collectors for different solar coverage, ranging from 20% to 100% of the total roof area of a typical residential building located in Edmonton, Alberta, Canada. The alternative heating systems were conventional (non-condensing) and condensing tankless water heaters and condensing boilers that were coupled to solar water heating systems. The performance of the alternative heating systems was compared to a traditional heating system, consisting of a conventional boiler, applied to houses of various gross floor areas. A comparison among the annual natural gas consumption, carbon dioxide (CO<sub>2</sub>) mitigation, and emissions for the various house sizes indicated that the combined solar heating system can reduce the natural gas consumption and CO<sub>2</sub> emissions, and increase CO<sub>2</sub> mitigation for all the systems that were studied. The results suggest that solar water heating systems are potentially beneficial for residential heating system applications in terms of energy savings and CO<sub>2</sub> mitigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2%20emissions" title="CO2 emissions">CO2 emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20mitigation" title=" CO2 mitigation"> CO2 mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20gas%20consumption" title=" natural gas consumption"> natural gas consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20water%20heating%20system" title=" solar water heating system"> solar water heating system</a> </p> <a href="https://publications.waset.org/abstracts/49148/technical-analysis-of-combined-solar-water-heating-systems-for-cold-climate-regions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10824</span> Design of a Solar Water Heating System with Thermal Storage for a Three-Bedroom House in Newfoundland </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Aisa">Ahmed Aisa</a>, <a href="https://publications.waset.org/abstracts/search?q=Tariq%20Iqbal"> Tariq Iqbal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This letter talks about the ready-to-use design of a solar water heating system because, in Canada, the average consumption of hot water per person is approximately 50 to 75 L per day and the average Canadian household uses 225 L. Therefore, this paper will demonstrate the method of designing a solar water heating system with thermal storage. It highlights the renewable hybrid power system, allowing you to obtain a reliable, independent system with the optimization of the ingredient size and at an improved capital cost. The system can provide hot water for a big building. The main power for the system comes from solar panels. Solar Advisory Model (SAM) and HOMER are used. HOMER and SAM are design models that calculate the consumption of hot water and cost for a house. Some results, obtained through simulation, were for monthly energy production, annual energy production, after tax cash flow, the lifetime of the system and monthly energy usage represented by three types of energy. These are system energy, electricity load electricity and net metering credit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20heating" title="water heating">water heating</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20storage" title=" thermal storage"> thermal storage</a>, <a href="https://publications.waset.org/abstracts/search?q=capital%20cost%20solar" title=" capital cost solar"> capital cost solar</a>, <a href="https://publications.waset.org/abstracts/search?q=consumption" title=" consumption"> consumption</a> </p> <a href="https://publications.waset.org/abstracts/50580/design-of-a-solar-water-heating-system-with-thermal-storage-for-a-three-bedroom-house-in-newfoundland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10823</span> Assessing the Viability of Solar Water Pumps Economically, Socially and Environmentally in Soan Valley, Punjab</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zenab%20Naseem">Zenab Naseem</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadia%20Imran"> Sadia Imran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the key solutions to the climate change crisis is to develop renewable energy resources, such as solar and wind power and biogas. This paper explores the socioeconomic and environmental viability of solar energy, based on a case study of the Soan Valley Development Program. Under this project, local farmers were provided solar water pumps at subsidized rates. These have been functional for the last seven years and have gained popularity among the local communities. The study measures the economic viability of using solar energy in agriculture, based on data from 36 households, of which 12 households each use diesel, electric and solar water pumps. Our findings are based on the net present value of each technology type. We also carry out a qualitative assessment of the social impact of solar water pumps relative to diesel and electric pumps. Finally, we conduct an environmental impact assessment, using the lifecycle assessment approach. All three analyses indicate that solar energy is a viable alternative to diesel and electricity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20energy%20sources" title="alternative energy sources">alternative energy sources</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20control%20adoption%20and%20costs" title=" pollution control adoption and costs"> pollution control adoption and costs</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy%20pumps" title=" solar energy pumps"> solar energy pumps</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a> </p> <a href="https://publications.waset.org/abstracts/51524/assessing-the-viability-of-solar-water-pumps-economically-socially-and-environmentally-in-soan-valley-punjab" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10822</span> A Technical-Economical Study of a New Solar Tray Distillator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abderrahmane%20Diaf">Abderrahmane Diaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Assia%20Cherfa"> Assia Cherfa</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamia%20Karadaniz"> Lamia Karadaniz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiple tray solar distillation offers an interesting alternative for small-scale desalination and production high quality distilled water at a competitive cost using solar energy. In this work, we present indoor/outdoor trial performance data of our multiple tray solar distillation as well as the results of cost estimation analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20desalination" title="solar desalination">solar desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=tray%20distillation" title=" tray distillation"> tray distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-%C3%A9tages%20solaire" title=" multi-étages solaire"> multi-étages solaire</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20distillation" title=" solar distillation"> solar distillation</a> </p> <a href="https://publications.waset.org/abstracts/19221/a-technical-economical-study-of-a-new-solar-tray-distillator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10821</span> Simulation of Performance and Layout Optimization of Solar Collectors with AVR Microcontroller to Achieve Desired Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Azarmjoo">Mohsen Azarmjoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Navid%20Sharifi"> Navid Sharifi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Alikhani%20Koopaei"> Zahra Alikhani Koopaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article aims to conserve energy and optimize the performance of solar water heaters using modern modeling systems. In this study, a large-scale solar water heater is modeled using an AVR microcontroller, which is a digital processor from the AVR microcontroller family. This mechatronic system will be used to analyze the performance and design of solar collectors, with the ultimate goal of improving the efficiency of the system being used. The findings of this research provide insights into optimizing the performance of solar water heaters. By manipulating the arrangement of solar panels and controlling the water flow through them using the AVR microcontroller, researchers can identify the optimal configurations and operational protocols to achieve the desired temperature and flow conditions. These findings can contribute to the development of more efficient and sustainable heating and cooling systems. This article investigates the optimization of solar water heater performance. It examines the impact of solar panel layout on system efficiency and explores methods of controlling water flow to achieve the desired temperature and flow conditions. The results of this research contribute to the development of more sustainable heating and cooling systems that rely on renewable energy sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20conservation" title="energy conservation">energy conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20water%20heaters" title=" solar water heaters"> solar water heaters</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cooling" title=" solar cooling"> solar cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=mechatronics" title=" mechatronics"> mechatronics</a> </p> <a href="https://publications.waset.org/abstracts/177764/simulation-of-performance-and-layout-optimization-of-solar-collectors-with-avr-microcontroller-to-achieve-desired-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10820</span> Water Irrigation in the Chlef Region Using Photovoltaic Solar Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Tahri">T. Tahri</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Zahloul"> H. Zahloul</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20E.%20Meddah"> K. E. Meddah</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Lazergue"> H. Lazergue </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a theoretical study that leads to the design of a photovoltaic pumping system to irrigate six hectares of oranges in the valley of Chlef using the software "PVSYST". It was shown that the site of Chlef presents a favorable climate to this type of energy with an irradiation of over 5 kWh/m2/day, and significant resources underground water. Another very important coincidence still promotes the use of this type of energy for pumping water in Chlef is that the demand for water, especially in agriculture, peaked in hot and dry where it is precisely when one has access to the maximum of solar energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title="solar energy">solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=irradiation" title=" irradiation"> irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20pumping" title=" water pumping"> water pumping</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=Valley%20of%20Chlef" title=" Valley of Chlef "> Valley of Chlef </a> </p> <a href="https://publications.waset.org/abstracts/44532/water-irrigation-in-the-chlef-region-using-photovoltaic-solar-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20domestic%20hot%20water%20and%20combisystems&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20domestic%20hot%20water%20and%20combisystems&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20domestic%20hot%20water%20and%20combisystems&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20domestic%20hot%20water%20and%20combisystems&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20domestic%20hot%20water%20and%20combisystems&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20domestic%20hot%20water%20and%20combisystems&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20domestic%20hot%20water%20and%20combisystems&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20domestic%20hot%20water%20and%20combisystems&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20domestic%20hot%20water%20and%20combisystems&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20domestic%20hot%20water%20and%20combisystems&page=361">361</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20domestic%20hot%20water%20and%20combisystems&page=362">362</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20domestic%20hot%20water%20and%20combisystems&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>