CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–15 of 15 results for author: <span class="mathjax">Northup, T</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Northup%2C+T">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Northup, T"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Northup%2C+T&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Northup, T"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.10131">arXiv:2312.10131</a> <span> [<a href="https://arxiv.org/pdf/2312.10131">pdf</a>, <a href="https://arxiv.org/format/2312.10131">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Hybrid Paul-optical trap with large optical access for levitated optomechanics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bonvin%2C+E">Eric Bonvin</a>, <a href="/search/physics?searchtype=author&query=Devaud%2C+L">Louisiane Devaud</a>, <a href="/search/physics?searchtype=author&query=Rossi%2C+M">Massimiliano Rossi</a>, <a href="/search/physics?searchtype=author&query=Militaru%2C+A">Andrei Militaru</a>, <a href="/search/physics?searchtype=author&query=Dania%2C+L">Lorenzo Dania</a>, <a href="/search/physics?searchtype=author&query=Bykov%2C+D+S">Dmitry S. Bykov</a>, <a href="/search/physics?searchtype=author&query=Teller%2C+M">Markus Teller</a>, <a href="/search/physics?searchtype=author&query=Northup%2C+T+E">Tracy E. Northup</a>, <a href="/search/physics?searchtype=author&query=Novotny%2C+L">Lukas Novotny</a>, <a href="/search/physics?searchtype=author&query=Frimmer%2C+M">Martin Frimmer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.10131v1-abstract-short" style="display: inline;"> We present a hybrid trapping platform that allows us to levitate a charged nanoparticle in high vacuum using either optical fields, radio-frequency fields, or a combination thereof. Our hybrid approach combines an optical dipole trap with a linear Paul trap while maintaining a large numerical aperture (0.77 NA). We detail a controlled transfer procedure that allows us to use the Paul trap as a saf… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10131v1-abstract-full').style.display = 'inline'; document.getElementById('2312.10131v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.10131v1-abstract-full" style="display: none;"> We present a hybrid trapping platform that allows us to levitate a charged nanoparticle in high vacuum using either optical fields, radio-frequency fields, or a combination thereof. Our hybrid approach combines an optical dipole trap with a linear Paul trap while maintaining a large numerical aperture (0.77 NA). We detail a controlled transfer procedure that allows us to use the Paul trap as a safety net to recover particles lost from the optical trap at high vacuum. The presented hybrid platform adds to the toolbox of levitodynamics and represents an important step towards fully controllable dark potentials, providing control in the absence of decoherence due to photon recoil. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10131v1-abstract-full').style.display = 'none'; document.getElementById('2312.10131v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.07583">arXiv:2210.07583</a> <span> [<a href="https://arxiv.org/pdf/2210.07583">pdf</a>, <a href="https://arxiv.org/format/2210.07583">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OPTICA.481076">10.1364/OPTICA.481076 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> 3D sympathetic cooling and detection of levitated nanoparticles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bykov%2C+D+S">Dmitry S. Bykov</a>, <a href="/search/physics?searchtype=author&query=Dania%2C+L">Lorenzo Dania</a>, <a href="/search/physics?searchtype=author&query=Goschin%2C+F">Florian Goschin</a>, <a href="/search/physics?searchtype=author&query=Northup%2C+T+E">Tracy E. Northup</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.07583v2-abstract-short" style="display: inline;"> Cooling the center-of-mass motion of levitated nanoparticles provides a route to quantum experiments at mesoscopic scales. Here we demonstrate three-dimensional sympathetic cooling and detection of the center-of-mass motion of a levitated silica nanoparticle. The nanoparticle is electrostatically coupled to a feedback-cooled particle while both particles are trapped in the same Paul trap. We ident… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07583v2-abstract-full').style.display = 'inline'; document.getElementById('2210.07583v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.07583v2-abstract-full" style="display: none;"> Cooling the center-of-mass motion of levitated nanoparticles provides a route to quantum experiments at mesoscopic scales. Here we demonstrate three-dimensional sympathetic cooling and detection of the center-of-mass motion of a levitated silica nanoparticle. The nanoparticle is electrostatically coupled to a feedback-cooled particle while both particles are trapped in the same Paul trap. We identify two regimes, based on the strength of the cooling: in the first regime, the sympathetically cooled particle thermalizes with the directly cooled one, while in the second regime, the sympathetically cooled particle reaches a minimum temperature. This result provides a route to efficiently cool and detect particles that cannot be illuminated with strong laser light, such as absorptive particles, and paves the way for controlling the motion of arrays of several trapped nanoparticles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07583v2-abstract-full').style.display = 'none'; document.getElementById('2210.07583v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optica 10, 438-442 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.10500">arXiv:2207.10500</a> <span> [<a href="https://arxiv.org/pdf/2207.10500">pdf</a>, <a href="https://arxiv.org/format/2207.10500">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Integrating a fiber cavity into a wheel trap for strong ion-cavity coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Teller%2C+M">Markus Teller</a>, <a href="/search/physics?searchtype=author&query=Messerer%2C+V">Viktor Messerer</a>, <a href="/search/physics?searchtype=author&query=Sch%C3%BCppert%2C+K">Klemens Sch眉ppert</a>, <a href="/search/physics?searchtype=author&query=Zou%2C+Y">Yueyang Zou</a>, <a href="/search/physics?searchtype=author&query=Fioretto%2C+D+A">Dario A. Fioretto</a>, <a href="/search/physics?searchtype=author&query=Galli%2C+M">Maria Galli</a>, <a href="/search/physics?searchtype=author&query=Holz%2C+P+C">Philip C. Holz</a>, <a href="/search/physics?searchtype=author&query=Reichel%2C+J">Jakob Reichel</a>, <a href="/search/physics?searchtype=author&query=Northup%2C+T+E">Tracy E. Northup</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.10500v1-abstract-short" style="display: inline;"> We present an ion trap with an integrated fiber cavity, designed for strong coupling at the level of single ions and photons. The cavity is aligned to the axis of a miniature linear Paul trap, enabling simultaneous coupling of multiple ions to the cavity field. We simulate how charges on the fiber mirrors affect the trap potential, and we test these predictions with an ion trapped in the cavity. F… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10500v1-abstract-full').style.display = 'inline'; document.getElementById('2207.10500v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.10500v1-abstract-full" style="display: none;"> We present an ion trap with an integrated fiber cavity, designed for strong coupling at the level of single ions and photons. The cavity is aligned to the axis of a miniature linear Paul trap, enabling simultaneous coupling of multiple ions to the cavity field. We simulate how charges on the fiber mirrors affect the trap potential, and we test these predictions with an ion trapped in the cavity. Furthermore, we measure micromotion and heating rates in the setup. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10500v1-abstract-full').style.display = 'none'; document.getElementById('2207.10500v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.04912">arXiv:2204.04912</a> <span> [<a href="https://arxiv.org/pdf/2204.04912">pdf</a>, <a href="https://arxiv.org/format/2204.04912">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0096391">10.1063/5.0096391 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hybrid electro-optical trap for experiments with levitated particles in vacuum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bykov%2C+D+S">Dmitry S. Bykov</a>, <a href="/search/physics?searchtype=author&query=Meusburger%2C+M">Maximilian Meusburger</a>, <a href="/search/physics?searchtype=author&query=Dania%2C+L">Lorenzo Dania</a>, <a href="/search/physics?searchtype=author&query=Northup%2C+T+E">Tracy E. Northup</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.04912v2-abstract-short" style="display: inline;"> We confine a microparticle in a hybrid potential created by a Paul trap and a dual-beam optical trap. We transfer the particle between the Paul trap and the optical trap at different pressures and study the influence of feedback cooling on the transfer process. This technique provides a path for experiments with optically levitated particles in ultra-high vacuum and in potentials with complex stru… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04912v2-abstract-full').style.display = 'inline'; document.getElementById('2204.04912v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.04912v2-abstract-full" style="display: none;"> We confine a microparticle in a hybrid potential created by a Paul trap and a dual-beam optical trap. We transfer the particle between the Paul trap and the optical trap at different pressures and study the influence of feedback cooling on the transfer process. This technique provides a path for experiments with optically levitated particles in ultra-high vacuum and in potentials with complex structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04912v2-abstract-full').style.display = 'none'; document.getElementById('2204.04912v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Review of Scientific Instruments 93, 073201 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.14990">arXiv:2112.14990</a> <span> [<a href="https://arxiv.org/pdf/2112.14990">pdf</a>, <a href="https://arxiv.org/format/2112.14990">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.013601">10.1103/PhysRevLett.129.013601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Position measurement of a levitated nanoparticle via interference with its mirror image </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dania%2C+L">Lorenzo Dania</a>, <a href="/search/physics?searchtype=author&query=Heidegger%2C+K">Katharina Heidegger</a>, <a href="/search/physics?searchtype=author&query=Bykov%2C+D+S">Dmitry S. Bykov</a>, <a href="/search/physics?searchtype=author&query=Cerchiari%2C+G">Giovanni Cerchiari</a>, <a href="/search/physics?searchtype=author&query=Araneda%2C+G">Gabriel Araneda</a>, <a href="/search/physics?searchtype=author&query=Northup%2C+T+E">Tracy E. Northup</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.14990v1-abstract-short" style="display: inline;"> Interferometric methods for detecting the motion of a levitated nanoparticle provide a route to the quantum ground state, but such methods are currently limited by mode mismatch between the reference beam and the dipolar field scattered by the particle. Here we demonstrate a self-interference method to detect the particle's motion that solves this problem. A Paul trap confines a charged dielectric… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.14990v1-abstract-full').style.display = 'inline'; document.getElementById('2112.14990v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.14990v1-abstract-full" style="display: none;"> Interferometric methods for detecting the motion of a levitated nanoparticle provide a route to the quantum ground state, but such methods are currently limited by mode mismatch between the reference beam and the dipolar field scattered by the particle. Here we demonstrate a self-interference method to detect the particle's motion that solves this problem. A Paul trap confines a charged dielectric nanoparticle in high vacuum, and a mirror retro-reflects the scattered light. We measure the particle's motion with a sensitivity of $1.7\times 10^{-12} \text{m}/\sqrt{\text{Hz}}$, corresponding to a detection efficiency of 2.1%, with a numerical aperture of 0.18. As an application of this method, we cool the particle, via feedback, to temperatures below those achieved in the same setup using a standard position measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.14990v1-abstract-full').style.display = 'none'; document.getElementById('2112.14990v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.02121">arXiv:2105.02121</a> <span> [<a href="https://arxiv.org/pdf/2105.02121">pdf</a>, <a href="https://arxiv.org/format/2105.02121">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PRXQuantum.2.020331">10.1103/PRXQuantum.2.020331 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards a deterministic interface between trapped-ion qubits and travelling photons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Schupp%2C+J">Josef Schupp</a>, <a href="/search/physics?searchtype=author&query=Krcmarsky%2C+V">Vojtech Krcmarsky</a>, <a href="/search/physics?searchtype=author&query=Krutyanskiy%2C+V">Victor Krutyanskiy</a>, <a href="/search/physics?searchtype=author&query=Meraner%2C+M">Martin Meraner</a>, <a href="/search/physics?searchtype=author&query=Northup%2C+T+E">Tracy E. Northup</a>, <a href="/search/physics?searchtype=author&query=Lanyon%2C+B+P">Ben P. Lanyon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.02121v2-abstract-short" style="display: inline;"> Experimental results are presented on the efficiency limits for a quantum interface between a matter-based qubit and a photonic qubit. Using a trapped ion in an optical cavity, we obtain a single ion-entangled photon at the cavity output with a probability of 0.69(3). The performance of our system is shown to saturate the upper limit to photon-collection probability from a quantum emitter in a cav… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.02121v2-abstract-full').style.display = 'inline'; document.getElementById('2105.02121v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.02121v2-abstract-full" style="display: none;"> Experimental results are presented on the efficiency limits for a quantum interface between a matter-based qubit and a photonic qubit. Using a trapped ion in an optical cavity, we obtain a single ion-entangled photon at the cavity output with a probability of 0.69(3). The performance of our system is shown to saturate the upper limit to photon-collection probability from a quantum emitter in a cavity, set by the emitter's electronic structure and by the cavity parameters. The probability for generating and detecting the ion-entangled fiber-coupled photon is 0.462(3), a five-fold increase over the previous best performance. Finally, the generation and detection of up to 15 sequential polarised photons demonstrates the ability of a trapped ion to serve as a multi-photon source. The comparison between measured probabilities and predicted bounds is relevant for quantum emitters beyond trapped ions, in particular, for the design of future systems optimising photon collection from, and absorption in, quantum matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.02121v2-abstract-full').style.display = 'none'; document.getElementById('2105.02121v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRX Quantum 2, 020331 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.08322">arXiv:2103.08322</a> <span> [<a href="https://arxiv.org/pdf/2103.08322">pdf</a>, <a href="https://arxiv.org/format/2103.08322">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.104.053523">10.1103/PhysRevA.104.053523 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Position measurement of a dipolar scatterer via self-homodyne detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cerchiari%2C+G">G. Cerchiari</a>, <a href="/search/physics?searchtype=author&query=Dania%2C+L">L. Dania</a>, <a href="/search/physics?searchtype=author&query=Bykov%2C+D+S">D. S. Bykov</a>, <a href="/search/physics?searchtype=author&query=Blatt%2C+R">R. Blatt</a>, <a href="/search/physics?searchtype=author&query=Northup%2C+T">T. Northup</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.08322v2-abstract-short" style="display: inline;"> We describe a technique to measure the position of a dipolar scatterer based on self-homodyne detection of the scattered light. The method can theoretically reach the Heisenberg limit, at which information gained about the position is constrained only by the back-action of the scattered light. The technique has applications in the fields of levitated optomechanics and trapped ions and is generally… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.08322v2-abstract-full').style.display = 'inline'; document.getElementById('2103.08322v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.08322v2-abstract-full" style="display: none;"> We describe a technique to measure the position of a dipolar scatterer based on self-homodyne detection of the scattered light. The method can theoretically reach the Heisenberg limit, at which information gained about the position is constrained only by the back-action of the scattered light. The technique has applications in the fields of levitated optomechanics and trapped ions and is generally applicable to the position determination of confined light scatterers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.08322v2-abstract-full').style.display = 'none'; document.getElementById('2103.08322v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.04434">arXiv:2007.04434</a> <span> [<a href="https://arxiv.org/pdf/2007.04434">pdf</a>, <a href="https://arxiv.org/format/2007.04434">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.3.013018">10.1103/PhysRevResearch.3.013018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical and electrical feedback cooling of a silica nanoparticle levitated in a Paul trap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dania%2C+L">Lorenzo Dania</a>, <a href="/search/physics?searchtype=author&query=Bykov%2C+D+S">Dmitry S. Bykov</a>, <a href="/search/physics?searchtype=author&query=Knoll%2C+M">Matthias Knoll</a>, <a href="/search/physics?searchtype=author&query=Mestres%2C+P">Pau Mestres</a>, <a href="/search/physics?searchtype=author&query=Northup%2C+T+E">Tracy E. Northup</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.04434v3-abstract-short" style="display: inline;"> All three motional modes of a charged dielectric nanoparticle in a Paul trap are cooled by direct feedback to temperatures of a few mK. We test two methods, one based on electrical forces and the other on optical forces; for both methods, we find similar cooling efficiencies. Cooling is characterized for both feedback forces as a function of feedback parameters, background pressure, and the partic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.04434v3-abstract-full').style.display = 'inline'; document.getElementById('2007.04434v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.04434v3-abstract-full" style="display: none;"> All three motional modes of a charged dielectric nanoparticle in a Paul trap are cooled by direct feedback to temperatures of a few mK. We test two methods, one based on electrical forces and the other on optical forces; for both methods, we find similar cooling efficiencies. Cooling is characterized for both feedback forces as a function of feedback parameters, background pressure, and the particle's position. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.04434v3-abstract-full').style.display = 'none'; document.getElementById('2007.04434v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 3, 013018 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.02245">arXiv:2002.02245</a> <span> [<a href="https://arxiv.org/pdf/2002.02245">pdf</a>, <a href="https://arxiv.org/format/2002.02245">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ab8af9">10.1088/1367-2630/ab8af9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing surface charge densities on optical fibers with a trapped ion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ong%2C+F+R">Florian R. Ong</a>, <a href="/search/physics?searchtype=author&query=Sch%C3%BCppert%2C+K">Klemens Sch眉ppert</a>, <a href="/search/physics?searchtype=author&query=Jobez%2C+P">Pierre Jobez</a>, <a href="/search/physics?searchtype=author&query=Teller%2C+M">Markus Teller</a>, <a href="/search/physics?searchtype=author&query=Ames%2C+B">Ben Ames</a>, <a href="/search/physics?searchtype=author&query=Fioretto%2C+D+A">Dario A. Fioretto</a>, <a href="/search/physics?searchtype=author&query=Friebe%2C+K">Konstantin Friebe</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+M">Moonjoo Lee</a>, <a href="/search/physics?searchtype=author&query=Colombe%2C+Y">Yves Colombe</a>, <a href="/search/physics?searchtype=author&query=Blatt%2C+R">Rainer Blatt</a>, <a href="/search/physics?searchtype=author&query=Northup%2C+T+E">Tracy E. Northup</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.02245v2-abstract-short" style="display: inline;"> We describe a novel method to measure the surface charge densities on optical fibers placed in the vicinity of a trapped ion, where the ion itself acts as the probe. Surface charges distort the trapping potential, and when the fibers are displaced, the ion's equilibrium position and secular motional frequencies are altered. We measure the latter quantities for different positions of the fibers and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.02245v2-abstract-full').style.display = 'inline'; document.getElementById('2002.02245v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.02245v2-abstract-full" style="display: none;"> We describe a novel method to measure the surface charge densities on optical fibers placed in the vicinity of a trapped ion, where the ion itself acts as the probe. Surface charges distort the trapping potential, and when the fibers are displaced, the ion's equilibrium position and secular motional frequencies are altered. We measure the latter quantities for different positions of the fibers and compare these measurements to simulations in which unknown charge densities on the fibers are adjustable parameters. Values ranging from $-10$ to $+50$ e/$渭$m$^2$ were determined. Our results will benefit the design and simulation of miniaturized experimental systems combining ion traps and integrated optics, for example, in the fields of quantum computation, communication and metrology. Furthermore, our method can be applied to any setup in which a dielectric element can be displaced relative to a trapped charge-sensitive particle. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.02245v2-abstract-full').style.display = 'none'; document.getElementById('2002.02245v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.07594">arXiv:1907.07594</a> <span> [<a href="https://arxiv.org/pdf/1907.07594">pdf</a>, <a href="https://arxiv.org/format/1907.07594">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.12.044052">10.1103/PhysRevApplied.12.044052 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Microelectromechanical-System-Based Design of a High-Finesse Fiber Cavity Integrated with an Ion Trap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lee%2C+M">Moonjoo Lee</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+M">Minjae Lee</a>, <a href="/search/physics?searchtype=author&query=Hong%2C+S">Seokjun Hong</a>, <a href="/search/physics?searchtype=author&query=Sch%C3%BCppert%2C+K">Klemens Sch眉ppert</a>, <a href="/search/physics?searchtype=author&query=Kwon%2C+Y">Yeong-Dae Kwon</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+T">Taehyun Kim</a>, <a href="/search/physics?searchtype=author&query=Colombe%2C+Y">Yves Colombe</a>, <a href="/search/physics?searchtype=author&query=Northup%2C+T+E">Tracy E. Northup</a>, <a href="/search/physics?searchtype=author&query=Cho%2C+D+%22">Dong-Il "Dan" Cho</a>, <a href="/search/physics?searchtype=author&query=Blatt%2C+R">Rainer Blatt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.07594v3-abstract-short" style="display: inline;"> We present a numerical study of a MEMS-based design of a fiber cavity integrated with an ion trap system. Each fiber mirror is supported by a microactuator that controls the mirror's position in three dimensions. The mechanical stability is investigated by a feasibility analysis showing that the actuator offers a stable support of the fiber. The actuators move the fibers' positions continuously wi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.07594v3-abstract-full').style.display = 'inline'; document.getElementById('1907.07594v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.07594v3-abstract-full" style="display: none;"> We present a numerical study of a MEMS-based design of a fiber cavity integrated with an ion trap system. Each fiber mirror is supported by a microactuator that controls the mirror's position in three dimensions. The mechanical stability is investigated by a feasibility analysis showing that the actuator offers a stable support of the fiber. The actuators move the fibers' positions continuously with a stroke of more than 10 $渭$m, with mechanical resonance frequencies on the order of kHz. A calculation of the trapping potential shows that a separation between ion and fiber consistent with strong ion-cavity coupling is feasible. Our miniaturized ion-photon interface constitutes a viable approach to integrated hardware for quantum information. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.07594v3-abstract-full').style.display = 'none'; document.getElementById('1907.07594v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 11 figures, 3 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 12, 044052 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.04204">arXiv:1905.04204</a> <span> [<a href="https://arxiv.org/pdf/1905.04204">pdf</a>, <a href="https://arxiv.org/format/1905.04204">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5109645">10.1063/1.5109645 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct loading of nanoparticles under high vacuum into a Paul trap for levitodynamical experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bykov%2C+D+S">Dmitry S. Bykov</a>, <a href="/search/physics?searchtype=author&query=Mestres%2C+P">Pau Mestres</a>, <a href="/search/physics?searchtype=author&query=Dania%2C+L">Lorenzo Dania</a>, <a href="/search/physics?searchtype=author&query=Schm%C3%B6ger%2C+L">Lisa Schm枚ger</a>, <a href="/search/physics?searchtype=author&query=Northup%2C+T+E">Tracy E. Northup</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.04204v2-abstract-short" style="display: inline;"> Mechanical oscillators based on levitated particles are promising candidates for sensitive detectors and platforms for testing fundamental physics. The targeted quality factors for such oscillators correspond to extremely low damping rates of the center-of-mass motion, which can only be obtained if the particles are trapped in ultrahigh vacuum (UHV). In order to reach such low pressures, a noncont… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.04204v2-abstract-full').style.display = 'inline'; document.getElementById('1905.04204v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.04204v2-abstract-full" style="display: none;"> Mechanical oscillators based on levitated particles are promising candidates for sensitive detectors and platforms for testing fundamental physics. The targeted quality factors for such oscillators correspond to extremely low damping rates of the center-of-mass motion, which can only be obtained if the particles are trapped in ultrahigh vacuum (UHV). In order to reach such low pressures, a noncontaminating method of loading particles in a UHV environment is necessary. However, loading particle traps at pressures below the viscous flow regime is challenging due to the conservative nature of trapping forces and reduced gas damping. We demonstrate a technique that allows us to overcome these limitations and load particles into a Paul trap at pressures as low as 4x10^-7 mbar. The method is based on laser-induced acoustic desorption of nanoparticles from a metallic foil and temporal control of the Paul trap potential. We show that the method is highly efficient: More than half of the trapping attempts are successful. Moreover, since trapping attempts can be as short as a few milliseconds, the technique provides high throughput of loaded particles. Finally, the efficiency of the method does not depend on pressure, indicating that the method should be extensible to UHV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.04204v2-abstract-full').style.display = 'none'; document.getElementById('1905.04204v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 115, 034101 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.13340">arXiv:1810.13340</a> <span> [<a href="https://arxiv.org/pdf/1810.13340">pdf</a>, <a href="https://arxiv.org/format/1810.13340">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.153603">10.1103/PhysRevLett.122.153603 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ion-based nondestructive sensor for cavity photon numbers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lee%2C+M">Moonjoo Lee</a>, <a href="/search/physics?searchtype=author&query=Friebe%2C+K">Konstantin Friebe</a>, <a href="/search/physics?searchtype=author&query=Fioretto%2C+D+A">Dario A. Fioretto</a>, <a href="/search/physics?searchtype=author&query=Sch%C3%BCppert%2C+K">Klemens Sch眉ppert</a>, <a href="/search/physics?searchtype=author&query=Ong%2C+F+R">Florian R. Ong</a>, <a href="/search/physics?searchtype=author&query=Plankensteiner%2C+D">David Plankensteiner</a>, <a href="/search/physics?searchtype=author&query=Torggler%2C+V">Valentin Torggler</a>, <a href="/search/physics?searchtype=author&query=Ritsch%2C+H">Helmut Ritsch</a>, <a href="/search/physics?searchtype=author&query=Blatt%2C+R">Rainer Blatt</a>, <a href="/search/physics?searchtype=author&query=Northup%2C+T+E">Tracy E. Northup</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.13340v1-abstract-short" style="display: inline;"> We dispersively couple a single trapped ion to an optical cavity to extract information about the cavity photon-number distribution in a nondestructive way. The photon-number-dependent AC-Stark shift experienced by the ion is measured via Ramsey spectroscopy. We use these measurements first to obtain the ion-cavity interaction strength. Next, we reconstruct the cavity photon-number distribution fo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.13340v1-abstract-full').style.display = 'inline'; document.getElementById('1810.13340v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.13340v1-abstract-full" style="display: none;"> We dispersively couple a single trapped ion to an optical cavity to extract information about the cavity photon-number distribution in a nondestructive way. The photon-number-dependent AC-Stark shift experienced by the ion is measured via Ramsey spectroscopy. We use these measurements first to obtain the ion-cavity interaction strength. Next, we reconstruct the cavity photon-number distribution for coherent states and for a state with mixed thermal-coherent statistics, finding overlaps above 99% with the calibrated states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.13340v1-abstract-full').style.display = 'none'; document.getElementById('1810.13340v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Manuscript: 6 pages, 4 figures. Supplemental Material: 5 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 153603 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.05928">arXiv:1802.05928</a> <span> [<a href="https://arxiv.org/pdf/1802.05928">pdf</a>, <a href="https://arxiv.org/format/1802.05928">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2058-9565/aaf5f3">10.1088/2058-9565/aaf5f3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Levitated electromechanics: all-electrical cooling of charged nano- and micro-particles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Goldwater%2C+D">Daniel Goldwater</a>, <a href="/search/physics?searchtype=author&query=Stickler%2C+B+A">Benjamin A. Stickler</a>, <a href="/search/physics?searchtype=author&query=Martinetz%2C+L">Lukas Martinetz</a>, <a href="/search/physics?searchtype=author&query=Northup%2C+T+E">Tracy E. Northup</a>, <a href="/search/physics?searchtype=author&query=Hornberger%2C+K">Klaus Hornberger</a>, <a href="/search/physics?searchtype=author&query=Millen%2C+J">James Millen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.05928v3-abstract-short" style="display: inline;"> We show how charged levitated nano- and micro-particles can be cooled by interfacing them with an $RLC$ circuit. All-electrical levitation and cooling is applicable to a wide range of particle sizes and materials, and will enable state-of-the-art force sensing within an electrically networked system. Exploring the cooling limits in the presence of realistic noise we find that the quantum regime of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.05928v3-abstract-full').style.display = 'inline'; document.getElementById('1802.05928v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.05928v3-abstract-full" style="display: none;"> We show how charged levitated nano- and micro-particles can be cooled by interfacing them with an $RLC$ circuit. All-electrical levitation and cooling is applicable to a wide range of particle sizes and materials, and will enable state-of-the-art force sensing within an electrically networked system. Exploring the cooling limits in the presence of realistic noise we find that the quantum regime of particle motion can be reached in cryogenic environments both for passive resistive cooling and for an active feedback scheme, paving the way to levitated quantum electromechanics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.05928v3-abstract-full').style.display = 'none'; document.getElementById('1802.05928v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Manuscript: 16 pages, 5 figures. Supplementary material: 3 pages 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Quantum Sci. Technol. 4, 024003 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1408.6266">arXiv:1408.6266</a> <span> [<a href="https://arxiv.org/pdf/1408.6266">pdf</a>, <a href="https://arxiv.org/format/1408.6266">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.114.023602">10.1103/PhysRevLett.114.023602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhanced Quantum Interface with Collective Ion-Cavity Coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Casabone%2C+B">B. Casabone</a>, <a href="/search/physics?searchtype=author&query=Friebe%2C+K">K. Friebe</a>, <a href="/search/physics?searchtype=author&query=Brandst%C3%A4tter%2C+B">B. Brandst盲tter</a>, <a href="/search/physics?searchtype=author&query=Sch%C3%BCppert%2C+K">K. Sch眉ppert</a>, <a href="/search/physics?searchtype=author&query=Blatt%2C+R">R. Blatt</a>, <a href="/search/physics?searchtype=author&query=Northup%2C+T+E">T. E. Northup</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1408.6266v2-abstract-short" style="display: inline;"> We prepare a maximally entangled state of two ions and couple both ions to the mode of an optical cavity. The phase of the entangled state determines the collective interaction of the ions with the cavity mode, that is, whether the emission of a single photon into the cavity is suppressed or enhanced. By adjusting this phase, we tune the ion--cavity system from sub- to superradiance. We then encod… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.6266v2-abstract-full').style.display = 'inline'; document.getElementById('1408.6266v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1408.6266v2-abstract-full" style="display: none;"> We prepare a maximally entangled state of two ions and couple both ions to the mode of an optical cavity. The phase of the entangled state determines the collective interaction of the ions with the cavity mode, that is, whether the emission of a single photon into the cavity is suppressed or enhanced. By adjusting this phase, we tune the ion--cavity system from sub- to superradiance. We then encode a single qubit in the two-ion superradiant state and show that this encoding enhances the transfer of quantum information onto a photon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.6266v2-abstract-full').style.display = 'none'; document.getElementById('1408.6266v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters 114.2 (2015): 023602 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.6961">arXiv:1311.6961</a> <span> [<a href="https://arxiv.org/pdf/1311.6961">pdf</a>, <a href="https://arxiv.org/ps/1311.6961">ps</a>, <a href="https://arxiv.org/format/1311.6961">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4838696">10.1063/1.4838696 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Integrated Fiber-Mirror Ion Trap for Strong Ion-Cavity Coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Brandst%C3%A4tter%2C+B">Birgit Brandst盲tter</a>, <a href="/search/physics?searchtype=author&query=McClung%2C+A">Andrew McClung</a>, <a href="/search/physics?searchtype=author&query=Sch%C3%BCppert%2C+K">Klemens Sch眉ppert</a>, <a href="/search/physics?searchtype=author&query=Casabone%2C+B">Bernardo Casabone</a>, <a href="/search/physics?searchtype=author&query=Friebe%2C+K">Konstantin Friebe</a>, <a href="/search/physics?searchtype=author&query=Stute%2C+A">Andreas Stute</a>, <a href="/search/physics?searchtype=author&query=Schmidt%2C+P+O">Piet O. Schmidt</a>, <a href="/search/physics?searchtype=author&query=Deutsch%2C+C">Christian Deutsch</a>, <a href="/search/physics?searchtype=author&query=Reichel%2C+J">Jakob Reichel</a>, <a href="/search/physics?searchtype=author&query=Blatt%2C+R">Rainer Blatt</a>, <a href="/search/physics?searchtype=author&query=Northup%2C+T+E">Tracy E. Northup</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.6961v1-abstract-short" style="display: inline;"> We present and characterize fiber mirrors and a miniaturized ion-trap design developed to integrate a fiber-based Fabry-Perot cavity (FFPC) with a linear Paul trap for use in cavity-QED experiments with trapped ions. Our fiber-mirror fabrication process not only enables the construction of FFPCs with small mode volumes, but also allows us to minimize the influence of the dielectric fiber mirrors o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.6961v1-abstract-full').style.display = 'inline'; document.getElementById('1311.6961v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.6961v1-abstract-full" style="display: none;"> We present and characterize fiber mirrors and a miniaturized ion-trap design developed to integrate a fiber-based Fabry-Perot cavity (FFPC) with a linear Paul trap for use in cavity-QED experiments with trapped ions. Our fiber-mirror fabrication process not only enables the construction of FFPCs with small mode volumes, but also allows us to minimize the influence of the dielectric fiber mirrors on the trapped-ion pseudopotential. We discuss the effect of clipping losses for long FFPCs and the effect of angular and lateral displacements on the coupling efficiencies between cavity and fiber. Optical profilometry allows us to determine the radii of curvature and ellipticities of the fiber mirrors. From finesse measurements we infer a single-atom cooperativity of up to $12$ for FFPCs longer than $200 渭$m in length; comparison to cavities constructed with reference substrate mirrors produced in the same coating run indicates that our FFPCs have similar scattering losses. We discuss experiments to anneal fiber mirrors and explore the influence of the atmosphere under which annealing occurs on coating losses, finding that annealing under vacuum increases the losses for our reference substrate mirrors. Our unique linear Paul trap design provides clearance for such a cavity and is miniaturized to shield trapped ions from the dielectric fiber mirrors. We numerically calculate the trap potential in the absence of fibers. In the experiment additional electrodes can be used to compensate distortions of the potential due to the fibers. Home-built fiber feedthroughs connect the FFPC to external optics, and an integrated nanopositioning system affords the possibility of retracting or realigning the cavity without breaking vacuum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.6961v1-abstract-full').style.display = 'none'; document.getElementById('1311.6961v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The following article has been accepted by Review of Scientific Instruments. After it is published, it will be found at http://rsi.aip.org/</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>