CINXE.COM

Search results for: Photocatalyst

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Photocatalyst</title> <meta name="description" content="Search results for: Photocatalyst"> <meta name="keywords" content="Photocatalyst"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Photocatalyst" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Photocatalyst"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 18</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Photocatalyst</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Photodegradation of Phenol Red in the Presence of ZnO Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=T.K.%20Tan">T.K. Tan</a>, <a href="https://publications.waset.org/search?q=P.S.%20Khiew"> P.S. Khiew</a>, <a href="https://publications.waset.org/search?q=W.S.%20Chiu"> W.S. Chiu</a>, <a href="https://publications.waset.org/search?q=S.Radiman"> S.Radiman</a>, <a href="https://publications.waset.org/search?q=R.Abd-Shukor"> R.Abd-Shukor</a>, <a href="https://publications.waset.org/search?q=N.M.%20Huang"> N.M. Huang</a>, <a href="https://publications.waset.org/search?q=H.N.%20Lim"> H.N. Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In our recent study, we have used ZnO nanoparticles assisted with UV light irradiation to investigate the photocatalytic degradation of Phenol Red (PR). The ZnO photocatalyst was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), specific surface area analysis (BET) and UVvisible spectroscopy. X-ray diffractometry result for the ZnO nanoparticles exhibit normal crystalline phase features. All observed peaks can be indexed to the pure hexagonal wurtzite crystal structures, with the space group of P63mc. There are no other impurities in the diffraction peak. In addition, TEM measurement shows that most of the nanoparticles are rod-like and spherical in shape and fairly monodispersed. A significant degradation of the PR was observed when the catalyst was added into the solution even without the UV light exposure. In addition, the photodegradation increases with the photocatalyst loading. The surface area of the ZnO nanomaterials from the BET measurement was 11.9 m2/g. Besides the photocatalyst loading, the effect of some parameters on the photodegradation efficiency such as initial PR concentration and pH were also studied.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nanostructures" title="Nanostructures">Nanostructures</a>, <a href="https://publications.waset.org/search?q=phenol%20red" title=" phenol red"> phenol red</a>, <a href="https://publications.waset.org/search?q=zinc%20oxide" title=" zinc oxide"> zinc oxide</a>, <a href="https://publications.waset.org/search?q=heterogeneous%20photocatalyst." title="heterogeneous photocatalyst.">heterogeneous photocatalyst.</a> </p> <a href="https://publications.waset.org/10272/photodegradation-of-phenol-red-in-the-presence-of-zno-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10272/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10272/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10272/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10272/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10272/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10272/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10272/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10272/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10272/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10272/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3166</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Preparation and Characterization of Photocatalyst for the Conversion of Carbon Dioxide to Methanol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=D.%20M.%20Reddy%20Prasad">D. M. Reddy Prasad</a>, <a href="https://publications.waset.org/search?q=Nur%20Sabrina%20Binti%20Rahmat"> Nur Sabrina Binti Rahmat</a>, <a href="https://publications.waset.org/search?q=Huei%20Ruey%20Ong"> Huei Ruey Ong</a>, <a href="https://publications.waset.org/search?q=Chin%20Kui%20Cheng"> Chin Kui Cheng</a>, <a href="https://publications.waset.org/search?q=Maksudur%20Rahman%20Khan"> Maksudur Rahman Khan</a>, <a href="https://publications.waset.org/search?q=D.%20Sathiyamoorthy"> D. Sathiyamoorthy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Carbon dioxide (CO<sub>2</sub>) emission to the environment is inevitable which is responsible for global warming. Photocatalytic reduction of CO<sub>2</sub> to fuel, such as methanol, methane etc. is a promising way to reduce greenhouse gas CO<sub>2</sub> emission. In the present work, Bi<sub>2</sub>S<sub>3</sub>/CdS was synthesized as an effective visible light responsive photocatalyst for CO<sub>2</sub> reduction into methanol. The Bi<sub>2</sub>S<sub>3</sub>/CdS photocatalyst was prepared by hydrothermal reaction. The catalyst was characterized by X-ray diffraction (XRD) instrument. The photocatalytic activity of the catalyst has been investigated for methanol production as a function of time. Gas chromatograph flame ionization detector (GC-FID) was employed to analyze the product. The yield of methanol was found to increase with higher CdS concentration in Bi<sub>2</sub>S<sub>3</sub>/CdS and the maximum yield was obtained for 45 wt% of Bi<sub>2</sub>S<sub>3</sub>/CdS under visible light irradiation was 20 <em>&mu;</em>mole/g. The result establishes that Bi<sub>2</sub>S<sub>3</sub>/CdS is favorable catalyst to reduce CO<sub>2</sub> to methanol.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Photocatalyst" title="Photocatalyst">Photocatalyst</a>, <a href="https://publications.waset.org/search?q=Carbon%20dioxide%20reduction" title=" Carbon dioxide reduction"> Carbon dioxide reduction</a>, <a href="https://publications.waset.org/search?q=visible%20light" title=" visible light"> visible light</a>, <a href="https://publications.waset.org/search?q=Irradiation." title=" Irradiation."> Irradiation.</a> </p> <a href="https://publications.waset.org/10004335/preparation-and-characterization-of-photocatalyst-for-the-conversion-of-carbon-dioxide-to-methanol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004335/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004335/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004335/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004335/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004335/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004335/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004335/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004335/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004335/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004335/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2032</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Semiconductor Supported Gold Nanoparticles for Photodegradation of Rhodamine B</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ahmad%20Alshammari">Ahmad Alshammari</a>, <a href="https://publications.waset.org/search?q=Abdulaziz%20Bagabas"> Abdulaziz Bagabas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Rhodamine B (RB) is a toxic dye used extensively in textile industry, which must be remediated before its drainage to environment. In the present study, supported gold nanoparticles on commercially available titania and zincite were successfully prepared and then their activity on the photodegradation of RB under UV A light irradiation were evaluated. The synthesized photocatalysts were characterized by ICP, BET, XRD, and TEM. Kinetic results showed that Au/TiO2 was an inferior photocatalyst to Au/ZnO. This observation could be attributed to the strong reflection of UV irradiation by gold nanoparticles over TiO2 support.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Supported%20AuNPs" title="Supported AuNPs">Supported AuNPs</a>, <a href="https://publications.waset.org/search?q=Semiconductor%20photocatalyst" title=" Semiconductor photocatalyst"> Semiconductor photocatalyst</a>, <a href="https://publications.waset.org/search?q=Photodegradation" title=" Photodegradation"> Photodegradation</a>, <a href="https://publications.waset.org/search?q=Rhodamine%20B." title=" Rhodamine B."> Rhodamine B.</a> </p> <a href="https://publications.waset.org/10000208/semiconductor-supported-gold-nanoparticles-for-photodegradation-of-rhodamine-b" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000208/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000208/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000208/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000208/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000208/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000208/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000208/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000208/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000208/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000208/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2282</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Photocatalytic Detoxification Method for Zero Effluent Discharge in Dairy Industry: Effect of Operational Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Janhavi%20Inamdar">Janhavi Inamdar</a>, <a href="https://publications.waset.org/search?q=S.K.%20Singh"> S.K. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Laboratory experiments have been performed to investigate photocatalytic detoxification by using TiO2 photocatalyst for treating dairy effluent. Various operational parameters such as catalyst concentration, initial concentration, angle of tilt of solar flat plate reactor and flow rate were investigated. Results indicated that the photocatalytic detoxification process can efficiently treat dairy effluent. Experimental runs with dairy wastewater can be used to identify the optimum operational parameters to perform wastewater degradation on large scale for recycling purpose. Also effect of two different types of reactors on degradation process was analyzed.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Photocatalytic%20detoxification" title="Photocatalytic detoxification">Photocatalytic detoxification</a>, <a href="https://publications.waset.org/search?q=TiO2%20photocatalyst" title=" TiO2 photocatalyst"> TiO2 photocatalyst</a>, <a href="https://publications.waset.org/search?q=solar%20flat%20plate%20reactor" title=" solar flat plate reactor"> solar flat plate reactor</a>, <a href="https://publications.waset.org/search?q=Zero%20effluent%20discharge." title=" Zero effluent discharge."> Zero effluent discharge.</a> </p> <a href="https://publications.waset.org/11033/photocatalytic-detoxification-method-for-zero-effluent-discharge-in-dairy-industry-effect-of-operational-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11033/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11033/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11033/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11033/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11033/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11033/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11033/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11033/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11033/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11033/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1932</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Preparation and Investigation of Photocatalytic Properties of ZnO Nanocrystals: Effect of Operational Parameters and Kinetic Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20Daneshvar">N. Daneshvar</a>, <a href="https://publications.waset.org/search?q=S.%20Aber"> S. Aber</a>, <a href="https://publications.waset.org/search?q=M.%20S.%20Seyed%20Dorraji"> M. S. Seyed Dorraji</a>, <a href="https://publications.waset.org/search?q=A.%20R.%20Khataee"> A. R. Khataee</a>, <a href="https://publications.waset.org/search?q=M.%20H.%20Rasoulifard"> M. H. Rasoulifard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ZnO nanocrystals with mean diameter size 14 nm have been prepared by precipitation method, and examined as photocatalyst for the UV-induced degradation of insecticide diazinon as deputy of organic pollutant in aqueous solution. The effects of various parameters, such as illumination time, the amount of photocatalyst, initial pH values and initial concentration of insecticide on the photocatalytic degradation diazinon were investigated to find desired conditions. In this case, the desired parameters were also tested for the treatment of real water containing the insecticide. Photodegradation efficiency of diazinon was compared between commercial and prepared ZnO nanocrystals. The results indicated that UV/ZnO process applying prepared nanocrystalline ZnO offered electrical energy efficiency and quantum yield better than commercial ZnO. The present study, on the base of Langmuir-Hinshelwood mechanism, illustrated a pseudo first-order kinetic model with rate constant of surface reaction equal to 0.209 mg l-1 min-1 and adsorption equilibrium constant of 0.124 l mg-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Zinc%20oxide%20nanopowder" title="Zinc oxide nanopowder">Zinc oxide nanopowder</a>, <a href="https://publications.waset.org/search?q=Electricity%20consumption" title=" Electricity consumption"> Electricity consumption</a>, <a href="https://publications.waset.org/search?q=Quantum%20yield" title=" Quantum yield"> Quantum yield</a>, <a href="https://publications.waset.org/search?q=Nanoparticles" title=" Nanoparticles"> Nanoparticles</a>, <a href="https://publications.waset.org/search?q=Photodegradation" title=" Photodegradation"> Photodegradation</a>, <a href="https://publications.waset.org/search?q=Kinetic%20model" title=" Kinetic model"> Kinetic model</a>, <a href="https://publications.waset.org/search?q=Insecticide." title=" Insecticide."> Insecticide.</a> </p> <a href="https://publications.waset.org/9444/preparation-and-investigation-of-photocatalytic-properties-of-zno-nanocrystals-effect-of-operational-parameters-and-kinetic-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9444/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9444/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9444/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9444/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9444/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9444/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9444/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9444/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9444/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9444/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3569</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Preparation and Characterization of CuFe2O4/TiO2 Photocatalyst for the Conversion of CO2 into Methanol under Visible Light</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Md.%20Maksudur%20Rahman%20Khan">Md. Maksudur Rahman Khan</a>, <a href="https://publications.waset.org/search?q=M.%20Rahim%20Uddin"> M. Rahim Uddin</a>, <a href="https://publications.waset.org/search?q=Hamidah%20Abdullah"> Hamidah Abdullah</a>, <a href="https://publications.waset.org/search?q=Kaykobad%20Md.%20Rezaul%20Karim"> Kaykobad Md. Rezaul Karim</a>, <a href="https://publications.waset.org/search?q=Abu%20Yousuf"> Abu Yousuf</a>, <a href="https://publications.waset.org/search?q=Chin%20Kui%20Cheng"> Chin Kui Cheng</a>, <a href="https://publications.waset.org/search?q=Huei%20Ruey%20Ong"> Huei Ruey Ong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A systematic study was conducted to explore the photocatalytic reduction of carbon dioxide (CO<sub>2</sub>) into methanol on TiO<sub>2</sub> loaded copper ferrite (CuFe<sub>2</sub>O<sub>4</sub>) photocatalyst under visible light irradiation. The phases and crystallite size of the photocatalysts were characterized by X-ray diffraction (XRD) and it indicates CuFe<sub>2</sub>O<sub>4</sub> as tetragonal phase incorporation with anatase TiO<sub>2</sub> in CuFe<sub>2</sub>O<sub>4</sub>/TiO<sub>2</sub> hetero-structure. The XRD results confirmed the formation of spinel type tetragonal CuFe<sub>2</sub>O<sub>4 </sub>phases along with predominantly anatase phase of TiO<sub>2</sub> in the CuFe<sub>2</sub>O<sub>4</sub>/TiO<sub>2</sub> hetero-structure. UV-Vis absorption spectrum suggested the formation of the hetero-junction with relatively lower band gap than that of TiO<sub>2</sub>. Photoluminescence (PL) technique was used to study the electron&ndash;hole (e<sup>&minus;</sup>/h<sup>+</sup>) recombination process. PL spectra analysis confirmed the slow-down of the recombination of electron&ndash;hole (e<sup>&minus;</sup>/h<sup>+</sup>) pairs in the CuFe<sub>2</sub>O<sub>4</sub>/TiO<sub>2</sub> hetero-structure. The photocatalytic performance of CuFe<sub>2</sub>O<sub>4</sub>/TiO<sub>2</sub> was evaluated based on the methanol yield with varying amount of TiO<sub>2 </sub>over CuFe<sub>2</sub>O<sub>4</sub> (0.5:1, 1:1, and 2:1) and changing light intensity. The mechanism of the photocatalysis was proposed based on the fact that the predominant species of CO<sub>2</sub> in aqueous phase were dissolved CO<sub>2 </sub>and HCO<sub>3</sub><sup>- </sup>at pH ~5.9. It was evident that the CuFe<sub>2</sub>O<sub>4</sub> could harvest the electrons under visible light irradiation, which could further be injected to the conduction band of TiO<sub>2</sub> to increase the life time of the electron and facilitating the reactions of CO<sub>2</sub> to methanol. The developed catalyst showed good recycle ability up to four cycles where the loss of activity was ~25%. Methanol was observed as the main product over CuFe<sub>2</sub>O<sub>4</sub>, but loading with TiO<sub>2</sub> remarkably increased the methanol yield. Methanol yield over CuFe<sub>2</sub>O<sub>4</sub>/TiO<sub>2</sub> was found to be about three times higher (651 &mu;mol/g<sub>cat </sub>L) than that of CuFe<sub>2</sub>O<sub>4 </sub>photocatalyst. This occurs because the energy of the band excited electrons lies above the redox potentials of the reaction products CO<sub>2</sub>/CH<sub>3</sub>OH.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Photocatalysis" title="Photocatalysis">Photocatalysis</a>, <a href="https://publications.waset.org/search?q=CuFe2O4%2FTiO2" title=" CuFe2O4/TiO2"> CuFe2O4/TiO2</a>, <a href="https://publications.waset.org/search?q=band-gap%20energy" title=" band-gap energy"> band-gap energy</a>, <a href="https://publications.waset.org/search?q=methanol." title=" methanol. "> methanol. </a> </p> <a href="https://publications.waset.org/10005535/preparation-and-characterization-of-cufe2o4tio2-photocatalyst-for-the-conversion-of-co2-into-methanol-under-visible-light" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005535/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005535/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005535/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005535/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005535/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005535/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005535/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005535/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005535/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005535/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2140</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Hydrothermal Synthesis of ZnO/SnO2 Nanoparticles with High Photocatalytic Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Azam%20Anaraki%20Firooz">Azam Anaraki Firooz</a>, <a href="https://publications.waset.org/search?q=Ali%20Reza%20Mahjoub"> Ali Reza Mahjoub</a>, <a href="https://publications.waset.org/search?q=Abbas%20Ali%20Khodadadi"> Abbas Ali Khodadadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper reports the preparation and photocatalytic activity of ZnO/SnO2 and SnO2 nanoparticles. These nanoparticles were synthesized by hydrothermal method. The products were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Their grain sizes are about 50-100 nm. The photocatalytic activities of these materials were investigated for congo red removal from aqueous solution under UV light irradiation. It was shown that the use of ZnO/SnO2 as photocatalyst have better photocatalytic activity for degradation of congo red than SnO2 or TiO2 (anatase, particle size: 30nm) alone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=ZnO%2FSnO2%20nanoparticle" title="ZnO/SnO2 nanoparticle">ZnO/SnO2 nanoparticle</a>, <a href="https://publications.waset.org/search?q=hydrothermal" title=" hydrothermal"> hydrothermal</a>, <a href="https://publications.waset.org/search?q=photocatalysis" title="photocatalysis">photocatalysis</a> </p> <a href="https://publications.waset.org/1302/hydrothermal-synthesis-of-znosno2-nanoparticles-with-high-photocatalytic-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1302/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1302/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1302/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1302/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1302/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1302/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1302/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1302/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1302/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1302/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3469</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Preparation of Fe, Cr Codoped TiO2 Nanostructure for Phenol Removal from Wastewaters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20Nowzari-Dalini">N. Nowzari-Dalini</a>, <a href="https://publications.waset.org/search?q=S.%20Sabbaghi"> S. Sabbaghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phenol is a hazardous material found in many industrial wastewaters. Photocatalytic degradation and furthermore catalyst doping are promising techniques in purpose of effective phenol removal, which have been studied comprehensively in this decade. In this study, Fe, Cr codoped TiO<sub>2</sub> were prepared by sol-gel method, and its photocatalytic activity was investigated through degradation of phenol under visible light. The catalyst was characterized by XRD, SEM, FT-IR, BET, and EDX. The results showed that nanoparticles possess anatase phase, and the average size of nanoparticles was about 21 nm. Also, photocatalyst has significant surface area. Effect of experimental parameters such as pH, irradiation time, pollutant concentration, and catalyst concentration were investigated by using Design-Expert<sup>&reg;</sup> software. 98% of phenol degradation was achieved after 6h of irradiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Wastewater" title="Wastewater">Wastewater</a>, <a href="https://publications.waset.org/search?q=doping" title=" doping"> doping</a>, <a href="https://publications.waset.org/search?q=metals" title=" metals"> metals</a>, <a href="https://publications.waset.org/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/search?q=titanium%20dioxide." title=" titanium dioxide."> titanium dioxide.</a> </p> <a href="https://publications.waset.org/10007673/preparation-of-fe-cr-codoped-tio2-nanostructure-for-phenol-removal-from-wastewaters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007673/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007673/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007673/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007673/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007673/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007673/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007673/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007673/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007673/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007673/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007673.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">953</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Ferroelectric Relaxor Behaviour in Some Lead- Free Compositions and their Potential Applications as Photocatalyst to Hydrogen Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Kerfah">A. Kerfah</a>, <a href="https://publications.waset.org/search?q=K.%20Ta%C3%AFbi"> K. Taïbi</a>, <a href="https://publications.waset.org/search?q=S.%20Omeiri"> S. Omeiri</a>, <a href="https://publications.waset.org/search?q=M.%20Trari."> M. Trari.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New lead-free ferroelectric relaxor ceramics were prepared by conventional solid-state synthesis in the BaTiO3-Bi2O3- Y2O3 systems. Some of these ceramics present a ferroelectric relaxor with transition temperature close to room temperature. These new materials are very interesting for applications and can replace leadbased ceramic to prevent the toxic pollutions during the preparation state. In the other hand, the energy band diagram shows the potentiality of these compounds for the solar energy conversion. Thus, some compositions have been tested successfully for H2 production upon visible light. The best activity occurs in alkaline media with a rate evolution of about 0.15 mL g-1 mn-1 and a quantum yield of 1% under polychromatic light. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Ferroelectric" title="Ferroelectric">Ferroelectric</a>, <a href="https://publications.waset.org/search?q=Hydrogen%20production" title=" Hydrogen production"> Hydrogen production</a>, <a href="https://publications.waset.org/search?q=Lead-free" title=" Lead-free"> Lead-free</a>, <a href="https://publications.waset.org/search?q=Photocatalysis." title=" Photocatalysis."> Photocatalysis.</a> </p> <a href="https://publications.waset.org/10016/ferroelectric-relaxor-behaviour-in-some-lead-free-compositions-and-their-potential-applications-as-photocatalyst-to-hydrogen-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10016/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10016/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10016/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10016/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10016/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10016/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10016/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10016/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10016/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10016/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1726</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Photocatalytic Degradation of Produced Water Hydrocarbon of an Oil Field by Using Ag-Doped TiO2 Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hamed%20Bazrafshan">Hamed Bazrafshan</a>, <a href="https://publications.waset.org/search?q=Saeideh%20Dabirnia"> Saeideh Dabirnia</a>, <a href="https://publications.waset.org/search?q=Zahra%20Alipour%20Tesieh"> Zahra Alipour Tesieh</a>, <a href="https://publications.waset.org/search?q=Samaneh%20Alavi"> Samaneh Alavi</a>, <a href="https://publications.waset.org/search?q=Bahram%20Dabir"> Bahram Dabir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this study, the removal of pollutants of a real produced water sample from an oil reservoir (a light oil reservoir), using a photocatalytic degradation process in a cylindrical glass reactor, was investigated. Using TiO2 and Ag-TiO2 in slurry form, the photocatalytic degradation was studied by measuring the Chemical Oxygen Demand (COD) parameter, qualitative analysis, and GC-MS. At first, optimization of the parameters on photocatalytic degradation of hydrocarbon pollutants in real produced water, using TiO2 nanoparticles as photocatalysts under UV light, was carried out applying response surface methodology. The results of the design of the experiment showed that the optimum conditions were at a catalyst concentration of 1.14 g/lit and pH of 2.67, and the percentage of COD removal was 72.65%. </p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Photocatalyst" title="Photocatalyst">Photocatalyst</a>, <a href="https://publications.waset.org/search?q=Ag-doped" title=" Ag-doped"> Ag-doped</a>, <a href="https://publications.waset.org/search?q=TiO2" title=" TiO2"> TiO2</a>, <a href="https://publications.waset.org/search?q=produced%20water" title=" produced water"> produced water</a>, <a href="https://publications.waset.org/search?q=nanoparticles." title=" nanoparticles."> nanoparticles.</a> </p> <a href="https://publications.waset.org/10013069/photocatalytic-degradation-of-produced-water-hydrocarbon-of-an-oil-field-by-using-ag-doped-tio2-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013069/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013069/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013069/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013069/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013069/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013069/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013069/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013069/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013069/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013069/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Photocatalytic Cleaning Performance of Air Filters for a Binary Mixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Lexuan%20Zhong">Lexuan Zhong</a>, <a href="https://publications.waset.org/search?q=Chang-Seo%20Lee"> Chang-Seo Lee</a>, <a href="https://publications.waset.org/search?q=Fariborz%20Haghighat"> Fariborz Haghighat</a>, <a href="https://publications.waset.org/search?q=Stuart%20Batterman"> Stuart Batterman</a>, <a href="https://publications.waset.org/search?q=John%20C.%20Little"> John C. Little</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultraviolet photocatalytic oxidation (UV-PCO) technology has been recommended as a green approach to health indoor environment when it is integrated into mechanical ventilation systems for inorganic and organic compounds removal as well as energy saving due to less outdoor air intakes. Although much research has been devoted to UV-PCO, limited information is available on the UV-PCO behavior tested by the mixtures in literature. This project investigated UV-PCO performance and by-product generation using a single and a mixture of acetone and MEK at 100 ppb each in a single-pass duct system in an effort to obtain knowledge associated with competitive photochemical reactions involved in. The experiments were performed at 20 % RH, 22 °C, and a gas flow rate of 128 m3/h (75 cfm). Results show that acetone and MEK mutually reduced each other’s PCO removal efficiency, particularly negative removal efficiency for acetone. These findings were different from previous observation of facilitatory effects on the adsorption of acetone and MEK on photocatalyst surfaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=By-products" title="By-products">By-products</a>, <a href="https://publications.waset.org/search?q=inhibitory%20effect" title=" inhibitory effect"> inhibitory effect</a>, <a href="https://publications.waset.org/search?q=mixture" title=" mixture"> mixture</a>, <a href="https://publications.waset.org/search?q=photocatalytic%20oxidation." title=" photocatalytic oxidation."> photocatalytic oxidation.</a> </p> <a href="https://publications.waset.org/10002437/photocatalytic-cleaning-performance-of-air-filters-for-a-binary-mixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002437/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002437/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002437/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002437/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002437/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002437/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002437/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002437/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002437/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002437/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2057</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Photocatalytic and Sonophotocatalytic Degradation of Reactive Red 120 using Dye Sensitized TiO2 under Visible Light</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.K.Kavitha">S.K.Kavitha</a>, <a href="https://publications.waset.org/search?q=P.N.Palanisamy"> P.N.Palanisamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The accelerated sonophotocatalytic degradation of Reactive Red (RR) 120 dye under visible light using dye sensitized TiO2 activated by ultrasound has been carried out. The effect of sonolysis, photocatalysis and sonophotocatalysis under visible light has been examined to study the influence on the degradation rates by varying the initial substrate concentration, pH and catalyst loading to ascertain the synergistic effect on the degradation techniques. Ultrasonic activation contributes degradation through cavitation leading to the splitting of H2O2 produced by both photocatalysis and sonolysis. This results in the formation of oxidative species, such as singlet oxygen (1O2) and superoxide (O2 -●) radicals in the presence of oxygen. The increase in the amount of reactive radical species which induce faster oxidation of the substrate and degradation of intermediates and also the deaggregation of the photocatalyst are responsible for the synergy observed under sonication. A comparative study of photocatalysis and sonophotocatalysis using TiO2, Hombikat UV 100 and ZnO was also carried out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Photocatalysis" title="Photocatalysis">Photocatalysis</a>, <a href="https://publications.waset.org/search?q=Reactive%20Red%20120" title=" Reactive Red 120"> Reactive Red 120</a>, <a href="https://publications.waset.org/search?q=Sonophotocatalysis" title=" Sonophotocatalysis"> Sonophotocatalysis</a>, <a href="https://publications.waset.org/search?q=Sonolysis." title=" Sonolysis."> Sonolysis.</a> </p> <a href="https://publications.waset.org/7772/photocatalytic-and-sonophotocatalytic-degradation-of-reactive-red-120-using-dye-sensitized-tio2-under-visible-light" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7772/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7772/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7772/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7772/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7772/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7772/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7772/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7772/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7772/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7772/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3427</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Microwave-Assisted Fabrication of Visible-Light Activated BiOBr-Nanoplate Photocatalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Meichen%20Lee">Meichen Lee</a>, <a href="https://publications.waset.org/search?q=Michael%20K.%20H.%20Leung"> Michael K. H. Leung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In recent years, visible-light activated photocatalysis has become a major field of intense researches for the higher efficiency of solar energy utilizations. Many attempts have been made on the modification of wide band gap semiconductors, while more and more efforts emphasize on cost-effective synthesis of visible-light activated catalysts. In this work, BiOBr nanoplates with band gap of visible-light range are synthesized through a promising microwave solvothermal method. The treatment time period and temperature dependent BiOBr nanosheets of various particle sizes are investigated through SEM. BiOBr synthesized under the condition of 160&deg;C for 60 mins shows the most uniform particle sizes around 311 nm and the highest surface-to-volume ratio on account of its smallest average particle sizes compared with others. It exhibits the best photocatalytic behavior among all samples in RhB degradation.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Microwave%20solvothermal%20process" title="Microwave solvothermal process">Microwave solvothermal process</a>, <a href="https://publications.waset.org/search?q=nanoplates" title=" nanoplates"> nanoplates</a>, <a href="https://publications.waset.org/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/search?q=visible-light%20photocatalysis." title=" visible-light photocatalysis."> visible-light photocatalysis.</a> </p> <a href="https://publications.waset.org/10005522/microwave-assisted-fabrication-of-visible-light-activated-biobr-nanoplate-photocatalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005522/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005522/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005522/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005522/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005522/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005522/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005522/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005522/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005522/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005522/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1001</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Photo Catalytic Oxidation Degradation of Volatile Organic Compound with Nano-TiO2/LDPE Composite Film</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kowit%20Suwannahong">Kowit Suwannahong</a>, <a href="https://publications.waset.org/search?q=Wipada%20Sanongra"> Wipada Sanongra</a>, <a href="https://publications.waset.org/search?q=Jittiporn%20Kruenate"> Jittiporn Kruenate</a>, <a href="https://publications.waset.org/search?q=Sarun%20Phibanchon"> Sarun Phibanchon</a>, <a href="https://publications.waset.org/search?q=Siriuma%20Jawjit"> Siriuma Jawjit</a>, <a href="https://publications.waset.org/search?q=Wipawee%20Khamwichit"> Wipawee Khamwichit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The photocatalytic activity efficiency of TiO2 for the degradation of Toluene in photoreactor can be enhanced by nano- TiO2/LDPE composite film. Since the amount of TiO2 affected the efficiency of the photocatalytic activity, this work was mainly concentrated on the effort to embed the high amount of TiO2 in the Polyethylene matrix. The developed photocatalyst was characterized by XRD, UV-Vis spectrophotometer and SEM. The SEM images revealed the high homogeneity of the deposition of TiO2 on the polyethylene matrix. The XRD patterns interpreted that TiO2 embedded in the PE matrix exhibited mainly in anatase form. In addition, the photocatalytic results show that the toluene removal efficiencies of 30&plusmn;5%, 49&plusmn;4%, 68&plusmn;5%, 42&plusmn;6% and 33&plusmn;5% were obtained when using the catalyst loading at 0%, 10%, 15%, 25% and 50% (wt. cat./wt. film), respectively.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Photocatalytic%20oxidation" title="Photocatalytic oxidation">Photocatalytic oxidation</a>, <a href="https://publications.waset.org/search?q=Toluene" title=" Toluene"> Toluene</a>, <a href="https://publications.waset.org/search?q=nano-TiO2%2FLDPE%20composite%20film." title=" nano-TiO2/LDPE composite film."> nano-TiO2/LDPE composite film.</a> </p> <a href="https://publications.waset.org/8555/photo-catalytic-oxidation-degradation-of-volatile-organic-compound-with-nano-tio2ldpe-composite-film" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8555/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8555/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8555/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8555/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8555/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8555/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8555/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8555/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8555/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8555/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2595</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Congo Red Photocatalytic Decolourization using Modified Titanium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20L%C3%B3pez%E2%80%93V%C3%A1squez">A. López–Vásquez</a>, <a href="https://publications.waset.org/search?q=D.%20Santamar%C3%ADa"> D. Santamaría</a>, <a href="https://publications.waset.org/search?q=M.%20Tibat%C3%A1"> M. Tibatá</a>, <a href="https://publications.waset.org/search?q=C.%20G%C3%B3mez"> C. Gómez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study concerning the photocatalytic decolourization of Congo red (CR) dye, over artificial UV irradiation is presented. Photocatalysts based on a commercial titanium dioxide (TiO2) modified with transition metals (Ni, Cu and Zn) were used. The dopage method used was wet impregnation. A TiO2 sample without salt was subjected to the same hydrothermal treatment to be used as reference. Congo red solutions to several pH conditions (natural and basic) were used to evaluate photocatalytic performance of each doped catalysts. Photodecolourization percentage was measured spectrofotrometically after 3 h of treatment to 499 nm as response variable. Kinetics investigations of photodegradation indicated that reactions obey to Langmuir-Hinshelwood model and pseudo–first order law. The rate constant studies of photocatalytic decolourization reactions for Zn–TiO2 and Cu–TiO2 photocatalysts indicated that in all cases the rate constant of the reaction was higher than that of TiO2 undoped. These results show that nature of the metal modifying the TiO2 influence on the efficiency of the photocatalyst evaluated in process. Ni does not present an additional effect compared with TiO2, while Zn enhances the photoactivity due to its electronic properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Congo%20red" title="Congo red">Congo red</a>, <a href="https://publications.waset.org/search?q=Dopage" title=" Dopage"> Dopage</a>, <a href="https://publications.waset.org/search?q=Photodecolourization" title=" Photodecolourization"> Photodecolourization</a>, <a href="https://publications.waset.org/search?q=Titanium%0D%0Adioxide." title=" Titanium dioxide."> Titanium dioxide.</a> </p> <a href="https://publications.waset.org/8166/congo-red-photocatalytic-decolourization-using-modified-titanium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8166/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8166/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8166/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8166/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8166/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8166/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8166/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8166/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8166/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8166/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2169</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Developing Cu-Mesoporous TiO2 Cooperated with Ozone Assistance and Online- Regeneration System for Acid Odor Removal in All Weather</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yuchih%20Lin">Yuchih Lin</a>, <a href="https://publications.waset.org/search?q=Chung-Liang%20Chang"> Chung-Liang Chang</a>, <a href="https://publications.waset.org/search?q=Hong-Yi%20Cao"> Hong-Yi Cao</a>, <a href="https://publications.waset.org/search?q=Sheng-Hsuan%20Hsiao"> Sheng-Hsuan Hsiao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cu-mesoporous TiO2 is developed for removal acid odor cooperated with ozone assistance and online- regeneration system with/without UV irradiation (all weather) in study. The results showed that Cu-mesoporous TiO2 present the desirable adsorption efficiency of acid odor without UV irradiation, due to the larger surface area, pore sizeand the additional absorption ability provided by Cu. In the photocatalysis process, the material structure also benefits Cu-mesoporous TiO2 to perform the more outstanding efficiency on degrading acid odor. Cu also postponed the recombination of electron-hole pairs excited from TiO2 to enhance photodegradation ability. Cu-mesoporous TiO2 could gain the conspicuous increase on photocatalysis ability from ozone assistance, but without any benefit on adsorption. In addition, the online regeneration procedure could process the used Cu-mesoporous TiO2 to reinstate the adsorption ability and maintain the photodegradtion performance, depended on scrubbing, desorping acid odor and reducing Cu to metal state. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=mesoporous%20material" title="mesoporous material">mesoporous material</a>, <a href="https://publications.waset.org/search?q=photocatalyst" title=" photocatalyst"> photocatalyst</a>, <a href="https://publications.waset.org/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/search?q=regeneration%20usage" title=" regeneration usage"> regeneration usage</a>, <a href="https://publications.waset.org/search?q=photocatalytic%20ozonation" title=" photocatalytic ozonation"> photocatalytic ozonation</a> </p> <a href="https://publications.waset.org/11652/developing-cu-mesoporous-tio2-cooperated-with-ozone-assistance-and-online-regeneration-system-for-acid-odor-removal-in-all-weather" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11652/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11652/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11652/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11652/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11652/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11652/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11652/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11652/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11652/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11652/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1882</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Control of Airborne Aromatic Hydrocarbons over TiO2-Carbon Nanotube Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Joon%20Y.%20Lee">Joon Y. Lee</a>, <a href="https://publications.waset.org/search?q=Seung%20H.%20Shin"> Seung H. Shin</a>, <a href="https://publications.waset.org/search?q=Ho%20H.%20Chun"> Ho H. Chun</a>, <a href="https://publications.waset.org/search?q=Wan%20K.%20Jo"> Wan K. Jo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Poly vinyl acetate (PVA)-based titania (TiO2)&ndash;carbon nanotube composite nanofibers (PVA-TCCNs) with various PVA-to-solvent ratios and PVA-based TiO2 composite nanofibers (PVA-TN) were synthesized using an electrospinning process, followed by thermal treatment. The photocatalytic activities of these nanofibers in the degradation of airborne monocyclic aromatics under visible-light irradiation were examined. This study focuses on the application of these photocatalysts to the degradation of the target compounds at sub-part-per-million indoor air concentrations. The characteristics of the photocatalysts were examined using scanning electron microscopy, X-ray diffraction, ultraviolet-visible spectroscopy, and Fourier-transform infrared spectroscopy. For all the target compounds, the PVA-TCCNs showed photocatalytic degradation efficiencies superior to those of the reference PVA-TN. Specifically, the average photocatalytic degradation efficiencies for benzene, toluene, ethyl benzene, and o-xylene (BTEX) obtained using the PVA-TCCNs with a PVA-to-solvent ratio of 0.3 (PVA-TCCN-0.3) were 11%, 59%, 89%, and 92%, respectively, whereas those observed using PVA-TNs were 5%, 9%, 28%, and 32%, respectively. PVA-TCCN-0.3 displayed the highest photocatalytic degradation efficiency for BTEX, suggesting the presence of an optimal PVA-to-solvent ratio for the synthesis of PVA-TCCNs. The average photocatalytic efficiencies for BTEX decreased from 11% to 4%, 59% to 18%, 89% to 37%, and 92% to 53%, respectively, when the flow rate was increased from 1.0 to 4.0 L min1. In addition, the average photocatalytic efficiencies for BTEX increased 11% to ~0%, 59% to 3%, 89% to 7%, and 92% to 13%, respectively, when the input concentration increased from 0.1 to 1.0 ppm. The prepared PVA-TCCNs were effective for the purification of airborne aromatics at indoor concentration levels, particularly when the operating conditions were optimized.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Mixing%20ratio" title="Mixing ratio">Mixing ratio</a>, <a href="https://publications.waset.org/search?q=nanofiber" title=" nanofiber"> nanofiber</a>, <a href="https://publications.waset.org/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/search?q=reference%0D%0Aphotocatalyst." title=" reference photocatalyst."> reference photocatalyst.</a> </p> <a href="https://publications.waset.org/10000922/control-of-airborne-aromatic-hydrocarbons-over-tio2-carbon-nanotube-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000922/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000922/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000922/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000922/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000922/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000922/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000922/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000922/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000922/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000922/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2237</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Evaluation of the Discoloration of Methyl Orange Using Black Sand as Semiconductor through Photocatalytic Oxidation and Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=P.%20Acosta-Santamar%C3%ADa">P. Acosta-Santamaría</a>, <a href="https://publications.waset.org/search?q=A.%20Ibat%C3%A1-Soto"> A. Ibatá-Soto</a>, <a href="https://publications.waset.org/search?q=A.%20L%C3%B3pez-V%C3%A1squez"> A. López-Vásquez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Organic compounds in wastewaters coming from textile and pharmaceutical industry generated multiple harmful effects on the environment and the human health. One of them is the methyl orange (MeO), an azoic dye considered to be a recalcitrant compound. The heterogeneous photocatalysis emerges as an alternative for treating this type of hazardous compounds, through the generation of OH radicals using radiation and a semiconductor oxide. According to the author&rsquo;s knowledge, catalysts such as TiO<sub>2</sub> doped with metals show high efficiency in degrading MeO; however, this presents economic limitations on industrial scale. Black sand can be considered as a naturally doped catalyst because in its structure is common to find compounds such as titanium, iron and aluminum oxides, also elements such as zircon, cadmium, manganese, etc. This study reports the photocatalytic activity of the mineral black sand used as semiconductor in the discoloration of MeO by oxidation and reduction photocatalytic techniques. For this, magnetic composites from the mineral were prepared (RM, M1, M2 and NM) and their activity were tested through MeO discoloration while TiO<sub>2</sub> was used as reference. For the fractions, chemical, morphological and structural characterizations were performed using Scanning Electron Microscopy with Energy Dispersive X-Ray (SEM-EDX), X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) analysis. M2 fraction showed higher MeO discoloration (93%) in oxidation conditions at pH 2 and it could be due to the presence of ferric oxides. However, the best result to reduction process was using M1 fraction (20%) at pH 2, which contains a higher titanium percentage. In the first process, hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) was used as electron donor agent. According to the results, black sand mineral can be used as natural semiconductor in photocatalytic process. It could be considered as a photocatalyst precursor in such processes, due to its low cost and easy access.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Black%20sand%20mineral" title="Black sand mineral">Black sand mineral</a>, <a href="https://publications.waset.org/search?q=methyl%20orange" title=" methyl orange"> methyl orange</a>, <a href="https://publications.waset.org/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/search?q=reduction." title=" reduction."> reduction.</a> </p> <a href="https://publications.waset.org/10005940/evaluation-of-the-discoloration-of-methyl-orange-using-black-sand-as-semiconductor-through-photocatalytic-oxidation-and-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005940/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005940/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005940/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005940/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005940/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005940/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005940/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005940/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005940/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005940/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1273</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10