CINXE.COM
Search results for: parameter sweep
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: parameter sweep</title> <meta name="description" content="Search results for: parameter sweep"> <meta name="keywords" content="parameter sweep"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="parameter sweep" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="parameter sweep"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2143</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: parameter sweep</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2113</span> Statistical Tools for SFRA Diagnosis in Power Transformers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Srivastava">Rahul Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Priti%20Pundir"> Priti Pundir</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20R.%20Sood"> Y. R. Sood</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajnish%20Shrivastava"> Rajnish Shrivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the interpretation of the signatures of sweep frequency response analysis(SFRA) of transformer different types of statistical techniques serves as an effective tool for doing either phase to phase comparison or sister unit comparison. In this paper with the discussion on SFRA several statistics techniques like cross correlation coefficient (CCF), root square error (RSQ), comparative standard deviation (CSD), Absolute difference, mean square error(MSE),Min-Max ratio(MM) are presented through several case studies. These methods require sample data size and spot frequencies of SFRA signatures that are being compared. The techniques used are based on power signal processing tools that can simplify result and limits can be created for the severity of the fault occurring in the transformer due to several short circuit forces or due to ageing. The advantages of using statistics techniques for analyzing of SFRA result are being indicated through several case studies and hence the results are obtained which determines the state of the transformer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absolute%20difference%20%28DABS%29" title="absolute difference (DABS)">absolute difference (DABS)</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20correlation%20coefficient%20%28CCF%29" title=" cross correlation coefficient (CCF)"> cross correlation coefficient (CCF)</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20square%20error%20%28MSE%29" title=" mean square error (MSE)"> mean square error (MSE)</a>, <a href="https://publications.waset.org/abstracts/search?q=min-max%20ratio%20%28MM-ratio%29" title=" min-max ratio (MM-ratio)"> min-max ratio (MM-ratio)</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20square%20error%20%28RSQ%29" title=" root square error (RSQ)"> root square error (RSQ)</a>, <a href="https://publications.waset.org/abstracts/search?q=standard%20deviation%20%28CSD%29" title=" standard deviation (CSD)"> standard deviation (CSD)</a>, <a href="https://publications.waset.org/abstracts/search?q=sweep%20frequency%20response%20analysis%20%28SFRA%29" title=" sweep frequency response analysis (SFRA)"> sweep frequency response analysis (SFRA)</a> </p> <a href="https://publications.waset.org/abstracts/27968/statistical-tools-for-sfra-diagnosis-in-power-transformers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">697</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2112</span> Effect of Velocity Slip on Two Phase Flow in an Eccentric Annular Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umadevi%20B.">Umadevi B.</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20%20P.%20A."> Dinesh P. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Indira.%20R."> Indira. R.</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinay%20C.%20V."> Vinay C. V.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A mathematical model is developed to study the simultaneous effects of particle drag and slip parameter on the velocity as well as rate of flow in an annular cross sectional region bounded by two eccentric cylinders. In physiological flows this phenomena can be observed in an eccentric catheterized artery with inner cylinder wall is impermeable and outer cylinder wall is permeable. Blood is a heterogeneous fluid having liquid phase consisting of plasma in which a solid phase of suspended cells and proteins. Arterial wall gets damaged due to aging and lipid molecules get deposited between damaged tissue cells. Blood flow increases towards the damaged tissues in the artery. In this investigation blood is modeled as two phase fluid as one is a fluid phase and the other is particulate phase. The velocity of the fluid phase and rate of flow are obtained by transforming eccentric annulus to concentric annulus with the conformal mapping. The formulated governing equations are analytically solved for the velocity and rate of flow. The numerical investigations are carried out by varying eccentricity parameter, slip parameter and drag parameter. Enhancement of slip parameter signifies loss of fluid then the velocity and rate of flow will be decreased. As particulate drag parameter increases then the velocity as well as rate flow decreases. Eccentricity facilitates transport of more fluid then the velocity and rate of flow increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catheter" title="catheter">catheter</a>, <a href="https://publications.waset.org/abstracts/search?q=slip%20parameter" title=" slip parameter"> slip parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20parameter" title=" drag parameter"> drag parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=eccentricity" title=" eccentricity"> eccentricity</a> </p> <a href="https://publications.waset.org/abstracts/22025/effect-of-velocity-slip-on-two-phase-flow-in-an-eccentric-annular-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2111</span> The System for Root Canal Length Measurement Based on Multifrequency Impedance Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zheng%20Zhang">Zheng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Chen"> Xin Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Guoqing%20Ding"> Guoqing Ding</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electronic apex locators (EAL) has been widely used clinically for measuring root canal working length with high accuracy, which is crucial for successful endodontic treatment. In order to maintain high accuracy in different measurement environments, this study presented a system for root canal length measurement based on multifrequency impedance method. This measuring system can generate a sweep current with frequencies from 100 Hz to 1 MHz through a direct digital synthesizer. Multiple impedance ratios with different combinations of frequencies were obtained and transmitted by an analog-to-digital converter and several of them with representatives will be selected after data process. The system analyzed the functional relationship between these impedance ratios and the distance between the file and the apex with statistics by measuring plenty of teeth. The position of the apical foramen can be determined by the statistical model using these impedance ratios. The experimental results revealed that the accuracy of the system based on multifrequency impedance ratios method to determine the position of the apical foramen was higher than the dual-frequency impedance ratio method. Besides that, for more complex measurement environments, the performance of the system was more stable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=root%20canal%20length" title="root canal length">root canal length</a>, <a href="https://publications.waset.org/abstracts/search?q=apex%20locator" title=" apex locator"> apex locator</a>, <a href="https://publications.waset.org/abstracts/search?q=multifrequency%20impedance" title=" multifrequency impedance"> multifrequency impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=sweep%20frequency" title=" sweep frequency"> sweep frequency</a> </p> <a href="https://publications.waset.org/abstracts/102124/the-system-for-root-canal-length-measurement-based-on-multifrequency-impedance-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2110</span> Application of the Discrete Rationalized Haar Transform to Distributed Parameter System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joon-Hoon%20Park">Joon-Hoon Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper the rationalized Haar transform is applied for distributed parameter system identification and estimation. A distributed parameter system is a dynamical and mathematical model described by a partial differential equation. And system identification concerns the problem of determining mathematical models from observed data. The Haar function has some disadvantages of calculation because it contains irrational numbers, for these reasons the rationalized Haar function that has only rational numbers. The algorithm adopted in this paper is based on the transform and operational matrix of the rationalized Haar function. This approach provides more convenient and efficient computational results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20parameter%20system" title="distributed parameter system">distributed parameter system</a>, <a href="https://publications.waset.org/abstracts/search?q=rationalized%20Haar%20transform" title=" rationalized Haar transform"> rationalized Haar transform</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20matrix" title=" operational matrix"> operational matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20identification" title=" system identification "> system identification </a> </p> <a href="https://publications.waset.org/abstracts/24246/application-of-the-discrete-rationalized-haar-transform-to-distributed-parameter-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">509</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2109</span> Calculating Shear Strength Parameter from Simple Shear Apparatus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Nitesh">G. Nitesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The shear strength of soils is a crucial parameter instability analysis. Therefore, it is important to determine reliable values for the accuracy of stability analysis. Direct shear tests are mostly performed to determine the shear strength of cohesionless soils. The major limitation of the direct shear test is that the failure takes place through the pre-defined failure plane but the failure is not along pre-defined plane and is along the weakest plane in actual shearing mechanism that goes on in the field. This leads to overestimating the strength parameter; hence, a new apparatus called simple shear is developed and used in this study to determine the shear strength parameter that simulates the field conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20shear" title="direct shear">direct shear</a>, <a href="https://publications.waset.org/abstracts/search?q=simple%20shear" title=" simple shear"> simple shear</a>, <a href="https://publications.waset.org/abstracts/search?q=angle%20of%20shear%20resistance" title=" angle of shear resistance"> angle of shear resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesionless%20soils" title=" cohesionless soils"> cohesionless soils</a> </p> <a href="https://publications.waset.org/abstracts/15739/calculating-shear-strength-parameter-from-simple-shear-apparatus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2108</span> Effect of Birks Constant and Defocusing Parameter on Triple-to-Double Coincidence Ratio Parameter in Monte Carlo Simulation-GEANT4</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farmesk%20Abubaker">Farmesk Abubaker</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesco%20Tortorici"> Francesco Tortorici</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20Capogni"> Marco Capogni</a>, <a href="https://publications.waset.org/abstracts/search?q=Concetta%20Sutera"> Concetta Sutera</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincenzo%20Bellini"> Vincenzo Bellini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This project concerns with the detection efficiency of the portable triple-to-double coincidence ratio (TDCR) at the National Institute of Metrology of Ionizing Radiation (INMRI-ENEA) which allows direct activity measurement and radionuclide standardization for pure-beta emitter or pure electron capture radionuclides. The dependency of the simulated detection efficiency of the TDCR, by using Monte Carlo simulation Geant4 code, on the Birks factor (kB) and defocusing parameter has been examined especially for low energy beta-emitter radionuclides such as 3H and 14C, for which this dependency is relevant. The results achieved in this analysis can be used for selecting the best kB factor and the defocusing parameter for computing theoretical TDCR parameter value. The theoretical results were compared with the available ones, measured by the ENEA TDCR portable detector, for some pure-beta emitter radionuclides. This analysis allowed to improve the knowledge of the characteristics of the ENEA TDCR detector that can be used as a traveling instrument for in-situ measurements with particular benefits in many applications in the field of nuclear medicine and in the nuclear energy industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Birks%20constant" title="Birks constant">Birks constant</a>, <a href="https://publications.waset.org/abstracts/search?q=defocusing%20parameter" title=" defocusing parameter"> defocusing parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=GEANT4%20code" title=" GEANT4 code"> GEANT4 code</a>, <a href="https://publications.waset.org/abstracts/search?q=TDCR%20parameter" title=" TDCR parameter"> TDCR parameter</a> </p> <a href="https://publications.waset.org/abstracts/131757/effect-of-birks-constant-and-defocusing-parameter-on-triple-to-double-coincidence-ratio-parameter-in-monte-carlo-simulation-geant4" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2107</span> Sediment Patterns from Fluid-Bed Interactions: A Direct Numerical Simulations Study on Fluvial Turbulent Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadim%20Zgheib">Nadim Zgheib</a>, <a href="https://publications.waset.org/abstracts/search?q=Sivaramakrishnan%20Balachandar"> Sivaramakrishnan Balachandar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present results on the initial formation of ripples from an initially flattened erodible bed. We use direct numerical simulations (DNS) of turbulent open channel flow over a fixed sinusoidal bed coupled with hydrodynamic stability analysis. We use the direct forcing immersed boundary method to account for the presence of the sediment bed. The resolved flow provides the bed shear stress and consequently the sediment transport rate, which is needed in the stability analysis of the Exner equation. The approach is different from traditional linear stability analysis in the sense that the phase lag between the bed topology, and the sediment flux is obtained from the DNS. We ran 11 simulations at a fixed shear Reynolds number of 180, but for different sediment bed wavelengths. The analysis allows us to sweep a large range of physical and modelling parameters to predict their effects on linear growth. The Froude number appears to be the critical controlling parameter in the early linear development of ripples, in contrast with the dominant role of particle Reynolds number during the equilibrium stage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20numerical%20simulation" title="direct numerical simulation">direct numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=immersed%20boundary%20method" title=" immersed boundary method"> immersed boundary method</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment-bed%20interactions" title=" sediment-bed interactions"> sediment-bed interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20multiphase%20flow" title=" turbulent multiphase flow"> turbulent multiphase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20stability%20analysis" title=" linear stability analysis"> linear stability analysis</a> </p> <a href="https://publications.waset.org/abstracts/106327/sediment-patterns-from-fluid-bed-interactions-a-direct-numerical-simulations-study-on-fluvial-turbulent-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2106</span> Efficient Signal Detection Using QRD-M Based on Channel Condition in MIMO-OFDM System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae-Jeong%20Kim">Jae-Jeong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ki-Ro%20Kim"> Ki-Ro Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyoung-Kyu%20Song"> Hyoung-Kyu Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose an efficient signal detector that switches M parameter of QRD-M detection scheme is proposed for MIMO-OFDM system. The proposed detection scheme calculates the threshold by 1-norm condition number and then switches M parameter of QRD-M detection scheme according to channel information. If channel condition is bad, the parameter M is set to high value to increase the accuracy of detection. If channel condition is good, the parameter M is set to low value to reduce complexity of detection. Therefore, the proposed detection scheme has better trade off between BER performance and complexity than the conventional detection scheme. The simulation result shows that the complexity of proposed detection scheme is lower than QRD-M detection scheme with similar BER performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MIMO-OFDM" title="MIMO-OFDM">MIMO-OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=QRD-M" title=" QRD-M"> QRD-M</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20condition" title=" channel condition"> channel condition</a>, <a href="https://publications.waset.org/abstracts/search?q=BER" title=" BER"> BER</a> </p> <a href="https://publications.waset.org/abstracts/3518/efficient-signal-detection-using-qrd-m-based-on-channel-condition-in-mimo-ofdm-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2105</span> MHD Stagnation Point Flow towards a Shrinking Sheet with Suction in an Upper-Convected Maxwell (UCM) Fluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Jafar">K. Jafar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Nazar"> R. Nazar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ishak"> A. Ishak</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Pop"> I. Pop</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present analysis considers the steady stagnation point flow and heat transfer towards a permeable sheet in an upper-convected Maxwell (UCM) electrically conducting fluid, with a constant magnetic field applied in the transverse direction to flow, and a local heat generation within the boundary layer with a heat generation rate proportional to (T-T_inf)^p. Using a similarity transformation, the governing system of partial differential equations is first transformed into a system of ordinary differential equations, which is then solved numerically using a finite-difference scheme known as the Keller-box method. Numerical results are obtained for the flow and thermal fields for various values of the shrinking/stretching parameter lambda, the magnetic parameter M, the elastic parameter K, the Prandtl number Pr, the suction parameter s, the heat generation parameter Q, and the exponent p. The results indicate the existence of dual solutions for the shrinking sheet up to a critical value lambda_c whose value depends on the value of M, K, and s. In the presence of internal heat absorbtion (Q<0), the surface heat transfer rate decreases with increasing p but increases with parameter Q and s, when the sheet is either stretched or shrunk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetohydrodynamic%20%28MHD%29" title="magnetohydrodynamic (MHD)">magnetohydrodynamic (MHD)</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20flow" title=" boundary layer flow"> boundary layer flow</a>, <a href="https://publications.waset.org/abstracts/search?q=UCM%20fluid" title=" UCM fluid"> UCM fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=stagnation%20point" title=" stagnation point"> stagnation point</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinking%20sheet" title=" shrinking sheet"> shrinking sheet</a> </p> <a href="https://publications.waset.org/abstracts/8588/mhd-stagnation-point-flow-towards-a-shrinking-sheet-with-suction-in-an-upper-convected-maxwell-ucm-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2104</span> A New Conjugate Gradient Method with Guaranteed Descent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Sellami">B. Sellami</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Belloufi"> M. Belloufi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conjugate gradient methods are an important class of methods for unconstrained optimization, especially for large-scale problems. Recently, they have been much studied. In this paper, we propose a new two-parameter family of conjugate gradient methods for unconstrained optimization. The two-parameter family of methods not only includes the already existing three practical nonlinear conjugate gradient methods, but also has other family of conjugate gradient methods as subfamily. The two-parameter family of methods with the Wolfe line search is shown to ensure the descent property of each search direction. Some general convergence results are also established for the two-parameter family of methods. The numerical results show that this method is efficient for the given test problems. In addition, the methods related to this family are uniformly discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unconstrained%20optimization" title="unconstrained optimization">unconstrained optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=conjugate%20gradient%20method" title=" conjugate gradient method"> conjugate gradient method</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20search" title=" line search"> line search</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20convergence" title=" global convergence"> global convergence</a> </p> <a href="https://publications.waset.org/abstracts/41734/a-new-conjugate-gradient-method-with-guaranteed-descent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2103</span> Parameter Estimation of Induction Motors by PSO Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mohammadi">A. Mohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Asghari"> S. Asghari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Aien"> M. Aien</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rashidinejad"> M. Rashidinejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> After emergent of alternative current networks and their popularity, asynchronous motors became more widespread than other kinds of industrial motors. In order to control and run these motors efficiently, an accurate estimation of motor parameters is needed. There are different methods to obtain these parameters such as rotor locked test, no load test, DC test, analytical methods, and so on. The most common drawback of these methods is their inaccuracy in estimation of some motor parameters. In order to remove this concern, a novel method for parameter estimation of induction motors using particle swarm optimization (PSO) algorithm is proposed. In the proposed method, transient state of motor is used for parameter estimation. Comparison of the simulation results purtuined to the PSO algorithm with other available methods justifies the effectiveness of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=induction%20motor" title="induction motor">induction motor</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20parameter%20estimation" title=" motor parameter estimation"> motor parameter estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=PSO%20algorithm" title=" PSO algorithm"> PSO algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20method" title=" analytical method"> analytical method</a> </p> <a href="https://publications.waset.org/abstracts/15433/parameter-estimation-of-induction-motors-by-pso-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">633</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2102</span> Parameter Estimation via Metamodeling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Haram%20Sarmiento">Sergio Haram Sarmiento</a>, <a href="https://publications.waset.org/abstracts/search?q=Arcady%20Ponosov"> Arcady Ponosov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on appropriate multivariate statistical methodology, we suggest a generic framework for efficient parameter estimation for ordinary differential equations and the corresponding nonlinear models. In this framework classical linear regression strategies is refined into a nonlinear regression by a locally linear modelling technique (known as metamodelling). The approach identifies those latent variables of the given model that accumulate most information about it among all approximations of the same dimension. The method is applied to several benchmark problems, in particular, to the so-called ”power-law systems”, being non-linear differential equations typically used in Biochemical System Theory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=principal%20component%20analysis" title="principal component analysis">principal component analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20law%20of%20mass%20action" title=" generalized law of mass action"> generalized law of mass action</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20estimation" title=" parameter estimation"> parameter estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=metamodels" title=" metamodels"> metamodels</a> </p> <a href="https://publications.waset.org/abstracts/23814/parameter-estimation-via-metamodeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23814.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2101</span> New Estimation in Autoregressive Models with Exponential White Noise by Using Reversible Jump MCMC Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suparman%20Suparman">Suparman Suparman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A white noise in autoregressive (AR) model is often assumed to be normally distributed. In application, the white noise usually do not follows a normal distribution. This paper aims to estimate a parameter of AR model that has a exponential white noise. A Bayesian method is adopted. A prior distribution of the parameter of AR model is selected and then this prior distribution is combined with a likelihood function of data to get a posterior distribution. Based on this posterior distribution, a Bayesian estimator for the parameter of AR model is estimated. Because the order of AR model is considered a parameter, this Bayesian estimator cannot be explicitly calculated. To resolve this problem, a method of reversible jump Markov Chain Monte Carlo (MCMC) is adopted. A result is a estimation of the parameter AR model can be simultaneously calculated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autoregressive%20%28AR%29%20model" title="autoregressive (AR) model">autoregressive (AR) model</a>, <a href="https://publications.waset.org/abstracts/search?q=exponential%20white%20Noise" title=" exponential white Noise"> exponential white Noise</a>, <a href="https://publications.waset.org/abstracts/search?q=bayesian" title=" bayesian"> bayesian</a>, <a href="https://publications.waset.org/abstracts/search?q=reversible%20jump%20Markov%20Chain%20Monte%20Carlo%20%28MCMC%29" title=" reversible jump Markov Chain Monte Carlo (MCMC)"> reversible jump Markov Chain Monte Carlo (MCMC)</a> </p> <a href="https://publications.waset.org/abstracts/71720/new-estimation-in-autoregressive-models-with-exponential-white-noise-by-using-reversible-jump-mcmc-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2100</span> Parameter Estimation in Dynamical Systems Based on Latent Variables</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arcady%20Ponosov">Arcady Ponosov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel mathematical approach is suggested, which facilitates a compressed representation and efficient validation of parameter-rich ordinary differential equation models describing the dynamics of complex, especially biology-related, systems and which is based on identification of the system's latent variables. In particular, an efficient parameter estimation method for the compressed non-linear dynamical systems is developed. The method is applied to the so-called 'power-law systems' being non-linear differential equations typically used in Biochemical System Theory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20law%20of%20mass%20action" title="generalized law of mass action">generalized law of mass action</a>, <a href="https://publications.waset.org/abstracts/search?q=metamodels" title=" metamodels"> metamodels</a>, <a href="https://publications.waset.org/abstracts/search?q=principal%20components" title=" principal components"> principal components</a>, <a href="https://publications.waset.org/abstracts/search?q=synergetic%20systems" title=" synergetic systems"> synergetic systems</a> </p> <a href="https://publications.waset.org/abstracts/42041/parameter-estimation-in-dynamical-systems-based-on-latent-variables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2099</span> Parameter Interactions in the Cumulative Prospect Theory: Fitting the Binary Choice Experiment Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elzbieta%20Babula">Elzbieta Babula</a>, <a href="https://publications.waset.org/abstracts/search?q=Juhyun%20Park"> Juhyun Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tversky and Kahneman’s cumulative prospect theory assumes symmetric probability cumulation with regard to the reference point within decision weights. Theoretically, this model should be invariant under the change of the direction of probability cumulation. In the present study, this phenomenon is being investigated by creating a reference model that allows verifying the parameter interactions in the cumulative prospect theory specifications. The simultaneous parametric fitting of utility and weighting functions is applied to binary choice data from the experiment. The results show that the flexibility of the probability weighting function is a crucial characteristic allowing to prevent parameter interactions while estimating cumulative prospect theory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binary%20choice%20experiment" title="binary choice experiment">binary choice experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=cumulative%20prospect%20theory" title=" cumulative prospect theory"> cumulative prospect theory</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20weights" title=" decision weights"> decision weights</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20interactions" title=" parameter interactions"> parameter interactions</a> </p> <a href="https://publications.waset.org/abstracts/139527/parameter-interactions-in-the-cumulative-prospect-theory-fitting-the-binary-choice-experiment-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2098</span> The Effect of Parameter Controls for Manure Composting in Waste Recycling Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junyoung%20Kim">Junyoung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Shangwha%20Cha"> Shangwha Cha</a>, <a href="https://publications.waset.org/abstracts/search?q=Soomee%20Kang"> Soomee Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jake%20S.%20Byun"> Jake S. Byun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study shows the effect of parameter controls for livestock manure composting in waste recycling process for the development of a new design of a microorganism-oriented- composting system. Based on the preliminary studies, only the temperature control by changing mechanical mixing can reduce microorganisms’ biodegradability from 3 to 6 months to 15 days, saving the consumption of energy and manual labor. The final degree of fermentation in just 5 days of composting increased to ‘3’ comparing the compost standard level ‘4’ in Korea, others standards were all satisfied. This result shows that the controlling the optimum microorganism parameter using an ICT device connected to mixing condition can increase the effectiveness of fermentation system and reduce odor to nearly zero, and lead to upgrade the composting method than the conventional <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manure%20composting" title="manure composting">manure composting</a>, <a href="https://publications.waset.org/abstracts/search?q=odor%20removal" title=" odor removal"> odor removal</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20control" title=" parameter control"> parameter control</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20recycling" title=" waste recycling"> waste recycling</a> </p> <a href="https://publications.waset.org/abstracts/60596/the-effect-of-parameter-controls-for-manure-composting-in-waste-recycling-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2097</span> Effect of Radiation on MHD Mixed Convection Stagnation Point Flow towards a Vertical Plate in a Porous Medium with Convective Boundary Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Niranjan">H. Niranjan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sivasankaran"> S. Sivasankaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Zailan%20Siri"> Zailan Siri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates mixed convection heat transfer about a thin vertical plate in the presence of magnetohydrodynamic (MHD) and heat transfer effects in the porous medium. The fluid is assumed to be steady, laminar, incompressible and in two-dimensional flow. The nonlinear coupled parabolic partial differential equations governing the flow are transformed into the non-similar boundary layer equations, which are then solved numerically using the shooting method. The effects of the conjugate heat transfer parameter, the porous medium parameter, the permeability parameter, the mixed convection parameter, the magnetic parameter, and the thermal radiation on the velocity and temperature profiles as well as on the local skin friction and local heat transfer are presented and analyzed. The validity of the methodology and analysis is checked by comparing the results obtained for some specific cases with those available in the literature. The various parameters on local skin friction, heat and mass transfer rates are presented in tabular form. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MHD" title="MHD">MHD</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20medium" title=" porous medium"> porous medium</a>, <a href="https://publications.waset.org/abstracts/search?q=soret%2Fdufour" title=" soret/dufour"> soret/dufour</a>, <a href="https://publications.waset.org/abstracts/search?q=stagnation-point" title=" stagnation-point"> stagnation-point</a> </p> <a href="https://publications.waset.org/abstracts/38042/effect-of-radiation-on-mhd-mixed-convection-stagnation-point-flow-towards-a-vertical-plate-in-a-porous-medium-with-convective-boundary-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2096</span> Parameter Estimation for the Oral Minimal Model and Parameter Distinctions Between Obese and Non-obese Type 2 Diabetes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manoja%20Rajalakshmi%20Aravindakshana">Manoja Rajalakshmi Aravindakshana</a>, <a href="https://publications.waset.org/abstracts/search?q=Devleena%20Ghosha"> Devleena Ghosha</a>, <a href="https://publications.waset.org/abstracts/search?q=Chittaranjan%20Mandala"> Chittaranjan Mandala</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20V.%20Venkateshb"> K. V. Venkateshb</a>, <a href="https://publications.waset.org/abstracts/search?q=Jit%20Sarkarc"> Jit Sarkarc</a>, <a href="https://publications.waset.org/abstracts/search?q=Partha%20Chakrabartic"> Partha Chakrabartic</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujay%20K.%20Maity"> Sujay K. Maity</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oral Glucose Tolerance Test (OGTT) is the primary test used to diagnose type 2 diabetes mellitus (T2DM) in a clinical setting. Analysis of OGTT data using the Oral Minimal Model (OMM) along with the rate of appearance of ingested glucose (Ra) is performed to study differences in model parameters for control and T2DM groups. The differentiation of parameters of the model gives insight into the behaviour and physiology of T2DM. The model is also studied to find parameter differences among obese and non-obese T2DM subjects and the sensitive parameters were co-related to the known physiological findings. Sensitivity analysis is performed to understand changes in parameter values with model output and to support the findings, appropriate statistical tests are done. This seems to be the first preliminary application of the OMM with obesity as a distinguishing factor in understanding T2DM from estimated parameters of insulin-glucose model and relating the statistical differences in parameters to diabetes pathophysiology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oral%20minimal%20model" title="oral minimal model">oral minimal model</a>, <a href="https://publications.waset.org/abstracts/search?q=OGTT" title=" OGTT"> OGTT</a>, <a href="https://publications.waset.org/abstracts/search?q=obese%20and%20non-obese%20T2DM" title=" obese and non-obese T2DM"> obese and non-obese T2DM</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title=" mathematical modeling"> mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20estimation" title=" parameter estimation"> parameter estimation</a> </p> <a href="https://publications.waset.org/abstracts/158794/parameter-estimation-for-the-oral-minimal-model-and-parameter-distinctions-between-obese-and-non-obese-type-2-diabetes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2095</span> Identification of Impact Load and Partial System Parameters Using 1D-CNN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xuewen%20Yu">Xuewen Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Danhui%20Dan"> Danhui Dan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The identification of impact load and some hard-to-obtain system parameters is crucial for the activities of analysis, validation, and evaluation in the engineering field. This paper proposes a method that utilizes neural networks based on 1D-CNN to identify the impact load and partial system parameters from measured responses. To this end, forward computations are conducted to provide datasets consisting of the triples (parameter θ, input u, output y). Then neural networks are trained to learn the mapping from input to output, fu|{θ} : y → u, as well as from input and output to parameter, fθ : (u, y) → θ. Afterward, feeding the trained neural networks the measured output response, the input impact load and system parameter can be calculated, respectively. The method is tested on two simulated examples and shows sound accuracy in estimating the impact load (waveform and location) and system parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title="convolutional neural network">convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20load%20identification" title=" impact load identification"> impact load identification</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20parameter%20identification" title=" system parameter identification"> system parameter identification</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20problem" title=" inverse problem"> inverse problem</a> </p> <a href="https://publications.waset.org/abstracts/173755/identification-of-impact-load-and-partial-system-parameters-using-1d-cnn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2094</span> An Estimating Parameter of the Mean in Normal Distribution by Maximum Likelihood, Bayes, and Markov Chain Monte Carlo Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Autcha%20Araveeporn">Autcha Araveeporn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is to compare the parameter estimation of the mean in normal distribution by Maximum Likelihood (ML), Bayes, and Markov Chain Monte Carlo (MCMC) methods. The ML estimator is estimated by the average of data, the Bayes method is considered from the prior distribution to estimate Bayes estimator, and MCMC estimator is approximated by Gibbs sampling from posterior distribution. These methods are also to estimate a parameter then the hypothesis testing is used to check a robustness of the estimators. Data are simulated from normal distribution with the true parameter of mean 2, and variance 4, 9, and 16 when the sample sizes is set as 10, 20, 30, and 50. From the results, it can be seen that the estimation of MLE, and MCMC are perceivably different from the true parameter when the sample size is 10 and 20 with variance 16. Furthermore, the Bayes estimator is estimated from the prior distribution when mean is 1, and variance is 12 which showed the significant difference in mean with variance 9 at the sample size 10 and 20. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayes%20method" title="Bayes method">Bayes method</a>, <a href="https://publications.waset.org/abstracts/search?q=Markov%20chain%20Monte%20Carlo%20method" title=" Markov chain Monte Carlo method"> Markov chain Monte Carlo method</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20likelihood%20method" title=" maximum likelihood method"> maximum likelihood method</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20distribution" title=" normal distribution"> normal distribution</a> </p> <a href="https://publications.waset.org/abstracts/51087/an-estimating-parameter-of-the-mean-in-normal-distribution-by-maximum-likelihood-bayes-and-markov-chain-monte-carlo-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2093</span> Molecular Dynamics Simulation of Free Vibration of Graphene Sheets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyyed%20Feisal%20Asbaghian%20Namin">Seyyed Feisal Asbaghian Namin</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Pilafkan"> Reza Pilafkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmood%20Kaffash%20Irzarahimi"> Mahmood Kaffash Irzarahimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> TThis paper considers vibration of single-layered graphene sheets using molecular dynamics (MD) and nonlocal elasticity theory. Based on the MD simulations, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), an open source software, is used to obtain fundamental frequencies. On the other hand, governing equations are derived using nonlocal elasticity and first order shear deformation theory (FSDT) and solved using generalized differential quadrature method (GDQ). The small-scale effect is applied in governing equations of motion by nonlocal parameter. The effect of different side lengths, boundary conditions and nonlocal parameter are inspected for aforementioned methods. Results are obtained from MD simulations is compared with those of the nonlocal elasticity theory to calculate appropriate values for the nonlocal parameter. The nonlocal parameter value is suggested for graphene sheets with various boundary conditions. Furthermore, it is shown that the nonlocal elasticity approach using classical plate theory (CLPT) assumptions overestimates the natural frequencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene%20sheets" title="graphene sheets">graphene sheets</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulations" title=" molecular dynamics simulations"> molecular dynamics simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=fundamental%20frequencies" title=" fundamental frequencies"> fundamental frequencies</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlocal%20elasticity%20theory" title=" nonlocal elasticity theory"> nonlocal elasticity theory</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlocal%20parameter" title=" nonlocal parameter"> nonlocal parameter</a> </p> <a href="https://publications.waset.org/abstracts/57339/molecular-dynamics-simulation-of-free-vibration-of-graphene-sheets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2092</span> Estimation of Stress-Strength Parameter for Burr Type XII Distribution Based on Progressive Type-II Censoring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Abd-Elfattah">A. M. Abd-Elfattah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Abu-Moussa"> M. H. Abu-Moussa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the estimation of stress-strength parameter R = P(Y < X) is considered when X; Y the strength and stress respectively are two independent random variables of Burr Type XII distribution. The samples taken for X and Y are progressively censoring of type II. The maximum likelihood estimator (MLE) of R is obtained when the common parameter is unknown. But when the common parameter is known the MLE, uniformly minimum variance unbiased estimator (UMVUE) and the Bayes estimator of R = P(Y < X) are obtained. The exact condence interval of R based on MLE is obtained. The performance of the proposed estimators is compared using the computer simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burr%20Type%20XII%20distribution" title="Burr Type XII distribution">Burr Type XII distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=progressive%20type-II%20censoring" title=" progressive type-II censoring"> progressive type-II censoring</a>, <a href="https://publications.waset.org/abstracts/search?q=stress-strength%20model" title=" stress-strength model"> stress-strength model</a>, <a href="https://publications.waset.org/abstracts/search?q=unbiased%20estimator" title=" unbiased estimator"> unbiased estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum-likelihood%20estimator" title=" maximum-likelihood estimator"> maximum-likelihood estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=uniformly%20minimum%20variance%20unbiased%20estimator" title=" uniformly minimum variance unbiased estimator"> uniformly minimum variance unbiased estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=confidence%20intervals" title=" confidence intervals"> confidence intervals</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayes%20estimator" title=" Bayes estimator"> Bayes estimator</a> </p> <a href="https://publications.waset.org/abstracts/15905/estimation-of-stress-strength-parameter-for-burr-type-xii-distribution-based-on-progressive-type-ii-censoring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2091</span> Effects of Level Densities and Those of a-Parameter in the Framework of Preequilibrium Model for 63,65Cu(n,xp) Reactions in Neutrons at 9 to 15 MeV </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Yettou">L. Yettou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the calculations of proton emission spectra produced by <sup>63</sup>Cu(n,xp) and <sup>65</sup>Cu(n,xp) reactions are used in the framework of preequilibrium models using the EMPIRE code and TALYS code. Exciton Model predidtions combined with the Kalbach angular distribution systematics and the Hybrid Monte Carlo Simulation (HMS) were used. The effects of levels densities and those of a-parameter have been investigated for our calculations. The comparison with experimental data shows clear improvement over the Exciton Model and HMS calculations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preequilibrium%20models" title="Preequilibrium models ">Preequilibrium models </a>, <a href="https://publications.waset.org/abstracts/search?q=level%20density" title=" level density"> level density</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20density%20a-parameter." title=" level density a-parameter."> level density a-parameter.</a>, <a href="https://publications.waset.org/abstracts/search?q=Empire%20code" title=" Empire code"> Empire code</a>, <a href="https://publications.waset.org/abstracts/search?q=Talys%20code." title=" Talys code."> Talys code.</a> </p> <a href="https://publications.waset.org/abstracts/116458/effects-of-level-densities-and-those-of-a-parameter-in-the-framework-of-preequilibrium-model-for-6365cunxp-reactions-in-neutrons-at-9-to-15-mev" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2090</span> MHD Stagnation-Point Flow over a Plate </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Niranjan">H. Niranjan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sivasankaran"> S. Sivasankaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat and mass transfer near a steady stagnation point boundary layer flow of viscous incompressible fluid through porous media investigates along a vertical plate is thoroughly studied under the presence of magneto hydrodynamic (MHD) effects. The fluid flow is steady, laminar, incompressible and in two-dimensional. The nonlinear differential coupled parabolic partial differential equations of continuity, momentum, energy and specie diffusion are converted into the non-similar boundary layer equations using similarity transformation, which are then solved numerically using the Runge-Kutta method along with shooting method. The effects of the conjugate heat transfer parameter, the porous medium parameter, the permeability parameter, the mixed convection parameter, the magnetic parameter, and the thermal radiation on the velocity and temperature profiles as well as on the local skin friction and local heat transfer are presented and analyzed. The validity of the methodology and analysis is checked by comparing the results obtained for some specific cases with those available in the literature. The various parameters on local skin friction, heat and mass transfer rates are presented in tabular form. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MHD" title="MHD">MHD</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20medium" title=" porous medium"> porous medium</a>, <a href="https://publications.waset.org/abstracts/search?q=slip" title=" slip"> slip</a>, <a href="https://publications.waset.org/abstracts/search?q=convective%20boundary%20condition" title=" convective boundary condition"> convective boundary condition</a>, <a href="https://publications.waset.org/abstracts/search?q=stagnation%20point" title=" stagnation point "> stagnation point </a> </p> <a href="https://publications.waset.org/abstracts/38283/mhd-stagnation-point-flow-over-a-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2089</span> Stochastic Modeling for Parameters of Modified Car-Following Model in Area-Based Traffic Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20C.%20Sarkar">N. C. Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bhaskar"> A. Bhaskar</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Zheng"> Z. Zheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The driving behavior in area-based (i.e., non-lane based) traffic is induced by the presence of other individuals in the choice space from the driver’s visual perception area. The driving behavior of a subject vehicle is constrained by the potential leaders and leaders are frequently changed over time. This paper is to determine a stochastic model for a parameter of modified intelligent driver model (MIDM) in area-based traffic (as in developing countries). The parametric and non-parametric distributions are presented to fit the parameters of MIDM. The goodness of fit for each parameter is measured in two different ways such as graphically and statistically. The quantile-quantile (Q-Q) plot is used for a graphical representation of a theoretical distribution to model a parameter and the Kolmogorov-Smirnov (K-S) test is used for a statistical measure of fitness for a parameter with a theoretical distribution. The distributions are performed on a set of estimated parameters of MIDM. The parameters are estimated on the real vehicle trajectory data from India. The fitness of each parameter with a stochastic model is well represented. The results support the applicability of the proposed modeling for parameters of MIDM in area-based traffic flow simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=area-based%20traffic" title="area-based traffic">area-based traffic</a>, <a href="https://publications.waset.org/abstracts/search?q=car-following%20model" title=" car-following model"> car-following model</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-simulation" title=" micro-simulation"> micro-simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20modeling" title=" stochastic modeling"> stochastic modeling</a> </p> <a href="https://publications.waset.org/abstracts/98244/stochastic-modeling-for-parameters-of-modified-car-following-model-in-area-based-traffic-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2088</span> Application of Generalized Autoregressive Score Model to Stock Returns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katleho%20Daniel%20Makatjane">Katleho Daniel Makatjane</a>, <a href="https://publications.waset.org/abstracts/search?q=Diteboho%20Lawrence%20Xaba"> Diteboho Lawrence Xaba</a>, <a href="https://publications.waset.org/abstracts/search?q=Ntebogang%20Dinah%20Moroke"> Ntebogang Dinah Moroke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current study investigates the behaviour of time-varying parameters that are based on the score function of the predictive model density at time t. The mechanism to update the parameters over time is the scaled score of the likelihood function. The results revealed that there is high persistence of time-varying, as the location parameter is higher and the skewness parameter implied the departure of scale parameter from the normality with the unconditional parameter as 1.5. The results also revealed that there is a perseverance of the leptokurtic behaviour in stock returns which implies the returns are heavily tailed. Prior to model estimation, the White Neural Network test exposed that the stock price can be modelled by a GAS model. Finally, we proposed further researches specifically to model the existence of time-varying parameters with a more detailed model that encounters the heavy tail distribution of the series and computes the risk measure associated with the returns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20autoregressive%20score%20model" title="generalized autoregressive score model">generalized autoregressive score model</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Africa" title=" South Africa"> South Africa</a>, <a href="https://publications.waset.org/abstracts/search?q=stock%20returns" title=" stock returns"> stock returns</a>, <a href="https://publications.waset.org/abstracts/search?q=time-varying" title=" time-varying"> time-varying</a> </p> <a href="https://publications.waset.org/abstracts/78817/application-of-generalized-autoregressive-score-model-to-stock-returns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2087</span> Exponential Spline Solution for Singularly Perturbed Boundary Value Problems with an Uncertain-But-Bounded Parameter </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waheed%20Zahra">Waheed Zahra</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20El-Beltagy"> Mohamed El-Beltagy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20El%20Mhlawy"> Ashraf El Mhlawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Reda%20Elkhadrawy"> Reda Elkhadrawy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider singular perturbation reaction-diffusion boundary value problems, which contain a small uncertain perturbation parameter. To solve these problems, we propose a numerical method which is based on an exponential spline and Shishkin mesh discretization. While interval analysis principle is used to deal with the uncertain parameter, sensitivity analysis has been conducted using different methods. Numerical results are provided to show the applicability and efficiency of our method, which is ε-uniform convergence of almost second order. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=singular%20perturbation%20problem" title="singular perturbation problem">singular perturbation problem</a>, <a href="https://publications.waset.org/abstracts/search?q=shishkin%20mesh" title=" shishkin mesh"> shishkin mesh</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20small%20parameters" title=" two small parameters"> two small parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=exponential%20spline" title=" exponential spline"> exponential spline</a>, <a href="https://publications.waset.org/abstracts/search?q=interval%20analysis" title=" interval analysis"> interval analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a> </p> <a href="https://publications.waset.org/abstracts/91560/exponential-spline-solution-for-singularly-perturbed-boundary-value-problems-with-an-uncertain-but-bounded-parameter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2086</span> Numerical Solution of Steady Magnetohydrodynamic Boundary Layer Flow Due to Gyrotactic Microorganism for Williamson Nanofluid over Stretched Surface in the Presence of Exponential Internal Heat Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Talha">M. A. Talha</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Osman%20Gani"> M. Osman Gani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ferdows"> M. Ferdows</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the study of two dimensional magnetohydrodynamic (MHD) steady incompressible viscous Williamson nanofluid with exponential internal heat generation containing gyrotactic microorganism over a stretching sheet. The governing equations and auxiliary conditions are reduced to a set of non-linear coupled differential equations with the appropriate boundary conditions using similarity transformation. The transformed equations are solved numerically through spectral relaxation method. The influences of various parameters such as Williamson parameter γ, power constant λ, Prandtl number P<sub>r</sub>, magnetic field parameter M, Peclet number P<sub>e</sub>, Lewis number Le, Bioconvection Lewis number Lb, Brownian motion parameter Nb, thermophoresis parameter Nt, and bioconvection constant σ are studied to obtain the momentum, heat, mass and microorganism distributions. Moment, heat, mass and gyrotactic microorganism profiles are explored through graphs and tables. We computed the heat transfer rate, mass flux rate and the density number of the motile microorganism near the surface. Our numerical results are in better agreement in comparison with existing calculations. The Residual error of our obtained solutions is determined in order to see the convergence rate against iteration. Faster convergence is achieved when internal heat generation is absent. The effect of magnetic parameter M decreases the momentum boundary layer thickness but increases the thermal boundary layer thickness. It is apparent that bioconvection Lewis number and bioconvection parameter has a pronounced effect on microorganism boundary. Increasing brownian motion parameter and Lewis number decreases the thermal boundary layer. Furthermore, magnetic field parameter and thermophoresis parameter has an induced effect on concentration profiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convection%20flow" title="convection flow">convection flow</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity" title=" similarity"> similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20method" title=" spectral method"> spectral method</a>, <a href="https://publications.waset.org/abstracts/search?q=Williamson%20nanofluid" title=" Williamson nanofluid"> Williamson nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20heat%20generation" title=" internal heat generation"> internal heat generation</a> </p> <a href="https://publications.waset.org/abstracts/85582/numerical-solution-of-steady-magnetohydrodynamic-boundary-layer-flow-due-to-gyrotactic-microorganism-for-williamson-nanofluid-over-stretched-surface-in-the-presence-of-exponential-internal-heat-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2085</span> The Impact of Sedimentary Heterogeneity on Oil Recovery in Basin-plain Turbidite: An Outcrop Analogue Simulation Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayonle%20Abiola%20Omoniyi">Bayonle Abiola Omoniyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In turbidite reservoirs with volumetrically significant thin-bedded turbidites (TBTs), thin-pay intervals may be underestimated during calculation of reserve volume due to poor vertical resolution of conventional well logs. This paper demonstrates the strong control of bed-scale sedimentary heterogeneity on oil recovery using six facies distribution scenarios that were generated from outcrop data from the Eocene Itzurun Formation, Basque Basin (northern Spain). The variable net sand volume in these scenarios serves as a primary source of sedimentary heterogeneity impacting sandstone-mudstone ratio, sand and shale geometry and dimensions, lateral and vertical variations in bed thickness, and attribute indices. The attributes provided input parameters for modeling the scenarios. The models are 20-m (65.6 ft) thick. Simulation of the scenarios reveals that oil production is markedly enhanced where degree of sedimentary heterogeneity and resultant permeability contrast are low, as exemplified by Scenarios 1, 2, and 3. In these scenarios, bed architecture encourages better apparent vertical connectivity across intervals of laterally continuous beds. By contrast, low net-to-gross Scenarios 4, 5, and 6, have rapidly declining oil production rates and higher water cut with more oil effectively trapped in low-permeability layers. These scenarios may possess enough lateral connectivity to enable injected water to sweep oil to production well; such sweep is achieved at a cost of high-water production. It is therefore imperative to consider not only net-to-gross threshold but also facies stack pattern and related attribute indices to better understand how to effectively manage water production for optimum oil recovery from basin-plain reservoirs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=architecture" title="architecture">architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=connectivity" title=" connectivity"> connectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=turbidites" title=" turbidites"> turbidites</a> </p> <a href="https://publications.waset.org/abstracts/189095/the-impact-of-sedimentary-heterogeneity-on-oil-recovery-in-basin-plain-turbidite-an-outcrop-analogue-simulation-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2084</span> Modelling the Yield Stress of Magnetorheological Fluids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hesam%20Khajehsaeid">Hesam Khajehsaeid</a>, <a href="https://publications.waset.org/abstracts/search?q=Naeimeh%20Alagheband"> Naeimeh Alagheband</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetorheological fluids (MRF) are a category of smart materials. They exhibit a reversible change from a Newtonian-like fluid to a semi-solid state upon application of an external magnetic field. In contrast to ordinary fluids, MRFs can tolerate shear stresses up to a threshold value called yield stress which strongly depends on the strength of the magnetic field, magnetic particles volume fraction and temperature. Even beyond the yield, a magnetic field can increase MR fluid viscosity up to several orders. As yield stress is an important parameter in the design of MR devices, in this work, the effects of magnetic field intensity and magnetic particle concentration on the yield stress of MRFs are investigated. Four MRF samples with different particle concentrations are developed and tested through flow-ramp analysis to obtain the flow curves at a range of magnetic field intensity as well as shear rate. The viscosity of the fluids is determined by means of the flow curves. The results are then used to determine the yield stresses by means of the steady stress sweep method. The yield stresses are then determined by means of a modified form of the dipole model as well as empirical models. The exponential distribution function is used to describe the orientation of particle chains in the dipole model under the action of the external magnetic field. Moreover, the modified dipole model results in a reasonable distribution of chains compared to previous similar models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetorheological%20fluids" title="magnetorheological fluids">magnetorheological fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20stress" title=" yield stress"> yield stress</a>, <a href="https://publications.waset.org/abstracts/search?q=particles%20concentration" title=" particles concentration"> particles concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=dipole%20model" title=" dipole model"> dipole model</a> </p> <a href="https://publications.waset.org/abstracts/143879/modelling-the-yield-stress-of-magnetorheological-fluids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parameter%20sweep&page=1" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parameter%20sweep&page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parameter%20sweep&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parameter%20sweep&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parameter%20sweep&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parameter%20sweep&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parameter%20sweep&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parameter%20sweep&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parameter%20sweep&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parameter%20sweep&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parameter%20sweep&page=71">71</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parameter%20sweep&page=72">72</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parameter%20sweep&page=3" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>