CINXE.COM

Search results for: Puria Motamed Fath

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: Puria Motamed Fath</title> <meta name="description" content="Search results for: Puria Motamed Fath"> <meta name="keywords" content="Puria Motamed Fath"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Puria Motamed Fath" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Puria Motamed Fath"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 13</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Puria Motamed Fath</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Understanding Nanocarrier Efficacy in Drug Delivery Systems Using Molecular Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maedeh%20Rahimnejad">Maedeh Rahimnejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahman%20Vahidi"> Bahman Vahidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahman%20Ebrahimi%20Hoseinzadeh"> Bahman Ebrahimi Hoseinzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Yazdian"> Fatemeh Yazdian</a>, <a href="https://publications.waset.org/abstracts/search?q=Puria%20Motamed%20Fath"> Puria Motamed Fath</a>, <a href="https://publications.waset.org/abstracts/search?q=Roghieh%20Jamjah"> Roghieh Jamjah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The intensive labor and high cost of developing new vehicles for controlled drug delivery highlights the need for a change in their discovery process. Computational models can be used to accelerate experimental steps and control the high cost of experiments. Methods: In this work, to better understand the interaction of anti-cancer drug and the nanocarrier with the cell membrane, we have done molecular dynamics simulation using NAMD. We have chosen paclitaxel for the drug molecule and dipalmitoylphosphatidylcholine (DPPC) as a natural phospholipid nanocarrier. Results: Next, center of mass (COM) between molecules and the van der Waals interaction energy close to the cell membrane has been analyzed. Furthermore, the simulation results of the paclitaxel interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane have been compared. Discussion: Analysis by molecular dynamics (MD) showed that not only the energy between the nanocarrier and the cell membrane is low, but also the center of mass amount decreases in the nanocarrier and the cell membrane system during the interaction; therefore they show significantly better interaction in comparison to the individual drug with the cell membrane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-cancer%20drug" title="anti-cancer drug">anti-cancer drug</a>, <a href="https://publications.waset.org/abstracts/search?q=center%20of%20mass" title=" center of mass"> center of mass</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20energy" title=" interaction energy"> interaction energy</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocarrier" title=" nanocarrier"> nanocarrier</a> </p> <a href="https://publications.waset.org/abstracts/73338/understanding-nanocarrier-efficacy-in-drug-delivery-systems-using-molecular-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Assessment of Drug Delivery Systems from Molecular Dynamic Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Rahimnejad">M. Rahimnejad</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Vahidi"> B. Vahidi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Ebrahimi%20Hoseinzadeh"> B. Ebrahimi Hoseinzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Yazdian"> F. Yazdian</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Motamed%20Fath"> P. Motamed Fath</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Jamjah"> R. Jamjah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we developed and simulated nano-drug delivery systems efficacy in compare to free drug prescription. Computational models can be utilized to accelerate experimental steps and control the experiments high cost. Molecular dynamics simulation (MDS), in particular NAMD was utilized to better understand the anti-cancer drug interaction with cell membrane model. Paclitaxel (PTX) and dipalmitoylphosphatidylcholine (DPPC) were selected for the drug molecule and as a natural phospholipid nanocarrier, respectively. This work focused on two important interaction parameters between molecules in terms of center of mass (COM) and van der Waals interaction energy. Furthermore, we compared the simulation results of the PTX interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane. The molecular dynamic analysis resulted in low energy between the nanocarrier and the cell membrane as well as significant decrease of COM amount in the nanocarrier and the cell membrane system during the interaction. Thus, the drug vehicle showed notably better interaction with the cell membrane in compared to free drug interaction with the cell membrane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-cancer%20drug" title="anti-cancer drug">anti-cancer drug</a>, <a href="https://publications.waset.org/abstracts/search?q=center%20of%20mass" title=" center of mass"> center of mass</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20energy" title=" interaction energy"> interaction energy</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocarrier" title=" nanocarrier"> nanocarrier</a> </p> <a href="https://publications.waset.org/abstracts/73548/assessment-of-drug-delivery-systems-from-molecular-dynamic-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Muhammad Bin Abi Al-Surūr Al-Bakriyy Al-Ṣiddīqiyy and His Approach to Interpretation: Sūrat Al-Fatḥ as an Example</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saleem%20Abu%20Jaber">Saleem Abu Jaber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Born into a Sufi family, in which his father and other relatives, as well as additional community members, were particularly rooted in scholarly and cultural inquiry, Muḥammad ʾAbū al-Surūr al-Bikriyy al-Ṣidīqiyy (1562–1598 CE) was a prominent scholar of his time. Despite his relative youth, he became influential in his writings, which included Quranic exegeses and works on Hadith, Arabic grammar, jurisprudence, and Sufism. He was also a practicing physician and was the first person to be named Mufti of the Sultanate in Egypt. He was active in the political arena, having been close to the Ottoman sultans, providing them his support and counsel. He strived for their empowerment and victory and often influenced their political convictions and actions. Al-Ṣidīqiyy enjoyed the patronage of his contemporary Ottoman Caliphate sultans. In general, these sultans always promoted studies in the Islamic sciences and were keen to support scholars and gain their trust. This paper addresses al-Ṣidīqiyy’s legacy as a Quranic commentator, focusing on his exegesis (tafsīr) of Sūrat al-Fatḥ (48), written in 1589. It appears in a manuscript found at the Süleymaniye Library in Istanbul, consisting of one volume of 144 pages. It is believed that no other manuscript containing the text of this exegesis is to be found in any other library or institute for Arabic manuscripts. According to al-Ṣabbāġ (1995), al-Ṣidīqiyy had written a complete commentary of the Quran, but efforts to recover it have only unearthed the current commentary, as well as that of Sūrat al-Kahf (18), Sūrat al-ʾAnʿām (6), and ʾĀyat al-Kursī (2:255). The only critical edition published to date is that of Sūrat al-Kahf. The other two are currently being prepared for publication as well. The paucity of scholarly studies on the works of al-Ṣidīqiyy renders the current study particularly significant, as it provides introduction to al-Ṣidīqiyy’s exegesis, a synopsis of the biographical and cultural background of its author and his family, and a critical evaluation of his scholarly contribution. It will introduce the manuscript on which this study is based and elaborate on the structure and rationale of the exegesis, on its very attribution to al-Ṣidīqiyy, and subsequently evaluate its overall significance to the understanding of Sufi approaches to Quranic interpretation in 16th century Ottoman Egypt. An analysis of al-Ṣidīqiyy’s approach to interpreting the Quran leads to the definitive conclusion that it indeed reflects Sufi principles. For instance, when citing other Sufi commentators, including his own ancestors, he uses the epithets mawlāna ‘our elder, our patron,’ al-ʾustāḏ ‘the master,’ unique to Sufi parlance. Crucially, his interpretation, is written in a realistic, uncomplicated, fetching style, as was customary among Sufi scholars of his time, whose leaning was one of clarity, based on their perception of themselves as being closest to Muḥammad and his family, and by extension to the sunna, as reflected in the traditional narrative of the Prophet’s biography and teachings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Quran%E2%80%99%20sufiism" title="Quran’ sufiism">Quran’ sufiism</a>, <a href="https://publications.waset.org/abstracts/search?q=manuscript" title=" manuscript"> manuscript</a>, <a href="https://publications.waset.org/abstracts/search?q=exegesis" title=" exegesis"> exegesis</a>, <a href="https://publications.waset.org/abstracts/search?q=surah" title=" surah"> surah</a>, <a href="https://publications.waset.org/abstracts/search?q=Al-fath" title=" Al-fath"> Al-fath</a>, <a href="https://publications.waset.org/abstracts/search?q=sultanate" title=" sultanate"> sultanate</a>, <a href="https://publications.waset.org/abstracts/search?q=sunna" title=" sunna"> sunna</a> </p> <a href="https://publications.waset.org/abstracts/183521/muhammad-bin-abi-al-surur-al-bakriyy-al-siddiqiyy-and-his-approach-to-interpretation-surat-al-fat-as-an-example" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Equations of Pulse Propagation in Three-Layer Structure of As2S3 Chalcogenide Plasmonic Nano-Waveguides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leila%20Motamed-Jahromi">Leila Motamed-Jahromi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Hatami"> Mohsen Hatami</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Keshavarz"> Alireza Keshavarz </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims at obtaining the equations of pulse propagation in nonlinear plasmonic waveguides created with As<sub>2</sub>S<sub>3</sub> chalcogenide materials. Via utilizing Helmholtz equation and first-order perturbation theory, two components of electric field are determined within frequency domain. Afterwards, the equations are formulated in time domain. The obtained equations include two coupled differential equations that considers nonlinear dispersion<span dir="RTL">.</span> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20optics" title="nonlinear optics">nonlinear optics</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmonic%20waveguide" title=" plasmonic waveguide"> plasmonic waveguide</a>, <a href="https://publications.waset.org/abstracts/search?q=chalcogenide" title=" chalcogenide"> chalcogenide</a>, <a href="https://publications.waset.org/abstracts/search?q=propagation%20equation" title=" propagation equation"> propagation equation</a> </p> <a href="https://publications.waset.org/abstracts/52758/equations-of-pulse-propagation-in-three-layer-structure-of-as2s3-chalcogenide-plasmonic-nano-waveguides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Towards a Measurement-Based E-Government Portals Maturity Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdoullah%20Fath-Allah">Abdoullah Fath-Allah</a>, <a href="https://publications.waset.org/abstracts/search?q=Laila%20Cheikhi"> Laila Cheikhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%20E.%20Al-Qutaish"> Rafa E. Al-Qutaish</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Idri"> Ali Idri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The e-government emerging concept transforms the way in which the citizens are dealing with their governments. Thus, the citizens can execute the intended services online anytime and anywhere. This results in great benefits for both the governments (reduces the number of officers) and the citizens (more flexibility and time saving). Therefore, building a maturity model to assess the e-government portals becomes desired to help in the improvement process of such portals. This paper aims at proposing an e-government maturity model based on the measurement of the best practices’ presence. The main benefit of such maturity model is to provide a way to rank an e-government portal based on the used best practices, and also giving a set of recommendations to go to the higher stage in the maturity model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=best%20practices" title="best practices">best practices</a>, <a href="https://publications.waset.org/abstracts/search?q=e-government%20portal" title=" e-government portal"> e-government portal</a>, <a href="https://publications.waset.org/abstracts/search?q=maturity%20model" title=" maturity model"> maturity model</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20model" title=" quality model"> quality model</a> </p> <a href="https://publications.waset.org/abstracts/15477/towards-a-measurement-based-e-government-portals-maturity-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> A Comparative Analysis of E-Government Quality Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdoullah%20Fath-Allah">Abdoullah Fath-Allah</a>, <a href="https://publications.waset.org/abstracts/search?q=Laila%20Cheikhi"> Laila Cheikhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%20E.%20Al-Qutaish"> Rafa E. Al-Qutaish</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Idri"> Ali Idri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many quality models have been used to measure e-government portals quality. However, the absence of an international consensus for e-government portals quality models results in many differences in terms of quality attributes and measures. The aim of this paper is to compare and analyze the existing e-government quality models proposed in literature (those that are based on ISO standards and those that are not) in order to propose guidelines to build a good and useful e-government portals quality model. Our findings show that, there is no e-government portal quality model based on the new international standard ISO 25010. Besides that, the quality models are not based on a best practice model to allow agencies to both; measure e-government portals quality and identify missing best practices for those portals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=e-government" title="e-government">e-government</a>, <a href="https://publications.waset.org/abstracts/search?q=portal" title=" portal"> portal</a>, <a href="https://publications.waset.org/abstracts/search?q=best%20practices" title=" best practices"> best practices</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20model" title=" quality model"> quality model</a>, <a href="https://publications.waset.org/abstracts/search?q=ISO" title=" ISO"> ISO</a>, <a href="https://publications.waset.org/abstracts/search?q=standard" title=" standard"> standard</a>, <a href="https://publications.waset.org/abstracts/search?q=ISO%2025010" title=" ISO 25010"> ISO 25010</a>, <a href="https://publications.waset.org/abstracts/search?q=ISO%209126" title=" ISO 9126"> ISO 9126</a> </p> <a href="https://publications.waset.org/abstracts/18149/a-comparative-analysis-of-e-government-quality-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">564</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Enhancement Dynamic Cars Detection Based on Optimized HOG Descriptor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mansouri%20Nabila">Mansouri Nabila</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Jemaa%20Yousra"> Ben Jemaa Yousra</a>, <a href="https://publications.waset.org/abstracts/search?q=Motamed%20Cina"> Motamed Cina</a>, <a href="https://publications.waset.org/abstracts/search?q=Watelain%20Eric"> Watelain Eric</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Research and development efforts in intelligent Advanced Driver Assistance Systems (ADAS) seek to save lives and reduce the number of on-road fatalities. For traffic and emergency monitoring, the essential but challenging task is vehicle detection and tracking in reasonably short time. This purpose needs first of all a powerful dynamic car detector model. In fact, this paper presents an optimized HOG process based on shape and motion parameters fusion. Our proposed approach mains to compute HOG by bloc feature from foreground blobs using configurable research window and pathway in order to overcome the shortcoming in term of computing time of HOG descriptor and improve their dynamic application performance. Indeed we prove in this paper that HOG by bloc descriptor combined with motion parameters is a very suitable car detector which reaches in record time a satisfactory recognition rate in dynamic outside area and bypasses several popular works without using sophisticated and expensive architectures such as GPU and FPGA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=car-detector" title="car-detector">car-detector</a>, <a href="https://publications.waset.org/abstracts/search?q=HOG" title=" HOG"> HOG</a>, <a href="https://publications.waset.org/abstracts/search?q=motion" title=" motion"> motion</a>, <a href="https://publications.waset.org/abstracts/search?q=computing%20time" title=" computing time"> computing time</a> </p> <a href="https://publications.waset.org/abstracts/40704/enhancement-dynamic-cars-detection-based-on-optimized-hog-descriptor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> 1-g Shake Table Tests to Study the Impact of PGA on Foundation Settlement in Liquefiable Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Kausar%20Alam">Md. Kausar Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Yazdi"> Mohammad Yazdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Peiman%20Zogh"> Peiman Zogh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Motamed"> Ramin Motamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The liquefaction-induced ground settlement has caused severe damage to structures in the past decades. However, the amount of building settlement caused by liquefaction is directly proportional to the intensity of the ground shaking. To reduce this soil liquefaction effect, it is essential to examine the influence of peak ground acceleration (PGA). Unfortunately, limited studies have been carried out on this issue. In this study, a series of moderate scale 1g shake table experiments were conducted at the University of Nevada Reno to evaluate the influence of PGA with the same duration in liquefiable soil layers. The model is prepared based on a large-scale shake table with a scaling factor of N = 5, which has been conducted at the University of California, San Diego. The model ground has three soil layers with relative densities of 50% for crust, 30% for liquefiable, and 90% for dense layer, respectively. In addition, a shallow foundation is seated over an unsaturated crust layer. After preparing the model, the input motions having various peak ground accelerations (i.e., 0.16g, 0.25g, and 0.37g) for the same duration (10 sec) were applied. Based on the experimental results, when the PGA increased from 0.16g to 0.37g, the foundation increased from 20 mm to 100 mm. In addition, the expected foundation settlement based on the scaling factor was 25 mm, while the actual settlement for PGA 0.25g for 10 seconds was 50 mm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foundation%20settlement" title="foundation settlement">foundation settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20ground%20acceleration" title=" peak ground acceleration"> peak ground acceleration</a>, <a href="https://publications.waset.org/abstracts/search?q=shake%20table%20test" title=" shake table test"> shake table test</a> </p> <a href="https://publications.waset.org/abstracts/152038/1-g-shake-table-tests-to-study-the-impact-of-pga-on-foundation-settlement-in-liquefiable-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Gross Anatomical Study on the Tributaries of the Hepatic Portal Vein in Cattle Egret (Bubulcus Ibis)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elsayed%20Fath%20Khalifa">Elsayed Fath Khalifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Samer%20Mohamed%20Daghash"> Samer Mohamed Daghash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the current work study to increase the anatomical knowledge about the cattle egret which considered economically important for farmers. The study was carried out on ten adult, apparently healthy cattle egrets of both sexes. Each bird was exsanguinated; the caudal vena cava was cannulated and flushed with warm normal saline solution (0.9%) then injected with blue colored neoprine (60%) latex in order to study the tributaries of the hepatic portal vein. The origin, course and tributaries of the right and left hepatic portal veins were studied. The hepatic portal venous system collected venous blood from the abdominal viscera including; glandular and muscular stomachs, liver, pancreas, spleen, small intestine and large intestine. The hepatic portal vein was formed by the left and the right hepatic portal veins. The smaller left one drained blood from the glandular and muscular stomachs through the ventral and the left proventriculus as well as the left gastric veins. The most tributaries of the right hepatic portal vein drained blood from the rest of the gastrointestinal tract and the spleen by the proventriculosplenic, the gastropancreaticoduodenal and the common mesenteric veins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cattle%20egret" title="cattle egret">cattle egret</a>, <a href="https://publications.waset.org/abstracts/search?q=common%20mesenteric%20vein" title=" common mesenteric vein"> common mesenteric vein</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatic%20portal%20vein" title=" hepatic portal vein"> hepatic portal vein</a>, <a href="https://publications.waset.org/abstracts/search?q=anatomy" title=" anatomy"> anatomy</a> </p> <a href="https://publications.waset.org/abstracts/24742/gross-anatomical-study-on-the-tributaries-of-the-hepatic-portal-vein-in-cattle-egret-bubulcus-ibis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> The Lamination and Arterial Blood Supply of the Masseter Muscle of Camel (Camelus dromedarius)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elsyed%20Fath%20Khalifa">Elsyed Fath Khalifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Samer%20Mohamed%20Daghash"> Samer Mohamed Daghash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was carried out to investigate the structure of the masseter muscle of camel and its attachments to the skull as well as the relationships with its arterial blood supply. Fourteen heads of clinically healthy camels of different ages and sexes were used in the present investigation. The both common carotid arteries of six specimens were cannulated and flushed with warm normal saline solution (0.9%) then injected with red colored neoprine (60%) latex in order to study the pattern of the blood supply to the masseter muscle. Two heads were injected with an eventually mixture of 75gm red lead oxide in 150cc latex and preserved in a cold room for 3-4 days then divided sagittaly along the median plane to avoid super imposition of the arteries. The arteries of the masseter muscle of each half were radiographed. Four heads were used in manual dissection to describe the laminar arrangement of the masseter muscle. The masseter muscle of the camel was very tendinous and was situated far caudally, which enable the camel to open its jaw very wide. In the camel, the masseter muscle was recognized into proper and improper masseter groups. The proper group included the first, second superficial, intermediate and deep masseter layers. The improper group consisted of maxillo-mandibularis and zygomatico-mandibularis. The remaining two heads were used for clearance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anatomy" title="anatomy">anatomy</a>, <a href="https://publications.waset.org/abstracts/search?q=camel" title=" camel"> camel</a>, <a href="https://publications.waset.org/abstracts/search?q=masseter" title=" masseter"> masseter</a>, <a href="https://publications.waset.org/abstracts/search?q=lamination" title=" lamination"> lamination</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20supply" title=" blood supply"> blood supply</a> </p> <a href="https://publications.waset.org/abstracts/24944/the-lamination-and-arterial-blood-supply-of-the-masseter-muscle-of-camel-camelus-dromedarius" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Effectiveness of Lowering the Water Table as a Mitigation Measure for Foundation Settlement in Liquefiable Soils Using 1-g Scale Shake Table Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kausar%20Alam">Kausar Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Yazdi"> Mohammad Yazdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Peiman%20Zogh"> Peiman Zogh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Motamed"> Ramin Motamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An earthquake is an unpredictable natural disaster. It induces liquefaction, which causes considerable damage to the structure, life support, and piping systems because of ground settlement. As a result, people are incredibly concerned about how to resolve the situation. Previous researchers adopted different ground improvement techniques to reduce the settlement of the structure during earthquakes. This study evaluates the effectiveness of lowering the water table as a technique to mitigate foundation settlement in liquefiable soil. The performance will be evaluated based on foundation settlement and the reduction of excessive pore water pressure. In this study, a scaled model was prepared based on a full-scale shale table experiment conducted at the University of California, San Diego (UCSD). The model ground consists of three soil layers having a relative density of 55%, 45%, and 90%, respectively. A shallow foundation is seated over an unsaturated crust layer. After preparation of the model ground, the water table was measured to be at 45, 40, and 35 cm (from the bottom). Then, the input motions were applied for 10 seconds, with a peak acceleration of 0.25g and a constant frequency of 2.73 Hz. Based on the experimental results, the effectiveness of the lowering water table in reducing the foundation settlement and excess pore water pressure was evident. The foundation settlement was reduced from 50 mm to 5 mm. In addition, lowering the water table as a mitigation measure is a cost-effective way to decrease liquefaction-induced building settlement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foundation%20settlement" title="foundation settlement">foundation settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20water%20table" title=" ground water table"> ground water table</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=hake%20table%20test" title=" hake table test"> hake table test</a> </p> <a href="https://publications.waset.org/abstracts/152050/effectiveness-of-lowering-the-water-table-as-a-mitigation-measure-for-foundation-settlement-in-liquefiable-soils-using-1-g-scale-shake-table-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Time-Domain Analysis Approaches of Soil-Structure Interaction: A Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelrahman%20Taha">Abdelrahman Taha</a>, <a href="https://publications.waset.org/abstracts/search?q=Niloofar%20Malekghaini"> Niloofar Malekghaini</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Ebrahimian"> Hamed Ebrahimian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Motamed"> Ramin Motamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper compares the substructure and direct methods for soil-structure interaction (SSI) analysis in the time domain. In the substructure SSI method, the soil domain is replaced by a set of springs and dashpots, also referred to as the impedance function, derived through the study of the behavior of a massless rigid foundation. The impedance function is inherently frequency dependent, i.e., it varies as a function of the frequency content of the structural response. To use the frequency-dependent impedance function for time-domain SSI analysis, the impedance function is approximated at the fundamental frequency of the structure-soil system. To explore the potential limitations of the substructure modeling process, a two-dimensional reinforced concrete frame structure is modeled using substructure and direct methods in this study. The results show discrepancies between the simulated responses of the substructure and the direct approaches. To isolate the effects of higher modal responses, the same study is repeated using a harmonic input motion, in which a similar discrepancy is still observed between the substructure and direct approaches. It is concluded that the main source of discrepancy between the substructure and direct SSI approaches is likely attributed to the way the impedance functions are calculated, i.e., assuming a massless rigid foundation without considering the presence of the superstructure. Hence, a refined impedance function, considering the presence of the superstructure, shall be developed. This refined impedance function is expected to significantly improve the simulation accuracy of the substructure approach for structural systems whose behavior is dominated by the fundamental mode response. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20approach" title="direct approach">direct approach</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20function" title=" impedance function"> impedance function</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interaction" title=" soil-structure interaction"> soil-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=substructure%20approach" title=" substructure approach"> substructure approach</a> </p> <a href="https://publications.waset.org/abstracts/153295/time-domain-analysis-approaches-of-soil-structure-interaction-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Experimental Evaluation of Foundation Settlement Mitigations in Liquefiable Soils using Press-in Sheet Piling Technique: 1-g Shake Table Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Kausar%20Alam">Md. Kausar Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Motamed"> Ramin Motamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The damaging effects of liquefaction-induced ground movements have been frequently observed in past earthquakes, such as the 2010-2011 Canterbury Earthquake Sequence (CES) in New Zealand and the 2011 Tohoku earthquake in Japan. To reduce the consequences of soil liquefaction at shallow depths, various ground improvement techniques have been utilized in engineering practice, among which this research is focused on experimentally evaluating the press-in sheet piling technique. The press-in sheet pile technique eliminates the vibration, hammering, and noise pollution associated with dynamic sheet pile installation methods. Unfortunately, there are limited experimental studies on the press-in sheet piling technique for liquefaction mitigation using 1g shake table tests in which all the controlling mechanisms of liquefaction-induced foundation settlement, including sand ejecta, can be realistically reproduced. In this study, a series of moderate scale 1g shake table experiments were conducted at the University of Nevada, Reno, to evaluate the performance of this technique in liquefiable soil layers. First, a 1/5 size model was developed based on a recent UC San Diego shaking table experiment. The scaled model has a density of 50% for the top crust, 40% for the intermediate liquefiable layer, and 85% for the bottom dense layer. Second, a shallow foundation is seated atop an unsaturated sandy soil crust. Third, in a series of tests, a sheet pile with variable embedment depth is inserted into the liquefiable soil using the press-in technique surrounding the shallow foundations. The scaled models are subjected to harmonic input motions with amplitude and dominant frequency properly scaled based on the large-scale shake table test. This study assesses the performance of the press-in sheet piling technique in terms of reductions in the foundation movements (settlement and tilt) and generated excess pore water pressures. In addition, this paper discusses the cost-effectiveness and carbon footprint features of the studied mitigation measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=excess%20pore%20water%20pressure" title="excess pore water pressure">excess pore water pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=foundation%20settlement" title=" foundation settlement"> foundation settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=press-in%20sheet%20pile" title=" press-in sheet pile"> press-in sheet pile</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20liquefaction" title=" soil liquefaction"> soil liquefaction</a> </p> <a href="https://publications.waset.org/abstracts/152041/experimental-evaluation-of-foundation-settlement-mitigations-in-liquefiable-soils-using-press-in-sheet-piling-technique-1-g-shake-table-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10