CINXE.COM

Divine Proportions: Rational Trigonometry to Universal Geometry - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Divine Proportions: Rational Trigonometry to Universal Geometry - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"7aacbe52-27e4-42cf-bce5-ca50aa7e1bd1","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Divine_Proportions:_Rational_Trigonometry_to_Universal_Geometry","wgTitle":"Divine Proportions: Rational Trigonometry to Universal Geometry","wgCurRevisionId":1276338003,"wgRevisionId":1276338003,"wgArticleId":2696396,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Books with missing cover","Mathematics books","2005 non-fiction books","Trigonometry","Self-published books"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Divine_Proportions:_Rational_Trigonometry_to_Universal_Geometry","wgRelevantArticleId": 2696396,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgRedirectedFrom":"Rational_geometry","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgInternalRedirectTargetUrl":"/wiki/Divine_Proportions:_Rational_Trigonometry_to_Universal_Geometry","wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1960635","wgCheckUserClientHintsHeadersJsApi":["brands","architecture", "bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips", "ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.17"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Divine Proportions: Rational Trigonometry to Universal Geometry - Wikipedia"> <meta property="og:type" content="website"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Divine_Proportions:_Rational_Trigonometry_to_Universal_Geometry"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Divine_Proportions:_Rational_Trigonometry_to_Universal_Geometry&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Divine_Proportions:_Rational_Trigonometry_to_Universal_Geometry"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Divine_Proportions_Rational_Trigonometry_to_Universal_Geometry rootpage-Divine_Proportions_Rational_Trigonometry_to_Universal_Geometry skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Divine+Proportions%3A+Rational+Trigonometry+to+Universal+Geometry" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Divine+Proportions%3A+Rational+Trigonometry+to+Universal+Geometry" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Divine+Proportions%3A+Rational+Trigonometry+to+Universal+Geometry" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Divine+Proportions%3A+Rational+Trigonometry+to+Universal+Geometry" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Overview" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Overview"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Overview</span> </div> </a> <ul id="toc-Overview-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Organization_and_topics" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Organization_and_topics"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Organization and topics</span> </div> </a> <ul id="toc-Organization_and_topics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Audience" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Audience"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Audience</span> </div> </a> <ul id="toc-Audience-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Critical_reception" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Critical_reception"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Critical reception</span> </div> </a> <ul id="toc-Critical_reception-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><i>Divine Proportions: Rational Trigonometry to Universal Geometry</i></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 5 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-5" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">5 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Trigonometr%C3%ADa_racional" title="Trigonometría racional – Spanish" lang="es" hreflang="es" data-title="Trigonometría racional" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Racionala_trigonometrio" title="Racionala trigonometrio – Esperanto" lang="eo" hreflang="eo" data-title="Racionala trigonometrio" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Trigonom%C3%A9trie_de_Wildberger" title="Trigonométrie de Wildberger – French" lang="fr" hreflang="fr" data-title="Trigonométrie de Wildberger" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Trigonometria_racional" title="Trigonometria racional – Portuguese" lang="pt" hreflang="pt" data-title="Trigonometria racional" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Rationaalinen_trigonometria" title="Rationaalinen trigonometria – Finnish" lang="fi" hreflang="fi" data-title="Rationaalinen trigonometria" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1960635#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Divine_Proportions:_Rational_Trigonometry_to_Universal_Geometry" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Divine_Proportions:_Rational_Trigonometry_to_Universal_Geometry" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Divine_Proportions:_Rational_Trigonometry_to_Universal_Geometry"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Divine_Proportions:_Rational_Trigonometry_to_Universal_Geometry&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Divine_Proportions:_Rational_Trigonometry_to_Universal_Geometry&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Divine_Proportions:_Rational_Trigonometry_to_Universal_Geometry"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Divine_Proportions:_Rational_Trigonometry_to_Universal_Geometry&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Divine_Proportions:_Rational_Trigonometry_to_Universal_Geometry&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Divine_Proportions:_Rational_Trigonometry_to_Universal_Geometry" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Divine_Proportions:_Rational_Trigonometry_to_Universal_Geometry" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Divine_Proportions:_Rational_Trigonometry_to_Universal_Geometry&amp;oldid=1276338003" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Divine_Proportions:_Rational_Trigonometry_to_Universal_Geometry&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Divine_Proportions%3A_Rational_Trigonometry_to_Universal_Geometry&amp;id=1276338003&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDivine_Proportions%3A_Rational_Trigonometry_to_Universal_Geometry"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDivine_Proportions%3A_Rational_Trigonometry_to_Universal_Geometry"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Divine_Proportions%3A_Rational_Trigonometry_to_Universal_Geometry&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Divine_Proportions:_Rational_Trigonometry_to_Universal_Geometry&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1960635" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Redirected from <a href="/w/index.php?title=Rational_geometry&amp;redirect=no" class="mw-redirect" title="Rational geometry">Rational geometry</a>)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">2005 book reformulating plane geometry</div><style data-mw-deduplicate="TemplateStyles:r1257001546">.mw-parser-output .infobox-subbox{padding:0;border:none;margin:-3px;width:auto;min-width:100%;font-size:100%;clear:none;float:none;background-color:transparent}.mw-parser-output .infobox-3cols-child{margin:auto}.mw-parser-output .infobox .navbar{font-size:100%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .infobox-full-data:not(.notheme)>div:not(.notheme)[style]{background:#1f1f23!important;color:#f8f9fa}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .infobox-full-data:not(.notheme) div:not(.notheme){background:#1f1f23!important;color:#f8f9fa}}@media(min-width:640px){body.skin--responsive .mw-parser-output .infobox-table{display:table!important}body.skin--responsive .mw-parser-output .infobox-table>caption{display:table-caption!important}body.skin--responsive .mw-parser-output .infobox-table>tbody{display:table-row-group}body.skin--responsive .mw-parser-output .infobox-table tr{display:table-row!important}body.skin--responsive .mw-parser-output .infobox-table th,body.skin--responsive .mw-parser-output .infobox-table td{padding-left:inherit;padding-right:inherit}}</style><table class="infobox vcard"><caption class="infobox-title" style="font-size:125%; font-style:italic; padding-bottom:0.2em;">Divine Proportions: Rational Trigonometry to Universal Geometry <span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=&amp;rft.author=Norman+J.+Wildberger&amp;rft.date=2005&amp;rft.pub=Wild+Egg"></span></caption><tbody><tr><th scope="row" class="infobox-label">Author</th><td class="infobox-data">Norman J. Wildberger</td></tr><tr><th scope="row" class="infobox-label">Genre</th><td class="infobox-data">Mathematics</td></tr><tr><th scope="row" class="infobox-label">Publisher</th><td class="infobox-data">Wild Egg</td></tr><tr><th scope="row" class="infobox-label"><div style="display: inline-block; line-height: 1.2em; padding: .1em 0;">Publication date</div></th><td class="infobox-data">2005</td></tr></tbody></table> <p> <i><b>Divine Proportions: Rational Trigonometry to Universal Geometry</b></i> is a 2005 book by the mathematician Norman J. Wildberger on a proposed alternative approach to <a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a> and <a href="/wiki/Trigonometry" title="Trigonometry">trigonometry</a>, called <b>rational trigonometry</b>. The book advocates replacing the usual basic quantities of trigonometry, <a href="/wiki/Euclidean_distance" title="Euclidean distance">Euclidean distance</a> and <a href="/wiki/Angle" title="Angle">angle</a> measure, by <a href="/wiki/Euclidean_distance#Squared_Euclidean_distance" title="Euclidean distance">squared distance</a> and the square of the <a href="/wiki/Sine" class="mw-redirect" title="Sine">sine</a> of the angle, respectively. This is logically equivalent to the standard development (as the replacement quantities can be expressed in terms of the standard ones and vice versa). The author claims his approach holds some advantages, such as avoiding the need for <a href="/wiki/Irrational_numbers" class="mw-redirect" title="Irrational numbers">irrational numbers</a>. </p><p>The book was "essentially self-published"<sup id="cite_ref-wiswell_1-0" class="reference"><a href="#cite_note-wiswell-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> by Wildberger through his publishing company Wild Egg. The formulas and theorems in the book are regarded as correct mathematics but the claims about practical or pedagogical superiority are primarily promoted by Wildberger himself and have received mixed reviews. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Overview">Overview</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Divine_Proportions:_Rational_Trigonometry_to_Universal_Geometry&amp;action=edit&amp;section=1" title="Edit section: Overview"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The main idea of <i>Divine Proportions</i> is to replace distances by the <a href="/wiki/Squared_Euclidean_distance" class="mw-redirect" title="Squared Euclidean distance">squared Euclidean distance</a>, which Wildberger calls the <i><b>quadrance</b></i>, and to replace angle measures by the squares of their sines, which Wildberger calls the <i><b>spread</b></i> between two lines. <i>Divine Proportions</i> defines both of these concepts directly from the <a href="/wiki/Cartesian_coordinate" class="mw-redirect" title="Cartesian coordinate">Cartesian coordinates</a> of points that determine a line segment or a pair of crossing lines. Defined in this way, they are <a href="/wiki/Rational_function" title="Rational function">rational functions</a> of those coordinates, and can be calculated directly without the need to take the <a href="/wiki/Square_root" title="Square root">square roots</a> or <a href="/wiki/Inverse_trigonometric_functions" title="Inverse trigonometric functions">inverse trigonometric functions</a> required when computing distances or angle measures.<sup id="cite_ref-wiswell_1-1" class="reference"><a href="#cite_note-wiswell-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p><p>For Wildberger, a <a href="/wiki/Finitism" title="Finitism">finitist</a>, this replacement has the purported advantage of avoiding the concepts of <a href="/wiki/Limit_(mathematics)" title="Limit (mathematics)">limits</a> and <a href="/wiki/Actual_infinity" title="Actual infinity">actual infinity</a> used in defining the <a href="/wiki/Real_number" title="Real number">real numbers</a>, which Wildberger claims to be unfounded.<sup id="cite_ref-gefter_2-0" class="reference"><a href="#cite_note-gefter-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-wiswell_1-2" class="reference"><a href="#cite_note-wiswell-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> It also allows analogous concepts to be extended directly from the rational numbers to other number systems such as <a href="/wiki/Finite_field" title="Finite field">finite fields</a> using the same formulas for quadrance and spread.<sup id="cite_ref-wiswell_1-3" class="reference"><a href="#cite_note-wiswell-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> Additionally, this method avoids the ambiguity of the two <a href="/wiki/Supplementary_angle" class="mw-redirect" title="Supplementary angle">supplementary angles</a> formed by a pair of lines, as both angles have the same spread. This system is claimed to be more intuitive, and to extend more easily from two to three dimensions.<sup id="cite_ref-leversha_3-0" class="reference"><a href="#cite_note-leversha-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> However, in exchange for these benefits, one loses the additivity of distances and angles: for instance, if a line segment is divided in two, its length is the sum of the lengths of the two pieces, but combining the quadrances of the pieces is more complicated and requires square roots.<sup id="cite_ref-wiswell_1-4" class="reference"><a href="#cite_note-wiswell-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Organization_and_topics">Organization and topics</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Divine_Proportions:_Rational_Trigonometry_to_Universal_Geometry&amp;action=edit&amp;section=2" title="Edit section: Organization and topics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><i>Divine Proportions</i> is divided into four parts. Part I presents an overview of the use of quadrance and spread to replace distance and angle, and makes the argument for their advantages. Part II formalizes the claims made in part I, and proves them rigorously.<sup id="cite_ref-wiswell_1-5" class="reference"><a href="#cite_note-wiswell-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> Rather than defining lines as infinite sets of points, they are defined by their <a href="/wiki/Homogeneous_coordinates" title="Homogeneous coordinates">homogeneous coordinates</a>, which may be used in formulas for testing the incidence of points and lines. Like the sine, the cosine and tangent are replaced with rational equivalents, called the "cross" and "twist", and <i>Divine Proportions</i> develops various analogues of <a href="/wiki/Trigonometric_identity" class="mw-redirect" title="Trigonometric identity">trigonometric identities</a> involving these quantities,<sup id="cite_ref-leversha_3-1" class="reference"><a href="#cite_note-leversha-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> including versions of the <a href="/wiki/Pythagorean_theorem" title="Pythagorean theorem">Pythagorean theorem</a>, <a href="/wiki/Law_of_sines" title="Law of sines">law of sines</a> and <a href="/wiki/Law_of_cosines" title="Law of cosines">law of cosines</a>.<sup id="cite_ref-henle_4-0" class="reference"><a href="#cite_note-henle-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p><p>Part III develops the geometry of <a href="/wiki/Triangle" title="Triangle">triangles</a> and <a href="/wiki/Conic_section" title="Conic section">conic sections</a> using the tools developed in the two previous parts.<sup id="cite_ref-wiswell_1-6" class="reference"><a href="#cite_note-wiswell-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> Well known results such as <a href="/wiki/Heron%27s_formula" title="Heron&#39;s formula">Heron's formula</a> for calculating the area of a triangle from its side lengths, or the <a href="/wiki/Inscribed_angle_theorem" class="mw-redirect" title="Inscribed angle theorem">inscribed angle theorem</a> in the form that the angles subtended by a chord of a circle from other points on the circle are equal, are reformulated in terms of quadrance and spread, and thereby generalized to arbitrary fields of numbers.<sup id="cite_ref-leversha_3-2" class="reference"><a href="#cite_note-leversha-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-franklin_5-0" class="reference"><a href="#cite_note-franklin-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> Finally, Part IV considers practical applications in physics and surveying, and develops extensions to higher-dimensional <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a> and to <a href="/wiki/Polar_coordinate" class="mw-redirect" title="Polar coordinate">polar coordinates</a>.<sup id="cite_ref-wiswell_1-7" class="reference"><a href="#cite_note-wiswell-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Audience">Audience</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Divine_Proportions:_Rational_Trigonometry_to_Universal_Geometry&amp;action=edit&amp;section=3" title="Edit section: Audience"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><i>Divine Proportions</i> does not assume much in the way of mathematical background in its readers, but its many long formulas, frequent consideration of finite fields, and (after part I) emphasis on mathematical rigour are likely to be obstacles to a <a href="/wiki/Popular_mathematics" title="Popular mathematics">popular mathematics</a> audience. Instead, it is mainly written for mathematics teachers and researchers. However, it may also be readable by mathematics students, and contains exercises making it possible to use as the basis for a mathematics course.<sup id="cite_ref-wiswell_1-8" class="reference"><a href="#cite_note-wiswell-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-barker_6-0" class="reference"><a href="#cite_note-barker-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Critical_reception">Critical reception</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Divine_Proportions:_Rational_Trigonometry_to_Universal_Geometry&amp;action=edit&amp;section=4" title="Edit section: Critical reception"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The feature of the book that was most positively received by reviewers was its work extending results in distance and angle geometry to finite fields. Reviewer Laura Wiswell found this work impressive, and was charmed by the result that the smallest finite field containing a regular <a href="/wiki/Pentagon" title="Pentagon">pentagon</a> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {F} _{19}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>19</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {F} _{19}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a143d96171f10b61bfc6322f7e2f971c3d764f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.296ex; height:2.509ex;" alt="{\displaystyle \mathbb {F} _{19}}"></span>.<sup id="cite_ref-wiswell_1-9" class="reference"><a href="#cite_note-wiswell-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> Michael Henle calls the extension of triangle and conic section geometry to finite fields, in part III of the book, "an elegant theory of great generality",<sup id="cite_ref-henle_4-1" class="reference"><a href="#cite_note-henle-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> and William Barker also writes approvingly of this aspect of the book, calling it "particularly novel" and possibly opening up new research directions.<sup id="cite_ref-barker_6-1" class="reference"><a href="#cite_note-barker-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p><p>Wiswell raises the question of how many of the detailed results presented without attribution in this work are actually novel.<sup id="cite_ref-wiswell_1-10" class="reference"><a href="#cite_note-wiswell-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> In this light, Michael Henle notes that the use of <a href="/wiki/Squared_Euclidean_distance" class="mw-redirect" title="Squared Euclidean distance">squared Euclidean distance</a> "has often been found convenient elsewhere";<sup id="cite_ref-henle_4-2" class="reference"><a href="#cite_note-henle-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> for instance it is used in <a href="/wiki/Distance_geometry" title="Distance geometry">distance geometry</a>, <a href="/wiki/Least_squares" title="Least squares">least squares</a> statistics, and <a href="/wiki/Convex_optimization" title="Convex optimization">convex optimization</a>. James Franklin points out that for spaces of three or more dimensions, modelled conventionally using <a href="/wiki/Linear_algebra" title="Linear algebra">linear algebra</a>, the use of spread by <i>Divine Proportions</i> is not very different from standard methods involving <a href="/wiki/Dot_product" title="Dot product">dot products</a> in place of trigonometric functions.<sup id="cite_ref-franklin_5-1" class="reference"><a href="#cite_note-franklin-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p>An advantage of Wildberger's methods noted by Henle is that, because they involve only simple algebra, the proofs are both easy to follow and easy for a computer to verify. However, he suggests that the book's claims of greater simplicity in its overall theory rest on a false comparison in which quadrance and spread are weighed not against the corresponding classical concepts of distances, angles, and sines, but the much wider set of tools from classical trigonometry. He also points out that, to a student with a scientific calculator, formulas that avoid square roots and trigonometric functions are a non-issue,<sup id="cite_ref-henle_4-3" class="reference"><a href="#cite_note-henle-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> and Barker adds that the new formulas often involve a greater number of individual calculation steps.<sup id="cite_ref-barker_6-2" class="reference"><a href="#cite_note-barker-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> Although multiple reviewers felt that a reduction in the amount of time needed to teach students trigonometry would be very welcome,<sup id="cite_ref-leversha_3-3" class="reference"><a href="#cite_note-leversha-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-franklin_5-2" class="reference"><a href="#cite_note-franklin-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-campbell_7-0" class="reference"><a href="#cite_note-campbell-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> Paul Campbell is skeptical that these methods would actually speed learning.<sup id="cite_ref-campbell_7-1" class="reference"><a href="#cite_note-campbell-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> Gerry Leversha keeps an open mind, writing that "It will be interesting to see some of the textbooks aimed at school pupils [that Wildberger] has promised to produce, and ... controlled experiments involving student guinea pigs."<sup id="cite_ref-leversha_3-4" class="reference"><a href="#cite_note-leversha-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> However, these textbooks and experiments have not been published. </p><p>Wiswell is unconvinced by the claim that conventional geometry has foundational flaws that these methods avoid.<sup id="cite_ref-wiswell_1-11" class="reference"><a href="#cite_note-wiswell-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> While agreeing with Wiswell, Barker points out that there may be other mathematicians who share Wildberger's philosophical suspicions of the infinite, and that this work should be of great interest to them.<sup id="cite_ref-barker_6-3" class="reference"><a href="#cite_note-barker-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p><p>A final issue raised by multiple reviewers is inertia: supposing for the sake of argument that these methods are better, are they sufficiently better to make worthwhile the large individual effort of re-learning geometry and trigonometry in these terms, and the institutional effort of re-working the school curriculum to use them in place of classical geometry and trigonometry? Henle, Barker, and Leversha conclude that the book has not made its case for this,<sup id="cite_ref-leversha_3-5" class="reference"><a href="#cite_note-leversha-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-henle_4-4" class="reference"><a href="#cite_note-henle-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-barker_6-4" class="reference"><a href="#cite_note-barker-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> but <a href="/wiki/Sandra_Arlinghaus" title="Sandra Arlinghaus">Sandra Arlinghaus</a> sees this work as an opportunity for fields such as her mathematical geography "that have relatively little invested in traditional institutional rigidity" to demonstrate the promise of such a replacement.<sup id="cite_ref-arlinghaus_8-0" class="reference"><a href="#cite_note-arlinghaus-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Divine_Proportions:_Rational_Trigonometry_to_Universal_Geometry&amp;action=edit&amp;section=5" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Perles_configuration" title="Perles configuration">Perles configuration</a>, a finite set of points and lines in the Euclidean plane that cannot be represented with rational coordinates</li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Divine_Proportions:_Rational_Trigonometry_to_Universal_Geometry&amp;action=edit&amp;section=6" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-wiswell-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-wiswell_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-wiswell_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-wiswell_1-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-wiswell_1-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-wiswell_1-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-wiswell_1-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-wiswell_1-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-wiswell_1-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-wiswell_1-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-wiswell_1-9"><sup><i><b>j</b></i></sup></a> <a href="#cite_ref-wiswell_1-10"><sup><i><b>k</b></i></sup></a> <a href="#cite_ref-wiswell_1-11"><sup><i><b>l</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFWiswell2007" class="citation cs2">Wiswell, Laura (June 2007), "Review of <i>Divine Proportions</i>", <i><a href="/wiki/Proceedings_of_the_Edinburgh_Mathematical_Society" class="mw-redirect" title="Proceedings of the Edinburgh Mathematical Society">Proceedings of the Edinburgh Mathematical Society</a></i>, <b>50</b> (2): <span class="nowrap">509–</span>510, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS0013091507215020">10.1017/S0013091507215020</a></span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ProQuest" title="ProQuest">ProQuest</a>&#160;<a rel="nofollow" class="external text" href="https://www.proquest.com/docview/228292466">228292466</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+Edinburgh+Mathematical+Society&amp;rft.atitle=Review+of+Divine+Proportions&amp;rft.volume=50&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E509-%3C%2Fspan%3E510&amp;rft.date=2007-06&amp;rft_id=info%3Adoi%2F10.1017%2FS0013091507215020&amp;rft.aulast=Wiswell&amp;rft.aufirst=Laura&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADivine+Proportions%3A+Rational+Trigonometry+to+Universal+Geometry" class="Z3988"></span></span> </li> <li id="cite_note-gefter-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-gefter_2-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGefter2013" class="citation cs2">Gefter, Amanda (2013), "Mind-bending mathematics: Why infinity has to go", <i>New Scientist</i>, <b>219</b> (2930): <span class="nowrap">32–</span>35, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013NewSc.219...32G">2013NewSc.219...32G</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fs0262-4079%2813%2962043-6">10.1016/s0262-4079(13)62043-6</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=New+Scientist&amp;rft.atitle=Mind-bending+mathematics%3A+Why+infinity+has+to+go&amp;rft.volume=219&amp;rft.issue=2930&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E32-%3C%2Fspan%3E35&amp;rft.date=2013&amp;rft_id=info%3Adoi%2F10.1016%2Fs0262-4079%2813%2962043-6&amp;rft_id=info%3Abibcode%2F2013NewSc.219...32G&amp;rft.aulast=Gefter&amp;rft.aufirst=Amanda&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADivine+Proportions%3A+Rational+Trigonometry+to+Universal+Geometry" class="Z3988"></span></span> </li> <li id="cite_note-leversha-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-leversha_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-leversha_3-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-leversha_3-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-leversha_3-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-leversha_3-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-leversha_3-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeversha2008" class="citation cs2">Leversha, Gerry (March 2008), "Review of <i>Divine Proportions</i>", <i><a href="/wiki/The_Mathematical_Gazette" title="The Mathematical Gazette">The Mathematical Gazette</a></i>, <b>92</b> (523): <span class="nowrap">184–</span>186, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS0025557200182944">10.1017/S0025557200182944</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/27821758">27821758</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:125430473">125430473</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Mathematical+Gazette&amp;rft.atitle=Review+of+Divine+Proportions&amp;rft.volume=92&amp;rft.issue=523&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E184-%3C%2Fspan%3E186&amp;rft.date=2008-03&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A125430473%23id-name%3DS2CID&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F27821758%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.1017%2FS0025557200182944&amp;rft.aulast=Leversha&amp;rft.aufirst=Gerry&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADivine+Proportions%3A+Rational+Trigonometry+to+Universal+Geometry" class="Z3988"></span></span> </li> <li id="cite_note-henle-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-henle_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-henle_4-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-henle_4-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-henle_4-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-henle_4-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHenle2007" class="citation cs2">Henle, Michael (December 2007), "Review of <i>Divine Proportions</i>", <i><a href="/wiki/The_American_Mathematical_Monthly" title="The American Mathematical Monthly">The American Mathematical Monthly</a></i>, <b>114</b> (10): <span class="nowrap">933–</span>937, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/27642383">27642383</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Mathematical+Monthly&amp;rft.atitle=Review+of+Divine+Proportions&amp;rft.volume=114&amp;rft.issue=10&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E933-%3C%2Fspan%3E937&amp;rft.date=2007-12&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F27642383%23id-name%3DJSTOR&amp;rft.aulast=Henle&amp;rft.aufirst=Michael&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADivine+Proportions%3A+Rational+Trigonometry+to+Universal+Geometry" class="Z3988"></span></span> </li> <li id="cite_note-franklin-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-franklin_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-franklin_5-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-franklin_5-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFranklin2006" class="citation cs2">Franklin, James (June 2006), <a rel="nofollow" class="external text" href="https://philpapers.org/archive/FRADPR.pdf">"Review of <i>Divine Proportions</i>"</a> <span class="cs1-format">(PDF)</span>, <i><a href="/wiki/The_Mathematical_Intelligencer" title="The Mathematical Intelligencer">The Mathematical Intelligencer</a></i>, <b>28</b> (3): <span class="nowrap">73–</span>74, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fbf02986892">10.1007/bf02986892</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121754449">121754449</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Mathematical+Intelligencer&amp;rft.atitle=Review+of+Divine+Proportions&amp;rft.volume=28&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E73-%3C%2Fspan%3E74&amp;rft.date=2006-06&amp;rft_id=info%3Adoi%2F10.1007%2Fbf02986892&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121754449%23id-name%3DS2CID&amp;rft.aulast=Franklin&amp;rft.aufirst=James&amp;rft_id=https%3A%2F%2Fphilpapers.org%2Farchive%2FFRADPR.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADivine+Proportions%3A+Rational+Trigonometry+to+Universal+Geometry" class="Z3988"></span></span> </li> <li id="cite_note-barker-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-barker_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-barker_6-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-barker_6-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-barker_6-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-barker_6-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarker2008" class="citation cs2">Barker, William (July 2008), <a rel="nofollow" class="external text" href="https://www.maa.org/press/maa-reviews/divine-proportions-rational-trigonometry-to-universal-geometry">"Review of <i>Divine Proportions</i>"</a>, <i>MAA Reviews</i>, <a href="/wiki/Mathematical_Association_of_America" title="Mathematical Association of America">Mathematical Association of America</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=MAA+Reviews&amp;rft.atitle=Review+of+Divine+Proportions&amp;rft.date=2008-07&amp;rft.aulast=Barker&amp;rft.aufirst=William&amp;rft_id=https%3A%2F%2Fwww.maa.org%2Fpress%2Fmaa-reviews%2Fdivine-proportions-rational-trigonometry-to-universal-geometry&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADivine+Proportions%3A+Rational+Trigonometry+to+Universal+Geometry" class="Z3988"></span></span> </li> <li id="cite_note-campbell-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-campbell_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-campbell_7-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCampbell2007" class="citation cs2">Campbell, Paul J. (February 2007), "Review of <i>Divine Proportions</i>", <i><a href="/wiki/Mathematics_Magazine" title="Mathematics Magazine">Mathematics Magazine</a></i>, <b>80</b> (1): <span class="nowrap">84–</span>85, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F0025570X.2007.11953460">10.1080/0025570X.2007.11953460</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/27643001">27643001</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:218543379">218543379</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematics+Magazine&amp;rft.atitle=Review+of+Divine+Proportions&amp;rft.volume=80&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E84-%3C%2Fspan%3E85&amp;rft.date=2007-02&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A218543379%23id-name%3DS2CID&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F27643001%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.1080%2F0025570X.2007.11953460&amp;rft.aulast=Campbell&amp;rft.aufirst=Paul+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADivine+Proportions%3A+Rational+Trigonometry+to+Universal+Geometry" class="Z3988"></span></span> </li> <li id="cite_note-arlinghaus-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-arlinghaus_8-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArlinghaus2006" class="citation cs2"><a href="/wiki/Sandra_Arlinghaus" title="Sandra Arlinghaus">Arlinghaus, Sandra L.</a> (June 2006), <a rel="nofollow" class="external text" href="http://www-personal.umich.edu/~copyrght/image/solstice/sum06/wildberger.html">"Review of <i>Divine Proportions</i>"</a>, <i>Solstice: An Electronic Journal of Geography and Mathematics</i>, <b>17</b> (1), <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/2027.42%2F60314">2027.42/60314</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Solstice%3A+An+Electronic+Journal+of+Geography+and+Mathematics&amp;rft.atitle=Review+of+Divine+Proportions&amp;rft.volume=17&amp;rft.issue=1&amp;rft.date=2006-06&amp;rft_id=info%3Ahdl%2F2027.42%2F60314&amp;rft.aulast=Arlinghaus&amp;rft.aufirst=Sandra+L.&amp;rft_id=http%3A%2F%2Fwww-personal.umich.edu%2F~copyrght%2Fimage%2Fsolstice%2Fsum06%2Fwildberger.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADivine+Proportions%3A+Rational+Trigonometry+to+Universal+Geometry" class="Z3988"></span></span> </li> </ol></div></div> <!-- NewPP limit report Parsed by mw‐api‐ext.eqiad.canary‐bf894cc47‐9j7cr Cached time: 20250219123331 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.364 seconds Real time usage: 0.483 seconds Preprocessor visited node count: 9039/1000000 Post‐expand include size: 28022/2097152 bytes Template argument size: 1870/2097152 bytes Highest expansion depth: 13/100 Expensive parser function count: 1/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 40436/5000000 bytes Lua time usage: 0.160/10.000 seconds Lua memory usage: 5005355/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 417.381 1 -total 33.97% 141.787 1 Template:Reflist 28.48% 118.889 8 Template:Citation 27.36% 114.198 29 Template:R 24.61% 102.703 35 Template:R/ref 19.50% 81.390 1 Template:Infobox_book 17.86% 74.533 1 Template:Short_description 14.65% 61.146 1 Template:Infobox 9.92% 41.420 2 Template:Pagetype 9.05% 37.775 35 Template:R/superscript --> <!-- Saved in parser cache with key enwiki:pcache:2696396:|#|:idhash:canonical and timestamp 20250219123331 and revision id 1276338003. Rendering was triggered because: unknown --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Divine_Proportions:_Rational_Trigonometry_to_Universal_Geometry&amp;oldid=1276338003">https://en.wikipedia.org/w/index.php?title=Divine_Proportions:_Rational_Trigonometry_to_Universal_Geometry&amp;oldid=1276338003</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Mathematics_books" title="Category:Mathematics books">Mathematics books</a></li><li><a href="/wiki/Category:2005_non-fiction_books" title="Category:2005 non-fiction books">2005 non-fiction books</a></li><li><a href="/wiki/Category:Trigonometry" title="Category:Trigonometry">Trigonometry</a></li><li><a href="/wiki/Category:Self-published_books" title="Category:Self-published books">Self-published books</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Books_with_missing_cover" title="Category:Books with missing cover">Books with missing cover</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 18 February 2025, at 07:40<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Divine_Proportions:_Rational_Trigonometry_to_Universal_Geometry&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/static/images/footer/wikimedia-button.svg" width="84" height="29"><img src="/static/images/footer/wikimedia.svg" width="25" height="25" alt="Wikimedia Foundation" lang="en" loading="lazy"></picture></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><i>Divine Proportions: Rational Trigonometry to Universal Geometry</i></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>5 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-d8647bfd6-6s8bw","wgBackendResponseTime":143,"wgPageParseReport":{"limitreport":{"cputime":"0.364","walltime":"0.483","ppvisitednodes":{"value":9039,"limit":1000000},"postexpandincludesize":{"value":28022,"limit":2097152},"templateargumentsize":{"value":1870,"limit":2097152},"expansiondepth":{"value":13,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":40436,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 417.381 1 -total"," 33.97% 141.787 1 Template:Reflist"," 28.48% 118.889 8 Template:Citation"," 27.36% 114.198 29 Template:R"," 24.61% 102.703 35 Template:R/ref"," 19.50% 81.390 1 Template:Infobox_book"," 17.86% 74.533 1 Template:Short_description"," 14.65% 61.146 1 Template:Infobox"," 9.92% 41.420 2 Template:Pagetype"," 9.05% 37.775 35 Template:R/superscript"]},"scribunto":{"limitreport-timeusage":{"value":"0.160","limit":"10.000"},"limitreport-memusage":{"value":5005355,"limit":52428800}},"cachereport":{"origin":"mw-api-ext.eqiad.canary-bf894cc47-9j7cr","timestamp":"20250219123331","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Divine Proportions: Rational Trigonometry to Universal Geometry","url":"https:\/\/en.wikipedia.org\/wiki\/Divine_Proportions:_Rational_Trigonometry_to_Universal_Geometry","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1960635","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1960635","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-09-17T18:09:52Z","dateModified":"2025-02-18T07:40:22Z","headline":"reformulation of planar distance and angle measurements in terms of polynomial functions of Cartesian coordinates"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10