CINXE.COM

Search results for: indentation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: indentation</title> <meta name="description" content="Search results for: indentation"> <meta name="keywords" content="indentation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="indentation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="indentation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 59</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: indentation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> A Proposal of Local Indentation Techniques for Mechanical Property Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20B.%20Lim">G. B. Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20Jeon"> C. H. Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20H.%20Jung"> K. H. Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> General light metal alloys are often developed in the material of transportation equipment such as automobiles and aircraft. Among the light metal alloys, magnesium is the lightest structural material with superior specific strength and many attractive physical and mechanical properties. However, magnesium alloys were difficult to obtain the mechanical properties at warm temperature. The aims of present work were to establish an analytical relation between mechanical properties and plastic flow induced by local indentation. An experimental investigation of the local strain distribution was carried out using a specially designed local indentation equipment in conjunction with ARAMIS based on digital image correlation method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indentation" title="indentation">indentation</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium" title=" magnesium"> magnesium</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20property" title=" mechanical property"> mechanical property</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight%20material" title=" lightweight material"> lightweight material</a>, <a href="https://publications.waset.org/abstracts/search?q=ARAMIS" title=" ARAMIS"> ARAMIS</a> </p> <a href="https://publications.waset.org/abstracts/30031/a-proposal-of-local-indentation-techniques-for-mechanical-property-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Mechanical Properties of CNT Reinforced Composite Using Berkovich Nanoindentation Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khondaker%20Sakil%20Ahmed">Khondaker Sakil Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ang%20Kok%20Keng"> Ang Kok Keng</a>, <a href="https://publications.waset.org/abstracts/search?q=Shah%20Md%20Muniruzzaman"> Shah Md Muniruzzaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spherical and Berkovich indentation tests are carried out numerically using finite element method for uniformly dispersed Carbon Nanotube (CNT) in the polymer matrix in which perfectly bonded CNT/matrix interface is considered. The Large strain elasto-plastic analysis is performed to investigate the actual scenario of nanoindentation test. This study investigates how the addition of CNT in polymer matrix influences the mechanical properties like hardness, elastic modulus of the nanocomposite. Since the wall thickness to radius ratio (t/r) is significantly small for SWCNT there is a huge possibility of lateral buckling which is a function of the location of indentation tip as well as the mechanical properties of matrix. Separate finite element models are constructed to compare the result with Berkovich indentation. This study also investigates the buckling behavior of different nanotube in a different polymer matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title="carbon nanotube">carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=elasto-plastic" title=" elasto-plastic"> elasto-plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20model" title=" finite element model"> finite element model</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-indentation" title=" nano-indentation"> nano-indentation</a> </p> <a href="https://publications.waset.org/abstracts/32191/mechanical-properties-of-cnt-reinforced-composite-using-berkovich-nanoindentation-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Investigation of Damage in Glass Subjected to Static Indentation Using Continuum Damage Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Ismail">J. Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Za%C3%AFri"> F. Zaïri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Na%C3%AFt-Abdelaziz"> M. Naït-Abdelaziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Azari"> Z. Azari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a combined approach of continuum damage mechanics (CDM) and fracture mechanics is applied to model a glass plate behavior under static indentation. A spherical indenter is used and a CDM based constitutive model with an anisotropic damage tensor was selected and implemented into a finite element code to study the damage of glass. Various regions with critical damage values were predicted in good agreement with the experimental observations in the literature. In these regions, the directions of crack propagation, including both cracks initiating on the surface as well as in the bulk, were predicted using the strain energy density factor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20modeling" title="finite element modeling">finite element modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=continuum%20damage%20mechanics" title=" continuum damage mechanics"> continuum damage mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=indentation" title=" indentation"> indentation</a>, <a href="https://publications.waset.org/abstracts/search?q=cracks" title=" cracks"> cracks</a> </p> <a href="https://publications.waset.org/abstracts/13462/investigation-of-damage-in-glass-subjected-to-static-indentation-using-continuum-damage-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Application of Ultrasonic Assisted Machining Technique for Glass-Ceramic Milling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Y.%20Lin">S. Y. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20Kuan"> C. H. Kuan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20She"> C. H. She</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20T.%20Wang"> W. T. Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, ultrasonic assisted machining (UAM) technique is applied in side-surface milling experiment for glass-ceramic workpiece material. The tungsten carbide cutting-tool with diamond coating is used in conjunction with two kinds of cooling/lubrication mediums such as water-soluble (WS) cutting fluid and minimum quantity lubricant (MQL). Full factorial process parameter combinations on the milling experiments are planned to investigate the effect of process parameters on cutting performance. From the experimental results, it tries to search for the better process parameter combination which the edge-indentation and the surface roughness are acceptable. In the machining experiments, ultrasonic oscillator was used to excite a cutting-tool along the radial direction producing a very small amplitude of vibration frequency of 20KHz to assist the machining process. After processing, toolmaker microscope was used to detect the side-surface morphology, edge-indentation and cutting tool wear under different combination of cutting parameters, and analysis and discussion were also conducted for experimental results. The results show that the main leading parameters to edge-indentation of glass ceramic are cutting depth and feed rate. In order to reduce edge-indentation, it needs to use lower cutting depth and feed rate. Water-soluble cutting fluid provides a better cooling effect in the primary cutting area; it may effectively reduce the edge-indentation and improve the surface morphology of the glass ceramic. The use of ultrasonic assisted technique can effectively enhance the surface finish cleanness and reduce cutting tool wear and edge-indentation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass-ceramic" title="glass-ceramic">glass-ceramic</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20assisted%20machining" title=" ultrasonic assisted machining"> ultrasonic assisted machining</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20performance" title=" cutting performance"> cutting performance</a>, <a href="https://publications.waset.org/abstracts/search?q=edge-indentation" title=" edge-indentation"> edge-indentation</a> </p> <a href="https://publications.waset.org/abstracts/31245/application-of-ultrasonic-assisted-machining-technique-for-glass-ceramic-milling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Effect of Annealing Temperature on Microstructural Evolution of Nanoindented Cu/Si Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Woei-Shyan%20Lee">Woei-Shyan Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Liang%20Chuang"> Yu-Liang Chuang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nano-mechanical properties of as-deposited Cu/Si thin films indented to a depth of 2000 nm are investigated using a nanoindentation technique. The nanoindented specimens are annealed at a temperature of either 160 °C or 210°C, respectively. The microstructures of the as-deposited and annealed samples are then examined via transmission electron microscopy (TEM). The results show that both the loading and the unloading regions of the load-displacement curve are smooth and continuous, which suggests that no debonding or cracking occurs during nanoindentation. In addition, the hardness and Young’s modulus of the Cu/Si thin films are found to vary with the nanoindentation depth, and have maximum values of 2.8 GPa and 143 GPa, respectively, at the maximum indentation depth of 2000 nm. The TEM observations show that the region of the Cu/Si film beneath the indenter undergoes a phase transformation during the indentation process. In the case of the as-deposited specimens, the indentation pressure induces a completely amorphous phase within the indentation zone. For the specimens annealed at a temperature of 160°C, the amorphous nature of the microstructure within the indented zone is maintained. However, for the specimens annealed at a higher temperature of 210°C, the indentation affected zone consists of a mixture of amorphous phase and nanocrystalline phase. Copper silicide (η-Cu3Si) precipitates are observed in all of the annealed specimens. The density of the η-Cu3Si precipitates is found to increase with an increasing annealing temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoindentation" title="nanoindentation">nanoindentation</a>, <a href="https://publications.waset.org/abstracts/search?q=Cu%2FSi%20thin%20films" title=" Cu/Si thin films"> Cu/Si thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructural%20evolution" title=" microstructural evolution"> microstructural evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=annealing%20temperature" title=" annealing temperature"> annealing temperature</a> </p> <a href="https://publications.waset.org/abstracts/46615/effect-of-annealing-temperature-on-microstructural-evolution-of-nanoindented-cusi-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Investigating the Role of Combined Length Scale Effect on the Mechanical Properties of Ni/Cu Multilayer Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naresh%20Radaliyagoda">Naresh Radaliyagoda</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigel%20M.%20Jennett"> Nigel M. Jennett</a>, <a href="https://publications.waset.org/abstracts/search?q=Rong%20Lan"> Rong Lan</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Parfitt"> David Parfitt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A series of length scale engineered multilayer material with temperature robust mechanical properties has been suggested. A range of polycrystalline copper sub-layers with the thickness varying from 1 to 25μm and buried in between two nickel layers was produced using electrodeposition dual bath technique. The structure of the multilayers was characterized using Electron Backscatter Diffraction and Scanning Electron Microscope. The interface effect on the hardness and elastic modulus was tested using Nano-indentation. Results of the grain size and layer thickness measurements, and indentation hardness have been compared. It is found that there is a combined length scale effect that improves mechanical properties in Ni/Cu multilayer structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano-indentation" title="nano-indentation">nano-indentation</a>, <a href="https://publications.waset.org/abstracts/search?q=size%20effect" title=" size effect"> size effect</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayers" title=" multilayers"> multilayers</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a> </p> <a href="https://publications.waset.org/abstracts/107676/investigating-the-role-of-combined-length-scale-effect-on-the-mechanical-properties-of-nicu-multilayer-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Stress Distribution in Axisymmetric Indentation of an Elastic Layer-Substrate Body</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kotaro%20Miura">Kotaro Miura</a>, <a href="https://publications.waset.org/abstracts/search?q=Makoto%20Sakamoto"> Makoto Sakamoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuji%20Tanabe"> Yuji Tanabe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We focus on internal stress and displacement of an elastic axisymmetric contact problem for indentation of a layer-substrate body. An elastic layer is assumed to be perfectly bonded to an elastic semi-infinite substrate. The elastic layer is smoothly indented with a flat-ended cylindrical indenter. The analytical and exact solutions were obtained by solving an infinite system of simultaneous equations using the method to express a normal contact stress at the upper surface of the elastic layer as an appropriate series. This paper presented the numerical results of internal stress and displacement distributions for hard-coating system with constant values of Poisson&rsquo;s ratio and the thickness of elastic layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indentation" title="indentation">indentation</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20problem" title=" contact problem"> contact problem</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20distribution" title=" stress distribution"> stress distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=coating%20materials" title=" coating materials"> coating materials</a>, <a href="https://publications.waset.org/abstracts/search?q=layer-substrate%20body" title=" layer-substrate body"> layer-substrate body</a> </p> <a href="https://publications.waset.org/abstracts/116384/stress-distribution-in-axisymmetric-indentation-of-an-elastic-layer-substrate-body" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Mechanical Characterization of Banana by Inverse Analysis Method Combined with Indentation Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20F.%20P.%20Ram%C3%ADrez">Juan F. P. Ramírez</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%A9sica%20A.%20L.%20Isaza"> Jésica A. L. Isaza</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjam%C3%ADn%20A.%20Rojano"> Benjamín A. Rojano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study proposes a novel use of a method to determine the mechanical properties of fruits by the use of the indentation tests. The method combines experimental results with a numerical finite elements model. The results presented correspond to a simplified numerical modeling of banana. The banana was assumed as one-layer material with an isotropic linear elastic mechanical behavior, the Young’s modulus found is 0.3Mpa. The method will be extended to multilayer models in further studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=fruits" title=" fruits"> fruits</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20analysis" title=" inverse analysis"> inverse analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/5459/mechanical-characterization-of-banana-by-inverse-analysis-method-combined-with-indentation-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Nanoindentation Behaviour and Microstructural Evolution of Annealed Single-Crystal Silicon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Woei-Shyan%20Lee">Woei-Shyan Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuo-Ling%20Chang"> Shuo-Ling Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nanoindentation behaviour and phase transformation of annealed single-crystal silicon wafers are examined. The silicon specimens are annealed at temperatures of 250, 350 and 450ºC, respectively, for 15 minutes and are then indented to maximum loads of 30, 50 and 70 mN. The phase changes induced in the indented specimens are observed using transmission electron microscopy (TEM) and micro-Raman scattering spectroscopy (RSS). For all annealing temperatures, an elbow feature is observed in the unloading curve following indentation to a maximum load of 30 mN. Under higher loads of 50 mN and 70 mN, respectively, the elbow feature is replaced by a pop-out event. The elbow feature reveals a complete amorphous phase transformation within the indented zone, whereas the pop-out event indicates the formation of Si XII and Si III phases. The experimental results show that the formation of these crystalline silicon phases increases with an increasing annealing temperature and indentation load. The hardness and Young’s modulus both decrease as the annealing temperature and indentation load are increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoindentation" title="nanoindentation">nanoindentation</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon" title=" silicon"> silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transformation" title=" phase transformation"> phase transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=amorphous" title=" amorphous"> amorphous</a>, <a href="https://publications.waset.org/abstracts/search?q=annealing" title=" annealing"> annealing</a> </p> <a href="https://publications.waset.org/abstracts/23123/nanoindentation-behaviour-and-microstructural-evolution-of-annealed-single-crystal-silicon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Analysis of Solvent Effect on the Mechanical Properties of Poly(Ether Ether Ketone) Using Nano-Indentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tanveer%20Iqbal">Tanveer Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Saima%20Yasin"> Saima Yasin</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Zafar"> Muhammad Zafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Shakeel"> Ahmad Shakeel</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahad%20Nazir"> Fahad Nazir</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20F.%20Luckham"> Paul F. Luckham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The contact performance of polymeric composites is dependent on the localized mechanical properties of materials. This is particularly important for fiber oriented polymeric materials where self-lubrication from top layers has been the basic requirement. The nanoindentation response of fiber reinforced poly(etheretherketone), PEEK, composites have been evaluated to determine the near-surface mechanical characteristics. Load-displacement compliance, hardness and elastic modulus data based on contact compliance mode (CSM) indentation of carbon fiber oriented and glass fiber oriented PEEK composites are reported as a function of indentation contact displacement. The composite surfaces were indented to a maximum penetration depth of 5µm using Berkovich tip indenter. A typical multiphase response of the composite surface is depicted from analysis of the indentation data for the composites, showing presence of polymer matrix, fibers, and interphase regions. The observed experimental results show that although the surface mechanical properties of carbon fiber based PEEK composite were comparatively higher, the properties of matrix material were seen to be increased in the presence of glass fibers. The experimental methodology may provide a convenient means to understand morphological description of the multimodal polymeric composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoindentation" title="nanoindentation">nanoindentation</a>, <a href="https://publications.waset.org/abstracts/search?q=PEEK" title=" PEEK"> PEEK</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus" title=" modulus"> modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticization" title=" plasticization"> plasticization</a> </p> <a href="https://publications.waset.org/abstracts/78722/analysis-of-solvent-effect-on-the-mechanical-properties-of-polyether-ether-ketone-using-nano-indentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Viscoelastic Behavior of Human Bone Tissue under Nanoindentation Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Makuch">Anna Makuch</a>, <a href="https://publications.waset.org/abstracts/search?q=Grzegorz%20Kokot"> Grzegorz Kokot</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstanty%20Skalski"> Konstanty Skalski</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Banczorowski"> Jakub Banczorowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cancellous bone is a porous composite of a hierarchical structure and anisotropic properties. The biological tissue is considered to be a viscoelastic material, but many studies based on a nanoindentation method have focused on their elasticity and microhardness. However, the response of many organic materials depends not only on the load magnitude, but also on its duration and time course. Depth Sensing Indentation (DSI) technique has been used for examination of creep in polymers, metals and composites. In the indentation tests on biological samples, the mechanical properties are most frequently determined for animal tissues (of an ox, a monkey, a pig, a rat, a mouse, a bovine). However, there are rare reports of studies of the bone viscoelastic properties on microstructural level. Various rheological models were used to describe the viscoelastic behaviours of bone, identified in the indentation process (e. g Burgers model, linear model, two-dashpot Kelvin model, Maxwell-Voigt model). The goal of the study was to determine the influence of creep effect on the mechanical properties of human cancellous bone in indentation tests. The aim of this research was also the assessment of the material properties of bone structures, having in mind the energy aspects of the curve (penetrator loading-depth) obtained in the loading/unloading cycle. There was considered how the different holding times affected the results within trabecular bone.As a result, indentation creep (CIT), hardness (HM, HIT, HV) and elasticity are obtained. Human trabecular bone samples (n=21; mean age 63±15yrs) from the femoral heads replaced during hip alloplasty were removed and drained from alcohol of 1h before the experiment. The indentation process was conducted using CSM Microhardness Tester equipped with Vickers indenter. Each sample was indented 35 times (7 times for 5 different hold times: t1=0.1s, t2=1s, t3=10s, t4=100s and t5=1000s). The indenter was advanced at a rate of 10mN/s to 500mN. There was used Oliver-Pharr method in calculation process. The increase of hold time is associated with the decrease of hardness parameters (HIT(t1)=418±34 MPa, HIT(t2)=390±50 MPa, HIT(t3)= 313±54 MPa, HIT(t4)=305±54 MPa, HIT(t5)=276±90 MPa) and elasticity (EIT(t1)=7.7±1.2 GPa, EIT(t2)=8.0±1.5 GPa, EIT(t3)=7.0±0.9 GPa, EIT(t4)=7.2±0.9 GPa, EIT(t5)=6.2±1.8 GPa) as well as with the increase of the elastic (Welastic(t1)=4.11∙10-7±4.2∙10-8Nm, Welastic(t2)= 4.12∙10-7±6.4∙10-8 Nm, Welastic(t3)=4.71∙10-7±6.0∙10-9 Nm, Welastic(t4)= 4.33∙10-7±5.5∙10-9Nm, Welastic(t5)=5.11∙10-7±7.4∙10-8Nm) and inelastic (Winelastic(t1)=1.05∙10-6±1.2∙10-7 Nm, Winelastic(t2) =1.07∙10-6±7.6∙10-8 Nm, Winelastic(t3)=1.26∙10-6±1.9∙10-7Nm, Winelastic(t4)=1.56∙10-6± 1.9∙10-7 Nm, Winelastic(t5)=1.67∙10-6±2.6∙10-7)) reaction of materials. The indentation creep increased logarithmically (R2=0.901) with increasing hold time: CIT(t1) = 0.08±0.01%, CIT(t2) = 0.7±0.1%, CIT(t3) = 3.7±0.3%, CIT(t4) = 12.2±1.5%, CIT(t5) = 13.5±3.8%. The pronounced impact of creep effect on the mechanical properties of human cancellous bone was observed in experimental studies. While the description elastic-inelastic, and thus the Oliver-Pharr method for data analysis, may apply in few limited cases, most biological tissues do not exhibit elastic-inelastic indentation responses. Viscoelastic properties of tissues may play a significant role in remodelling. The aspect is still under an analysis and numerical simulations. Acknowledgements: The presented results are part of the research project founded by National Science Centre (NCN), Poland, no.2014/15/B/ST7/03244. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone" title="bone">bone</a>, <a href="https://publications.waset.org/abstracts/search?q=creep" title=" creep"> creep</a>, <a href="https://publications.waset.org/abstracts/search?q=indentation" title=" indentation"> indentation</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/77098/viscoelastic-behavior-of-human-bone-tissue-under-nanoindentation-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> A Semi-Analytical Method for Analysis of the Axially Symmetric Problem on Indentation of a Hot Circular Punch into an Arbitrarily Nonhomogeneous Halfspace </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Aizikovich">S. Aizikovich</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Krenev"> L. Krenev</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Tokovyy"> Y. Tokovyy</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20C.%20Wang"> Y. C. Wang </a> </p> <p class="card-text"><strong>Abstract:</strong></p> An approximate analytical-numerical solution to the axisymmetric problem on thermo-mechanical indentation of a flat cylindrical punch into an arbitrarily non-homogeneous elastic half-space is constructed by making use of the bilateral asymptotic method. The key point of this method lies in evaluation of the ker¬nels in the obtained integral equations by making use of a numerical technique. Once the structure of the kernel is defined, it then is approximated by an analytical expression of special kind so that the solution of the integral equation can be achieved analytically. This fact allows for construction of the solution in an analytical form, which is convenient for analysis of the mechanical effects concerned with arbitrarily presumed non-homogeneity of the material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20problem" title="contact problem">contact problem</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20punch" title=" circular punch"> circular punch</a>, <a href="https://publications.waset.org/abstracts/search?q=arbitrarily-nonhomogeneous%20halfspace" title=" arbitrarily-nonhomogeneous halfspace"> arbitrarily-nonhomogeneous halfspace</a> </p> <a href="https://publications.waset.org/abstracts/17693/a-semi-analytical-method-for-analysis-of-the-axially-symmetric-problem-on-indentation-of-a-hot-circular-punch-into-an-arbitrarily-nonhomogeneous-halfspace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Effect of Irradiation on Nano-Indentation Properties and Microstructure of X-750 Ni-Based Superalloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pooyan%20Changizian">Pooyan Changizian</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhongwen%20Yao"> Zhongwen Yao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of current study is to make an excellent correlation between mechanical properties and microstructures of ion irradiated X-750 Ni-based superalloy. Towards this end, two different irradiation procedures were carried out, including single Ni ion irradiation and pre-helium implantation with subsequent Ni ion irradiation. Nano-indentation technique was employed to evaluate the mechanical properties of irradiated material. The nano-hardness measurements depict highly different results for two irradiation procedures. Single ion irradiated X-750 shows softening behavior; however, pre-helium implanted specimens present significant hardening compared to the un-irradiated material. Cross-section TEM examination demonstrates that softening is attributed to the γ׳-precipitate instability (disordering/dissolution) which overcomes the hardening effect of irradiation-induced defects. In contrast, the presence of cavities or helium bubbles is probably the main cause for irradiation-induced hardening of helium implanted samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Inconel%20X-750" title="Inconel X-750">Inconel X-750</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoindentation" title=" nanoindentation"> nanoindentation</a>, <a href="https://publications.waset.org/abstracts/search?q=helium%20bubbles" title=" helium bubbles"> helium bubbles</a>, <a href="https://publications.waset.org/abstracts/search?q=defects" title=" defects"> defects</a> </p> <a href="https://publications.waset.org/abstracts/59555/effect-of-irradiation-on-nano-indentation-properties-and-microstructure-of-x-750-ni-based-superalloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> In vivo Mechanical Characterization of Facial Skin Combining Digital Image Correlation and Finite Element</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huixin%20Wei">Huixin Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Shibin%20Wang"> Shibin Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Linan%20Li"> Linan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Zhou"> Lei Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinhao%20Tu"> Xinhao Tu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Facial skin is a biomedical material with complex mechanical properties of anisotropy, viscoelasticity, and hyperelasticity. The mechanical properties of facial skin are crucial for a number of applications including facial plastic surgery, animation, dermatology, cosmetic industry, and impact biomechanics. Skin is a complex multi-layered material which can be broadly divided into three main layers, the epidermis, the dermis, and the hypodermis. Collagen fibers account for 75% of the dry weight of dermal tissue, and it is these fibers which are responsible for the mechanical properties of skin. Many research on the anisotropic mechanical properties are mainly concentrated on in vitro, but there is a great difference between in vivo and in vitro for mechanical properties of the skin. In this study, we presented a method to measure the mechanical properties of facial skin in vivo. Digital image correlation (DIC) and indentation tests were used to obtain the experiment data, including the deformation of facial surface and indentation force-displacement curve. Then, the experiment was simulated using a finite element (FE) model. Application of Computed Tomography (CT) and reconstruction techniques obtained the real tissue geometry. A three-dimensional FE model of facial skin, including a bi-layer system, was obtained. As the epidermis is relatively thin, the epidermis and dermis were regarded as one layer and below it was hypodermis in this study. The upper layer was modeled as a Gasser-Ogden-Holzapfel (GOH) model to describe hyperelastic and anisotropic behaviors of the dermis. The under layer was modeled as a linear elastic model. In conclusion, the material properties of two-layer were determined by minimizing the error between the FE data and experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=facial%20skin" title="facial skin">facial skin</a>, <a href="https://publications.waset.org/abstracts/search?q=indentation%20test" title=" indentation test"> indentation test</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation" title=" digital image correlation"> digital image correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title=" computed tomography"> computed tomography</a> </p> <a href="https://publications.waset.org/abstracts/104687/in-vivo-mechanical-characterization-of-facial-skin-combining-digital-image-correlation-and-finite-element" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Experimental and Finite Element Analysis of Large Deformation Characteristics of Magnetic Responsive Hydrogel Nanocomposites Membranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mallikarjunachari%20Gangapuram">Mallikarjunachari Gangapuram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stimuli-responsive hydrogel nanocomposite membranes are gaining significant attention these days due to their potential applications in various engineering fields. For example, sensors, soft actuators, drug delivery, remote controlled therapy, water treatment, shape morphing, and magnetic refrigeration are few advanced applications of hydrogel nanocomposite membranes. In this work, hydrogel nanocomposite membranes are synthesized by embedding nanometer-sized (diameter - 300 nm) Fe₃O₄ magnetic particles into the polyvinyl alcohol (PVA) polymer. To understand the large deformation characteristics of these membranes, a well-known experimental method ball indentation technique is used. Different designing parameters such as membrane thickness, the concentration of magnetic particles and ball diameter on the viscoelastic properties are studied. All the experiments are carried out without and with a static magnetic field. Finite element simulations are carried out to validate the experimental results. It is observed, the creep response decreases and Young’s modulus increases as the thickness and concentration of magnetic particles increases. Image analysis revealed the hydrogel membranes are undergone global deformation for ball diameter 18 mm and local deformation when the diameter decreases from 18 mm to 0.5 mm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ball%20indentation" title="ball indentation">ball indentation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel%20membranes" title=" hydrogel membranes"> hydrogel membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%27s%20modulus" title=" Young&#039;s modulus"> Young&#039;s modulus</a> </p> <a href="https://publications.waset.org/abstracts/105918/experimental-and-finite-element-analysis-of-large-deformation-characteristics-of-magnetic-responsive-hydrogel-nanocomposites-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Analysis of the Internal Mechanical Conditions in the Lower Limb Due to External Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kent%20Salomonsson">Kent Salomonsson</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuefang%20Zhao"> Xuefang Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Kallin"> Sara Kallin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human soft tissue is loaded and deformed by any activity, an effect known as a stress-strain relationship, and is often described by a load and tissue elongation curve. Several advances have been made in the fields of biology and mechanics of soft human tissue. However, there is limited information available on in vivo tissue mechanical characteristics and behavior. Confident mechanical properties of human soft tissue cannot be extrapolated from e.g. animal testing. Thus, there is need for non invasive methods to analyze mechanical characteristics of soft human tissue. In the present study, the internal mechanical conditions of the lower limb, which is subject to an external load, is studied by use of the finite element method. A detailed finite element model of the lower limb is made possible by use of MRI scans. Skin, fat, bones, fascia and muscles are represented separately and the material properties for them are obtained from literature. Previous studies have been shown to address macroscopic deformation features, e.g. indentation depth, to a large extent. However, the detail in which the internal anatomical features have been modeled does not reveal the critical internal strains that may induce hypoxia and/or eventual tissue damage. The results of the present study reveals that lumped material models, i.e. averaging of the material properties for the different constituents, does not capture regions of critical strains in contrast to more detailed models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FEM" title="FEM">FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue" title=" tissue"> tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=indentation" title=" indentation"> indentation</a>, <a href="https://publications.waset.org/abstracts/search?q=properties" title=" properties"> properties</a> </p> <a href="https://publications.waset.org/abstracts/44709/analysis-of-the-internal-mechanical-conditions-in-the-lower-limb-due-to-external-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Microstructural Mechanical Properties of Human Trabecular Bone Based on Nanoindentation Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Jankowski">K. Jankowski</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Pawlikowski"> M. Pawlikowski</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Makuch"> A. Makuch</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Skalski"> K. Skalski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Depth-sensing indentation (DSI) or nanoindentation is becoming a more and more popular method of measuring mechanical properties of various materials and tissues at a micro-scale. This technique allows measurements without complicated sample preparation procedures which makes this method very useful. As a result of measurement force and displacement of the intender are obtained. It is also possible to determine three measures of hardness i.e. Martens hardness (HM), nanohardness (HIT), Vickers hardness (HV) and Young modulus EIT. In this work trabecular bone mechanical properties were investigated. The bone samples were harvested from human femoral heads during hip replacement surgery. Patients were of different age, sexes and stages of tissue degeneration caused by osteoarthritis. The specimens were divided into three groups. Each group contained samples harvested from patients of different range of age. All samples were investigated with the same measurement conditions. The maximum load was Pmax=500 mN and the loading rate was 500 mN/min. The tests were held without hold at the peak force. The tests were conducted with indenter Vickers tip and spherical tip of the diameter 0.2 mm. Each trabecular bone sample was tested 7 times in a close area of the same trabecula. The measured loading P as a function of indentation depth allowed to obtain hysteresis loop and HM, HIT, HV, EIT. Results for arbitrarily chosen sample are HM=289.95 ± 42.31 MPa, HIT=430.75 ± 45.37 MPa, HV=40.66 ± 4.28 Vickers, EIT=7.37 ± 1.84 GPa for Vickers tip and HM=115.19 ± 15.03 MPa, HIT=165.80 ± 19.30 MPa, HV=16.90 ± 1.97 Vickers, EIT=5.30 ± 1.31 GPa for spherical tip. Results of nanoindentation tests show that this method is very useful and is perfect for obtaining mechanical properties of trabecular bone. Estimated values of elastic modulus are similar. The differences between hardness are significant but it is a result of using two different types of tips. However, it has to be emphasised that the differences in the values of elastic modulus and hardness result from different testing protocols, anisotropy and asymmetry of the micro-samples and the hydration of bone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20bone" title="human bone">human bone</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20hardness%20nanoindentation" title=" nano hardness nanoindentation"> nano hardness nanoindentation</a>, <a href="https://publications.waset.org/abstracts/search?q=trabecular%20bone" title=" trabecular bone"> trabecular bone</a> </p> <a href="https://publications.waset.org/abstracts/75064/microstructural-mechanical-properties-of-human-trabecular-bone-based-on-nanoindentation-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> The Touch Sensation: Ageing and Gender Influences </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Abdouni">A. Abdouni</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Thieulin"> C. Thieulin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Djaghloul"> M. Djaghloul</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Vargiolu"> R. Vargiolu</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Zahouani"> H. Zahouani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A decline in the main sensory modalities (vision, hearing, taste, and smell) is well reported to occur with advancing age, it is expected a similar change to occur with touch sensation and perception. In this study, we have focused on the touch sensations highlighting ageing and gender influences with in vivo systems. The touch process can be divided into two main phases: The first phase is the first contact between the finger and the object, during this contact, an adhesive force has been created which is the needed force to permit an initial movement of the finger. In the second phase, the finger mechanical properties with their surface topography play an important role in the obtained sensation. In order to understand the age and gender effects on the touch sense, we develop different ideas and systems for each phase. To better characterize the contact, the mechanical properties and the surface topography of human finger, in vivo studies on the pulp of 40 subjects (20 of each gender) of four age groups of 26±3, 35+-3, 45+-2 and 58±6 have been performed. To understand the first touch phase a classical indentation system has been adapted to measure the finger contact properties. The normal force load, the indentation speed, the contact time, the penetration depth and the indenter geometry have been optimized. The penetration depth of a glass indenter is recorded as a function of the applied normal force. Main assessed parameter is the adhesive force F_ad. For the second phase, first, an innovative approach is proposed to characterize the dynamic finger mechanical properties. A contactless indentation test inspired from the techniques used in ophthalmology has been used. The test principle is to blow an air blast to the finger and measure the caused deformation by a linear laser. The advantage of this test is the real observation of the skin free return without any outside influence. Main obtained parameters are the wave propagation speed and the Young's modulus E. Second, negative silicon replicas of subject’s fingerprint have been analyzed by a probe laser defocusing. A laser diode transmits a light beam on the surface to be measured, and the reflected signal is returned to a set of four photodiodes. This technology allows reconstructing three-dimensional images. In order to study the age and gender effects on the roughness properties, a multi-scale characterization of roughness has been realized by applying continuous wavelet transform. After determining the decomposition of the surface, the method consists of quantifying the arithmetic mean of surface topographic at each scale SMA. Significant differences of the main parameters are shown with ageing and gender. The comparison between men and women groups reveals that the adhesive force is higher for women. The results of mechanical properties show a Young’s modulus higher for women and also increasing with age. The roughness analysis shows a significant difference in function of age and gender. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ageing" title="ageing">ageing</a>, <a href="https://publications.waset.org/abstracts/search?q=finger" title=" finger"> finger</a>, <a href="https://publications.waset.org/abstracts/search?q=gender" title=" gender"> gender</a>, <a href="https://publications.waset.org/abstracts/search?q=touch" title=" touch"> touch</a> </p> <a href="https://publications.waset.org/abstracts/50180/the-touch-sensation-ageing-and-gender-influences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Flow-Control Effectiveness of Convergent Surface Indentations on an Aerofoil at Low Reynolds Numbers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neel%20K.%20Shah">Neel K. Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Passive flow control on aerofoils has largely been achieved through the use of protrusions such as vane-type vortex generators. Consequently, innovative flow-control concepts should be explored in an effort to improve current component performance. Therefore, experimental research has been performed at The University of Manchester to evaluate the flow-control effectiveness of a vortex generator made in the form of a surface indentation. The surface indentation has a trapezoidal planform. A spanwise array of indentations has been applied in a convergent orientation around the maximum-thickness location of the upper surface of a NACA-0015 aerofoil. The aerofoil has been tested in a two-dimensional set-up in a low-speed wind tunnel at an angle of attack (AoA) of 3° and a chord-based Reynolds number (Re) of ~2.7 x 105. The baseline model has been found to suffer from a laminar separation bubble at low AoA. The application of the indentations at 3° AoA has considerably shortened the separation bubble. The indentations achieve this by shedding up-flow pairs of streamwise vortices. Despite the considerable reduction in bubble length, the increase in leading-edge suction due to the shorter bubble is limited by the removal of surface curvature and blockage (increase in surface pressure) caused locally by the convergent indentations. Furthermore, the up-flow region of the vortices, which locally weakens the pressure recovery around the trailing edge of the aerofoil by thickening the boundary layer, also contributes to this limitation. Due to the conflicting effects of the indentations, the changes in the pressure-lift and pressure-drag coefficients, i.e., cl,p and cd,p, are small. Nevertheless, the indentations have improved cl,p and cd,p beyond the uncertainty range, i.e., by ~1.30% and ~0.30%, respectively, at 3° AoA. The wake measurements show that turbulence intensity and Reynolds stresses have considerably increased in the indented case, thus implying that the indentations increase the viscous drag on the model. In summary, the convergent indentations are able to reduce the size of the laminar separation bubble, but conversely, they are not highly effective in reducing cd,p at the tested Reynolds number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerofoil%20flow%20control" title="aerofoil flow control">aerofoil flow control</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar%20separation%20bubbles" title=" laminar separation bubbles"> laminar separation bubbles</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20Reynolds-number%20flows" title=" low Reynolds-number flows"> low Reynolds-number flows</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20indentations" title=" surface indentations"> surface indentations</a> </p> <a href="https://publications.waset.org/abstracts/61082/flow-control-effectiveness-of-convergent-surface-indentations-on-an-aerofoil-at-low-reynolds-numbers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Study of Biomechanical Model for Smart Sensor Based Prosthetic Socket Design System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei%20Xu">Wei Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdo%20S.%20Haidar"> Abdo S. Haidar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianxin%20Gao"> Jianxin Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prosthetic socket is a component that connects the residual limb of an amputee with an artificial prosthesis. It is widely recognized as the most critical component that determines the comfort of a patient when wearing the prosthesis in his/her daily activities. Through the socket, the body weight and its associated dynamic load are distributed and transmitted to the prosthesis during walking, running or climbing. In order to achieve a good-fit socket for an individual amputee, it is essential to obtain the biomechanical properties of the residual limb. In current clinical practices, this is achieved by a touch-and-feel approach which is highly subjective. Although there have been significant advancements in prosthetic technologies such as microprocessor controlled knee and ankle joints in the last decade, the progress in designing a comfortable socket has been rather limited. This means that the current process of socket design is still very time-consuming, and highly dependent on the expertise of the prosthetist. Supported by the state-of-the-art sensor technologies and numerical simulations, a new socket design system is being developed to help prosthetists achieve rapid design of comfortable sockets for above knee amputees. This paper reports the research work related to establishing biomechanical models for socket design. Through numerical simulation using finite element method, comprehensive relationships between pressure on residual limb and socket geometry were established. This allowed local topological adjustment for the socket so as to optimize the pressure distributions across the residual limb. When the full body weight of a patient is exerted on the residual limb, high pressures and shear forces between the residual limb and the socket occur. During numerical simulations, various hyperplastic models, namely Ogden, Yeoh and Mooney-Rivlin, were used, and their effectiveness in representing the biomechanical properties of soft tissues of the residual limb was evaluated. This also involved reverse engineering, which resulted in an optimal representative model under compression test. To validate the simulation results, a range of silicone models were fabricated. They were tested by an indentation device which yielded the force-displacement relationships. Comparisons of results obtained from FEA simulations and experimental tests showed that the Ogden model did not fit well the soft tissue material indentation data, while the Yeoh model gave the best representation of the soft tissue mechanical behavior under indentation. Compared with hyperplastic model, the result showed that elastic model also had significant errors. In addition, normal and shear stress distributions on the surface of the soft tissue model were obtained. The effect of friction in compression testing and the influence of soft tissue stiffness and testing boundary conditions were also analyzed. All these have contributed to the overall goal of designing a good-fit socket for individual above knee amputees. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=above%20knee%20amputee" title="above knee amputee">above knee amputee</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20simulation" title=" finite element simulation"> finite element simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperplastic%20model" title=" hyperplastic model"> hyperplastic model</a>, <a href="https://publications.waset.org/abstracts/search?q=prosthetic%20socket" title=" prosthetic socket"> prosthetic socket</a> </p> <a href="https://publications.waset.org/abstracts/75097/study-of-biomechanical-model-for-smart-sensor-based-prosthetic-socket-design-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Single Feed Circularly Polarized Poly Fractal Antenna for Wireless Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20V.%20Reddy">V. V. Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20V.%20Sarma"> N. V. Sarma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A circularly polarized fractal boundary microstrip antenna is presented. The sides of a square patch along x-axis, y-axis are replaced with Minkowski and Koch curves correspondingly. By using the fractal curves as edges, asymmetry in the structure is created to excite two orthogonal modes for circular polarization (CP) operation. The indentation factors of the fractal curves are optimized for pure CP. The simulated results of the novel poly fractal antenna are demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractal" title="fractal">fractal</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20polarization" title=" circular polarization"> circular polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=Minkowski" title=" Minkowski"> Minkowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Koch" title=" Koch"> Koch</a> </p> <a href="https://publications.waset.org/abstracts/16535/single-feed-circularly-polarized-poly-fractal-antenna-for-wireless-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> A Nanoindentation Study of Thin Film Prepared by Physical Vapor Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dhiflaoui%20Hafedh">Dhiflaoui Hafedh</a>, <a href="https://publications.waset.org/abstracts/search?q=Khlifi%20Kaouther"> Khlifi Kaouther</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Cheikh%20Larbi%20Ahmed"> Ben Cheikh Larbi Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monolayer and multilayer coatings of CrN and AlCrN deposited on 100Cr6 (AISI 52100) substrate by PVD magnetron sputtering system. The micro structures of the coatings were characterized using atomic force microscopy (AFM). The AFM analysis revealed the presence of domes and craters which are uniformly distributed over all surfaces of the various layers. Nano indentation measurement of CrN coating showed maximum hardness (H) and modulus (E) of 14 GPa and 240 GPa, respectively. The measured H and E values of AlCrN coatings were found to be 30 GPa and 382 GPa, respectively. The improved hardness in both the coatings was attributed mainly to a reduction in crystallite size and decrease in surface roughness. The incorporation of Al into the CrN coatings has improved both hardness and Young’s modulus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CrN" title="CrN">CrN</a>, <a href="https://publications.waset.org/abstracts/search?q=AlCrN%20coatings" title=" AlCrN coatings"> AlCrN coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoindentation" title=" nanoindentation"> nanoindentation</a> </p> <a href="https://publications.waset.org/abstracts/21853/a-nanoindentation-study-of-thin-film-prepared-by-physical-vapor-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Influence of Boron Doping and Thermal Treatment on Internal Friction of Monocrystalline Si1-xGex(x≤0,02) Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Kurashvili">I. Kurashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Darsavelidze"> G. Darsavelidze</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Bokuchava"> G. Bokuchava</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sichinava"> A. Sichinava</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Tabatadze"> I. Tabatadze </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The impact of boron doping on the internal friction (IF) and shear modulus temperature spectra of Si<sub>1-x</sub>Ge<sub>x</sub>(x&le;0,02) monocrsytals has been investigated by reverse torsional pendulum oscillations characteristics testing. At room temperatures, microhardness and indentation modulus of the same specimens have been measured by dynamic ultra microhardness tester. It is shown that boron doping causes two kinds effect: At low boron concentration (~10<sup>15 </sup>cm<sup>-3</sup>) significant strengthening is revealed, while at the high boron concentration (~10<sup>19 </sup>cm<sup>-3</sup>) strengthening effect and activation characteristics of relaxation origin IF processes are reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boron" title="boron">boron</a>, <a href="https://publications.waset.org/abstracts/search?q=doping" title=" doping"> doping</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20friction" title=" internal friction"> internal friction</a>, <a href="https://publications.waset.org/abstracts/search?q=si-ge%20alloys" title=" si-ge alloys"> si-ge alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20treatment" title=" thermal treatment"> thermal treatment</a> </p> <a href="https://publications.waset.org/abstracts/45812/influence-of-boron-doping-and-thermal-treatment-on-internal-friction-of-monocrystalline-si1-xgexx002-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Mechanical Behavior of PVD Single Layer and Multilayer under Indentation Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Kaouther">K. Kaouther</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Hafedh"> D. Hafedh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ben%20Cheikh%20Larbi"> A. Ben Cheikh Larbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various structures and compositions thin films were deposited on 100C6 (AISI 52100) steel substrate by PVD magnetron sputtering system. The morphological proprieties were evaluated using an atomic force microscopy (AFM). Vickers microindentation tests were performed with a Shimadzu HMV-2000 hardness testing machine. Hardness measurement was carried out using Jonsson and Hogmark model. The results show that the coatings topography was dominated by domes and craters. Mechanical behavior and failure modes under microindentation were depending of coatings structure and composition. TiAlN multilayer showed exception in the microindentation resistance compared to TiN single layer and TiAlN/TiAlN nanolayer. Piled structure provides an increase of failure resistance and a decrease in cracks propagation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PVD%20thin%20films" title="PVD thin films">PVD thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer" title=" multilayer"> multilayer</a>, <a href="https://publications.waset.org/abstracts/search?q=microindentation" title=" microindentation"> microindentation</a>, <a href="https://publications.waset.org/abstracts/search?q=cracking" title=" cracking"> cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20mechanisms" title=" damage mechanisms"> damage mechanisms</a> </p> <a href="https://publications.waset.org/abstracts/21806/mechanical-behavior-of-pvd-single-layer-and-multilayer-under-indentation-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Effect of Nano-CaCO₃ Addition on the Nano-Mechanical Properties of Cement Paste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muzeyyen%20Balcikanli">Muzeyyen Balcikanli</a>, <a href="https://publications.waset.org/abstracts/search?q=Selma%20Ozaslan"> Selma Ozaslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Osman%20Sahin"> Osman Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Burak%20Uzal"> Burak Uzal</a>, <a href="https://publications.waset.org/abstracts/search?q=Erdogan%20Ozbay"> Erdogan Ozbay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effect of nano-CaCO3 replacement with cement on the nano-mechanical properties of cement paste was investigated. Hydrophobic and hydrophilic characteristics Two types of nano CaCO3 were replaced with Portland cement at 0, 0.5 and 1%. Water to (cement+nano-CaCO3) ratio was kept constant at 0.5 for all mixtures. 36 indentations were applied on each cement paste, and the values of nano-hardness and elastic modulus of cement pastes were determined from the indentation depth-load graphs. Then, by getting the average of them, nano-hardness and elastic modulus were identified for each mixture. Test results illustrate that replacement of hydrophilic n-CaCO3 with cement lead to a significant increase in nano-mechanical properties, however, replacement of hydrophobic n-CaCO3 with cement worsened the nano-mechanical properties considerably. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoindenter" title="nanoindenter">nanoindenter</a>, <a href="https://publications.waset.org/abstracts/search?q=CaCO3" title=" CaCO3"> CaCO3</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-hardness" title=" nano-hardness"> nano-hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-mechanical%20properties" title=" nano-mechanical properties"> nano-mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/54618/effect-of-nano-caco3-addition-on-the-nano-mechanical-properties-of-cement-paste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Nanomechanical Properties of Coconut Shell Ash Blended Cement Mortar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kumator%20Taku">Kumator Taku</a>, <a href="https://publications.waset.org/abstracts/search?q=Bilkisu%20Amartey"> Bilkisu Amartey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research used Grid indentation technique to investigate the effect of the addition of Coconut Shell Ash (CSA) on the nanomechanical properties of the main phases of the hydrated cement paste. Portland cement was partially replaced with 15% CSA at a water-binder ratio of 0.5 and cubes casted and cured for 28 days after which they were polished to reduce surface roughness to the barest minimum. The result of nanoindentation shows that addition of 15% CSA to cement paste transforms portlandite to C-S-H by the pozzolanic reaction. More so, there is reduced porosity and a reduction in the volume of CH by the addition of the CSA. Even though the addition of 15% CSA does not drastically change the average values of the hardness and elastic modulus of the two phases of the C-S-H, it greatly modifies their relative proportions, leading to the production of more HD C-S-H. Overall, incorporating 15%CSA to cement mortar improves the Nanomechanical properties of the four main phases of the hydrated cement paste. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Coconut%20Shell%20Ash" title="Coconut Shell Ash">Coconut Shell Ash</a>, <a href="https://publications.waset.org/abstracts/search?q=Elastic%20Modulus" title=" Elastic Modulus"> Elastic Modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=Hardness" title=" Hardness"> Hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanoindentation" title=" Nanoindentation"> Nanoindentation</a>, <a href="https://publications.waset.org/abstracts/search?q=Porosity" title=" Porosity"> Porosity</a> </p> <a href="https://publications.waset.org/abstracts/122927/nanomechanical-properties-of-coconut-shell-ash-blended-cement-mortar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Experimental Determination of Aluminum 7075-T6 Parameters Using Stabilized Cycle Tests to Predict Thermal Ratcheting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armin%20Rahmatfam">Armin Rahmatfam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Zehsaz"> Mohammad Zehsaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Farid%20Vakili%20Tahami"> Farid Vakili Tahami</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasser%20Ghassembaglou"> Nasser Ghassembaglou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper the thermal ratcheting, kinematic hardening parameters C, γ, isotropic hardening parameters and also k, b, Q combined isotropic/kinematic hardening parameters have been obtained experimentally from the monotonic, strain controlled cyclic tests at room and elevated temperatures of 20°C, 100°C, and 400°C. These parameters are used in nonlinear combined isotropic/kinematic hardening model to predict better description of the loading and reloading cycles in the cyclic indentation as well as thermal ratcheting. For this purpose, three groups of specimens made of Aluminum 7075-T6 have been investigated. After each test and using stable hysteretic cycles, material parameters have been obtained for using in combined nonlinear isotropic/kinematic hardening models. Also the methodology of obtaining the correct kinematic/isotropic hardening parameters is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combined%20hardening%20model" title="combined hardening model">combined hardening model</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematic%20hardening" title=" kinematic hardening"> kinematic hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=isotropic%20hardening" title=" isotropic hardening"> isotropic hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20tests" title=" cyclic tests"> cyclic tests</a> </p> <a href="https://publications.waset.org/abstracts/18280/experimental-determination-of-aluminum-7075-t6-parameters-using-stabilized-cycle-tests-to-predict-thermal-ratcheting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Characterization of N+C, Ti+N and Ti+C Ion Implantation into Ti6Al4V Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xingguo%20Feng">Xingguo Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Zhou"> Hui Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaifeng%20Zhang"> Kaifeng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Jiang"> Zhao Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanjun%20Hu"> Hanjun Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Zheng"> Jun Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Hao"> Hong Hao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> TiN and TiC films have been prepared on Ti6Al4V alloy substrates by plasma-based ion implantation. The effect of N+C and Ti+N hybrid ion implantation at 50 kV, and Ti+C hybrid ion implantation at 20 kV, 35 kV and 50 kV extraction voltages on mechanical properties at a dose of 2×10¹⁷ ions / cm² was studied. The chemical states and microstructures of the implanted samples were investigated using X-ray photoelectron (XPS), and X-ray diffraction (XRD), together with the mechanical and tribological properties of the samples were characterized using nano-indentation and ball-on-disk tribometer. It was found that the modified layer by Ti+C implanted at 50 kV was composed of mainly TiC and Ti-O bond and the layer of Ti+N implanted at 50 kV was observed to be TiN and Ti-O bond. Hardness tests have shown that the hardness values for N+C, Ti+N, and Ti+C hybrid ion implantation samples were much higher than the un-implanted ones. The results of wear tests showed that both Ti+C and Ti+N ion implanted samples had much better wear resistance compared un-implanted sample. The wear rate of Ti+C implanted at 50 kV sample was 6.7×10⁻⁵mm³ / N.m, which was decreased over one order than unimplanted samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma%20ion%20implantation" title="plasma ion implantation">plasma ion implantation</a>, <a href="https://publications.waset.org/abstracts/search?q=x-ray%20photoelectron%20%28XPS%29" title=" x-ray photoelectron (XPS)"> x-ray photoelectron (XPS)</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/71164/characterization-of-nc-tin-and-tic-ion-implantation-into-ti6al4v-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Nanomechanical Characterization of Titanium Alloy Modified by Nitrogen Ion Implantation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Josef%20Sepitka">Josef Sepitka</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20Vlcak"> Petr Vlcak</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Horazdovsky"> Tomas Horazdovsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Vratislav%20Perina"> Vratislav Perina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An ion implantation technique was used for designing the surface area of a titanium alloy and for irradiation-enhanced hardening of the surface. The Ti6Al4V alloy was treated by nitrogen ion implantation at fluences of 2&middot;10<sup>17</sup> and 4&middot;10<sup>17</sup> cm<sup>-2</sup> and at ion energy 90 keV. The depth distribution of the nitrogen was investigated by Rutherford Backscattering Spectroscopy. The gradient of mechanical properties was investigated by nanoindentation. The continuous measurement mode was used to obtain depth profiles of the indentation hardness and the reduced storage modulus of the modified surface area. The reduced storage modulus and the hardness increase with increasing fluence. Increased fluence shifts the peak of the mechanical properties as well as the peak of nitrogen concentration towards to the surface. This effect suggests a direct relationship between mechanical properties and nitrogen distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20ion%20implantation" title="nitrogen ion implantation">nitrogen ion implantation</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium-based%20nanolayer" title=" titanium-based nanolayer"> titanium-based nanolayer</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20modulus" title=" storage modulus"> storage modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/58576/nanomechanical-characterization-of-titanium-alloy-modified-by-nitrogen-ion-implantation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Micromechanics of Stress Transfer across the Interface Fiber-Matrix Bonding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatiha%20Teklal">Fatiha Teklal</a>, <a href="https://publications.waset.org/abstracts/search?q=Bachir%20Kacimi"> Bachir Kacimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Arezki%20Djebbar"> Arezki Djebbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study and application of composite materials are a truly interdisciplinary endeavor that has been enriched by contributions from chemistry, physics, materials science, mechanics and manufacturing engineering. The understanding of the interface (or interphase) in composites is the central point of this interdisciplinary effort. From the early development of composite materials of various nature, the optimization of the interface has been of major importance. Even more important, the ideas linking the properties of composites to the interface structure are still emerging. In our study, we need a direct characterization of the interface; the micromechanical tests we are addressing seem to meet this objective and we chose to use two complementary tests simultaneously. The microindentation test that can be applied to real composites and the drop test, preferred to the pull-out because of the theoretical possibility of studying systems with high adhesion (which is a priori the case with our systems). These two tests are complementary because of the principle of the model specimen used for both the first &quot;compression indentation&quot; and the second whose fiber is subjected to tensile stress called the drop test. Comparing the results obtained by the two methods can therefore be rewarding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fiber" title="Fiber">Fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=Interface" title=" Interface"> Interface</a>, <a href="https://publications.waset.org/abstracts/search?q=Matrix" title=" Matrix"> Matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=Micromechanics" title=" Micromechanics"> Micromechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=Pull-out" title=" Pull-out"> Pull-out</a> </p> <a href="https://publications.waset.org/abstracts/116161/micromechanics-of-stress-transfer-across-the-interface-fiber-matrix-bonding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indentation&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indentation&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10