CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–15 of 15 results for author: <span class="mathjax">Santurkar, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/stat" aria-role="search"> Searching in archive <strong>stat</strong>. <a href="/search/?searchtype=author&query=Santurkar%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Santurkar, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Santurkar%2C+S&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Santurkar, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.07635">arXiv:2207.07635</a> <span> [<a href="https://arxiv.org/pdf/2207.07635">pdf</a>, <a href="https://arxiv.org/format/2207.07635">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Is a Caption Worth a Thousand Images? A Controlled Study for Representation Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/stat?searchtype=author&query=Santurkar%2C+S">Shibani Santurkar</a>, <a href="/search/stat?searchtype=author&query=Dubois%2C+Y">Yann Dubois</a>, <a href="/search/stat?searchtype=author&query=Taori%2C+R">Rohan Taori</a>, <a href="/search/stat?searchtype=author&query=Liang%2C+P">Percy Liang</a>, <a href="/search/stat?searchtype=author&query=Hashimoto%2C+T">Tatsunori Hashimoto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.07635v1-abstract-short" style="display: inline;"> The development of CLIP [Radford et al., 2021] has sparked a debate on whether language supervision can result in vision models with more transferable representations than traditional image-only methods. Our work studies this question through a carefully controlled comparison of two approaches in terms of their ability to learn representations that generalize to downstream classification tasks. We… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07635v1-abstract-full').style.display = 'inline'; document.getElementById('2207.07635v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.07635v1-abstract-full" style="display: none;"> The development of CLIP [Radford et al., 2021] has sparked a debate on whether language supervision can result in vision models with more transferable representations than traditional image-only methods. Our work studies this question through a carefully controlled comparison of two approaches in terms of their ability to learn representations that generalize to downstream classification tasks. We find that when the pre-training dataset meets certain criteria -- it is sufficiently large and contains descriptive captions with low variability -- image-only methods do not match CLIP's transfer performance, even when they are trained with more image data. However, contrary to what one might expect, there are practical settings in which these criteria are not met, wherein added supervision through captions is actually detrimental. Motivated by our findings, we devise simple prescriptions to enable CLIP to better leverage the language information present in existing pre-training datasets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07635v1-abstract-full').style.display = 'none'; document.getElementById('2207.07635v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.03805">arXiv:2106.03805</a> <span> [<a href="https://arxiv.org/pdf/2106.03805">pdf</a>, <a href="https://arxiv.org/format/2106.03805">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> 3DB: A Framework for Debugging Computer Vision Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/stat?searchtype=author&query=Leclerc%2C+G">Guillaume Leclerc</a>, <a href="/search/stat?searchtype=author&query=Salman%2C+H">Hadi Salman</a>, <a href="/search/stat?searchtype=author&query=Ilyas%2C+A">Andrew Ilyas</a>, <a href="/search/stat?searchtype=author&query=Vemprala%2C+S">Sai Vemprala</a>, <a href="/search/stat?searchtype=author&query=Engstrom%2C+L">Logan Engstrom</a>, <a href="/search/stat?searchtype=author&query=Vineet%2C+V">Vibhav Vineet</a>, <a href="/search/stat?searchtype=author&query=Xiao%2C+K">Kai Xiao</a>, <a href="/search/stat?searchtype=author&query=Zhang%2C+P">Pengchuan Zhang</a>, <a href="/search/stat?searchtype=author&query=Santurkar%2C+S">Shibani Santurkar</a>, <a href="/search/stat?searchtype=author&query=Yang%2C+G">Greg Yang</a>, <a href="/search/stat?searchtype=author&query=Kapoor%2C+A">Ashish Kapoor</a>, <a href="/search/stat?searchtype=author&query=Madry%2C+A">Aleksander Madry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.03805v1-abstract-short" style="display: inline;"> We introduce 3DB: an extendable, unified framework for testing and debugging vision models using photorealistic simulation. We demonstrate, through a wide range of use cases, that 3DB allows users to discover vulnerabilities in computer vision systems and gain insights into how models make decisions. 3DB captures and generalizes many robustness analyses from prior work, and enables one to study th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.03805v1-abstract-full').style.display = 'inline'; document.getElementById('2106.03805v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.03805v1-abstract-full" style="display: none;"> We introduce 3DB: an extendable, unified framework for testing and debugging vision models using photorealistic simulation. We demonstrate, through a wide range of use cases, that 3DB allows users to discover vulnerabilities in computer vision systems and gain insights into how models make decisions. 3DB captures and generalizes many robustness analyses from prior work, and enables one to study their interplay. Finally, we find that the insights generated by the system transfer to the physical world. We are releasing 3DB as a library (https://github.com/3db/3db) alongside a set of example analyses, guides, and documentation: https://3db.github.io/3db/ . <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.03805v1-abstract-full').style.display = 'none'; document.getElementById('2106.03805v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.04857">arXiv:2105.04857</a> <span> [<a href="https://arxiv.org/pdf/2105.04857">pdf</a>, <a href="https://arxiv.org/format/2105.04857">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Leveraging Sparse Linear Layers for Debuggable Deep Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/stat?searchtype=author&query=Wong%2C+E">Eric Wong</a>, <a href="/search/stat?searchtype=author&query=Santurkar%2C+S">Shibani Santurkar</a>, <a href="/search/stat?searchtype=author&query=M%C4%85dry%2C+A">Aleksander M膮dry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.04857v1-abstract-short" style="display: inline;"> We show how fitting sparse linear models over learned deep feature representations can lead to more debuggable neural networks. These networks remain highly accurate while also being more amenable to human interpretation, as we demonstrate quantiatively via numerical and human experiments. We further illustrate how the resulting sparse explanations can help to identify spurious correlations, expla… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.04857v1-abstract-full').style.display = 'inline'; document.getElementById('2105.04857v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.04857v1-abstract-full" style="display: none;"> We show how fitting sparse linear models over learned deep feature representations can lead to more debuggable neural networks. These networks remain highly accurate while also being more amenable to human interpretation, as we demonstrate quantiatively via numerical and human experiments. We further illustrate how the resulting sparse explanations can help to identify spurious correlations, explain misclassifications, and diagnose model biases in vision and language tasks. The code for our toolkit can be found at https://github.com/madrylab/debuggabledeepnetworks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.04857v1-abstract-full').style.display = 'none'; document.getElementById('2105.04857v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.04859">arXiv:2008.04859</a> <span> [<a href="https://arxiv.org/pdf/2008.04859">pdf</a>, <a href="https://arxiv.org/format/2008.04859">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> BREEDS: Benchmarks for Subpopulation Shift </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/stat?searchtype=author&query=Santurkar%2C+S">Shibani Santurkar</a>, <a href="/search/stat?searchtype=author&query=Tsipras%2C+D">Dimitris Tsipras</a>, <a href="/search/stat?searchtype=author&query=Madry%2C+A">Aleksander Madry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.04859v1-abstract-short" style="display: inline;"> We develop a methodology for assessing the robustness of models to subpopulation shift---specifically, their ability to generalize to novel data subpopulations that were not observed during training. Our approach leverages the class structure underlying existing datasets to control the data subpopulations that comprise the training and test distributions. This enables us to synthesize realistic di… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.04859v1-abstract-full').style.display = 'inline'; document.getElementById('2008.04859v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.04859v1-abstract-full" style="display: none;"> We develop a methodology for assessing the robustness of models to subpopulation shift---specifically, their ability to generalize to novel data subpopulations that were not observed during training. Our approach leverages the class structure underlying existing datasets to control the data subpopulations that comprise the training and test distributions. This enables us to synthesize realistic distribution shifts whose sources can be precisely controlled and characterized, within existing large-scale datasets. Applying this methodology to the ImageNet dataset, we create a suite of subpopulation shift benchmarks of varying granularity. We then validate that the corresponding shifts are tractable by obtaining human baselines for them. Finally, we utilize these benchmarks to measure the sensitivity of standard model architectures as well as the effectiveness of off-the-shelf train-time robustness interventions. Code and data available at https://github.com/MadryLab/BREEDS-Benchmarks . <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.04859v1-abstract-full').style.display = 'none'; document.getElementById('2008.04859v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.12729">arXiv:2005.12729</a> <span> [<a href="https://arxiv.org/pdf/2005.12729">pdf</a>, <a href="https://arxiv.org/format/2005.12729">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Implementation Matters in Deep Policy Gradients: A Case Study on PPO and TRPO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/stat?searchtype=author&query=Engstrom%2C+L">Logan Engstrom</a>, <a href="/search/stat?searchtype=author&query=Ilyas%2C+A">Andrew Ilyas</a>, <a href="/search/stat?searchtype=author&query=Santurkar%2C+S">Shibani Santurkar</a>, <a href="/search/stat?searchtype=author&query=Tsipras%2C+D">Dimitris Tsipras</a>, <a href="/search/stat?searchtype=author&query=Janoos%2C+F">Firdaus Janoos</a>, <a href="/search/stat?searchtype=author&query=Rudolph%2C+L">Larry Rudolph</a>, <a href="/search/stat?searchtype=author&query=Madry%2C+A">Aleksander Madry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.12729v1-abstract-short" style="display: inline;"> We study the roots of algorithmic progress in deep policy gradient algorithms through a case study on two popular algorithms: Proximal Policy Optimization (PPO) and Trust Region Policy Optimization (TRPO). Specifically, we investigate the consequences of "code-level optimizations:" algorithm augmentations found only in implementations or described as auxiliary details to the core algorithm. Seemin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.12729v1-abstract-full').style.display = 'inline'; document.getElementById('2005.12729v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.12729v1-abstract-full" style="display: none;"> We study the roots of algorithmic progress in deep policy gradient algorithms through a case study on two popular algorithms: Proximal Policy Optimization (PPO) and Trust Region Policy Optimization (TRPO). Specifically, we investigate the consequences of "code-level optimizations:" algorithm augmentations found only in implementations or described as auxiliary details to the core algorithm. Seemingly of secondary importance, such optimizations turn out to have a major impact on agent behavior. Our results show that they (a) are responsible for most of PPO's gain in cumulative reward over TRPO, and (b) fundamentally change how RL methods function. These insights show the difficulty and importance of attributing performance gains in deep reinforcement learning. Code for reproducing our results is available at https://github.com/MadryLab/implementation-matters . <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.12729v1-abstract-full').style.display = 'none'; document.getElementById('2005.12729v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ICLR 2020 version. arXiv admin note: text overlap with arXiv:1811.02553</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.11295">arXiv:2005.11295</a> <span> [<a href="https://arxiv.org/pdf/2005.11295">pdf</a>, <a href="https://arxiv.org/format/2005.11295">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> From ImageNet to Image Classification: Contextualizing Progress on Benchmarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/stat?searchtype=author&query=Tsipras%2C+D">Dimitris Tsipras</a>, <a href="/search/stat?searchtype=author&query=Santurkar%2C+S">Shibani Santurkar</a>, <a href="/search/stat?searchtype=author&query=Engstrom%2C+L">Logan Engstrom</a>, <a href="/search/stat?searchtype=author&query=Ilyas%2C+A">Andrew Ilyas</a>, <a href="/search/stat?searchtype=author&query=Madry%2C+A">Aleksander Madry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.11295v1-abstract-short" style="display: inline;"> Building rich machine learning datasets in a scalable manner often necessitates a crowd-sourced data collection pipeline. In this work, we use human studies to investigate the consequences of employing such a pipeline, focusing on the popular ImageNet dataset. We study how specific design choices in the ImageNet creation process impact the fidelity of the resulting dataset---including the introduc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.11295v1-abstract-full').style.display = 'inline'; document.getElementById('2005.11295v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.11295v1-abstract-full" style="display: none;"> Building rich machine learning datasets in a scalable manner often necessitates a crowd-sourced data collection pipeline. In this work, we use human studies to investigate the consequences of employing such a pipeline, focusing on the popular ImageNet dataset. We study how specific design choices in the ImageNet creation process impact the fidelity of the resulting dataset---including the introduction of biases that state-of-the-art models exploit. Our analysis pinpoints how a noisy data collection pipeline can lead to a systematic misalignment between the resulting benchmark and the real-world task it serves as a proxy for. Finally, our findings emphasize the need to augment our current model training and evaluation toolkit to take such misalignments into account. To facilitate further research, we release our refined ImageNet annotations at https://github.com/MadryLab/ImageNetMultiLabel. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.11295v1-abstract-full').style.display = 'none'; document.getElementById('2005.11295v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.09619">arXiv:2005.09619</a> <span> [<a href="https://arxiv.org/pdf/2005.09619">pdf</a>, <a href="https://arxiv.org/format/2005.09619">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Identifying Statistical Bias in Dataset Replication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/stat?searchtype=author&query=Engstrom%2C+L">Logan Engstrom</a>, <a href="/search/stat?searchtype=author&query=Ilyas%2C+A">Andrew Ilyas</a>, <a href="/search/stat?searchtype=author&query=Santurkar%2C+S">Shibani Santurkar</a>, <a href="/search/stat?searchtype=author&query=Tsipras%2C+D">Dimitris Tsipras</a>, <a href="/search/stat?searchtype=author&query=Steinhardt%2C+J">Jacob Steinhardt</a>, <a href="/search/stat?searchtype=author&query=Madry%2C+A">Aleksander Madry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.09619v2-abstract-short" style="display: inline;"> Dataset replication is a useful tool for assessing whether improvements in test accuracy on a specific benchmark correspond to improvements in models' ability to generalize reliably. In this work, we present unintuitive yet significant ways in which standard approaches to dataset replication introduce statistical bias, skewing the resulting observations. We study ImageNet-v2, a replication of the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.09619v2-abstract-full').style.display = 'inline'; document.getElementById('2005.09619v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.09619v2-abstract-full" style="display: none;"> Dataset replication is a useful tool for assessing whether improvements in test accuracy on a specific benchmark correspond to improvements in models' ability to generalize reliably. In this work, we present unintuitive yet significant ways in which standard approaches to dataset replication introduce statistical bias, skewing the resulting observations. We study ImageNet-v2, a replication of the ImageNet dataset on which models exhibit a significant (11-14%) drop in accuracy, even after controlling for a standard human-in-the-loop measure of data quality. We show that after correcting for the identified statistical bias, only an estimated $3.6\% \pm 1.5\%$ of the original $11.7\% \pm 1.0\%$ accuracy drop remains unaccounted for. We conclude with concrete recommendations for recognizing and avoiding bias in dataset replication. Code for our study is publicly available at http://github.com/MadryLab/dataset-replication-analysis . <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.09619v2-abstract-full').style.display = 'none'; document.getElementById('2005.09619v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.09453">arXiv:1906.09453</a> <span> [<a href="https://arxiv.org/pdf/1906.09453">pdf</a>, <a href="https://arxiv.org/format/1906.09453">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Image Synthesis with a Single (Robust) Classifier </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/stat?searchtype=author&query=Santurkar%2C+S">Shibani Santurkar</a>, <a href="/search/stat?searchtype=author&query=Tsipras%2C+D">Dimitris Tsipras</a>, <a href="/search/stat?searchtype=author&query=Tran%2C+B">Brandon Tran</a>, <a href="/search/stat?searchtype=author&query=Ilyas%2C+A">Andrew Ilyas</a>, <a href="/search/stat?searchtype=author&query=Engstrom%2C+L">Logan Engstrom</a>, <a href="/search/stat?searchtype=author&query=Madry%2C+A">Aleksander Madry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.09453v2-abstract-short" style="display: inline;"> We show that the basic classification framework alone can be used to tackle some of the most challenging tasks in image synthesis. In contrast to other state-of-the-art approaches, the toolkit we develop is rather minimal: it uses a single, off-the-shelf classifier for all these tasks. The crux of our approach is that we train this classifier to be adversarially robust. It turns out that adversari… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.09453v2-abstract-full').style.display = 'inline'; document.getElementById('1906.09453v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.09453v2-abstract-full" style="display: none;"> We show that the basic classification framework alone can be used to tackle some of the most challenging tasks in image synthesis. In contrast to other state-of-the-art approaches, the toolkit we develop is rather minimal: it uses a single, off-the-shelf classifier for all these tasks. The crux of our approach is that we train this classifier to be adversarially robust. It turns out that adversarial robustness is precisely what we need to directly manipulate salient features of the input. Overall, our findings demonstrate the utility of robustness in the broader machine learning context. Code and models for our experiments can be found at https://git.io/robust-apps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.09453v2-abstract-full').style.display = 'none'; document.getElementById('1906.09453v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.00945">arXiv:1906.00945</a> <span> [<a href="https://arxiv.org/pdf/1906.00945">pdf</a>, <a href="https://arxiv.org/format/1906.00945">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> </div> </div> <p class="title is-5 mathjax"> Adversarial Robustness as a Prior for Learned Representations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/stat?searchtype=author&query=Engstrom%2C+L">Logan Engstrom</a>, <a href="/search/stat?searchtype=author&query=Ilyas%2C+A">Andrew Ilyas</a>, <a href="/search/stat?searchtype=author&query=Santurkar%2C+S">Shibani Santurkar</a>, <a href="/search/stat?searchtype=author&query=Tsipras%2C+D">Dimitris Tsipras</a>, <a href="/search/stat?searchtype=author&query=Tran%2C+B">Brandon Tran</a>, <a href="/search/stat?searchtype=author&query=Madry%2C+A">Aleksander Madry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.00945v2-abstract-short" style="display: inline;"> An important goal in deep learning is to learn versatile, high-level feature representations of input data. However, standard networks' representations seem to possess shortcomings that, as we illustrate, prevent them from fully realizing this goal. In this work, we show that robust optimization can be re-cast as a tool for enforcing priors on the features learned by deep neural networks. It turns… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.00945v2-abstract-full').style.display = 'inline'; document.getElementById('1906.00945v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.00945v2-abstract-full" style="display: none;"> An important goal in deep learning is to learn versatile, high-level feature representations of input data. However, standard networks' representations seem to possess shortcomings that, as we illustrate, prevent them from fully realizing this goal. In this work, we show that robust optimization can be re-cast as a tool for enforcing priors on the features learned by deep neural networks. It turns out that representations learned by robust models address the aforementioned shortcomings and make significant progress towards learning a high-level encoding of inputs. In particular, these representations are approximately invertible, while allowing for direct visualization and manipulation of salient input features. More broadly, our results indicate adversarial robustness as a promising avenue for improving learned representations. Our code and models for reproducing these results is available at https://git.io/robust-reps . <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.00945v2-abstract-full').style.display = 'none'; document.getElementById('1906.00945v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.02175">arXiv:1905.02175</a> <span> [<a href="https://arxiv.org/pdf/1905.02175">pdf</a>, <a href="https://arxiv.org/format/1905.02175">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Adversarial Examples Are Not Bugs, They Are Features </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/stat?searchtype=author&query=Ilyas%2C+A">Andrew Ilyas</a>, <a href="/search/stat?searchtype=author&query=Santurkar%2C+S">Shibani Santurkar</a>, <a href="/search/stat?searchtype=author&query=Tsipras%2C+D">Dimitris Tsipras</a>, <a href="/search/stat?searchtype=author&query=Engstrom%2C+L">Logan Engstrom</a>, <a href="/search/stat?searchtype=author&query=Tran%2C+B">Brandon Tran</a>, <a href="/search/stat?searchtype=author&query=Madry%2C+A">Aleksander Madry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.02175v4-abstract-short" style="display: inline;"> Adversarial examples have attracted significant attention in machine learning, but the reasons for their existence and pervasiveness remain unclear. We demonstrate that adversarial examples can be directly attributed to the presence of non-robust features: features derived from patterns in the data distribution that are highly predictive, yet brittle and incomprehensible to humans. After capturing… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.02175v4-abstract-full').style.display = 'inline'; document.getElementById('1905.02175v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.02175v4-abstract-full" style="display: none;"> Adversarial examples have attracted significant attention in machine learning, but the reasons for their existence and pervasiveness remain unclear. We demonstrate that adversarial examples can be directly attributed to the presence of non-robust features: features derived from patterns in the data distribution that are highly predictive, yet brittle and incomprehensible to humans. After capturing these features within a theoretical framework, we establish their widespread existence in standard datasets. Finally, we present a simple setting where we can rigorously tie the phenomena we observe in practice to a misalignment between the (human-specified) notion of robustness and the inherent geometry of the data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.02175v4-abstract-full').style.display = 'none'; document.getElementById('1905.02175v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.02553">arXiv:1811.02553</a> <span> [<a href="https://arxiv.org/pdf/1811.02553">pdf</a>, <a href="https://arxiv.org/format/1811.02553">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> A Closer Look at Deep Policy Gradients </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/stat?searchtype=author&query=Ilyas%2C+A">Andrew Ilyas</a>, <a href="/search/stat?searchtype=author&query=Engstrom%2C+L">Logan Engstrom</a>, <a href="/search/stat?searchtype=author&query=Santurkar%2C+S">Shibani Santurkar</a>, <a href="/search/stat?searchtype=author&query=Tsipras%2C+D">Dimitris Tsipras</a>, <a href="/search/stat?searchtype=author&query=Janoos%2C+F">Firdaus Janoos</a>, <a href="/search/stat?searchtype=author&query=Rudolph%2C+L">Larry Rudolph</a>, <a href="/search/stat?searchtype=author&query=Madry%2C+A">Aleksander Madry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.02553v4-abstract-short" style="display: inline;"> We study how the behavior of deep policy gradient algorithms reflects the conceptual framework motivating their development. To this end, we propose a fine-grained analysis of state-of-the-art methods based on key elements of this framework: gradient estimation, value prediction, and optimization landscapes. Our results show that the behavior of deep policy gradient algorithms often deviates from… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.02553v4-abstract-full').style.display = 'inline'; document.getElementById('1811.02553v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.02553v4-abstract-full" style="display: none;"> We study how the behavior of deep policy gradient algorithms reflects the conceptual framework motivating their development. To this end, we propose a fine-grained analysis of state-of-the-art methods based on key elements of this framework: gradient estimation, value prediction, and optimization landscapes. Our results show that the behavior of deep policy gradient algorithms often deviates from what their motivating framework would predict: the surrogate objective does not match the true reward landscape, learned value estimators fail to fit the true value function, and gradient estimates poorly correlate with the "true" gradient. The mismatch between predicted and empirical behavior we uncover highlights our poor understanding of current methods, and indicates the need to move beyond current benchmark-centric evaluation methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.02553v4-abstract-full').style.display = 'none'; document.getElementById('1811.02553v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ICLR 2020 version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.12152">arXiv:1805.12152</a> <span> [<a href="https://arxiv.org/pdf/1805.12152">pdf</a>, <a href="https://arxiv.org/format/1805.12152">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> </div> </div> <p class="title is-5 mathjax"> Robustness May Be at Odds with Accuracy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/stat?searchtype=author&query=Tsipras%2C+D">Dimitris Tsipras</a>, <a href="/search/stat?searchtype=author&query=Santurkar%2C+S">Shibani Santurkar</a>, <a href="/search/stat?searchtype=author&query=Engstrom%2C+L">Logan Engstrom</a>, <a href="/search/stat?searchtype=author&query=Turner%2C+A">Alexander Turner</a>, <a href="/search/stat?searchtype=author&query=Madry%2C+A">Aleksander Madry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.12152v5-abstract-short" style="display: inline;"> We show that there may exist an inherent tension between the goal of adversarial robustness and that of standard generalization. Specifically, training robust models may not only be more resource-consuming, but also lead to a reduction of standard accuracy. We demonstrate that this trade-off between the standard accuracy of a model and its robustness to adversarial perturbations provably exists in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.12152v5-abstract-full').style.display = 'inline'; document.getElementById('1805.12152v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.12152v5-abstract-full" style="display: none;"> We show that there may exist an inherent tension between the goal of adversarial robustness and that of standard generalization. Specifically, training robust models may not only be more resource-consuming, but also lead to a reduction of standard accuracy. We demonstrate that this trade-off between the standard accuracy of a model and its robustness to adversarial perturbations provably exists in a fairly simple and natural setting. These findings also corroborate a similar phenomenon observed empirically in more complex settings. Further, we argue that this phenomenon is a consequence of robust classifiers learning fundamentally different feature representations than standard classifiers. These differences, in particular, seem to result in unexpected benefits: the representations learned by robust models tend to align better with salient data characteristics and human perception. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.12152v5-abstract-full').style.display = 'none'; document.getElementById('1805.12152v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ICLR'19</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.11604">arXiv:1805.11604</a> <span> [<a href="https://arxiv.org/pdf/1805.11604">pdf</a>, <a href="https://arxiv.org/format/1805.11604">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> </div> </div> <p class="title is-5 mathjax"> How Does Batch Normalization Help Optimization? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/stat?searchtype=author&query=Santurkar%2C+S">Shibani Santurkar</a>, <a href="/search/stat?searchtype=author&query=Tsipras%2C+D">Dimitris Tsipras</a>, <a href="/search/stat?searchtype=author&query=Ilyas%2C+A">Andrew Ilyas</a>, <a href="/search/stat?searchtype=author&query=Madry%2C+A">Aleksander Madry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.11604v5-abstract-short" style="display: inline;"> Batch Normalization (BatchNorm) is a widely adopted technique that enables faster and more stable training of deep neural networks (DNNs). Despite its pervasiveness, the exact reasons for BatchNorm's effectiveness are still poorly understood. The popular belief is that this effectiveness stems from controlling the change of the layers' input distributions during training to reduce the so-called "i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.11604v5-abstract-full').style.display = 'inline'; document.getElementById('1805.11604v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.11604v5-abstract-full" style="display: none;"> Batch Normalization (BatchNorm) is a widely adopted technique that enables faster and more stable training of deep neural networks (DNNs). Despite its pervasiveness, the exact reasons for BatchNorm's effectiveness are still poorly understood. The popular belief is that this effectiveness stems from controlling the change of the layers' input distributions during training to reduce the so-called "internal covariate shift". In this work, we demonstrate that such distributional stability of layer inputs has little to do with the success of BatchNorm. Instead, we uncover a more fundamental impact of BatchNorm on the training process: it makes the optimization landscape significantly smoother. This smoothness induces a more predictive and stable behavior of the gradients, allowing for faster training. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.11604v5-abstract-full').style.display = 'none'; document.getElementById('1805.11604v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">In NeurIPS'18</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.11285">arXiv:1804.11285</a> <span> [<a href="https://arxiv.org/pdf/1804.11285">pdf</a>, <a href="https://arxiv.org/format/1804.11285">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Adversarially Robust Generalization Requires More Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/stat?searchtype=author&query=Schmidt%2C+L">Ludwig Schmidt</a>, <a href="/search/stat?searchtype=author&query=Santurkar%2C+S">Shibani Santurkar</a>, <a href="/search/stat?searchtype=author&query=Tsipras%2C+D">Dimitris Tsipras</a>, <a href="/search/stat?searchtype=author&query=Talwar%2C+K">Kunal Talwar</a>, <a href="/search/stat?searchtype=author&query=M%C4%85dry%2C+A">Aleksander M膮dry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.11285v2-abstract-short" style="display: inline;"> Machine learning models are often susceptible to adversarial perturbations of their inputs. Even small perturbations can cause state-of-the-art classifiers with high "standard" accuracy to produce an incorrect prediction with high confidence. To better understand this phenomenon, we study adversarially robust learning from the viewpoint of generalization. We show that already in a simple natural d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.11285v2-abstract-full').style.display = 'inline'; document.getElementById('1804.11285v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.11285v2-abstract-full" style="display: none;"> Machine learning models are often susceptible to adversarial perturbations of their inputs. Even small perturbations can cause state-of-the-art classifiers with high "standard" accuracy to produce an incorrect prediction with high confidence. To better understand this phenomenon, we study adversarially robust learning from the viewpoint of generalization. We show that already in a simple natural data model, the sample complexity of robust learning can be significantly larger than that of "standard" learning. This gap is information theoretic and holds irrespective of the training algorithm or the model family. We complement our theoretical results with experiments on popular image classification datasets and show that a similar gap exists here as well. We postulate that the difficulty of training robust classifiers stems, at least partially, from this inherently larger sample complexity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.11285v2-abstract-full').style.display = 'none'; document.getElementById('1804.11285v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Small changes for biblatex compatibility</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.00970">arXiv:1711.00970</a> <span> [<a href="https://arxiv.org/pdf/1711.00970">pdf</a>, <a href="https://arxiv.org/format/1711.00970">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> A Classification-Based Study of Covariate Shift in GAN Distributions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/stat?searchtype=author&query=Santurkar%2C+S">Shibani Santurkar</a>, <a href="/search/stat?searchtype=author&query=Schmidt%2C+L">Ludwig Schmidt</a>, <a href="/search/stat?searchtype=author&query=M%C4%85dry%2C+A">Aleksander M膮dry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.00970v7-abstract-short" style="display: inline;"> A basic, and still largely unanswered, question in the context of Generative Adversarial Networks (GANs) is whether they are truly able to capture all the fundamental characteristics of the distributions they are trained on. In particular, evaluating the diversity of GAN distributions is challenging and existing methods provide only a partial understanding of this issue. In this paper, we develop… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.00970v7-abstract-full').style.display = 'inline'; document.getElementById('1711.00970v7-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.00970v7-abstract-full" style="display: none;"> A basic, and still largely unanswered, question in the context of Generative Adversarial Networks (GANs) is whether they are truly able to capture all the fundamental characteristics of the distributions they are trained on. In particular, evaluating the diversity of GAN distributions is challenging and existing methods provide only a partial understanding of this issue. In this paper, we develop quantitative and scalable tools for assessing the diversity of GAN distributions. Specifically, we take a classification-based perspective and view loss of diversity as a form of covariate shift introduced by GANs. We examine two specific forms of such shift: mode collapse and boundary distortion. In contrast to prior work, our methods need only minimal human supervision and can be readily applied to state-of-the-art GANs on large, canonical datasets. Examining popular GANs using our tools indicates that these GANs have significant problems in reproducing the more distributional properties of their training dataset. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.00970v7-abstract-full').style.display = 'none'; document.getElementById('1711.00970v7-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>