CINXE.COM

Search results for: SCADA alarms

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: SCADA alarms</title> <meta name="description" content="Search results for: SCADA alarms"> <meta name="keywords" content="SCADA alarms"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="SCADA alarms" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="SCADA alarms"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 91</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: SCADA alarms</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> Optimizing SCADA/RTU Control System Alarms for Gas Wells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Ali%20Faqeeh">Mohammed Ali Faqeeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> SCADA System Alarms Optimization Process has been introduced recently and applied accordingly in different implemented stages. First, MODBUS communication protocols between RTU/SCADA were improved at the level of I/O points scanning intervals. Then, some of the technical issues related to manufacturing limitations were resolved. Afterward, another approach was followed to take a decision on the configured alarms database. So, a couple of meetings and workshops were held among all system stakeholders, which resulted in an agreement of disabling unnecessary (Diagnostic) alarms. Moreover, a leap forward step was taken to segregate the SCADA Operator Graphics in a way to show only process-related alarms while some other graphics will ensure the availability of field alarms related to maintenance and engineering purposes. This overall system management and optimization have resulted in a huge effective impact on all operations, maintenance, and engineering. It has reduced unneeded open tickets for maintenance crews which led to reduce the driven mileages accordingly. Also, this practice has shown a good impression on the operation reactions and response to the emergency situations as the SCADA operators can be staying much vigilant on the real alarms rather than gets distracted by noisy ones. SCADA System Alarms Optimization process has been executed utilizing all applicable in-house resources among engineering, maintenance, and operations crews. The methodology of the entire enhanced scopes is performed through various stages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SCADA" title="SCADA">SCADA</a>, <a href="https://publications.waset.org/abstracts/search?q=RTU%20Communication" title=" RTU Communication"> RTU Communication</a>, <a href="https://publications.waset.org/abstracts/search?q=alarm%20management%20system" title=" alarm management system"> alarm management system</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA%20alarms" title=" SCADA alarms"> SCADA alarms</a>, <a href="https://publications.waset.org/abstracts/search?q=Modbus" title=" Modbus"> Modbus</a>, <a href="https://publications.waset.org/abstracts/search?q=DNP%20protocol" title=" DNP protocol"> DNP protocol</a> </p> <a href="https://publications.waset.org/abstracts/142519/optimizing-scadartu-control-system-alarms-for-gas-wells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> An Industrial Scada System Remote Control Using Mobile Phones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmidah%20Elgali">Ahmidah Elgali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> SCADA is the abbreviation for "Administrative Control And Data Acquisition." SCADA frameworks are generally utilized in industry for administrative control and information securing of modern cycles. Regular SCADA frameworks use PC, journal, slim client, and PDA as a client. In this paper, a Java-empowered cell phone has been utilized as a client in an example SCADA application to show and regulate the place of an example model crane. The paper presents a genuine execution of the online controlling of the model crane through a cell phone. The remote correspondence between the cell phone and the SCADA server is performed through a base station by means of general parcel radio assistance GPRS and remote application convention WAP. This application can be used in industrial sites in areas that are likely to be exposed to a security emergency (like terrorist attacks) which causes the sudden exit of the operators; however, no time to perform the shutdown procedures for the plant. Hence this application allows shutting down units and equipment remotely by mobile and so avoids damage and losses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control" title="control">control</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial" title=" industrial"> industrial</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile" title=" mobile"> mobile</a>, <a href="https://publications.waset.org/abstracts/search?q=network" title=" network"> network</a>, <a href="https://publications.waset.org/abstracts/search?q=remote" title=" remote"> remote</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA" title=" SCADA"> SCADA</a> </p> <a href="https://publications.waset.org/abstracts/150682/an-industrial-scada-system-remote-control-using-mobile-phones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> Basics of SCADA Security: A Technical Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Micha%C5%82%20Witas">Michał Witas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a technical approach to analysis of security of SCADA systems. Main goal of the paper is to make SCADA administrators aware of risks resulting from SCADA systems usage and to familiarize with methods that can be adopt to existing or planned system, to increase overall system security level. Because SCADA based systems become a industrial standard, more attention should be paid to the security of that systems. Industrial Control Systems (ICS) like SCADA are responsible for controlling crucial aspects of wide range of industrial processes. In pair with that responsibility, goes a lot of money that can be earned or lost – this fact is main reason of increased interest of attackers. Additionally ICS are often responsible for maintaining resources strategic from the point of view of national economy, like electricity (including nuclear power plants), heating, water resources or military facilities, so they can be targets of terrorist cybernetic attacks. Without proper risk analysis and management, vulnerabilities resulting from the usage of SCADA can be easily exploited by potential attacker. Paper is based mostly on own experience in systems security, gathered during academic studies and professional work in international company. As title suggests, it will cover only basics of topic, because every of points mentioned in the document can be base for additional research and papers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=denial%20of%20service" title="denial of service">denial of service</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA" title=" SCADA"> SCADA</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20policy" title=" security policy"> security policy</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20network" title=" distributed network"> distributed network</a> </p> <a href="https://publications.waset.org/abstracts/20636/basics-of-scada-security-a-technical-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> Integration GIS–SCADA Power Systems to Enclosure Air Dispersion Model </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Shaker">Ibrahim Shaker</a>, <a href="https://publications.waset.org/abstracts/search?q=Amr%20El%20Hossany"> Amr El Hossany</a>, <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20Osman"> Moustafa Osman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20El%20Raey"> Mohamed El Raey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper will explore integration model between GIS&ndash;SCADA system and enclosure quantification model to approach the impact of failure-safe event. There are real demands to identify spatial objects and improve control system performance. Nevertheless, the employed methodology is predicting electro-mechanic operations and corresponding time to environmental incident variations. Open processing, as object systems technology, is presented for integration enclosure database with minimal memory size and computation time via connectivity drivers such as ODBC:JDBC during main stages of GIS&ndash;SCADA connection. The function of Geographic Information System is manipulating power distribution in contrast to developing issues. In other ward, GIS-SCADA systems integration will require numerical objects of process to enable system model calibration and estimation demands, determine of past events for analysis and prediction of emergency situations for response training. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20dispersion%20model" title="air dispersion model">air dispersion model</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20management" title=" environmental management"> environmental management</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA%20systems" title=" SCADA systems"> SCADA systems</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS%20system" title=" GIS system"> GIS system</a>, <a href="https://publications.waset.org/abstracts/search?q=integration%20power%20system" title=" integration power system"> integration power system</a> </p> <a href="https://publications.waset.org/abstracts/53013/integration-gis-scada-power-systems-to-enclosure-air-dispersion-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> Machine Learning Based Anomaly Detection in Hydraulic Units of Governors in Hydroelectric Power Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Akif%20B%C3%BCt%C3%BCner">Mehmet Akif Bütüner</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%B0lhan%20Ko%C5%9Falay"> İlhan Koşalay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydroelectric power plants (HEPPs) are renewable energy power plants with the highest installed power in the world. While the control systems operating in these power plants ensure that the system operates at the desired operating point, it is also responsible for stopping the relevant unit safely in case of any malfunction. While these control systems are expected not to miss signals that require stopping, on the other hand, it is desired not to cause unnecessary stops. In traditional control systems including modern systems with SCADA infrastructure, alarm conditions to create warnings or trip conditions to put relevant unit out of service automatically are usually generated with predefined limits regardless of different operating conditions. This approach results in alarm/trip conditions to be less likely to detect minimal changes which may result in serious malfunction scenarios in near future. With the methods proposed in this research, routine behavior of the oil circulation of hydraulic governor of a HEPP will be modeled with machine learning methods using historical data obtained from SCADA system. Using the created model and recently gathered data from control system, oil pressure of hydraulic accumulators will be estimated. Comparison of this estimation with the measurements made and recorded instantly by the SCADA system will help to foresee failure before becoming worse and determine remaining useful life. By using model outputs, maintenance works will be made more planned, so that undesired stops are prevented, and in case of any malfunction, the system will be stopped or several alarms are triggered before the problem grows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydroelectric" title="hydroelectric">hydroelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=governor" title=" governor"> governor</a>, <a href="https://publications.waset.org/abstracts/search?q=anomaly%20detection" title=" anomaly detection"> anomaly detection</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/153204/machine-learning-based-anomaly-detection-in-hydraulic-units-of-governors-in-hydroelectric-power-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> Integration Network ASI in Lab Automation and Networks Industrial in IFCE</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Fernandes%20Teixeira%20Filho">Jorge Fernandes Teixeira Filho</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20Oliveira%20Alcantara%20Fontenele"> André Oliveira Alcantara Fontenele</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%89rick%20Arag%C3%A3o%20Ribeiro"> Érick Aragão Ribeiro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The constant emergence of new technologies used in automated processes makes it necessary for teachers and traders to apply new technologies in their classes. This paper presents an application of a new technology that will be employed in a didactic plant, which represents an effluent treatment process located in a laboratory of a federal educational institution. At work were studied in the first place, all components to be placed on automation laboratory in order to determine ways to program, parameterize and organize the plant. New technologies that have been implemented to the process are basically an AS-i network and a Profinet network, a SCADA system, which represented a major innovation in the laboratory. The project makes it possible to carry out in the laboratory various practices of industrial networks and SCADA systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automation" title="automation">automation</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20networks" title=" industrial networks"> industrial networks</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA%20systems" title=" SCADA systems"> SCADA systems</a>, <a href="https://publications.waset.org/abstracts/search?q=lab%20automation" title=" lab automation"> lab automation</a> </p> <a href="https://publications.waset.org/abstracts/41367/integration-network-asi-in-lab-automation-and-networks-industrial-in-ifce" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">544</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Some Codes for Variants in Graphs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sofia%20Ait%20Bouazza">Sofia Ait Bouazza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We consider the problem of finding a minimum identifying code in a graph. This problem was initially introduced in 1998 and has been since fundamentally connected to a wide range of applications (fault diagnosis, location detection …). Suppose we have a building into which we need to place fire alarms. Suppose each alarm is designed so that it can detect any fire that starts either in the room in which it is located or in any room that shares a doorway with the room. We want to detect any fire that may occur or use the alarms which are sounding to not only to not only detect any fire but be able to tell exactly where the fire is located in the building. For reasons of cost, we want to use as few alarms as necessary. The first problem involves finding a minimum domination set of a graph. If the alarms are three state alarms capable of distinguishing between a fire in the same room as the alarm and a fire in an adjacent room, we are trying to find a minimum locating domination set. If the alarms are two state alarms that can only sound if there is a fire somewhere nearby, we are looking for a differentiating domination set of a graph. These three areas are the subject of much active research; we primarily focus on the third problem. An identifying code of a graph G is a dominating set C such that every vertex x of G is distinguished from other vertices by the set of vertices in C that are at distance at most r≥1 from x. When only vertices out of the code are asked to be identified, we get the related concept of a locating dominating set. The problem of finding an identifying code (resp a locating dominating code) of minimum size is a NP-hard problem, even when the input graph belongs to a number of specific graph classes. Therefore, we study this problem in some restricted classes of undirected graphs like split graph, line graph and path in a directed graph. Then we present some results on the identifying code by giving an exact value of upper total locating domination and a total 2-identifying code in directed and undirected graph. Moreover we determine exact values of locating dominating code and edge identifying code of thin headless spider and locating dominating code of complete suns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=identiying%20codes" title="identiying codes">identiying codes</a>, <a href="https://publications.waset.org/abstracts/search?q=locating%20dominating%20set" title=" locating dominating set"> locating dominating set</a>, <a href="https://publications.waset.org/abstracts/search?q=split%20graphs" title=" split graphs"> split graphs</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20headless%20spider" title=" thin headless spider"> thin headless spider</a> </p> <a href="https://publications.waset.org/abstracts/26380/some-codes-for-variants-in-graphs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> [Keynote]: No-Trust-Zone Architecture for Securing Supervisory Control and Data Acquisition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Okeke">Michael Okeke</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Blyth"> Andrew Blyth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supervisory Control And Data Acquisition (SCADA) as the state of the art Industrial Control Systems (ICS) are used in many different critical infrastructures, from smart home to energy systems and from locomotives train system to planes. Security of SCADA systems is vital since many lives depend on it for daily activities and deviation from normal operation could be disastrous to the environment as well as lives. This paper describes how No-Trust-Zone (NTZ) architecture could be incorporated into SCADA Systems in order to reduce the chances of malicious intent. The architecture is made up of two distinctive parts which are; the field devices such as; sensors, PLCs pumps, and actuators. The second part of the architecture is designed following lambda architecture, which is made up of a detection algorithm based on Particle Swarm Optimization (PSO) and Hadoop framework for data processing and storage. Apache Spark will be a part of the lambda architecture for real-time analysis of packets for anomalies detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industrial%20control%20system%20%28ics" title="industrial control system (ics">industrial control system (ics</a>, <a href="https://publications.waset.org/abstracts/search?q=no-trust-zone%20%28ntz%29" title=" no-trust-zone (ntz)"> no-trust-zone (ntz)</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimisation%20%28pso%29" title=" particle swarm optimisation (pso)"> particle swarm optimisation (pso)</a>, <a href="https://publications.waset.org/abstracts/search?q=supervisory%20control%20and%20data%20acquisition%20%28scada%29" title=" supervisory control and data acquisition (scada)"> supervisory control and data acquisition (scada)</a>, <a href="https://publications.waset.org/abstracts/search?q=swarm%20intelligence%20%28SI%29" title=" swarm intelligence (SI)"> swarm intelligence (SI)</a> </p> <a href="https://publications.waset.org/abstracts/53994/keynote-no-trust-zone-architecture-for-securing-supervisory-control-and-data-acquisition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Development of a Smart System for Measuring Strain Levels of Natural Gas and Petroleum Pipelines on Earthquake Fault Lines in Turkiye</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Yetik">Ahmet Yetik</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyit%20Ali%20Kara"> Seyit Ali Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=Cevat%20%C3%96zarpa"> Cevat Özarpa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Load changes occur on natural gas and oil pipelines due to natural disasters. The displacement of the soil around the natural gas and oil pipes due to situations that may cause erosion, such as earthquakes, landslides, and floods, is the source of this load change. The exposure of natural gas and oil pipes to variable loads causes deformation, cracks, and breaks in these pipes. Cracks and breaks on the pipes cause damage to people and the environment due to reasons such as explosions. Especially with the examinations made after natural disasters, it can be easily understood which of the pipes has more damage in the regions followed. It has been determined that the earthquakes in Turkey caused permanent damage to the pipelines. This project was designed and realized because it was determined that there were cracks and gas leaks in the insulation gaskets placed in the pipelines, especially at the junction points. In this study, A new SCADA (Supervisory Control and Data Acquisition) application has been developed to monitor load changes caused by natural disasters. The newly developed SCADA application monitors the changes in the x, y, and z axes of the stresses occurring in the pipes with the help of strain gauge sensors placed on the pipes. For the developed SCADA system, test setups in accordance with the standards were created during the fieldwork. The test setups created were integrated into the SCADA system, and the system was followed up. Thanks to the SCADA system developed with the field application, the load changes that will occur on the natural gas and oil pipes are instantly monitored, and the accumulations that may create a load on the pipes and their surroundings are immediately intervened, and new risks that may arise are prevented. It has contributed to energy supply security, asset management, pipeline holistic management, and sustainability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake" title="earthquake">earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20gas%20pipes" title=" natural gas pipes"> natural gas pipes</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20pipes" title=" oil pipes"> oil pipes</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20measurement" title=" strain measurement"> strain measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20measurement" title=" stress measurement"> stress measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=landslide" title=" landslide"> landslide</a> </p> <a href="https://publications.waset.org/abstracts/168413/development-of-a-smart-system-for-measuring-strain-levels-of-natural-gas-and-petroleum-pipelines-on-earthquake-fault-lines-in-turkiye" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> Intrusion Detection in SCADA Systems </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leandros%20A.%20Maglaras">Leandros A. Maglaras</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianmin%20Jiang"> Jianmin Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The protection of the national infrastructures from cyberattacks is one of the main issues for national and international security. The funded European Framework-7 (FP7) research project CockpitCI introduces intelligent intrusion detection, analysis and protection techniques for Critical Infrastructures (CI). The paradox is that CIs massively rely on the newest interconnected and vulnerable Information and Communication Technology (ICT), whilst the control equipment, legacy software/hardware, is typically old. Such a combination of factors may lead to very dangerous situations, exposing systems to a wide variety of attacks. To overcome such threats, the CockpitCI project combines machine learning techniques with ICT technologies to produce advanced intrusion detection, analysis and reaction tools to provide intelligence to field equipment. This will allow the field equipment to perform local decisions in order to self-identify and self-react to abnormal situations introduced by cyberattacks. In this paper, an intrusion detection module capable of detecting malicious network traffic in a Supervisory Control and Data Acquisition (SCADA) system is presented. Malicious data in a SCADA system disrupt its correct functioning and tamper with its normal operation. OCSVM is an intrusion detection mechanism that does not need any labeled data for training or any information about the kind of anomaly is expecting for the detection process. This feature makes it ideal for processing SCADA environment data and automates SCADA performance monitoring. The OCSVM module developed is trained by network traces off line and detects anomalies in the system real time. The module is part of an IDS (intrusion detection system) developed under CockpitCI project and communicates with the other parts of the system by the exchange of IDMEF messages that carry information about the source of the incident, the time and a classification of the alarm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyber-security" title="cyber-security">cyber-security</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA%20systems" title=" SCADA systems"> SCADA systems</a>, <a href="https://publications.waset.org/abstracts/search?q=OCSVM" title=" OCSVM"> OCSVM</a>, <a href="https://publications.waset.org/abstracts/search?q=intrusion%20detection" title=" intrusion detection"> intrusion detection</a> </p> <a href="https://publications.waset.org/abstracts/10165/intrusion-detection-in-scada-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">552</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> RS Based SCADA System for Longer Distance Powered Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harkishen%20Singh">Harkishen Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Gavin%20Mangeni"> Gavin Mangeni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This project aims at building an efficient and automatic power monitoring SCADA system, which is capable of monitoring the electrical parameters of high voltage powered devices in real time for example RMS voltage and current, frequency, energy consumed, power factor etc. The system uses RS-485 serial communication interface to transfer data over longer distances. Embedded C programming is the platform used to develop two hardware modules namely: RTU and Master Station modules, which both use the CC2540 BLE 4.0 microcontroller configured in slave / master mode. The Si8900 galvanic ally isolated microchip is used to perform ADC externally. The hardware communicates via UART port and sends data to the user PC using the USB port. Labview software is used to design a user interface to display current state of the power loads being monitored as well as logs data to excel spreadsheet file. An understanding of the Si8900&rsquo;s auto baud rate process is key to successful implementation of this project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SCADA" title="SCADA">SCADA</a>, <a href="https://publications.waset.org/abstracts/search?q=RS485" title=" RS485"> RS485</a>, <a href="https://publications.waset.org/abstracts/search?q=CC2540" title=" CC2540"> CC2540</a>, <a href="https://publications.waset.org/abstracts/search?q=labview" title=" labview"> labview</a>, <a href="https://publications.waset.org/abstracts/search?q=Si8900" title=" Si8900"> Si8900</a> </p> <a href="https://publications.waset.org/abstracts/44265/rs-based-scada-system-for-longer-distance-powered-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Adopting Flocks of Birds Approach to Predator for Anomalies Detection on Industrial Control Systems </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Okeke">M. Okeke</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Blyth"> A. Blyth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industrial Control Systems (ICS) such as Supervisory Control And Data Acquisition (SCADA) can be seen in many different critical infrastructures, from nuclear management to utility, medical equipment, power, waste and engine management on ships and planes. The role SCADA plays in critical infrastructure has resulted in a call to secure them. Many lives depend on it for daily activities and the attack vectors are becoming more sophisticated. Hence, the security of ICS is vital as malfunction of it might result in huge risk. This paper describes how the application of Prey Predator (PP) approach in flocks of birds could enhance the detection of malicious activities on ICS. The PP approach explains how these animals in groups or flocks detect predators by following some simple rules. They are not necessarily very intelligent animals but their approach in solving complex issues such as detection through corporation, coordination and communication worth emulating. This paper will emulate flocking behavior seen in birds in detecting predators. The PP approach will adopt six nearest bird approach in detecting any predator. Their local and global bests are based on the individual detection as well as group detection. The PP algorithm was designed following MapReduce methodology that follows a Split Detection Convergence (SDC) approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20life" title="artificial life">artificial life</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20control%20system%20%28ICS%29" title=" industrial control system (ICS)"> industrial control system (ICS)</a>, <a href="https://publications.waset.org/abstracts/search?q=IDS" title=" IDS"> IDS</a>, <a href="https://publications.waset.org/abstracts/search?q=prey%20predator%20%28PP%29" title=" prey predator (PP)"> prey predator (PP)</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA" title=" SCADA"> SCADA</a>, <a href="https://publications.waset.org/abstracts/search?q=SDC" title=" SDC"> SDC</a> </p> <a href="https://publications.waset.org/abstracts/41748/adopting-flocks-of-birds-approach-to-predator-for-anomalies-detection-on-industrial-control-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Psychological Alarm among Individuals Suffering from Irritable Bowel Syndrome</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Selim%20A.">Selim A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Albasher%20N."> Albasher N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Bakrmom%20G."> Bakrmom G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Alanzi%20S."> Alanzi S.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Irritable bowel syndrome (IBS) is a chronic functional bowel disorder characterized by abdominal discomfort or pain and associated with alteration in frequency and/or form of bowel habit among other symptoms. This diagnosis is associated with increased levels of psychological distress, maladaptive coping, genetic risk factors, abnormal small and colonic intestine transit, change in stool frequency or form and abdominal discomfort or pain. Aim: The aim of the study was to assess psychological alarm among individuals suffering from Irritable Bowel Syndrome (IBS). Methods: A cross-sectional correlational research design was used to conduct the current study. A convenience sample of 504 participants was included in the present study. Data were collected using a self-report questionnaire. The questionnaire included socio-demographic data, ROME III to identify Irritable Bowel Syndrome (IBS) and Psychological Alarm Questionnaire. Results: Out of 504 participants who reported abdominal discomfort, 297 (58.9 %) participants met the diagnostic criteria of IBS. The mean age of the IBS participants was 30.16 years, females composed 75.1% of the IBS participants, and 55.2% did not seek medical help. Psychological alarms such as feeling anxious, feeling depressed, having suicidal ideations, bodily pain, having impaired functioning due to pain and feeling unable to cope with pain were significantly high among IBS individuals when compared to individuals not suffering from IBS. Psychological alarms such as feeling anxious, feeling depressed, having suicidal ideations, bodily pain, having impaired functioning due to pain and feeling unable to cope with pain were significantly high among IBS individuals compared to individuals not suffering from IBS. Conclusion: IBS is highly associated with significant psychological alarms including depression, anxiety and suicidal ideas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abdominal%20pain" title="abdominal pain ">abdominal pain </a>, <a href="https://publications.waset.org/abstracts/search?q=irritable%20bowel%20syndrome" title=" irritable bowel syndrome"> irritable bowel syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=distress" title=" distress"> distress</a>, <a href="https://publications.waset.org/abstracts/search?q=psychological%20alarms" title=" psychological alarms"> psychological alarms</a> </p> <a href="https://publications.waset.org/abstracts/91188/psychological-alarm-among-individuals-suffering-from-irritable-bowel-syndrome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Filtering Intrusion Detection Alarms Using Ant Clustering Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghodhbani%20Salah">Ghodhbani Salah</a>, <a href="https://publications.waset.org/abstracts/search?q=Jemili%20Farah"> Jemili Farah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the growth of cyber attacks, information safety has become an important issue all over the world. Many firms rely on security technologies such as intrusion detection systems (IDSs) to manage information technology security risks. IDSs are considered to be the last line of defense to secure a network and play a very important role in detecting large number of attacks. However the main problem with today’s most popular commercial IDSs is generating high volume of alerts and huge number of false positives. This drawback has become the main motivation for many research papers in IDS area. Hence, in this paper we present a data mining technique to assist network administrators to analyze and reduce false positive alarms that are produced by an IDS and increase detection accuracy. Our data mining technique is unsupervised clustering method based on hybrid ANT algorithm. This algorithm discovers clusters of intruders’ behavior without prior knowledge of a possible number of classes, then we apply K-means algorithm to improve the convergence of the ANT clustering. Experimental results on real dataset show that our proposed approach is efficient with high detection rate and low false alarm rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intrusion%20detection%20system" title="intrusion detection system">intrusion detection system</a>, <a href="https://publications.waset.org/abstracts/search?q=alarm%20filtering" title=" alarm filtering"> alarm filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=ANT%20class" title=" ANT class"> ANT class</a>, <a href="https://publications.waset.org/abstracts/search?q=ant%20clustering" title=" ant clustering"> ant clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=intruders%E2%80%99%20behaviors" title=" intruders’ behaviors"> intruders’ behaviors</a>, <a href="https://publications.waset.org/abstracts/search?q=false%20alarms" title=" false alarms"> false alarms</a> </p> <a href="https://publications.waset.org/abstracts/23716/filtering-intrusion-detection-alarms-using-ant-clustering-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Integrating the Modbus SCADA Communication Protocol with Elliptic Curve Cryptography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Despoina%20Chochtoula">Despoina Chochtoula</a>, <a href="https://publications.waset.org/abstracts/search?q=Aristidis%20Ilias"> Aristidis Ilias</a>, <a href="https://publications.waset.org/abstracts/search?q=Yannis%20Stamatiou"> Yannis Stamatiou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modbus is a protocol that enables the communication among devices which are connected to the same network. This protocol is, often, deployed in connecting sensor and monitoring units to central supervisory servers in Supervisory Control and Data Acquisition, or SCADA, systems. These systems monitor critical infrastructures, such as factories, power generation stations, nuclear power reactors etc. in order to detect malfunctions and ignite alerts and corrective actions. However, due to their criticality, SCADA systems are vulnerable to attacks that range from simple eavesdropping on operation parameters, exchanged messages, and valuable infrastructure information to malicious modification of vital infrastructure data towards infliction of damage. Thus, the SCADA research community has been active over strengthening SCADA systems with suitable data protection mechanisms based, to a large extend, on cryptographic methods for data encryption, device authentication, and message integrity protection. However, due to the limited computation power of many SCADA sensor and embedded devices, the usual public key cryptographic methods are not appropriate due to their high computational requirements. As an alternative, Elliptic Curve Cryptography has been proposed, which requires smaller key sizes and, thus, less demanding cryptographic operations. Until now, however, no such implementation has been proposed in the SCADA literature, to the best of our knowledge. In order to fill this gap, our methodology was focused on integrating Modbus, a frequently used SCADA communication protocol, with Elliptic Curve based cryptography and develop a server/client application to demonstrate the proof of concept. For the implementation we deployed two C language libraries, which were suitably modify in order to be successfully integrated: libmodbus (https://github.com/stephane/libmodbus) and ecc-lib https://www.ceid.upatras.gr/webpages/faculty/zaro/software/ecc-lib/). The first library provides a C implementation of the Modbus/TCP protocol while the second one offers the functionality to develop cryptographic protocols based on Elliptic Curve Cryptography. These two libraries were combined, after suitable modifications and enhancements, in order to give a modified version of the Modbus/TCP protocol focusing on the security of the data exchanged among the devices and the supervisory servers. The mechanisms we implemented include key generation, key exchange/sharing, message authentication, data integrity check, and encryption/decryption of data. The key generation and key exchange protocols were implemented with the use of Elliptic Curve Cryptography primitives. The keys established by each device are saved in their local memory and are retained during the whole communication session and are used in encrypting and decrypting exchanged messages as well as certifying entities and the integrity of the messages. Finally, the modified library was compiled for the Android environment in order to run the server application as an Android app. The client program runs on a regular computer. The communication between these two entities is an example of the successful establishment of an Elliptic Curve Cryptography based, secure Modbus wireless communication session between a portable device acting as a supervisor station and a monitoring computer. Our first performance measurements are, also, very promising and demonstrate the feasibility of embedding Elliptic Curve Cryptography into SCADA systems, filling in a gap in the relevant scientific literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elliptic%20curve%20cryptography" title="elliptic curve cryptography">elliptic curve cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=ICT%20security" title=" ICT security"> ICT security</a>, <a href="https://publications.waset.org/abstracts/search?q=modbus%20protocol" title=" modbus protocol"> modbus protocol</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA" title=" SCADA"> SCADA</a>, <a href="https://publications.waset.org/abstracts/search?q=TCP%2FIP%20protocol" title=" TCP/IP protocol"> TCP/IP protocol</a> </p> <a href="https://publications.waset.org/abstracts/72732/integrating-the-modbus-scada-communication-protocol-with-elliptic-curve-cryptography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Maintaining Energy Security in Natural Gas Pipeline Operations by Empowering Process Safety Principles Through Alarm Management Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huseyin%20Sinan%20Gunesli">Huseyin Sinan Gunesli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Process Safety Management is a disciplined framework for managing the integrity of systems and processes that handle hazardous substances. It relies on good design principles, well-implemented automation systems, and operating and maintenance practices. Alarm Management Systems play a critically important role in the safe and efficient operation of modern industrial plants. In that respect, Alarm Management is one of the critical factors feeding the safe operations of the plants in the manner of applying effective process safety principles. Trans Anatolian Natural Gas Pipeline (TANAP) is part of the Southern Gas Corridor, which extends from the Caspian Sea to Italy. TANAP transports Natural Gas from the Shah Deniz gas field of Azerbaijan, and possibly from other neighboring countries, to Turkey and through Trans Adriatic Pipeline (TAP) Pipeline to Europe. TANAP plays a crucial role in maintaining Energy Security for the region and Europe. In that respect, the application of Process Safety principles is vital to deliver safe, reliable and efficient Natural Gas delivery to Shippers both in the region and Europe. Effective Alarm Management is one of those Process Safety principles which feeds safe operations of the TANAP pipeline. Alarm Philosophy was designed and implemented in TANAP Pipeline according to the relevant standards. However, it is essential to manage the alarms received in the control room effectively to maintain safe operations. In that respect, TANAP has commenced Alarm Management & Rationalization program as of February 2022 after transferring to Plateau Regime, reaching the design parameters. While Alarm Rationalization started, there were more than circa 2300 alarms received per hour from one of the compressor stations. After applying alarm management principles such as reviewing and removal of bad actors, standing, stale, chattering, fleeting alarms, comprehensive review and revision of alarm set points through a change management principle, conducting alarm audits/design verification and etc., it has been achieved to reduce down to circa 40 alarms per hour. After the successful implementation of alarm management principles as specified above, the number of alarms has been reduced to industry standards. That significantly improved operator vigilance to focus on mainly important and critical alarms to avoid any excursion beyond safe operating limits leading to any potential process safety events. Following the ‟What Gets Measured, Gets Managed” principle, TANAP has identified key Performance Indicators (KPIs) to manage Process Safety principles effectively, where Alarm Management has formed one of the key parameters of those KPIs. However, review and analysis of the alarms were performed manually. Without utilizing Alarm Management Software, achieving full compliance with international standards is almost infeasible. In that respect, TANAP has started using one of the industry-wide known Alarm Management Applications to maintain full review and analysis of alarms and define actions as required. That actually significantly empowered TANAP’s process safety principles in terms of Alarm Management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=process%20safety%20principles" title="process safety principles">process safety principles</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20security" title=" energy security"> energy security</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20gas%20pipeline%20operations" title=" natural gas pipeline operations"> natural gas pipeline operations</a>, <a href="https://publications.waset.org/abstracts/search?q=alarm%20rationalization" title=" alarm rationalization"> alarm rationalization</a>, <a href="https://publications.waset.org/abstracts/search?q=alarm%20management" title=" alarm management"> alarm management</a>, <a href="https://publications.waset.org/abstracts/search?q=alarm%20management%20application" title=" alarm management application"> alarm management application</a> </p> <a href="https://publications.waset.org/abstracts/164904/maintaining-energy-security-in-natural-gas-pipeline-operations-by-empowering-process-safety-principles-through-alarm-management-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Stochastic Edge Based Anomaly Detection for Supervisory Control and Data Acquisitions Systems: Considering the Zambian Power Grid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lukumba%20Phiri">Lukumba Phiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20Tembo"> Simon Tembo</a>, <a href="https://publications.waset.org/abstracts/search?q=Kumbuso%20Joshua%20Nyoni"> Kumbuso Joshua Nyoni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Zambia recent initiatives by various power operators like ZESCO, CEC, and consumers like the mines to upgrade power systems into smart grids target an even tighter integration with information technologies to enable the integration of renewable energy sources, local and bulk generation, and demand response. Thus, for the reliable operation of smart grids, its information infrastructure must be secure and reliable in the face of both failures and cyberattacks. Due to the nature of the systems, ICS/SCADA cybersecurity and governance face additional challenges compared to the corporate networks, and critical systems may be left exposed. There exist control frameworks internationally such as the NIST framework, however, there are generic and do not meet the domain-specific needs of the SCADA systems. Zambia is also lagging in cybersecurity awareness and adoption, therefore there is a concern about securing ICS controlling key infrastructure critical to the Zambian economy as there are few known facts about the true posture. In this paper, we introduce a stochastic Edged-based Anomaly Detection for SCADA systems (SEADS) framework for threat modeling and risk assessment. SEADS enables the calculation of steady-steady probabilities that are further applied to establish metrics like system availability, maintainability, and reliability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anomaly" title="anomaly">anomaly</a>, <a href="https://publications.waset.org/abstracts/search?q=availability" title=" availability"> availability</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/abstracts/search?q=edge" title=" edge"> edge</a>, <a href="https://publications.waset.org/abstracts/search?q=maintainability" title=" maintainability"> maintainability</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic" title=" stochastic"> stochastic</a> </p> <a href="https://publications.waset.org/abstracts/153922/stochastic-edge-based-anomaly-detection-for-supervisory-control-and-data-acquisitions-systems-considering-the-zambian-power-grid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Distributed Listening in Intensive Care: Nurses’ Collective Alarm Responses Unravelled through Auditory Spatiotemporal Trajectories</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Sonne%20Kristensen">Michael Sonne Kristensen</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Loesche"> Frank Loesche</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Foster"> James Foster</a>, <a href="https://publications.waset.org/abstracts/search?q=Elif%20Ozcan"> Elif Ozcan</a>, <a href="https://publications.waset.org/abstracts/search?q=Judy%20Edworthy"> Judy Edworthy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Auditory alarms play an integral role in intensive care nurses’ daily work. Most medical devices in the intensive care unit (ICU) are designed to produce alarm sounds in order to make nurses aware of immediate or prospective safety risks. The utilisation of sound as a carrier of crucial patient information is highly dependent on nurses’ presence - both physically and mentally. For ICU nurses, especially the ones who work with stationary alarm devices at the patient bed space, it is a challenge to display ‘appropriate’ alarm responses at all times as they have to navigate with great flexibility in a complex work environment. While being primarily responsible for a small number of allocated patients they are often required to engage with other nurses’ patients, relatives, and colleagues at different locations inside and outside the unit. This work explores the social strategies used by a team of nurses to comprehend and react to the information conveyed by the alarms in the ICU. Two main research questions guide the study: To what extent do alarms from a patient bed space reach the relevant responsible nurse by direct auditory exposure? By which means do responsible nurses get informed about their patients’ alarms when not directly exposed to the alarms? A comprehensive video-ethnographic field study was carried out to capture and evaluate alarm-related events in an ICU. The study involved close collaboration with four nurses who wore eye-level cameras and ear-level binaural audio recorders during several work shifts. At all time the entire unit was monitored by multiple video and audio recorders. From a data set of hundreds of hours of recorded material information about the nurses’ location, social interaction, and alarm exposure at any point in time was coded in a multi-channel replay-interface. The data shows that responsible nurses’ direct exposure and awareness of the alarms of their allocated patients vary significantly depending on work load, social relationships, and the location of the patient’s bed space. Distributed listening is deliberately employed by the nursing team as a social strategy to respond adequately to alarms, but the patterns of information flow prompted by alarm-related events are not uniform. Auditory Spatiotemporal Trajectory (AST) is proposed as a methodological label to designate the integration of temporal, spatial and auditory load information. As a mixed-method metrics it provides tangible evidence of how nurses’ individual alarm-related experiences differ from one another and from stationary points in the ICU. Furthermore, it is used to demonstrate how alarm-related information reaches the individual nurse through principles of social and distributed cognition, and how that information relates to the actual alarm event. Thereby it bridges a long-standing gap in the literature on medical alarm utilisation between, on the one hand, initiatives to measure objective data of the medical sound environment without consideration for any human experience, and, on the other hand, initiatives to study subjective experiences of the medical sound environment without detailed evidence of the objective characteristics of the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auditory%20spatiotemporal%20trajectory" title="auditory spatiotemporal trajectory">auditory spatiotemporal trajectory</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20alarms" title=" medical alarms"> medical alarms</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20cognition" title=" social cognition"> social cognition</a>, <a href="https://publications.waset.org/abstracts/search?q=video-ethography" title=" video-ethography"> video-ethography</a> </p> <a href="https://publications.waset.org/abstracts/73648/distributed-listening-in-intensive-care-nurses-collective-alarm-responses-unravelled-through-auditory-spatiotemporal-trajectories" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Management of Non-Revenue Municipal Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Habib%20Muhammetoglu">Habib Muhammetoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Ethem%20Karadirek"> I. Ethem Karadirek</a>, <a href="https://publications.waset.org/abstracts/search?q=Selami%20Kara"> Selami Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayse%20Muhammetoglu"> Ayse Muhammetoglu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of non-revenue water (NRW) from municipal water distribution networks is common in many countries such as Turkey, where the average yearly water losses are around 50% . Water losses can be divided into two major types namely: 1) Real or physical water losses, and 2) Apparent or commercial water losses. Total water losses in Antalya city, Turkey is around 45%. Methods: A research study was conducted to develop appropriate methodologies to reduce NRW. A pilot study area of about 60 thousands inhabitants was chosen to apply the study. The pilot study area has a supervisory control and data acquisition (SCADA) system for the monitoring and control of many water quantity and quality parameters at the groundwater drinking wells, pumping stations, distribution reservoirs, and along the water mains. The pilot study area was divided into 18 District Metered Areas (DMAs) with different number of service connections that ranged between a few connections to less than 3000 connections. The flow rate and water pressure to each DMA were on-line continuously measured by an accurate flow meter and water pressure meter that were connected to the SCADA system. Customer water meters were installed to all billed and unbilled water users. The monthly water consumption as given by the water meters were recorded regularly. Water balance was carried out for each DMA using the well-know standard IWA approach. There were considerable variations in the water losses percentages and the components of the water losses among the DMAs of the pilot study area. Old Class B customer water meters at one DMA were replaced by more accurate new Class C water meters. Hydraulic modelling using the US-EPA EPANET model was carried out in the pilot study area for the prediction of water pressure variations at each DMA. The data sets required to calibrate and verify the hydraulic model were supplied by the SCADA system. It was noticed that a number of the DMAs exhibited high water pressure values. Therefore, pressure reducing valves (PRV) with constant head were installed to reduce the pressure up to a suitable level that was determined by the hydraulic model. On the other hand, the hydraulic model revealed that the water pressure at the other DMAs cannot be reduced when complying with the minimum pressure requirement (3 bars) as stated by the related standards. Results: Physical water losses were reduced considerably as a result of just reducing water pressure. Further physical water losses reduction was achieved by applying acoustic methods. The results of the water balances helped in identifying the DMAs that have considerable physical losses. Many bursts were detected especially in the DMAs that have high physical water losses. The SCADA system was very useful to assess the efficiency level of this method and to check the quality of repairs. Regarding apparent water losses reduction, changing the customer water meters resulted in increasing water revenue by more than 20%. Conclusions: DMA, SCADA, modelling, pressure management, leakage detection and accurate customer water meters are efficient for NRW. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NRW" title="NRW">NRW</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20losses" title=" water losses"> water losses</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20management" title=" pressure management"> pressure management</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA" title=" SCADA"> SCADA</a>, <a href="https://publications.waset.org/abstracts/search?q=apparent%20water%20losses" title=" apparent water losses"> apparent water losses</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20water%20distribution%20networks" title=" urban water distribution networks"> urban water distribution networks</a> </p> <a href="https://publications.waset.org/abstracts/15668/management-of-non-revenue-municipal-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Generation of Automated Alarms for Plantwide Process Monitoring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun-Woo%20Cho">Hyun-Woo Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earlier detection of incipient abnormal operations in terms of plant-wide process management is quite necessary in order to improve product quality and process safety. And generating warning signals or alarms for operating personnel plays an important role in process automation and intelligent plant health monitoring. Various methodologies have been developed and utilized in this area such as expert systems, mathematical model-based approaches, multivariate statistical approaches, and so on. This work presents a nonlinear empirical monitoring methodology based on the real-time analysis of massive process data. Unfortunately, the big data includes measurement noises and unwanted variations unrelated to true process behavior. Thus the elimination of such unnecessary patterns of the data is executed in data processing step to enhance detection speed and accuracy. The performance of the methodology was demonstrated using simulated process data. The case study showed that the detection speed and performance was improved significantly irrespective of the size and the location of abnormal events. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=detection" title="detection">detection</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20data" title=" process data"> process data</a>, <a href="https://publications.waset.org/abstracts/search?q=noise" title=" noise"> noise</a> </p> <a href="https://publications.waset.org/abstracts/72518/generation-of-automated-alarms-for-plantwide-process-monitoring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Design and Development of an &#039;Optimisation Controller&#039; and a SCADA Based Monitoring System for Renewable Energy Management in Telecom Towers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Sundaram">M. Sundaram</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20R.%20Sanath%20Kumar"> H. R. Sanath Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ramprakash"> A. Ramprakash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy saving is a key sustainability focus area for the Indian telecom industry today. This is especially true in rural India where energy consumption contributes to 70 % of the total network operating cost. In urban areas, the energy cost for network operation ranges between 15-30 %. This expenditure on energy as a result of the lack of grid power availability highlights a potential barrier to telecom industry growth. As a result of this, telecom tower companies switch to diesel generators, making them the second largest consumer of diesel in India, consuming over 2.5 billion litres per annum. The growing cost of energy due to increasing diesel prices and concerns over rising greenhouse emissions have caused these companies to look at other renewable energy options. Even the TRAI (Telecom Regulation Authority of India) has issued a number of guidelines to implement Renewable Energy Technologies (RETs) in the telecom towers as part of its ‘Implementation of Green Technologies in Telecom Sector’ initiative. Our proposal suggests the implementation of a Programmable Logic Controller (PLC) based ‘optimisation controller’ that can not only efficiently utilize the energy from RETs but also help to conserve the power used in the telecom towers. When there are multiple RETs available to supply energy, this controller will pick the optimum amount of energy from each RET based on the availability and feasibility at that point of time, reducing the dependence on diesel generators. For effective maintenance of the towers, we are planing to implement a SCADA based monitoring system along with the ‘optimization controller’. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=operation%20costs" title="operation costs">operation costs</a>, <a href="https://publications.waset.org/abstracts/search?q=consumption%20of%20fuel%20and%20carbon%20footprint" title=" consumption of fuel and carbon footprint"> consumption of fuel and carbon footprint</a>, <a href="https://publications.waset.org/abstracts/search?q=implementation%20of%20a%20programmable%20logic%20controller%20%28PLC%29%20based%20%E2%80%98optimisation%20controller%E2%80%99" title=" implementation of a programmable logic controller (PLC) based ‘optimisation controller’"> implementation of a programmable logic controller (PLC) based ‘optimisation controller’</a>, <a href="https://publications.waset.org/abstracts/search?q=efficient%20SCADA%20based%20monitoring%20system" title=" efficient SCADA based monitoring system"> efficient SCADA based monitoring system</a> </p> <a href="https://publications.waset.org/abstracts/17807/design-and-development-of-an-optimisation-controller-and-a-scada-based-monitoring-system-for-renewable-energy-management-in-telecom-towers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Application of IED to Condition Based Maintenance of Medium Voltage GCB/VCB</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming-Ta%20Yang">Ming-Ta Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyh-Cherng%20Gu"> Jyh-Cherng Gu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Wei%20Huang"> Chun-Wei Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Lung%20Guan"> Jin-Lung Guan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Time base maintenance (TBM) is conventionally applied by the power utilities to maintain circuit breakers (CBs), transformers, bus bars and cables, which may result in under maintenance or over maintenance. As information and communication technology (ICT) industry develops, the maintenance policies of many power utilities have gradually changed from TBM to condition base maintenance (CBM) to improve system operating efficiency, operation cost and power supply reliability. This paper discusses the feasibility of using intelligent electronic devices (IEDs) to construct a CB CBM management platform. CBs in power substations can be monitored using IEDs with additional logic configuration and wire connections. The CB monitoring data can be sent through intranet to a control center and be analyzed and integrated by the Elipse Power Studio software. Finally, a human-machine interface (HMI) of supervisory control and data acquisition (SCADA) system can be designed to construct a CBM management platform to provide maintenance decision information for the maintenance personnel, management personnel and CB manufacturers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circuit%20breaker" title="circuit breaker">circuit breaker</a>, <a href="https://publications.waset.org/abstracts/search?q=condition%20base%20maintenance" title=" condition base maintenance"> condition base maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20electronic%20device" title=" intelligent electronic device"> intelligent electronic device</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20base%20maintenance" title=" time base maintenance"> time base maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA" title=" SCADA"> SCADA</a> </p> <a href="https://publications.waset.org/abstracts/12921/application-of-ied-to-condition-based-maintenance-of-medium-voltage-gcbvcb" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Pupil Size: A Measure of Identification Memory in Target Present Lineups</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Camilla%20Elphick">Camilla Elphick</a>, <a href="https://publications.waset.org/abstracts/search?q=Graham%20Hole"> Graham Hole</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Hutton"> Samuel Hutton</a>, <a href="https://publications.waset.org/abstracts/search?q=Graham%20Pike"> Graham Pike</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pupil size has been found to change irrespective of luminosity, suggesting that it can be used to make inferences about cognitive processes, such as cognitive load. To see whether identifying a target requires a different cognitive load to rejecting distractors, the effect of viewing a target (compared with viewing distractors) on pupil size was investigated using a sequential video lineup procedure with two lineup sessions. Forty one participants were chosen randomly via the university. Pupil sizes were recorded when viewing pre target distractors and post target distractors and compared to pupil size when viewing the target. Overall, pupil size was significantly larger when viewing the target compared with viewing distractors. In the first session, pupil size changes were significantly different between participants who identified the target (Hits) and those who did not. Specifically, the pupil size of Hits reduced significantly after viewing the target (by 26%), suggesting that cognitive load reduced following identification. The pupil sizes of Misses (who made no identification) and False Alarms (who misidentified a distractor) did not reduce, suggesting that the cognitive load remained high in participants who failed to make the correct identification. In the second session, pupil sizes were smaller overall, suggesting that cognitive load was smaller in this session, and there was no significant difference between Hits, Misses and False Alarms. Furthermore, while the frequency of Hits increased, so did False Alarms. These two findings suggest that the benefits of including a second session remain uncertain, as the second session neither provided greater accuracy nor a reliable way to measure it. It is concluded that pupil size is a measure of face recognition strength in the first session of a target present lineup procedure. However, it is still not known whether cognitive load is an adequate explanation for this, or whether cognitive engagement might describe the effect more appropriately. If cognitive load and cognitive engagement can be teased apart with further investigation, this would have positive implications for understanding eyewitness identification. Nevertheless, this research has the potential to provide a tool for improving the reliability of lineup procedures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20load" title="cognitive load">cognitive load</a>, <a href="https://publications.waset.org/abstracts/search?q=eyewitness%20identification" title=" eyewitness identification"> eyewitness identification</a>, <a href="https://publications.waset.org/abstracts/search?q=face%20recognition" title=" face recognition"> face recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=pupillometry" title=" pupillometry"> pupillometry</a> </p> <a href="https://publications.waset.org/abstracts/65435/pupil-size-a-measure-of-identification-memory-in-target-present-lineups" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Performance of On-site Earthquake Early Warning Systems for Different Sensor Locations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ting-Yu%20Hsu">Ting-Yu Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shyu-Yu%20Wu"> Shyu-Yu Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shieh-Kung%20Huang"> Shieh-Kung Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung-Wei%20Chiang"> Hung-Wei Chiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kung-Chun%20Lu"> Kung-Chun Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Pei-Yang%20Lin"> Pei-Yang Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuo-Liang%20Wen"> Kuo-Liang Wen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Regional earthquake early warning (EEW) systems are not suitable for Taiwan, as most destructive seismic hazards arise due to in-land earthquakes. These likely cause the lead-time provided by regional EEW systems before a destructive earthquake wave arrives to become null. On the other hand, an on-site EEW system can provide more lead-time at a region closer to an epicenter, since only seismic information of the target site is required. Instead of leveraging the information of several stations, the on-site system extracts some P-wave features from the first few seconds of vertical ground acceleration of a single station and performs a prediction of the oncoming earthquake intensity at the same station according to these features. Since seismometers could be triggered by non-earthquake events such as a passing of a truck or other human activities, to reduce the likelihood of false alarms, a seismometer was installed at three different locations on the same site and the performance of the EEW system for these three sensor locations were discussed. The results show that the location on the ground of the first floor of a school building maybe a good choice, since the false alarms could be reduced and the cost for installation and maintenance is the lowest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake%20early%20warning" title="earthquake early warning">earthquake early warning</a>, <a href="https://publications.waset.org/abstracts/search?q=on-site" title=" on-site"> on-site</a>, <a href="https://publications.waset.org/abstracts/search?q=seismometer%20location" title=" seismometer location"> seismometer location</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/48504/performance-of-on-site-earthquake-early-warning-systems-for-different-sensor-locations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> PLC Based Automatic Railway Crossing System for India </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tapan%20Upadhyay">Tapan Upadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Aqib%20Siddiqui"> Aqib Siddiqui</a>, <a href="https://publications.waset.org/abstracts/search?q=Sameer%20Khan"> Sameer Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Railway crossing system in India is a manually operated level crossing system, either manned or unmanned. The main aim is to protect pedestrians and vehicles from colliding with trains, which pass at regular intervals, as India has the largest and busiest railway network. But because of human error and negligence, every year thousands of lives are lost due to accidents at railway crossings. To avoid this, we suggest a solution, by using Programmable Logical Controller (PLC) based automatic system, which will automatically control the barrier as well as roadblocks to stop people from crossing while security warning is given. Often people avoid security warning, and pass two-wheelers from beneath the barrier, while the train is at a distance away. This paper aims at reducing the fatality and accident rate by controlling barrier and roadblocks using sensors which sense the incoming train and vehicles and sends a signal to PLC. The PLC in return sends a signal to barrier and roadblocks. Once the train passes, the barrier and roadblocks retrieve back, and the passage is clear for vehicles and pedestrians to cross. PLC’s are used because they are very flexible, cost effective, space efficient, reduces complexity and minimises errors. Supervisory Control And Data Acquisition (SCADA) is used to monitor the functioning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=level%20crossing" title="level crossing">level crossing</a>, <a href="https://publications.waset.org/abstracts/search?q=PLC" title=" PLC"> PLC</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA" title=" SCADA"> SCADA</a> </p> <a href="https://publications.waset.org/abstracts/20135/plc-based-automatic-railway-crossing-system-for-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Data Driven Infrastructure Planning for Offshore Wind farms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isha%20Saxena">Isha Saxena</a>, <a href="https://publications.waset.org/abstracts/search?q=Behzad%20Kazemtabrizi"> Behzad Kazemtabrizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthias%20C.%20M.%20Troffaes"> Matthias C. M. Troffaes</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Crabtree"> Christopher Crabtree</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The calculations done at the beginning of the life of a wind farm are rarely reliable, which makes it important to conduct research and study the failure and repair rates of the wind turbines under various conditions. This miscalculation happens because the current models make a simplifying assumption that the failure/repair rate remains constant over time. This means that the reliability function is exponential in nature. This research aims to create a more accurate model using sensory data and a data-driven approach. The data cleaning and data processing is done by comparing the Power Curve data of the wind turbines with SCADA data. This is then converted to times to repair and times to failure timeseries data. Several different mathematical functions are fitted to the times to failure and times to repair data of the wind turbine components using Maximum Likelihood Estimation and the Posterior expectation method for Bayesian Parameter Estimation. Initial results indicate that two parameter Weibull function and exponential function produce almost identical results. Further analysis is being done using the complex system analysis considering the failures of each electrical and mechanical component of the wind turbine. The aim of this project is to perform a more accurate reliability analysis that can be helpful for the engineers to schedule maintenance and repairs to decrease the downtime of the turbine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability" title="reliability">reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=bayesian%20parameter%20inference" title=" bayesian parameter inference"> bayesian parameter inference</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20likelihood%20estimation" title=" maximum likelihood estimation"> maximum likelihood estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=weibull%20function" title=" weibull function"> weibull function</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA%20data" title=" SCADA data"> SCADA data</a> </p> <a href="https://publications.waset.org/abstracts/172809/data-driven-infrastructure-planning-for-offshore-wind-farms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atish%20Bagchi">Atish Bagchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Siva%20Chandrasekaran"> Siva Chandrasekaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GNN" title="GNN">GNN</a>, <a href="https://publications.waset.org/abstracts/search?q=Entropy" title="Entropy">Entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=anomaly%20detection" title="anomaly detection">anomaly detection</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20time-series" title="industrial time-series">industrial time-series</a>, <a href="https://publications.waset.org/abstracts/search?q=AI" title="AI">AI</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title="IoT">IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=Industry%204.0" title="Industry 4.0">Industry 4.0</a>, <a href="https://publications.waset.org/abstracts/search?q=Machine%20Learning" title="Machine Learning">Machine Learning</a> </p> <a href="https://publications.waset.org/abstracts/145382/hybrid-gnn-based-machine-learning-forecasting-model-for-industrial-iot-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Methodology of Automation and Supervisory Control and Data Acquisition for Restructuring Industrial Systems </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lakhoua%20Najeh">Lakhoua Najeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: In most situations, an industrial system already existing, conditioned by its history, its culture and its context are in difficulty facing the necessity to restructure itself in an organizational and technological environment in perpetual evolution. This is why all operations of restructuring first of all require a diagnosis based on a functional analysis. After a presentation of the functionality of a supervisory system for complex processes, we present the concepts of industrial automation and supervisory control and data acquisition (SCADA). Methods: This global analysis exploits the various available documents on the one hand and takes on the other hand in consideration the various testimonies through investigations, the interviews or the collective workshops; otherwise, it also takes observations through visits as a basis and even of the specific operations. The exploitation of this diagnosis enables us to elaborate the project of restructuring thereafter. Leaving from the system analysis for the restructuring of industrial systems, and after a technical diagnosis based on visits, an analysis of the various technical documents and management as well as on targeted interviews, a focusing retailing the various levels of analysis has been done according a general methodology. Results: The methodology adopted in order to contribute to the restructuring of industrial systems by its participative and systemic character and leaning on a large consultation a lot of human resources that of the documentary resources, various innovating actions has been proposed. These actions appear in the setting of the TQM gait requiring applicable parameter quantification and a treatment valorising some information. The new management environment will enable us to institute an information and communication system possibility of migration toward an ERP system. Conclusion: Technological advancements in process monitoring, control and industrial automation over the past decades have contributed greatly to improve the productivity of virtually all industrial systems throughout the world. This paper tries to identify the principles characteristics of a process monitoring, control and industrial automation in order to provide tools to help in the decision-making process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automation" title="automation">automation</a>, <a href="https://publications.waset.org/abstracts/search?q=supervision" title=" supervision"> supervision</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA" title=" SCADA"> SCADA</a>, <a href="https://publications.waset.org/abstracts/search?q=TQM" title=" TQM"> TQM</a> </p> <a href="https://publications.waset.org/abstracts/95624/methodology-of-automation-and-supervisory-control-and-data-acquisition-for-restructuring-industrial-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Epileptic Seizure Prediction by Exploiting Signal Transitions Phenomena</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Zavid%20Parvez">Mohammad Zavid Parvez</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoranjan%20Paul"> Manoranjan Paul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A seizure prediction method is proposed by extracting global features using phase correlation between adjacent epochs for detecting relative changes and local features using fluctuation/deviation within an epoch for determining fine changes of different EEG signals. A classifier and a regularization technique are applied for the reduction of false alarms and improvement of the overall prediction accuracy. The experiments show that the proposed method outperforms the state-of-the-art methods and provides high prediction accuracy (i.e., 97.70%) with low false alarm using EEG signals in different brain locations from a benchmark data set. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Epilepsy" title="Epilepsy">Epilepsy</a>, <a href="https://publications.waset.org/abstracts/search?q=seizure" title=" seizure"> seizure</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20correlation" title=" phase correlation"> phase correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=fluctuation" title=" fluctuation"> fluctuation</a>, <a href="https://publications.waset.org/abstracts/search?q=deviation." title=" deviation. "> deviation. </a> </p> <a href="https://publications.waset.org/abstracts/37585/epileptic-seizure-prediction-by-exploiting-signal-transitions-phenomena" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Fast Accurate Detection of Frequency Jumps Using Kalman Filter with Non Linear Improvements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20E.%20Mohamed">Mahmoud E. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20F.%20Shalash"> Ahmed F. Shalash</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanan%20A.%20Kamal"> Hanan A. Kamal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In communication systems, frequency jump is a serious problem caused by the oscillators used. Kalman filters are used to detect that jump, Despite the tradeoff between the noise level and the speed of the detection. In this paper, An improvement is introduced in the Kalman filter, Through a nonlinear change in the bandwidth of the filter. Simulation results show a considerable improvement in the filter speed with a very low noise level. Additionally, The effect on the response to false alarms is also presented and false alarm rate show improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title="Kalman filter">Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation" title=" innovation"> innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=false%20detection" title=" false detection"> false detection</a>, <a href="https://publications.waset.org/abstracts/search?q=improvement" title=" improvement "> improvement </a> </p> <a href="https://publications.waset.org/abstracts/7978/fast-accurate-detection-of-frequency-jumps-using-kalman-filter-with-non-linear-improvements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">602</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SCADA%20alarms&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SCADA%20alarms&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SCADA%20alarms&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SCADA%20alarms&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10