CINXE.COM
Primes in arithmetic progression - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Primes in arithmetic progression - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"fad5c16e-a80e-49b6-a30d-8661bc744ed3","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Primes_in_arithmetic_progression","wgTitle":"Primes in arithmetic progression","wgCurRevisionId":1255494775,"wgRevisionId":1255494775,"wgArticleId":11740178,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description with empty Wikidata description","Articles containing potentially dated statements from 2018","All articles containing potentially dated statements","Articles containing potentially dated statements from September 2019","Articles containing potentially dated statements from December 2023","Articles containing potentially dated statements from 2022", "Articles containing potentially dated statements from June 2024","Prime numbers"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Primes_in_arithmetic_progression","wgRelevantArticleId":11740178,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false, "wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1043113","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=[ "ext.cite.ux-enhancements","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.6"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Primes in arithmetic progression - Wikipedia"> <meta property="og:type" content="website"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Primes_in_arithmetic_progression"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Primes_in_arithmetic_progression&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Primes_in_arithmetic_progression"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Primes_in_arithmetic_progression rootpage-Primes_in_arithmetic_progression skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Primes+in+arithmetic+progression" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Primes+in+arithmetic+progression" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Primes+in+arithmetic+progression" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Primes+in+arithmetic+progression" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Properties</span> </div> </a> <ul id="toc-Properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Minimal_primes_in_AP" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Minimal_primes_in_AP"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Minimal primes in AP</span> </div> </a> <ul id="toc-Minimal_primes_in_AP-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Largest_known_primes_in_AP" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Largest_known_primes_in_AP"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Largest known primes in AP</span> </div> </a> <ul id="toc-Largest_known_primes_in_AP-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Consecutive_primes_in_arithmetic_progression" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Consecutive_primes_in_arithmetic_progression"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Consecutive primes in arithmetic progression</span> </div> </a> <ul id="toc-Consecutive_primes_in_arithmetic_progression-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Minimal_consecutive_primes_in_AP" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Minimal_consecutive_primes_in_AP"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Minimal consecutive primes in AP</span> </div> </a> <ul id="toc-Minimal_consecutive_primes_in_AP-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Largest_known_consecutive_primes_in_AP" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Largest_known_consecutive_primes_in_AP"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Largest known consecutive primes in AP</span> </div> </a> <ul id="toc-Largest_known_consecutive_primes_in_AP-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Primes in arithmetic progression</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 8 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-8" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">8 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%A3%D8%B9%D8%AF%D8%A7%D8%AF_%D8%A3%D9%88%D9%84%D9%8A%D8%A9_%D9%81%D9%8A_%D9%85%D8%AA%D8%AA%D8%A7%D9%84%D9%8A%D8%A9_%D8%AD%D8%B3%D8%A7%D8%A8%D9%8A%D8%A9" title="أعداد أولية في متتالية حسابية – Arabic" lang="ar" hreflang="ar" data-title="أعداد أولية في متتالية حسابية" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/N%C3%BAmeros_primos_en_progresi%C3%B3n_aritm%C3%A9tica" title="Números primos en progresión aritmética – Spanish" lang="es" hreflang="es" data-title="Números primos en progresión aritmética" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Primoj_en_aritmetika_vico" title="Primoj en aritmetika vico – Esperanto" lang="eo" hreflang="eo" data-title="Primoj en aritmetika vico" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%86%8C%EC%88%98%EB%A1%9C_%EC%9D%B4%EB%A3%A8%EC%96%B4%EC%A7%84_%EB%93%B1%EC%B0%A8%EC%88%98%EC%97%B4" title="소수로 이루어진 등차수열 – Korean" lang="ko" hreflang="ko" data-title="소수로 이루어진 등차수열" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Pr%C3%ADmek_sz%C3%A1mtani_sorozata" title="Prímek számtani sorozata – Hungarian" lang="hu" hreflang="hu" data-title="Prímek számtani sorozata" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%90%D1%80%D0%B8%D1%84%D0%BC%D0%B5%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5_%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B5%D1%81%D1%81%D0%B8%D0%B8_%D0%B8%D0%B7_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%8B%D1%85_%D1%87%D0%B8%D1%81%D0%B5%D0%BB" title="Арифметические прогрессии из простых чисел – Russian" lang="ru" hreflang="ru" data-title="Арифметические прогрессии из простых чисел" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%95%E0%AF%82%E0%AE%9F%E0%AF%8D%E0%AE%9F%E0%AF%81%E0%AE%A4%E0%AF%8D%E0%AE%A4%E0%AF%8A%E0%AE%9F%E0%AE%B0%E0%AE%BF%E0%AE%B2%E0%AF%8D_%E0%AE%AA%E0%AE%95%E0%AE%BE_%E0%AE%8E%E0%AE%A3%E0%AF%8D%E0%AE%95%E0%AE%B3%E0%AF%8D" title="கூட்டுத்தொடரில் பகா எண்கள் – Tamil" lang="ta" hreflang="ta" data-title="கூட்டுத்தொடரில் பகா எண்கள்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%90%D1%80%D0%B8%D1%84%D0%BC%D0%B5%D1%82%D0%B8%D1%87%D0%BD%D0%B0_%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B5%D1%81%D1%96%D1%8F_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D0%B8%D1%85_%D1%87%D0%B8%D1%81%D0%B5%D0%BB" title="Арифметична прогресія простих чисел – Ukrainian" lang="uk" hreflang="uk" data-title="Арифметична прогресія простих чисел" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1043113#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Primes_in_arithmetic_progression" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Primes_in_arithmetic_progression" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Primes_in_arithmetic_progression"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Primes_in_arithmetic_progression&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Primes_in_arithmetic_progression&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Primes_in_arithmetic_progression"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Primes_in_arithmetic_progression&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Primes_in_arithmetic_progression&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Primes_in_arithmetic_progression" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Primes_in_arithmetic_progression" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Primes_in_arithmetic_progression&oldid=1255494775" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Primes_in_arithmetic_progression&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Primes_in_arithmetic_progression&id=1255494775&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlQ%C4%B1sald%C4%B1c%C4%B1s%C4%B1&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPrimes_in_arithmetic_progression"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrKodu&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPrimes_in_arithmetic_progression"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Primes_in_arithmetic_progression&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Primes_in_arithmetic_progression&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1043113" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Set of prime numbers linked by a linear relationship</div> <p>In <a href="/wiki/Number_theory" title="Number theory">number theory</a>, <b>primes in arithmetic progression</b> are any <a href="/wiki/Sequence" title="Sequence">sequence</a> of at least three <a href="/wiki/Prime_number" title="Prime number">prime numbers</a> that are consecutive terms in an <a href="/wiki/Arithmetic_progression" title="Arithmetic progression">arithmetic progression</a>. An example is the sequence of primes (3, 7, 11), which is given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{n}=3+4n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>3</mn> <mo>+</mo> <mn>4</mn> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{n}=3+4n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04333cbb39efb64fdc27a9a5de0b051ddfc6edcb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.107ex; height:2.509ex;" alt="{\displaystyle a_{n}=3+4n}"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq n\leq 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>≤<!-- ≤ --></mo> <mi>n</mi> <mo>≤<!-- ≤ --></mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq n\leq 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16f3c30caff3263640676bce53682877c2bdea42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.917ex; height:2.343ex;" alt="{\displaystyle 0\leq n\leq 2}"></span>. </p><p>According to the <a href="/wiki/Green%E2%80%93Tao_theorem" title="Green–Tao theorem">Green–Tao theorem</a>, there exist <a href="/wiki/Arbitrarily_large" title="Arbitrarily large">arbitrarily long</a> arithmetic progressions in the sequence of primes. Sometimes the phrase may also be used about primes which belong to an arithmetic progression which also contains composite numbers. For example, it can be used about primes in an arithmetic progression of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle an+b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>n</mi> <mo>+</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle an+b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f87f6fb82578ac8bc0a7757eaf98fc5125ab1f37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.462ex; height:2.343ex;" alt="{\displaystyle an+b}"></span>, where <i>a</i> and <i>b</i> are <a href="/wiki/Coprime_integers" title="Coprime integers">coprime</a> which according to <a href="/wiki/Dirichlet%27s_theorem_on_arithmetic_progressions" title="Dirichlet's theorem on arithmetic progressions">Dirichlet's theorem on arithmetic progressions</a> contains infinitely many primes, along with infinitely many composites. </p><p>For <a href="/wiki/Integer" title="Integer">integer</a> <i>k</i> ≥ 3, an <b>AP-<i>k</i></b> (also called <b>PAP-<i>k</i></b>) is any sequence of <i>k</i> primes in arithmetic progression. An AP-<i>k</i> can be written as <i>k</i> primes of the form <i>a</i>·<i>n</i> + <i>b</i>, for fixed integers <i>a</i> (called the common difference) and <i>b</i>, and <i>k</i> consecutive integer values of <i>n</i>. An AP-<i>k</i> is usually expressed with <i>n</i> = 0 to <i>k</i> − 1. This can always be achieved by defining <i>b</i> to be the first prime in the arithmetic progression. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Primes_in_arithmetic_progression&action=edit&section=1" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Any given arithmetic progression of primes has a finite length. In 2004, <a href="/wiki/Ben_J._Green" class="mw-redirect" title="Ben J. Green">Ben J. Green</a> and <a href="/wiki/Terence_Tao" title="Terence Tao">Terence Tao</a> settled an old <a href="/wiki/Conjecture" title="Conjecture">conjecture</a> by proving the <a href="/wiki/Green%E2%80%93Tao_theorem" title="Green–Tao theorem">Green–Tao theorem</a>: The primes contain <a href="/wiki/Arbitrarily_large" title="Arbitrarily large">arbitrarily long</a> arithmetic progressions.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> It follows immediately that there are infinitely many AP-<i>k</i> for any <i>k</i>. </p><p>If an AP-<i>k</i> does not begin with the prime <i>k</i>, then the common difference is a multiple of the <a href="/wiki/Primorial" title="Primorial">primorial</a> <i>k</i># = 2·3·5·...·<i>j</i>, where <i>j</i> is the largest prime ≤ <i>k</i>. </p> <dl><dd><i>Proof</i>: Let the AP-<i>k</i> be <i>a</i>·<i>n</i> + <i>b</i> for <i>k</i> consecutive values of <i>n</i>. If a prime <i>p</i> does not divide <i>a</i>, then <a href="/wiki/Modular_arithmetic" title="Modular arithmetic">modular arithmetic</a> says that <i>p</i> will divide every <i>p'</i>th term of the arithmetic progression. (From H.J. Weber, Cor.10 in ``Exceptional Prime Number Twins, Triplets and Multiplets," arXiv:1102.3075[math.NT]. See also Theor.2.3 in ``Regularities of Twin, Triplet and Multiplet Prime Numbers," arXiv:1103.0447[math.NT], Global J.P.A.Math 8(2012), in press.) If the AP is prime for <i>k</i> consecutive values, then <i>a</i> must therefore be divisible by all primes <i>p</i> ≤ <i>k</i>.</dd></dl> <p>This also shows that an AP with common difference <i>a</i> cannot contain more consecutive prime terms than the value of the smallest prime that does not divide <i>a</i>. </p><p>If <i>k</i> is prime then an AP-<i>k</i> can begin with <i>k</i> and have a common difference which is only a multiple of (<i>k</i>−1)# instead of <i>k</i>#. (From H. J. Weber, ``Less Regular Exceptional and Repeating Prime Number Multiplets," arXiv:1105.4092[math.NT], Sect.3.) For example, the AP-3 with primes {3, 5, 7} and common difference 2# = 2, or the AP-5 with primes {5, 11, 17, 23, 29} and common difference 4# = 6. It is conjectured that such examples exist for all primes <i>k</i>. As of 2018<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Primes_in_arithmetic_progression&action=edit">[update]</a></sup>, the largest prime for which this is confirmed is <i>k</i> = 19, for this AP-19 found by Wojciech Iżykowski in 2013: </p> <dl><dd>19 + 4244193265542951705·17#·n, for <i>n</i> = 0 to 18.<sup id="cite_ref-APrecords_2-0" class="reference"><a href="#cite_note-APrecords-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup></dd></dl> <p>It follows from widely believed conjectures, such as <a href="/wiki/Dickson%27s_conjecture" title="Dickson's conjecture">Dickson's conjecture</a> and some variants of the <a href="/wiki/First_Hardy%E2%80%93Littlewood_conjecture" title="First Hardy–Littlewood conjecture">prime k-tuple conjecture</a>, that if <i>p</i> > 2 is the smallest prime not dividing <i>a</i>, then there are infinitely many AP-(<i>p</i>−1) with common difference <i>a</i>. For example, 5 is the smallest prime not dividing 6, so there is expected to be infinitely many AP-4 with common difference 6, which is called a <a href="/wiki/Sexy_prime" title="Sexy prime">sexy prime</a> quadruplet. When <i>a</i> = 2, <i>p</i> = 3, it is the <a href="/wiki/Twin_prime_conjecture" class="mw-redirect" title="Twin prime conjecture">twin prime conjecture</a>, with an "AP-2" of 2 primes (<i>b</i>, <i>b</i> + 2). </p> <div class="mw-heading mw-heading2"><h2 id="Minimal_primes_in_AP">Minimal primes in AP</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Primes_in_arithmetic_progression&action=edit&section=2" title="Edit section: Minimal primes in AP"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>We minimize the last term.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p> <table class="wikitable"> <caption>Minimal AP-<i>k</i> </caption> <tbody><tr> <th><i>k</i></th> <th>Primes for <i>n</i> = 0 to <i>k</i>−1 </th></tr> <tr> <th>3 </th> <td>3 + 2<i>n</i> </td></tr> <tr> <th>4 </th> <td>5 + 6<i>n</i> </td></tr> <tr> <th>5 </th> <td>5 + 6<i>n</i> </td></tr> <tr> <th>6 </th> <td>7 + 30<i>n</i> </td></tr> <tr> <th>7 </th> <td>7 + 150<i>n</i> </td></tr> <tr> <th>8 </th> <td>199 + 210<i>n</i> </td></tr> <tr> <th>9 </th> <td>199 + 210<i>n</i> </td></tr> <tr> <th>10 </th> <td>199 + 210<i>n</i> </td></tr> <tr> <th>11 </th> <td>110437 + 13860<i>n</i> </td></tr> <tr> <th>12 </th> <td>110437 + 13860<i>n</i> </td></tr> <tr> <th>13 </th> <td>4943 + 60060<i>n</i> </td></tr> <tr> <th>14 </th> <td>31385539 + 420420<i>n</i> </td></tr> <tr> <th>15 </th> <td>115453391 + 4144140<i>n</i> </td></tr> <tr> <th>16 </th> <td>53297929 + 9699690<i>n</i> </td></tr> <tr> <th>17 </th> <td>3430751869 + 87297210<i>n</i> </td></tr> <tr> <th>18 </th> <td>4808316343 + 717777060<i>n</i> </td></tr> <tr> <th>19 </th> <td>8297644387 + 4180566390<i>n</i> </td></tr> <tr> <th>20 </th> <td>214861583621 + 18846497670<i>n</i> </td></tr> <tr> <th>21 </th> <td>5749146449311 + 26004868890<i>n</i> </td></tr> <tr> <th>22 </th> <td>19261849254523 + 784801917900<i>n</i> </td></tr> <tr> <th>23 </th> <td>403185216600637 + 2124513401010<i>n</i> </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Largest_known_primes_in_AP">Largest known primes in AP</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Primes_in_arithmetic_progression&action=edit&section=3" title="Edit section: Largest known primes in AP"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For prime <i>q</i>, <i>q</i># denotes the <a href="/wiki/Primorial" title="Primorial">primorial</a> 2·3·5·7·...·<i>q</i>. </p><p>As of September 2019<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Primes_in_arithmetic_progression&action=edit">[update]</a></sup>, the longest known AP-<i>k</i> is an AP-27. Several examples are known for AP-26. The first to be discovered was found on April 12, 2010, by Benoît Perichon on a <a href="/wiki/PlayStation_3" title="PlayStation 3">PlayStation 3</a> with software by Jarosław Wróblewski and Geoff Reynolds, ported to the PlayStation 3 by Bryan Little, in a distributed <a href="/wiki/PrimeGrid" title="PrimeGrid">PrimeGrid</a> project:<sup id="cite_ref-APrecords_2-1" class="reference"><a href="#cite_note-APrecords-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p> <dl><dd>43142746595714191 + 23681770·23#·<i>n</i>, for <i>n</i> = 0 to 25. (23# = 223092870) (sequence <span class="nowrap external"><a href="//oeis.org/A204189" class="extiw" title="oeis:A204189">A204189</a></span> in the <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>)</dd></dl> <p>By the time the first AP-26 was found the search was divided into 131,436,182 segments by <a href="/wiki/PrimeGrid" title="PrimeGrid">PrimeGrid</a><sup id="cite_ref-PrimeGridForum_4-0" class="reference"><a href="#cite_note-PrimeGridForum-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> and processed by 32/64bit CPUs, <a href="/wiki/Nvidia" title="Nvidia">Nvidia</a> <a href="/wiki/CUDA" title="CUDA">CUDA</a> GPUs, and <a href="/wiki/Cell_microprocessor" class="mw-redirect" title="Cell microprocessor">Cell microprocessors</a> around the world. </p><p>Before that, the record was an AP-25 found by Raanan Chermoni and Jarosław Wróblewski on May 17, 2008:<sup id="cite_ref-APrecords_2-2" class="reference"><a href="#cite_note-APrecords-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p> <dl><dd>6171054912832631 + 366384·23#·<i>n</i>, for <i>n</i> = 0 to 24. (23# = 223092870)</dd></dl> <p>The AP-25 search was divided into segments taking about 3 minutes on <a href="/wiki/Athlon_64" title="Athlon 64">Athlon 64</a> and Wróblewski reported "I think Raanan went through less than 10,000,000 such segments"<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> (this would have taken about 57 cpu years on Athlon 64). </p><p>The earlier record was an AP-24 found by Jarosław Wróblewski alone on January 18, 2007: </p> <dl><dd>468395662504823 + 205619·23#·<i>n</i>, for <i>n</i> = 0 to 23.</dd></dl> <p>For this Wróblewski reported he used a total of 75 computers: 15 64-bit <a href="/wiki/Athlon" title="Athlon">Athlons</a>, 15 dual core 64-bit <a href="/wiki/Pentium_D" title="Pentium D">Pentium D</a> 805, 30 32-bit Athlons 2500, and 15 <a href="/wiki/Duron" title="Duron">Durons</a> 900.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p><p>The following table shows the largest known AP-<i>k</i> with the year of discovery and the number of <a href="/wiki/Decimal" title="Decimal">decimal</a> digits in the ending prime. Note that the largest known AP-<i>k</i> may be the end of an AP-(<i>k</i>+1). Some record setters choose to first compute a large set of primes of form <i>c</i>·<i>p</i>#+1 with fixed <i>p</i>, and then search for AP's among the values of <i>c</i> that produced a prime. This is reflected in the expression for some records. The expression can easily be rewritten as <i>a</i>·<i>n</i> + <i>b</i>. </p> <table class="wikitable"> <caption>Largest known AP-<i>k</i> as of December 2023<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Primes_in_arithmetic_progression&action=edit">[update]</a></sup><sup id="cite_ref-APrecords_2-3" class="reference"><a href="#cite_note-APrecords-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </caption> <tbody><tr> <th><i>k</i></th> <th>Primes for <i>n</i> = 0 to <i>k</i>−1</th> <th>Digits</th> <th>Year</th> <th>Discoverer </th></tr> <tr> <th>3 </th> <td>(503·2<sup>1092022</sup>−1) + (1103·2<sup>3558176</sup> − 503·2<sup>1092022</sup>)·<i>n</i></td> <td align="right">1071122</td> <td>2022</td> <td>Ryan Propper, Serge Batalov </td></tr> <tr> <th>4 </th> <td>(263093407 + 928724769·<i>n</i>)·2<sup>99901</sup>−1</td> <td align="right">30083</td> <td>2022</td> <td>Serge Batalov </td></tr> <tr> <th>5 </th> <td>(440012137 + 18195056·<i>n</i>)·30941#+1</td> <td align="right">13338</td> <td>2022</td> <td>Serge Batalov </td></tr> <tr> <th>6 </th> <td>(1445494494 + 141836149·<i>n</i>)·16301# + 1</td> <td align="right">7036</td> <td>2018</td> <td>Ken Davis </td></tr> <tr> <th>7 </th> <td>(2554152639 + 577051223·<i>n</i>)·7927# + 1</td> <td align="right">3407</td> <td>2022</td> <td>Serge Batalov </td></tr> <tr> <th>8 </th> <td>(48098104751 + 3026809034·<i>n</i>)·5303# + 1</td> <td align="right">2271</td> <td>2019</td> <td>Norman Luhn, Paul Underwood, Ken Davis </td></tr> <tr> <th>9 </th> <td>(65502205462 + 6317280828·<i>n</i>)·2371# + 1</td> <td align="right">1014</td> <td>2012</td> <td>Ken Davis, Paul Underwood </td></tr> <tr> <th>10 </th> <td>(20794561384 + 1638155407·<i>n</i>)·1050# + 1</td> <td align="right">450</td> <td>2019</td> <td>Norman Luhn </td></tr> <tr> <th>11 </th> <td>(16533786790 + 1114209832·<i>n</i>)·666# + 1</td> <td align="right">289</td> <td>2019</td> <td>Norman Luhn </td></tr> <tr> <th>12 </th> <td>(15079159689 + 502608831·<i>n</i>)·420# + 1</td> <td align="right">180</td> <td>2019</td> <td>Norman Luhn </td></tr> <tr> <th>13 </th> <td>(50448064213 + 4237116495·<i>n</i>)·229# + 1</td> <td align="right">103</td> <td>2019</td> <td>Norman Luhn </td></tr> <tr> <th>14 </th> <td>(55507616633 + 670355577·<i>n</i>)·229# + 1</td> <td align="right">103</td> <td>2019</td> <td>Norman Luhn </td></tr> <tr> <th>15 </th> <td>(14512034548 + 87496195·n)·149# + 1</td> <td align="right">68</td> <td>2019</td> <td>Norman Luhn </td></tr> <tr> <th>16 </th> <td>(9700128038 + 75782144·(<i>n</i>+1))·83# + 1</td> <td align="right">43</td> <td>2019</td> <td>Norman Luhn </td></tr> <tr> <th>17 </th> <td>(9700128038 + 75782144·<i>n</i>)·83# + 1</td> <td align="right">43</td> <td>2019</td> <td>Norman Luhn </td></tr> <tr> <th>18 </th> <td>(33277396902 + 139569962·(<i>n</i>+1))·53# + 1</td> <td align="right">31</td> <td>2019</td> <td>Norman Luhn </td></tr> <tr> <th>19 </th> <td>(33277396902 + 139569962·<i>n</i>)·53# + 1</td> <td align="right">31</td> <td>2019</td> <td>Norman Luhn </td></tr> <tr> <th>20 </th> <td>23 + 134181089232118748020·19#·<i>n</i></td> <td align="right">29</td> <td>2017</td> <td>Wojciech Izykowski </td></tr> <tr> <th>21 </th> <td>5547796991585989797641 + 29#·<i>n</i></td> <td align="right">22</td> <td>2014</td> <td>Jarosław Wróblewski </td></tr> <tr> <th>22 </th> <td>22231637631603420833 + 8·41#·(<i>n</i> + 1)</td> <td align="right">20</td> <td>2014</td> <td>Jarosław Wróblewski </td></tr> <tr> <th>23 </th> <td>22231637631603420833 + 8·41#·<i>n</i></td> <td align="right">20</td> <td>2014</td> <td>Jarosław Wróblewski </td></tr> <tr> <th>24 </th> <td>230885165611851841 + 297206938·23#·<i>n</i></td> <td align="right">19</td> <td>2023</td> <td>Rob Gahan, PrimeGrid </td></tr> <tr> <th>25 </th> <td>290969863970949269 + 322359616·23#·<i>n</i></td> <td align="right">19</td> <td>2024</td> <td>Rob Gahan, PrimeGrid </td></tr> <tr> <th>26 </th> <td>233313669346314209 + 331326280·23#·<i>n</i></td> <td align="right">19</td> <td>2024</td> <td>Rob Gahan, PrimeGrid </td></tr> <tr> <th>27 </th> <td>605185576317848261 + 155368778·23#·<i>n</i></td> <td align="right">19</td> <td>2023</td> <td>Michael Kwok, PrimeGrid </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Consecutive_primes_in_arithmetic_progression">Consecutive primes in arithmetic progression</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Primes_in_arithmetic_progression&action=edit&section=4" title="Edit section: Consecutive primes in arithmetic progression"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><b>Consecutive primes in arithmetic progression</b> refers to at least three <i>consecutive</i> primes which are consecutive terms in an arithmetic progression. Note that unlike an AP-<i>k</i>, all the other numbers between the terms of the progression must be composite. For example, the AP-3 {3, 7, 11} does not qualify, because 5 is also a prime. </p><p>For an integer <i>k</i> ≥ 3, a <b>CPAP-<i>k</i></b> is <i>k</i> consecutive primes in arithmetic progression. It is conjectured there are arbitrarily long CPAP's. This would imply infinitely many CPAP-<i>k</i> for all <i>k</i>. The middle prime in a CPAP-3 is called a <a href="/wiki/Balanced_prime" title="Balanced prime">balanced prime</a>. The largest known as of 2022<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Primes_in_arithmetic_progression&action=edit">[update]</a></sup> has 15004 digits. </p><p>The first known CPAP-10 was found in 1998 by Manfred Toplic in the <a href="/wiki/Distributed_computing" title="Distributed computing">distributed computing</a> project CP10 which was organized by Harvey Dubner, Tony Forbes, Nik Lygeros, Michel Mizony and Paul Zimmermann.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> This CPAP-10 has the smallest possible common difference, 7# = 210. The only other known CPAP-10 as of 2018 was found by the same people in 2008. </p><p>If a CPAP-11 exists then it must have a common difference which is a multiple of 11# = 2310. The difference between the first and last of the 11 primes would therefore be a multiple of 23100. The requirement for at least 23090 composite numbers between the 11 primes makes it appear extremely hard to find a CPAP-11. Dubner and Zimmermann estimate it would be at least 10<sup>12</sup> times harder than a CPAP-10.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Minimal_consecutive_primes_in_AP">Minimal consecutive primes in AP</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Primes_in_arithmetic_progression&action=edit&section=5" title="Edit section: Minimal consecutive primes in AP"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The first occurrence of a CPAP-<i>k</i> is only known for <i>k</i> ≤ 6 (sequence <span class="nowrap external"><a href="//oeis.org/A006560" class="extiw" title="oeis:A006560">A006560</a></span> in the <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>). </p> <table class="wikitable"> <caption>Minimal CPAP-<i>k</i><sup id="cite_ref-minitable_9-0" class="reference"><a href="#cite_note-minitable-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </caption> <tbody><tr> <th><i>k</i></th> <th>Primes for <i>n</i> = 0 to <i>k</i>−1 </th></tr> <tr> <th>3 </th> <td>3 + 2<i>n</i> </td></tr> <tr> <th>4 </th> <td>251 + 6<i>n</i> </td></tr> <tr> <th>5 </th> <td>9843019 + 30<i>n</i> </td></tr> <tr> <th>6 </th> <td>121174811 + 30<i>n</i> </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Largest_known_consecutive_primes_in_AP">Largest known consecutive primes in AP</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Primes_in_arithmetic_progression&action=edit&section=6" title="Edit section: Largest known consecutive primes in AP"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The table shows the largest known case of <i>k</i> consecutive primes in arithmetic progression, for <i>k</i> = 3 to 10. </p> <table class="wikitable"> <caption>Largest known CPAP-<i>k</i> as of June 2024<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Primes_in_arithmetic_progression&action=edit">[update]</a></sup>,<sup id="cite_ref-CPAPrecords_10-0" class="reference"><a href="#cite_note-CPAPrecords-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Chris_K._Caldwell_11-0" class="reference"><a href="#cite_note-Chris_K._Caldwell-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> </caption> <tbody><tr> <th><i>k</i></th> <th>Primes for <i>n</i> = 0 to <i>k</i>−1</th> <th>Digits</th> <th>Year</th> <th>Discoverer </th></tr> <tr> <th>3 </th> <td>17484430616589 · 2<sup>54201</sup> - 7 + 6<i>n</i></td> <td align="right">16330</td> <td>2024</td> <td>Serge Batalov </td></tr> <tr> <th>4 </th> <td>35734184537 · 11677#/3 - 9 + 6<i>n</i></td> <td align="right">5002</td> <td>2024</td> <td>Serge Batalov </td></tr> <tr> <th>5 </th> <td>2738129459017 · 4211# + 3399421517 + 30<i>n</i></td> <td align="right">1805</td> <td>2022</td> <td>Serge Batalov </td></tr> <tr> <th>6 </th> <td>533098369554 · 2357# + 3399421517 + 30<i>n</i></td> <td align="right">1012</td> <td>2021</td> <td>Serge Batalov </td></tr> <tr> <th>7 </th> <td>145706980166212 · 1069# + <i>x</i><sub>253</sub> + 420 + 210<i>n</i></td> <td align="right">466</td> <td>2021</td> <td>Serge Batalov </td></tr> <tr> <th>8 </th> <td>8081110034864 · 619# + <i>x</i><sub>253</sub> + 210 + 210<i>n</i></td> <td align="right">272</td> <td>2021</td> <td>Serge Batalov </td></tr> <tr> <th>9 </th> <td>7661619169627 · 379# + <i>x</i><sub>153</sub> + 210<i>n</i></td> <td align="right">167</td> <td>2021</td> <td>Serge Batalov </td></tr> <tr> <th>10 </th> <td>189382061960492204 · 257# + <i>x</i><sub>106</sub> + 210<i>n</i></td> <td align="right">121</td> <td>2021</td> <td>Serge Batalov </td></tr></tbody></table> <p><i>x</i><sub><i>d</i></sub> is a <i>d</i>-digit number used in one of the above records to ensure a small factor in unusually many of the required composites between the primes.<br /> <small> <i>x</i><sub>106</sub> = 115376 22283279672627497420 78637565852209646810 56709682233916942487 50925234318597647097 08315833909447378791<br /> <i>x</i><sub>153</sub> = 9656383640115 03965472274037609810 69585305769447451085 87635040605371157826 98320398681243637298 57205796522034199218 09817841129732061363 55565433981118807417 = <i>x</i><sub>253</sub> % 379#<br /> <i>x</i><sub>253</sub> = 1617599298905 320471304802538356587398499979 836255156671030473751281181199 911312259550734373874520536148 519300924327947507674746679858 816780182478724431966587843672 408773388445788142740274329621 811879827349575247851843514012 399313201211101277175684636727<br /> </small> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Primes_in_arithmetic_progression&action=edit&section=7" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Cunningham_chain" title="Cunningham chain">Cunningham chain</a></li> <li><a href="/wiki/Szemer%C3%A9di%27s_theorem" title="Szemerédi's theorem">Szemerédi's theorem</a></li> <li><a href="/wiki/PrimeGrid" title="PrimeGrid">PrimeGrid</a></li> <li><a href="/wiki/Problems_involving_arithmetic_progressions" title="Problems involving arithmetic progressions">Problems involving arithmetic progressions</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Primes_in_arithmetic_progression&action=edit&section=8" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFGreenTao2008" class="citation cs2"><a href="/wiki/Ben_J._Green" class="mw-redirect" title="Ben J. Green">Green, Ben</a>; <a href="/wiki/Terence_Tao" title="Terence Tao">Tao, Terence</a> (2008), "The primes contain arbitrarily long arithmetic progressions", <i><a href="/wiki/Annals_of_Mathematics" title="Annals of Mathematics">Annals of Mathematics</a></i>, <b>167</b> (2): 481–547, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math.NT/0404188">math.NT/0404188</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4007%2Fannals.2008.167.481">10.4007/annals.2008.167.481</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2415379">2415379</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1883951">1883951</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=The+primes+contain+arbitrarily+long+arithmetic+progressions&rft.volume=167&rft.issue=2&rft.pages=481-547&rft.date=2008&rft_id=info%3Aarxiv%2Fmath.NT%2F0404188&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2415379%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1883951%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.4007%2Fannals.2008.167.481&rft.aulast=Green&rft.aufirst=Ben&rft.au=Tao%2C+Terence&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrimes+in+arithmetic+progression" class="Z3988"></span></span> </li> <li id="cite_note-APrecords-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-APrecords_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-APrecords_2-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-APrecords_2-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-APrecords_2-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text">Jens Kruse Andersen and Norman Luhn, <a rel="nofollow" class="external text" href="https://www.pzktupel.de/JensKruseAndersen/aprecords.htm"><i>Primes in Arithmetic Progression Records</i></a>. Retrieved 2023-12-11.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://oeis.org/A133277">"A133277 - OEIS"</a>. <i>oeis.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2024-11-05</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=oeis.org&rft.atitle=A133277+-+OEIS&rft_id=https%3A%2F%2Foeis.org%2FA133277&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrimes+in+arithmetic+progression" class="Z3988"></span></span> </li> <li id="cite_note-PrimeGridForum-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-PrimeGridForum_4-0">^</a></b></span> <span class="reference-text">John, <a rel="nofollow" class="external text" href="http://www.primegrid.com/forum_thread.php?id=1158&nowrap=true#22787"><i>AP26 Forum</i></a>. Retrieved 2013-10-20.</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWróblewski2008" class="citation mailinglist cs1">Wróblewski, Jarosław (2008-05-17). <a rel="nofollow" class="external text" href="https://archive.today/20120529015657/http://tech.groups.yahoo.com/group/primenumbers/message/19359">"AP25"</a>. <i>primenumbers</i> (Mailing list). Archived from <a rel="nofollow" class="external text" href="http://tech.groups.yahoo.com/group/primenumbers/message/19359">the original</a> on May 29, 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">2008-05-17</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=AP25&rft.date=2008-05-17&rft.aulast=Wr%C3%B3blewski&rft.aufirst=Jaros%C5%82aw&rft_id=http%3A%2F%2Ftech.groups.yahoo.com%2Fgroup%2Fprimenumbers%2Fmessage%2F19359&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrimes+in+arithmetic+progression" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWróblewski2007" class="citation mailinglist cs1">Wróblewski, Jarosław (2007-01-18). <a rel="nofollow" class="external text" href="https://archive.today/20120529015657/http://tech.groups.yahoo.com/group/primeform/message/8248">"AP24"</a>. <i>primeform</i> (Mailing list). Archived from <a rel="nofollow" class="external text" href="http://tech.groups.yahoo.com/group/primeform/message/8248">the original</a> on May 29, 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">2007-06-17</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=AP24&rft.date=2007-01-18&rft.aulast=Wr%C3%B3blewski&rft.aufirst=Jaros%C5%82aw&rft_id=http%3A%2F%2Ftech.groups.yahoo.com%2Fgroup%2Fprimeform%2Fmessage%2F8248&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrimes+in+arithmetic+progression" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text">H. Dubner, T. Forbes, N. Lygeros, M. Mizony, H. Nelson, P. Zimmermann, <a rel="nofollow" class="external text" href="https://www.ams.org/mcom/2002-71-239/S0025-5718-01-01374-6/home.html"><i>Ten consecutive primes in arithmetic progression</i></a>, <a href="/wiki/Mathematics_of_Computation" title="Mathematics of Computation">Mathematics of Computation</a> 71 (2002), 1323–1328.</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">Manfred Toplic, <a rel="nofollow" class="external text" href="http://www.manfred-toplic.com/cp09.html"><i>The nine and ten primes project</i></a>. Retrieved on 2007-06-17.</span> </li> <li id="cite_note-minitable-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-minitable_9-0">^</a></b></span> <span class="reference-text">Jens Kruse Andersen and Norman Luhn, <a rel="nofollow" class="external text" href="https://www.pzktupel.de/JensKruseAndersen/mini.html"><i>The minimal & the smallest known CPAP-k</i></a>. Retrieved 2022-12-20.</span> </li> <li id="cite_note-CPAPrecords-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-CPAPrecords_10-0">^</a></b></span> <span class="reference-text">Jens Kruse Andersen and Norman Luhn, <a rel="nofollow" class="external text" href="https://www.pzktupel.de/JensKruseAndersen/CPAP.htm"><i>The Largest Known CPAP's</i></a>. Retrieved on 2022-12-20.</span> </li> <li id="cite_note-Chris_K._Caldwell-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-Chris_K._Caldwell_11-0">^</a></b></span> <span class="reference-text">Chris K. Caldwell, <a rel="nofollow" class="external text" href="https://primes.utm.edu/top20/page.php?id=13"><i>The Largest Known CPAP's</i></a>. Retrieved on 2021-01-28.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Primes_in_arithmetic_progression&action=edit&section=9" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Chris Caldwell, <a rel="nofollow" class="external text" href="http://primes.utm.edu/glossary/page.php?sort=ArithmeticSequence"><i>The Prime Glossary: arithmetic sequence</i></a>, <a rel="nofollow" class="external text" href="http://primes.utm.edu/top20/page.php?id=14"><i>The Top Twenty: Arithmetic Progressions of Primes</i></a> and <a rel="nofollow" class="external text" href="http://primes.utm.edu/top20/page.php?id=13"><i>The Top Twenty: Consecutive Primes in Arithmetic Progression</i></a>, all from the <a href="/wiki/Prime_Pages" class="mw-redirect" title="Prime Pages">Prime Pages</a>.</li> <li><span class="citation mathworld" id="Reference-Mathworld-Prime_Arithmetic_Progression"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/PrimeArithmeticProgression.html">"Prime Arithmetic Progression"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MathWorld&rft.atitle=Prime+Arithmetic+Progression&rft.au=Weisstein%2C+Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FPrimeArithmeticProgression.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3APrimes+in+arithmetic+progression" class="Z3988"></span></span></li> <li>Jarosław Wróblewski, <a rel="nofollow" class="external text" href="http://www.math.uni.wroc.pl/~jwr/AP26/AP26v3.pdf"><i>How to search for 26 primes in arithmetic progression?</i></a></li> <li><a href="/wiki/Paul_Erd%C5%91s" title="Paul Erdős">P. Erdős</a> and P. Turán, On some sequences of integers, J. London Math. Soc. 11 (1936), 261–264.</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Prime_number_classes" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Prime_number_classes" title="Template:Prime number classes"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Prime_number_classes" title="Template talk:Prime number classes"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Prime_number_classes" title="Special:EditPage/Template:Prime number classes"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Prime_number_classes" style="font-size:114%;margin:0 4em"><a href="/wiki/Prime_number" title="Prime number">Prime number</a> classes</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">By formula</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Fermat_number" title="Fermat number">Fermat (<span class="texhtml texhtml-big" style="font-size:110%;">2<sup>2<sup><i>n</i></sup></sup> + 1</span>)</a></li> <li><a href="/wiki/Mersenne_prime" title="Mersenne prime">Mersenne (<span class="texhtml texhtml-big" style="font-size:110%;">2<sup><i>p</i></sup> − 1</span>)</a></li> <li><a href="/wiki/Double_Mersenne_number" title="Double Mersenne number">Double Mersenne (<span class="texhtml texhtml-big" style="font-size:110%;">2<sup>2<sup><i>p</i></sup>−1</sup> − 1</span>)</a></li> <li><a href="/wiki/Wagstaff_prime" title="Wagstaff prime">Wagstaff <span class="texhtml texhtml-big" style="font-size:110%;">(2<sup><i>p</i></sup> + 1)/3</span></a></li> <li><a href="/wiki/Proth_prime" title="Proth prime">Proth (<span class="texhtml texhtml-big" style="font-size:110%;"><i>k</i>·2<sup><i>n</i></sup> + 1</span>)</a></li> <li><a href="/wiki/Factorial_prime" title="Factorial prime">Factorial (<span class="texhtml texhtml-big" style="font-size:110%;"><i>n</i>! ± 1</span>)</a></li> <li><a href="/wiki/Primorial_prime" title="Primorial prime">Primorial (<span class="texhtml texhtml-big" style="font-size:110%;"><i>p<sub>n</sub></i># ± 1</span>)</a></li> <li><a href="/wiki/Euclid_number" title="Euclid number">Euclid (<span class="texhtml texhtml-big" style="font-size:110%;"><i>p<sub>n</sub></i># + 1</span>)</a></li> <li><a href="/wiki/Pythagorean_prime" title="Pythagorean prime">Pythagorean (<span class="texhtml texhtml-big" style="font-size:110%;">4<i>n</i> + 1</span>)</a></li> <li><a href="/wiki/Pierpont_prime" title="Pierpont prime">Pierpont (<span class="texhtml texhtml-big" style="font-size:110%;">2<sup><i>m</i></sup>·3<sup><i>n</i></sup> + 1</span>)</a></li> <li><a href="/wiki/Quartan_prime" title="Quartan prime">Quartan (<span class="texhtml texhtml-big" style="font-size:110%;"><i>x</i><sup>4</sup> + <i>y</i><sup>4</sup></span>)</a></li> <li><a href="/wiki/Solinas_prime" title="Solinas prime">Solinas (<span class="texhtml texhtml-big" style="font-size:110%;">2<sup><i>m</i></sup> ± 2<sup><i>n</i></sup> ± 1</span>)</a></li> <li><a href="/wiki/Cullen_number" title="Cullen number">Cullen (<span class="texhtml texhtml-big" style="font-size:110%;"><i>n</i>·2<sup><i>n</i></sup> + 1</span>)</a></li> <li><a href="/wiki/Woodall_number" title="Woodall number">Woodall (<span class="texhtml texhtml-big" style="font-size:110%;"><i>n</i>·2<sup><i>n</i></sup> − 1</span>)</a></li> <li><a href="/wiki/Cuban_prime" title="Cuban prime">Cuban (<span class="texhtml texhtml-big" style="font-size:110%;"><i>x</i><sup>3</sup> − <i>y</i><sup>3</sup>)/(<i>x</i> − <i>y</i></span>)</a></li> <li><a href="/wiki/Leyland_number" title="Leyland number">Leyland (<span class="texhtml texhtml-big" style="font-size:110%;"><i>x<sup>y</sup></i> + <i>y<sup>x</sup></i></span>)</a></li> <li><a href="/wiki/Thabit_number" title="Thabit number">Thabit (<span class="texhtml texhtml-big" style="font-size:110%;">3·2<sup><i>n</i></sup> − 1</span>)</a></li> <li><a href="/wiki/Williams_number" title="Williams number">Williams (<span class="texhtml texhtml-big" style="font-size:110%;">(<i>b</i>−1)·<i>b</i><sup><i>n</i></sup> − 1</span>)</a></li> <li><a href="/wiki/Mills%27_constant" title="Mills' constant">Mills (<span class="texhtml texhtml-big" style="font-size:110%;"><span style="font-size:1em">⌊</span><i>A</i><sup>3<sup><i>n</i></sup></sup><span style="font-size:1em">⌋</span></span>)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">By integer sequence</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Fibonacci_prime" title="Fibonacci prime">Fibonacci</a></li> <li><a href="/wiki/Lucas_prime" class="mw-redirect" title="Lucas prime">Lucas</a></li> <li><a href="/wiki/Pell_prime" class="mw-redirect" title="Pell prime">Pell</a></li> <li><a href="/wiki/Newman%E2%80%93Shanks%E2%80%93Williams_prime" title="Newman–Shanks–Williams prime">Newman–Shanks–Williams</a></li> <li><a href="/wiki/Perrin_prime" class="mw-redirect" title="Perrin prime">Perrin</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">By property</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Wieferich_prime" title="Wieferich prime">Wieferich</a> (<a href="/wiki/Wieferich_pair" title="Wieferich pair">pair</a>)</li> <li><a href="/wiki/Wall%E2%80%93Sun%E2%80%93Sun_prime" title="Wall–Sun–Sun prime">Wall–Sun–Sun</a></li> <li><a href="/wiki/Wolstenholme_prime" title="Wolstenholme prime">Wolstenholme</a></li> <li><a href="/wiki/Wilson_prime" title="Wilson prime">Wilson</a></li> <li><a href="/wiki/Lucky_number" title="Lucky number">Lucky</a></li> <li><a href="/wiki/Fortunate_number" title="Fortunate number">Fortunate</a></li> <li><a href="/wiki/Ramanujan_prime" title="Ramanujan prime">Ramanujan</a></li> <li><a href="/wiki/Pillai_prime" title="Pillai prime">Pillai</a></li> <li><a href="/wiki/Regular_prime" title="Regular prime">Regular</a></li> <li><a href="/wiki/Strong_prime" title="Strong prime">Strong</a></li> <li><a href="/wiki/Stern_prime" title="Stern prime">Stern</a></li> <li><a href="/wiki/Supersingular_prime_(algebraic_number_theory)" title="Supersingular prime (algebraic number theory)">Supersingular (elliptic curve)</a></li> <li><a href="/wiki/Supersingular_prime_(moonshine_theory)" title="Supersingular prime (moonshine theory)">Supersingular (moonshine theory)</a></li> <li><a href="/wiki/Good_prime" title="Good prime">Good</a></li> <li><a href="/wiki/Super-prime" title="Super-prime">Super</a></li> <li><a href="/wiki/Higgs_prime" title="Higgs prime">Higgs</a></li> <li><a href="/wiki/Highly_cototient_number" title="Highly cototient number">Highly cototient</a></li> <li><a href="/wiki/Reciprocals_of_primes#Unique_primes" title="Reciprocals of primes">Unique</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Radix" title="Radix">Base</a>-dependent</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Palindromic_prime" title="Palindromic prime">Palindromic</a></li> <li><a href="/wiki/Emirp" title="Emirp">Emirp</a></li> <li><a href="/wiki/Repunit" title="Repunit">Repunit <span class="texhtml texhtml-big" style="font-size:110%;">(10<sup><i>n</i></sup> − 1)/9</span></a></li> <li><a href="/wiki/Permutable_prime" title="Permutable prime">Permutable</a></li> <li><a href="/wiki/Circular_prime" title="Circular prime">Circular</a></li> <li><a href="/wiki/Truncatable_prime" title="Truncatable prime">Truncatable</a></li> <li><a href="/wiki/Minimal_prime_(recreational_mathematics)" title="Minimal prime (recreational mathematics)">Minimal</a></li> <li><a href="/wiki/Delicate_prime" title="Delicate prime">Delicate</a></li> <li><a href="/wiki/Primeval_number" title="Primeval number">Primeval</a></li> <li><a href="/wiki/Full_reptend_prime" title="Full reptend prime">Full reptend</a></li> <li><a href="/wiki/Unique_prime_number" class="mw-redirect" title="Unique prime number">Unique</a></li> <li><a href="/wiki/Happy_number#Happy_primes" title="Happy number">Happy</a></li> <li><a href="/wiki/Self_number" title="Self number">Self</a></li> <li><a href="/wiki/Smarandache%E2%80%93Wellin_prime" class="mw-redirect" title="Smarandache–Wellin prime">Smarandache–Wellin</a></li> <li><a href="/wiki/Strobogrammatic_prime" class="mw-redirect" title="Strobogrammatic prime">Strobogrammatic</a></li> <li><a href="/wiki/Dihedral_prime" title="Dihedral prime">Dihedral</a></li> <li><a href="/wiki/Tetradic_number" title="Tetradic number">Tetradic</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Patterns</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="k-tuples" scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Prime_k-tuple" title="Prime k-tuple"><i>k</i>-tuples</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Twin_prime" title="Twin prime">Twin (<span class="texhtml texhtml-big" style="font-size:110%;"><i>p</i>, <i>p</i> + 2</span>)</a></li> <li><a href="/wiki/Prime_triplet" title="Prime triplet">Triplet (<span class="texhtml texhtml-big" style="font-size:110%;"><i>p</i>, <i>p</i> + 2 or <i>p</i> + 4, <i>p</i> + 6</span>)</a></li> <li><a href="/wiki/Prime_quadruplet" title="Prime quadruplet">Quadruplet (<span class="texhtml texhtml-big" style="font-size:110%;"><i>p</i>, <i>p</i> + 2, <i>p</i> + 6, <i>p</i> + 8</span>)</a></li> <li><a href="/wiki/Cousin_prime" title="Cousin prime">Cousin (<span class="texhtml texhtml-big" style="font-size:110%;"><i>p</i>, <i>p</i> + 4</span>)</a></li> <li><a href="/wiki/Sexy_prime" title="Sexy prime">Sexy (<span class="texhtml texhtml-big" style="font-size:110%;"><i>p</i>, <i>p</i> + 6</span>)</a></li> <li><a class="mw-selflink selflink">Arithmetic progression (<span class="texhtml texhtml-big" style="font-size:110%;"><i>p</i> + <i>a·n</i>, <i>n</i> = 0, 1, 2, 3, ...</span>)</a></li> <li><a href="/wiki/Balanced_prime" title="Balanced prime">Balanced (<span class="texhtml texhtml-big" style="font-size:110%;">consecutive <i>p</i> − <i>n</i>, <i>p</i>, <i>p</i> + <i>n</i></span>)</a></li></ul> </div></td></tr></tbody></table><div> <ul><li><a href="/wiki/Bi-twin_chain" title="Bi-twin chain">Bi-twin chain (<span class="texhtml texhtml-big" style="font-size:110%;"><i>n</i> ± 1, 2<i>n</i> ± 1, 4<i>n</i> ± 1, …</span>)</a></li> <li><a href="/wiki/Chen_prime" title="Chen prime">Chen</a></li> <li><a href="/wiki/Safe_and_Sophie_Germain_primes" title="Safe and Sophie Germain primes">Sophie Germain/Safe (<span class="texhtml texhtml-big" style="font-size:110%;"><i>p</i>, 2<i>p</i> + 1</span>)</a></li> <li><a href="/wiki/Cunningham_chain" title="Cunningham chain">Cunningham (<span class="texhtml texhtml-big" style="font-size:110%;"><i>p</i>, 2<i>p</i> ± 1, 4<i>p</i> ± 3, 8<i>p</i> ± 7, ...</span>)</a></li></ul></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">By size</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <li><a href="/wiki/Megaprime" title="Megaprime">Mega (1,000,000+ digits)</a></li> <li><a href="/wiki/Largest_known_prime_number" title="Largest known prime number">Largest known</a> <ul><li><a href="/wiki/List_of_largest_known_primes_and_probable_primes" title="List of largest known primes and probable primes">list</a></li></ul></li> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Complex_number" title="Complex number">Complex numbers</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Eisenstein_prime" class="mw-redirect" title="Eisenstein prime">Eisenstein prime</a></li> <li><a href="/wiki/Gaussian_integer#Gaussian_primes" title="Gaussian integer">Gaussian prime</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Composite_number" title="Composite number">Composite numbers</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Pseudoprime" title="Pseudoprime">Pseudoprime</a> <ul><li><a href="/wiki/Catalan_pseudoprime" title="Catalan pseudoprime">Catalan</a></li> <li><a href="/wiki/Elliptic_pseudoprime" title="Elliptic pseudoprime">Elliptic</a></li> <li><a href="/wiki/Euler_pseudoprime" title="Euler pseudoprime">Euler</a></li> <li><a href="/wiki/Euler%E2%80%93Jacobi_pseudoprime" title="Euler–Jacobi pseudoprime">Euler–Jacobi</a></li> <li><a href="/wiki/Fermat_pseudoprime" title="Fermat pseudoprime">Fermat</a></li> <li><a href="/wiki/Frobenius_pseudoprime" title="Frobenius pseudoprime">Frobenius</a></li> <li><a href="/wiki/Lucas_pseudoprime" title="Lucas pseudoprime">Lucas</a></li> <li><a href="/wiki/Perrin_pseudoprime" class="mw-redirect" title="Perrin pseudoprime">Perrin</a></li> <li><a href="/wiki/Somer%E2%80%93Lucas_pseudoprime" title="Somer–Lucas pseudoprime">Somer–Lucas</a></li> <li><a href="/wiki/Strong_pseudoprime" title="Strong pseudoprime">Strong</a></li></ul></li> <li><a href="/wiki/Carmichael_number" title="Carmichael number">Carmichael number</a></li> <li><a href="/wiki/Almost_prime" title="Almost prime">Almost prime</a></li> <li><a href="/wiki/Semiprime" title="Semiprime">Semiprime</a></li> <li><a href="/wiki/Sphenic_number" title="Sphenic number">Sphenic number</a></li> <li><a href="/wiki/Interprime" title="Interprime">Interprime</a></li> <li><a href="/wiki/Pernicious_number" title="Pernicious number">Pernicious</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related topics</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Probable_prime" title="Probable prime">Probable prime</a></li> <li><a href="/wiki/Industrial-grade_prime" title="Industrial-grade prime">Industrial-grade prime</a></li> <li><a href="/wiki/Illegal_prime" class="mw-redirect" title="Illegal prime">Illegal prime</a></li> <li><a href="/wiki/Formula_for_primes" title="Formula for primes">Formula for primes</a></li> <li><a href="/wiki/Prime_gap" title="Prime gap">Prime gap</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">First 60 primes</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/2" title="2">2</a></li> <li><a href="/wiki/3" title="3">3</a></li> <li><a href="/wiki/5" title="5">5</a></li> <li><a href="/wiki/7" title="7">7</a></li> <li><a href="/wiki/11_(number)" title="11 (number)">11</a></li> <li><a href="/wiki/13_(number)" title="13 (number)">13</a></li> <li><a href="/wiki/17_(number)" title="17 (number)">17</a></li> <li><a href="/wiki/19_(number)" title="19 (number)">19</a></li> <li><a href="/wiki/23_(number)" title="23 (number)">23</a></li> <li><a href="/wiki/29_(number)" title="29 (number)">29</a></li> <li><a href="/wiki/31_(number)" title="31 (number)">31</a></li> <li><a href="/wiki/37_(number)" title="37 (number)">37</a></li> <li><a href="/wiki/41_(number)" title="41 (number)">41</a></li> <li><a href="/wiki/43_(number)" title="43 (number)">43</a></li> <li><a href="/wiki/47_(number)" title="47 (number)">47</a></li> <li><a href="/wiki/53_(number)" title="53 (number)">53</a></li> <li><a href="/wiki/59_(number)" title="59 (number)">59</a></li> <li><a href="/wiki/61_(number)" title="61 (number)">61</a></li> <li><a href="/wiki/67_(number)" title="67 (number)">67</a></li> <li><a href="/wiki/71_(number)" title="71 (number)">71</a></li> <li><a href="/wiki/73_(number)" title="73 (number)">73</a></li> <li><a href="/wiki/79_(number)" title="79 (number)">79</a></li> <li><a href="/wiki/83_(number)" title="83 (number)">83</a></li> <li><a href="/wiki/89_(number)" title="89 (number)">89</a></li> <li><a href="/wiki/97_(number)" title="97 (number)">97</a></li> <li><a href="/wiki/101_(number)" title="101 (number)">101</a></li> <li><a href="/wiki/103_(number)" title="103 (number)">103</a></li> <li><a href="/wiki/107_(number)" title="107 (number)">107</a></li> <li><a href="/wiki/109_(number)" title="109 (number)">109</a></li> <li><a href="/wiki/113_(number)" title="113 (number)">113</a></li> <li><a href="/wiki/127_(number)" title="127 (number)">127</a></li> <li><a href="/wiki/131_(number)" title="131 (number)">131</a></li> <li><a href="/wiki/137_(number)" title="137 (number)">137</a></li> <li><a href="/wiki/139_(number)" title="139 (number)">139</a></li> <li><a href="/wiki/149_(number)" title="149 (number)">149</a></li> <li><a href="/wiki/151_(number)" title="151 (number)">151</a></li> <li><a href="/wiki/157_(number)" title="157 (number)">157</a></li> <li><a href="/wiki/163_(number)" title="163 (number)">163</a></li> <li><a href="/wiki/167_(number)" title="167 (number)">167</a></li> <li><a href="/wiki/173_(number)" title="173 (number)">173</a></li> <li><a href="/wiki/179_(number)" title="179 (number)">179</a></li> <li><a href="/wiki/181_(number)" title="181 (number)">181</a></li> <li><a href="/wiki/191_(number)" title="191 (number)">191</a></li> <li><a href="/wiki/193_(number)" title="193 (number)">193</a></li> <li><a href="/wiki/197_(number)" title="197 (number)">197</a></li> <li><a href="/wiki/199_(number)" title="199 (number)">199</a></li> <li><a href="/wiki/211_(number)" title="211 (number)">211</a></li> <li><a href="/wiki/223_(number)" title="223 (number)">223</a></li> <li><a href="/wiki/227_(number)" title="227 (number)">227</a></li> <li><a href="/wiki/229_(number)" title="229 (number)">229</a></li> <li><a href="/wiki/233_(number)" title="233 (number)">233</a></li> <li><a href="/wiki/239_(number)" title="239 (number)">239</a></li> <li><a href="/wiki/241_(number)" title="241 (number)">241</a></li> <li><a href="/wiki/251_(number)" title="251 (number)">251</a></li> <li><a href="/wiki/257_(number)" title="257 (number)">257</a></li> <li><a href="/wiki/263_(number)" title="263 (number)">263</a></li> <li><a href="/wiki/269_(number)" title="269 (number)">269</a></li> <li><a href="/wiki/271_(number)" title="271 (number)">271</a></li> <li><a href="/wiki/277_(number)" title="277 (number)">277</a></li> <li><a href="/wiki/281_(number)" title="281 (number)">281</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow hlist" colspan="2"><div><a href="/wiki/List_of_prime_numbers" title="List of prime numbers">List of prime numbers</a></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐59b954b7fb‐rzf4x Cached time: 20241209021336 Cache expiry: 78391 Reduced expiry: true Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.432 seconds Real time usage: 0.595 seconds Preprocessor visited node count: 3826/1000000 Post‐expand include size: 66709/2097152 bytes Template argument size: 6980/2097152 bytes Highest expansion depth: 23/100 Expensive parser function count: 6/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 30181/5000000 bytes Lua time usage: 0.218/10.000 seconds Lua memory usage: 5381222/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 453.895 1 -total 35.23% 159.898 2 Template:Navbox 33.17% 150.565 1 Template:Prime_number_classes 31.74% 144.087 1 Template:Reflist 22.07% 100.176 1 Template:Citation 16.69% 75.776 1 Template:Short_description 11.77% 53.423 5 Template:As_of 10.23% 46.424 2 Template:Pagetype 9.87% 44.813 30 Template:Math 7.40% 33.584 5 Template:DMCA --> <!-- Saved in parser cache with key enwiki:pcache:11740178:|#|:idhash:canonical and timestamp 20241209021336 and revision id 1255494775. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&type=1x1&usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Primes_in_arithmetic_progression&oldid=1255494775">https://en.wikipedia.org/w/index.php?title=Primes_in_arithmetic_progression&oldid=1255494775</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Category</a>: <ul><li><a href="/wiki/Category:Prime_numbers" title="Category:Prime numbers">Prime numbers</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_with_empty_Wikidata_description" title="Category:Short description with empty Wikidata description">Short description with empty Wikidata description</a></li><li><a href="/wiki/Category:Articles_containing_potentially_dated_statements_from_2018" title="Category:Articles containing potentially dated statements from 2018">Articles containing potentially dated statements from 2018</a></li><li><a href="/wiki/Category:All_articles_containing_potentially_dated_statements" title="Category:All articles containing potentially dated statements">All articles containing potentially dated statements</a></li><li><a href="/wiki/Category:Articles_containing_potentially_dated_statements_from_September_2019" title="Category:Articles containing potentially dated statements from September 2019">Articles containing potentially dated statements from September 2019</a></li><li><a href="/wiki/Category:Articles_containing_potentially_dated_statements_from_December_2023" title="Category:Articles containing potentially dated statements from December 2023">Articles containing potentially dated statements from December 2023</a></li><li><a href="/wiki/Category:Articles_containing_potentially_dated_statements_from_2022" title="Category:Articles containing potentially dated statements from 2022">Articles containing potentially dated statements from 2022</a></li><li><a href="/wiki/Category:Articles_containing_potentially_dated_statements_from_June_2024" title="Category:Articles containing potentially dated statements from June 2024">Articles containing potentially dated statements from June 2024</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 5 November 2024, at 06:23<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Primes_in_arithmetic_progression&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-795d687985-mmv2c","wgBackendResponseTime":128,"wgPageParseReport":{"limitreport":{"cputime":"0.432","walltime":"0.595","ppvisitednodes":{"value":3826,"limit":1000000},"postexpandincludesize":{"value":66709,"limit":2097152},"templateargumentsize":{"value":6980,"limit":2097152},"expansiondepth":{"value":23,"limit":100},"expensivefunctioncount":{"value":6,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":30181,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 453.895 1 -total"," 35.23% 159.898 2 Template:Navbox"," 33.17% 150.565 1 Template:Prime_number_classes"," 31.74% 144.087 1 Template:Reflist"," 22.07% 100.176 1 Template:Citation"," 16.69% 75.776 1 Template:Short_description"," 11.77% 53.423 5 Template:As_of"," 10.23% 46.424 2 Template:Pagetype"," 9.87% 44.813 30 Template:Math"," 7.40% 33.584 5 Template:DMCA"]},"scribunto":{"limitreport-timeusage":{"value":"0.218","limit":"10.000"},"limitreport-memusage":{"value":5381222,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-59b954b7fb-rzf4x","timestamp":"20241209021336","ttl":78391,"transientcontent":true}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Primes in arithmetic progression","url":"https:\/\/en.wikipedia.org\/wiki\/Primes_in_arithmetic_progression","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1043113","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1043113","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2007-06-13T01:32:50Z","dateModified":"2024-11-05T06:23:07Z"}</script> </body> </html>