CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;31 of 31 results for author: <span class="mathjax">Larsen, R</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&amp;query=Larsen%2C+R">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Larsen, R"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Larsen%2C+R&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Larsen, R"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.10819">arXiv:2402.10819</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.10819">pdf</a>, <a href="https://arxiv.org/format/2402.10819">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> In-medium static inter-quark potential on high resolution quenched lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Larsen%2C+R+N">Rasmus N. Larsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parkar%2C+G">Gaurang Parkar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rothkopf%2C+A">Alexander Rothkopf</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weber%2C+J+H">Johannes Heinrich Weber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.10819v1-abstract-short" style="display: inline;"> We re-investigate the interactions between static color sources in a finite temperature gluonic medium using both high resolution isotropic and anisotropic quenched lattice QCD ensembles. The underlying ill-posed inverse problem, related to the extraction of spectral functions, is attacked with a range of different methods, including Bayesian inference, Pad茅 interpolation and model fits. Among the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.10819v1-abstract-full').style.display = 'inline'; document.getElementById('2402.10819v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.10819v1-abstract-full" style="display: none;"> We re-investigate the interactions between static color sources in a finite temperature gluonic medium using both high resolution isotropic and anisotropic quenched lattice QCD ensembles. The underlying ill-posed inverse problem, related to the extraction of spectral functions, is attacked with a range of different methods, including Bayesian inference, Pad茅 interpolation and model fits. Among the latter we include a tail amended Gaussian ansatz and a HTL-inspired fit ansatz. We reconfirm the presence of a dominant low-lying spectral feature that supports the existence of a potential picture for the in-medium evolution of the static charges at late real times. Using the raw unmodified lattice data, all applicable methods show clear signs of screening of the real-part of the potential. After applying a subtraction procedure featured in a previous study we find however that screening disappears from the extracted potential. Paths towards the resolution of this puzzle are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.10819v1-abstract-full').style.display = 'none'; document.getElementById('2402.10819v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">54 pages, 40 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> HU-EP-24/06-RTG </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01211">arXiv:2401.01211</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.01211">pdf</a>, <a href="https://arxiv.org/format/2401.01211">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Density of observables from local derivatives </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Larsen%2C+R+N">Rasmus Normann Larsen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01211v1-abstract-short" style="display: inline;"> We derive a formula to calculate the local change to the log of any density of states for smooth real observables. Using this in Monte-Carlo simulations, we are able to calculate the expectation value of the observable with a precision often better than standard sampling. The method can be applied to previously generated configurations, as long as the analysis uses the same action used to generate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01211v1-abstract-full').style.display = 'inline'; document.getElementById('2401.01211v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01211v1-abstract-full" style="display: none;"> We derive a formula to calculate the local change to the log of any density of states for smooth real observables. Using this in Monte-Carlo simulations, we are able to calculate the expectation value of the observable with a precision often better than standard sampling. The method can be applied to previously generated configurations, as long as the analysis uses the same action used to generate the configurations. We show that for observables such as Wilson line correlators, errors are reduced by up to 4 times. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01211v1-abstract-full').style.display = 'none'; document.getElementById('2401.01211v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.01525">arXiv:2311.01525</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.01525">pdf</a>, <a href="https://arxiv.org/format/2311.01525">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.051902">10.1103/PhysRevLett.132.051902 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quark Mass Dependence of Heavy Quark Diffusion Coefficient from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Altenkort%2C+L">Luis Altenkort</a>, <a href="/search/hep-lat?searchtype=author&amp;query=de+la+Cruz%2C+D">David de la Cruz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kaczmarek%2C+O">Olaf Kaczmarek</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Larsen%2C+R">Rasmus Larsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Moore%2C+G+D">Guy D. Moore</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shu%2C+H">Hai-Tao Shu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Stendebach%2C+S">Simon Stendebach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.01525v2-abstract-short" style="display: inline;"> We present the first study of the quark mass dependence of the heavy quark momentum and spatial diffusion coefficients using lattice QCD with light dynamical quarks corresponding to a pion mass of 320 MeV. We find that, for the temperature range 195 MeV $&lt;T&lt;$ 293 MeV, the spatial diffusion coefficients of the charm and bottom quarks are smaller than those obtained in phenomenological models that d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01525v2-abstract-full').style.display = 'inline'; document.getElementById('2311.01525v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.01525v2-abstract-full" style="display: none;"> We present the first study of the quark mass dependence of the heavy quark momentum and spatial diffusion coefficients using lattice QCD with light dynamical quarks corresponding to a pion mass of 320 MeV. We find that, for the temperature range 195 MeV $&lt;T&lt;$ 293 MeV, the spatial diffusion coefficients of the charm and bottom quarks are smaller than those obtained in phenomenological models that describe the $p_T$ spectra and elliptic flow of open heavy flavor hadrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01525v2-abstract-full').style.display = 'none'; document.getElementById('2311.01525v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 051902 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.16587">arXiv:2308.16587</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.16587">pdf</a>, <a href="https://arxiv.org/format/2308.16587">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.109.074504">10.1103/PhysRevD.109.074504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Un-screened forces in Quark-Gluon Plasma? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bazavov%2C+A">Alexei Bazavov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hoying%2C+D">Daniel Hoying</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Larsen%2C+R+N">Rasmus N. Larsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rothkopf%2C+A">Alexander Rothkopf</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weber%2C+J+H">Johannes Heinrich Weber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.16587v2-abstract-short" style="display: inline;"> We study the correlator of temporal Wilson lines at non-zero temperature in 2+1 flavor lattice QCD with the aim to define the heavy quark-antiquark potential at non-zero temperature. For temperatures $153~{\rm MeV} \leq T \leq 352~{\rm MeV}$ the spectral representation of this correlator is consistent with a broadened peak in the spectral function, position or width of which then defines the real&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.16587v2-abstract-full').style.display = 'inline'; document.getElementById('2308.16587v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.16587v2-abstract-full" style="display: none;"> We study the correlator of temporal Wilson lines at non-zero temperature in 2+1 flavor lattice QCD with the aim to define the heavy quark-antiquark potential at non-zero temperature. For temperatures $153~{\rm MeV} \leq T \leq 352~{\rm MeV}$ the spectral representation of this correlator is consistent with a broadened peak in the spectral function, position or width of which then defines the real or imaginary parts of the heavy quark-antiquark potential at non-zero temperature, respectively. We find that the potential&#39;s real part is not screened contrary to the widely-held expectations. We comment on how this fact may modify the picture of quarkonium melting in the quark-gluon plasma. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.16587v2-abstract-full').style.display = 'none'; document.getElementById('2308.16587v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review D 109, 074504 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.01098">arXiv:2306.01098</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.01098">pdf</a>, <a href="https://arxiv.org/format/2306.01098">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cpc.2024.109164">10.1016/j.cpc.2024.109164 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> SIMULATeQCD: A simple multi-GPU lattice code for QCD calculations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Mazur%2C+L">Lukas Mazur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bollweg%2C+D">Dennis Bollweg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clarke%2C+D+A">David A. Clarke</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Altenkort%2C+L">Luis Altenkort</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kaczmarek%2C+O">Olaf Kaczmarek</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Larsen%2C+R">Rasmus Larsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shu%2C+H">Hai-Tao Shu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Goswami%2C+J">Jishnu Goswami</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Scior%2C+P">Philipp Scior</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sandmeyer%2C+H">Hauke Sandmeyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neumann%2C+M">Marius Neumann</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dick%2C+H">Henrik Dick</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ali%2C+S">Sajid Ali</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kim%2C+J">Jangho Kim</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schmidt%2C+C">Christian Schmidt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mukherjee%2C+S">Swagato Mukherjee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.01098v3-abstract-short" style="display: inline;"> The rise of exascale supercomputers has fueled competition among GPU vendors, driving lattice QCD developers to write code that supports multiple APIs. Moreover, new developments in algorithms and physics research require frequent updates to existing software. These challenges have to be balanced against constantly changing personnel. At the same time, there is a wide range of applications for HIS&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.01098v3-abstract-full').style.display = 'inline'; document.getElementById('2306.01098v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.01098v3-abstract-full" style="display: none;"> The rise of exascale supercomputers has fueled competition among GPU vendors, driving lattice QCD developers to write code that supports multiple APIs. Moreover, new developments in algorithms and physics research require frequent updates to existing software. These challenges have to be balanced against constantly changing personnel. At the same time, there is a wide range of applications for HISQ fermions in QCD studies. This situation encourages the development of software featuring a HISQ action that is flexible, high-performing, open source, easy to use, and easy to adapt. In this technical paper, we explain the design strategy, provide implementation details, list available algorithms and modules, and show key performance indicators for SIMULATeQCD, a simple multi-GPU lattice code for large-scale QCD calculations, mainly developed and used by the HotQCD collaboration. The code is publicly available on GitHub. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.01098v3-abstract-full').style.display = 'none'; document.getElementById('2306.01098v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Comp. Phys. Commun. 300 (2024) 109164 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.08501">arXiv:2302.08501</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.08501">pdf</a>, <a href="https://arxiv.org/format/2302.08501">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.231902">10.1103/PhysRevLett.130.231902 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Heavy Quark Diffusion from 2+1 Flavor Lattice QCD with 320 MeV Pion Mass </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Altenkort%2C+L">Luis Altenkort</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kaczmarek%2C+O">Olaf Kaczmarek</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Larsen%2C+R">Rasmus Larsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shu%2C+H">Hai-Tao Shu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Stendebach%2C+S">Simon Stendebach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.08501v3-abstract-short" style="display: inline;"> We present the first calculations of the heavy flavor diffusion coefficient using lattice QCD with light dynamical quarks. For temperatures $195\,\mathrm{MeV}&lt;T&lt;352\,\mathrm{MeV}$, the heavy quark spatial diffusion coefficient is found to be significantly smaller than previous quenched lattice QCD and recent phenomenological estimates. The result implies very fast hydrodynamization of heavy quarks&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.08501v3-abstract-full').style.display = 'inline'; document.getElementById('2302.08501v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.08501v3-abstract-full" style="display: none;"> We present the first calculations of the heavy flavor diffusion coefficient using lattice QCD with light dynamical quarks. For temperatures $195\,\mathrm{MeV}&lt;T&lt;352\,\mathrm{MeV}$, the heavy quark spatial diffusion coefficient is found to be significantly smaller than previous quenched lattice QCD and recent phenomenological estimates. The result implies very fast hydrodynamization of heavy quarks in the quark-gluon plasma created during ultrarelativistic heavy-ion collision experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.08501v3-abstract-full').style.display = 'none'; document.getElementById('2302.08501v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 130, 231902 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.07985">arXiv:2212.07985</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.07985">pdf</a>, <a href="https://arxiv.org/format/2212.07985">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Kernel controlled real-time Complex Langevin simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alvestad%2C+D">Daniel Alvestad</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Larsen%2C+R">Rasmus Larsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rothkopf%2C+A">Alexander Rothkopf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.07985v1-abstract-short" style="display: inline;"> This study explores the utility of a kernel in complex Langevin simulations of quantum real-time dynamics on the Schwinger-Keldysh contour. We give several examples where we use a systematic scheme to find kernels that restore correct convergence of complex Langevin. The schemes combine prior information we know about the system and the correctness of convergence of complex Langevin to construct a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07985v1-abstract-full').style.display = 'inline'; document.getElementById('2212.07985v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.07985v1-abstract-full" style="display: none;"> This study explores the utility of a kernel in complex Langevin simulations of quantum real-time dynamics on the Schwinger-Keldysh contour. We give several examples where we use a systematic scheme to find kernels that restore correct convergence of complex Langevin. The schemes combine prior information we know about the system and the correctness of convergence of complex Langevin to construct a kernel. This allows us to simulate up to $1.5尾$ on the real-time Schwinger-Keldysh contour with the 0+1 dimensional anharmonic oscillator using $m=1$, $位=24$, which was previously unattainable using the complex Langevin equation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07985v1-abstract-full').style.display = 'none'; document.getElementById('2212.07985v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 10 figures, talk given at the 39th International Symposium on Lattice Field Theory, 8th-13th August, 2022, Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.15625">arXiv:2211.15625</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.15625">pdf</a>, <a href="https://arxiv.org/format/2211.15625">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP04(2023)057">10.1007/JHEP04(2023)057 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards learning optimized kernels for complex Langevin </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alvestad%2C+D">Daniel Alvestad</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Larsen%2C+R">Rasmus Larsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rothkopf%2C+A">Alexander Rothkopf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.15625v2-abstract-short" style="display: inline;"> We present a novel strategy aimed at restoring correct convergence in complex Langevin simulations. The central idea is to incorporate system-specific prior knowledge into the simulations, in order to circumvent the NP-hard sign problem. In order to do so, we modify complex Langevin using kernels and propose the use of modern auto-differentiation methods to learn optimal kernel values. The optimiz&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15625v2-abstract-full').style.display = 'inline'; document.getElementById('2211.15625v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.15625v2-abstract-full" style="display: none;"> We present a novel strategy aimed at restoring correct convergence in complex Langevin simulations. The central idea is to incorporate system-specific prior knowledge into the simulations, in order to circumvent the NP-hard sign problem. In order to do so, we modify complex Langevin using kernels and propose the use of modern auto-differentiation methods to learn optimal kernel values. The optimization process is guided by functionals encoding relevant prior information, such as symmetries or Euclidean correlator data. Our approach recovers correct convergence in the non-interacting theory on the Schwinger-Keldysh contour for any real-time extent. For the strongly coupled quantum anharmonic oscillator we achieve correct convergence up to three-times the real-time extent of the previous benchmark study. An appendix sheds light on the fact that for correct convergence not only the absence of boundary terms, but in addition the correct Fokker-Plank spectrum is crucial. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15625v2-abstract-full').style.display = 'none'; document.getElementById('2211.15625v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. High Energ. Phys. 2023, 57 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.12937">arXiv:2211.12937</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.12937">pdf</a>, <a href="https://arxiv.org/format/2211.12937">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/202227404006">10.1051/epjconf/202227404006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Static quark anti-quark interactions at non-zero temperature from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Parkar%2C+G">Gaurang Parkar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bala%2C+D">Dibyendu Bala</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kaczmarek%2C+O">Olaf Kaczmarek</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Larsen%2C+R">Rasmus Larsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rothkopf%2C+A">Alexander Rothkopf</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weber%2C+J+H">Johannes Heinrich Weber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.12937v2-abstract-short" style="display: inline;"> We present results on the in-medium interactions of static quark anti-quark pairs using realistic 2+1 HISQ flavor lattice QCD. Focus is put on the extraction of spectral information from Wilson line correlators in Coulomb gauge using four complementary methods. Our results indicate that on HISQ lattices, the position of the dominant spectral peak associated with the real-part of the interquark pot&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12937v2-abstract-full').style.display = 'inline'; document.getElementById('2211.12937v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.12937v2-abstract-full" style="display: none;"> We present results on the in-medium interactions of static quark anti-quark pairs using realistic 2+1 HISQ flavor lattice QCD. Focus is put on the extraction of spectral information from Wilson line correlators in Coulomb gauge using four complementary methods. Our results indicate that on HISQ lattices, the position of the dominant spectral peak associated with the real-part of the interquark potential remains unaffected by temperature. This is in contrast to prior work in quenched QCD and we present follow up comparisons to newly generated quenched ensembles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12937v2-abstract-full').style.display = 'none'; document.getElementById('2211.12937v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, talk given at the XVth Quark confinement and the Hadron spectrum conference, Aug. 1st - 6th, 2022, Stavanger, Norway. Date of presentation Aug. 5th 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.10728">arXiv:2211.10728</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.10728">pdf</a>, <a href="https://arxiv.org/format/2211.10728">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Kernel controlled real-time Complex Langevin simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alvestad%2C+D">Daniel Alvestad</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Larsen%2C+R">Rasmus Larsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rothkopf%2C+A">Alexander Rothkopf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.10728v1-abstract-short" style="display: inline;"> This study explores the utility of a kernel in complex Langevin simulations of quantum real-time dynamics on the Schwinger-Keldysh contour. We give several examples where we use a systematic scheme to find kernels that restore correct convergence of complex Langevin. The schemes combine prior information we know about the system and the correctness of convergence of complex Langevin to construct a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.10728v1-abstract-full').style.display = 'inline'; document.getElementById('2211.10728v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.10728v1-abstract-full" style="display: none;"> This study explores the utility of a kernel in complex Langevin simulations of quantum real-time dynamics on the Schwinger-Keldysh contour. We give several examples where we use a systematic scheme to find kernels that restore correct convergence of complex Langevin. The schemes combine prior information we know about the system and the correctness of convergence of complex Langevin to construct a kernel. This allows us to simulate up to $1.5尾$ on the real-time Schwinger-Keldysh contour with the $0+1$ dimensional anharmonic oscillator using $m=1,位=24$, which was previously unattainable using the complex Langevin equation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.10728v1-abstract-full').style.display = 'none'; document.getElementById('2211.10728v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures, talk given at the XVth Quark confinement and the Hadron spectrum conference, Aug. 1st - 6th, 2022, Stavanger, Norway. Date of presentation Aug. 1st 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.02257">arXiv:2205.02257</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.02257">pdf</a>, <a href="https://arxiv.org/format/2205.02257">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Reducing the Sign Problem with Line Integrals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Larsen%2C+R+N">Rasmus N. Larsen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.02257v2-abstract-short" style="display: inline;"> We present a novel strategy to strongly reduce the severity of the sign problem, using line integrals along paths of changing imaginary action. Highly oscillating regions along these paths cancel out, decreasing their contributions. As a result, sampling with standard Monte-Carlo techniques becomes possible in cases that otherwise require methods taking advantage of complex analysis, such as Lefsc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.02257v2-abstract-full').style.display = 'inline'; document.getElementById('2205.02257v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.02257v2-abstract-full" style="display: none;"> We present a novel strategy to strongly reduce the severity of the sign problem, using line integrals along paths of changing imaginary action. Highly oscillating regions along these paths cancel out, decreasing their contributions. As a result, sampling with standard Monte-Carlo techniques becomes possible in cases that otherwise require methods taking advantage of complex analysis, such as Lefschetz-thimbles or Complex Langevin. We lay out how to write down an ordinary differential equation for the line integrals. As an example of its usage, we apply the results to a 1d quantum mechanical anharmonic oscillator with a $x^4$ potential in real time, finite temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.02257v2-abstract-full').style.display = 'none'; document.getElementById('2205.02257v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Julia file with code uploaded to https://doi.org/10.5281/zenodo.6514633 -Version 2: Added analytic solution for simple example and updated average sign plot with smaller cutoffs</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.04537">arXiv:2112.04537</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.04537">pdf</a>, <a href="https://arxiv.org/format/2112.04537">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.L071501">10.1103/PhysRevD.105.L071501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Correlating confinement to topological fluctuations near the crossover transition in QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Larsen%2C+R+N">Rasmus N. Larsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sharma%2C+S">Sayantan Sharma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shuryak%2C+E">Edward Shuryak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.04537v2-abstract-short" style="display: inline;"> We show the existence of strong (anti)correlations between the topological hot spots and the local values of the trace of the Polyakov loop in $2+1$ flavor QCD with physical quark mass, in the vicinity of the crossover transition corresponding to the simultaneous restoration of chiral symmetry and deconfinement. Using sophisticated lattice techniques, we have carefully identified the topological h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04537v2-abstract-full').style.display = 'inline'; document.getElementById('2112.04537v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.04537v2-abstract-full" style="display: none;"> We show the existence of strong (anti)correlations between the topological hot spots and the local values of the trace of the Polyakov loop in $2+1$ flavor QCD with physical quark mass, in the vicinity of the crossover transition corresponding to the simultaneous restoration of chiral symmetry and deconfinement. Using sophisticated lattice techniques, we have carefully identified the topological hot spots using quark zero modes and measured the short-distance fluctuations of the Polyakov loop about them, showing how the latter is repelled quite strongly around the peak of the zero modes. Though we could explain some aspects of these correlations within the instanton-dyon picture, our work sets the stage for a larger goal towards a systematic study of the role of different topological species that interact with the Polyakov loop, establishing the strong connection between topology and confinement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04537v2-abstract-full').style.display = 'none'; document.getElementById('2112.04537v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The final published version with a few references updated</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 105, L071501 , Published 20 April 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.00664">arXiv:2112.00664</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.00664">pdf</a>, <a href="https://arxiv.org/ps/2112.00664">ps</a>, <a href="https://arxiv.org/format/2112.00664">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.396.0199">10.22323/1.396.0199 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The complex potential from 2+1 flavor QCD using HTL inspired approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bala%2C+D">Dibyendu Bala</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kaczmarek%2C+O">Olaf Kaczmarek</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Larsen%2C+R">Rasmus Larsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parkar%2C+G">Gaurang Parkar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rothkopf%2C+A">Alexander Rothkopf</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weber%2C+J+H">Johannes Heinrich Weber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.00664v1-abstract-short" style="display: inline;"> We have studied finite temperature complex static quark-antiquark potentials for 2+1 flavor QCD using highly improved staggered action with physical strange quark masses and light quark masses corresponding to a pion mass of 161 MeV. We calculated the potential using Wilson line correlators fixed in Coulomb gauge. For the extraction, we have used HTL motivated parametrization of the correlators. W&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00664v1-abstract-full').style.display = 'inline'; document.getElementById('2112.00664v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.00664v1-abstract-full" style="display: none;"> We have studied finite temperature complex static quark-antiquark potentials for 2+1 flavor QCD using highly improved staggered action with physical strange quark masses and light quark masses corresponding to a pion mass of 161 MeV. We calculated the potential using Wilson line correlators fixed in Coulomb gauge. For the extraction, we have used HTL motivated parametrization of the correlators. We found that the real part of the potential is screened above the crossover temperature and it&#39;s close to singlet free energies, whereas the imaginary part is increasing with both distance and temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00664v1-abstract-full').style.display = 'none'; document.getElementById('2112.00664v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures, Contribution to the 38th International Symposium on Lattice Field Theory, 26th-30th July 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.15437">arXiv:2111.15437</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.15437">pdf</a>, <a href="https://arxiv.org/format/2111.15437">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.396.0239">10.22323/1.396.0239 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> In-medium static quark potential from spectral functions on realistic HISQ ensembles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Parkar%2C+G">Gaurang Parkar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bala%2C+D">Dibyendu Bala</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kaczmarek%2C+O">Olaf Kaczmarek</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Larsen%2C+R">Rasmus Larsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rothkopf%2C+A">Alexander Rothkopf</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weber%2C+J+H">Johannes Heinrich Weber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.15437v1-abstract-short" style="display: inline;"> We explore the interactions between a quark anti-quark pair in a thermal medium based on lattice QCD ensembles with $N_f = 2+1$ dynamical HISQ flavors. Our dataset spans the phenomenologically relevant temperature range between T=140MeV-2GeV based on lattice sizes $N_蟿=10,12$ and $16$, with an aspect ratio of $N_蟽/N_蟿=4$. The peak position $惟$ and the width $螕$ of the spectral function of Wilson-l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.15437v1-abstract-full').style.display = 'inline'; document.getElementById('2111.15437v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.15437v1-abstract-full" style="display: none;"> We explore the interactions between a quark anti-quark pair in a thermal medium based on lattice QCD ensembles with $N_f = 2+1$ dynamical HISQ flavors. Our dataset spans the phenomenologically relevant temperature range between T=140MeV-2GeV based on lattice sizes $N_蟿=10,12$ and $16$, with an aspect ratio of $N_蟽/N_蟿=4$. The peak position $惟$ and the width $螕$ of the spectral function of Wilson-line correlators in Coulomb gauge is computed. We assess the information content in the correlation functions and deploy three complementary strategies to reconstruct spectral information: model fits, Pad茅 approximation and the Bayesian BR method. Limitations of each approach are carefully assessed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.15437v1-abstract-full').style.display = 'none'; document.getElementById('2111.15437v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to The 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021 Zoom/Gather@Massachusetts Institute of Technology, 9 pages, 7 figure, LaTeX, uses PoS class</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LATTICE2021 (2022) 239 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.11659">arXiv:2110.11659</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.11659">pdf</a>, <a href="https://arxiv.org/format/2110.11659">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.054513">10.1103/PhysRevD.105.054513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Static quark anti-quark interactions at non-zero temperature from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bala%2C+D">Dibyendu Bala</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kaczmarek%2C+O">Olaf Kaczmarek</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Larsen%2C+R">Rasmus Larsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parkar%2C+G">Gaurang Parkar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rothkopf%2C+A">Alexander Rothkopf</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weber%2C+J+H">Johannes Heinrich Weber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.11659v2-abstract-short" style="display: inline;"> We study the interactions of a static quark antiquark pair at non-zero temperature using realistic 2+1 flavor lattice QCD calculations. The study consists of two parts: the first investigates the properties of Wilson line correlators in Coulomb gauge and compares to predictions of hard-thermal loop perturbation theory. As a second step we extract the spectral functions underlying the correlators u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.11659v2-abstract-full').style.display = 'inline'; document.getElementById('2110.11659v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.11659v2-abstract-full" style="display: none;"> We study the interactions of a static quark antiquark pair at non-zero temperature using realistic 2+1 flavor lattice QCD calculations. The study consists of two parts: the first investigates the properties of Wilson line correlators in Coulomb gauge and compares to predictions of hard-thermal loop perturbation theory. As a second step we extract the spectral functions underlying the correlators using four conceptually different methods: spectral function fits, a HTL inspired fit for the correlation function, Pad茅 rational approximation and the Bayesian BR spectral reconstruction. We find that our high statistics Euclidean lattice data are amenable to different hypotheses for the shapes of the spectral function and we compare the implications of each analysis method for the existence and properties of a well defined ground state spectral peak. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.11659v2-abstract-full').style.display = 'none'; document.getElementById('2110.11659v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 105, 054513 , Published 24 March 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.00565">arXiv:2110.00565</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.00565">pdf</a>, <a href="https://arxiv.org/format/2110.00565">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.396.0178">10.22323/1.396.0178 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Static Potential At Non-zero Temperatures From Fine Lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Hoying%2C+D">D. Hoying</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bazavov%2C+A">A. Bazavov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bala%2C+D">D. Bala</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parkar%2C+G">G. Parkar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kaczmarek%2C+O">O. Kaczmarek</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Larsen%2C+R">R. Larsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petreczky%2C+P">P. Petreczky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rothkopf%2C+A">A. Rothkopf</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weber%2C+J+H">J. H. Weber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.00565v2-abstract-short" style="display: inline;"> We report on a preliminary study of static quark anti-quark potential at non-zero temperature in $2+1$ flavor QCD using $96^3\times N_蟿$ lattices with lattice spacing $a=0.028$fm, physical strange quark mass and light quark masses corresponding to pion mass of about $300$ MeV. We use $N_蟿=32,~24,~20$ and $16$ that correspond to temperature range $T=220-441$ MeV. The in order to obtain the potentia&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.00565v2-abstract-full').style.display = 'inline'; document.getElementById('2110.00565v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.00565v2-abstract-full" style="display: none;"> We report on a preliminary study of static quark anti-quark potential at non-zero temperature in $2+1$ flavor QCD using $96^3\times N_蟿$ lattices with lattice spacing $a=0.028$fm, physical strange quark mass and light quark masses corresponding to pion mass of about $300$ MeV. We use $N_蟿=32,~24,~20$ and $16$ that correspond to temperature range $T=220-441$ MeV. The in order to obtain the potential we calculate the Wilson line correlator in Coulomb gauge with additional HYP smearing to reduce the noise at large quark anti-quark separations. We apply $0$, $5$ and $10$ steps of HYP smearing to ensure that there is no physical effect from over-smearing. At the two highest temperatures we also consider a noise reduction technique that is based on an interpolation in the spatial separation between the static quark and anti-quark. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.00565v2-abstract-full').style.display = 'none'; document.getElementById('2110.00565v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to The 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021 Zoom/Gather@Massachusetts Institute of Technology, 7 pages, 4 figure, LaTeX, uses PoS class, typos corrected</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LATTICE2021 (2022) 178 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.02735">arXiv:2105.02735</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.02735">pdf</a>, <a href="https://arxiv.org/format/2105.02735">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP08(2021)138">10.1007/JHEP08(2021)138 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stable solvers for real-time Complex Langevin </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Alvestad%2C+D">Daniel Alvestad</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Larsen%2C+R">Rasmus Larsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rothkopf%2C+A">Alexander Rothkopf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.02735v1-abstract-short" style="display: inline;"> This study explores the potential of modern implicit solvers for stochastic partial differential equations in the simulation of real-time complex Langevin dynamics. Not only do these methods offer asymptotic stability, rendering the issue of runaway solution moot, but they also allow us to simulate at comparatively largeLangevin time steps, leading to lower computational cost. We compare different&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.02735v1-abstract-full').style.display = 'inline'; document.getElementById('2105.02735v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.02735v1-abstract-full" style="display: none;"> This study explores the potential of modern implicit solvers for stochastic partial differential equations in the simulation of real-time complex Langevin dynamics. Not only do these methods offer asymptotic stability, rendering the issue of runaway solution moot, but they also allow us to simulate at comparatively largeLangevin time steps, leading to lower computational cost. We compare different ways of regularizing the underlying path integral and estimate the errors introduced due to the finite Langevin time. Based on that insight, we implement benchmark (non-)thermal simulations of the quantum anharmonic oscillator on the canonical Schwinger-Keldysh contour of short real-time extent. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.02735v1-abstract-full').style.display = 'none'; document.getElementById('2105.02735v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.00100">arXiv:2008.00100</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.00100">pdf</a>, <a href="https://arxiv.org/format/2008.00100">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.114508">10.1103/PhysRevD.102.114508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bethe-Salpeter amplitudes of Upsilons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Larsen%2C+R">Rasmus Larsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meinel%2C+S">Stefan Meinel</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petreczky%2C+P">Peter Petreczky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.00100v3-abstract-short" style="display: inline;"> Based on lattice non-relativistic QCD (NRQCD) studies we present results for Bethe-Salpeter amplitudes for $违(1S)$, $违(2S)$ and $违(3S)$ in vacuum as well as in quark-gluon plasma. Our study is based on 2+1 flavor $48^3 \times 12$ lattices generated using the Highly Improved Staggered Quark (HISQ) action and with a pion mass of $161$ MeV. At zero temperature the Bethe-Salpeter amplitudes follow the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.00100v3-abstract-full').style.display = 'inline'; document.getElementById('2008.00100v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.00100v3-abstract-full" style="display: none;"> Based on lattice non-relativistic QCD (NRQCD) studies we present results for Bethe-Salpeter amplitudes for $违(1S)$, $违(2S)$ and $违(3S)$ in vacuum as well as in quark-gluon plasma. Our study is based on 2+1 flavor $48^3 \times 12$ lattices generated using the Highly Improved Staggered Quark (HISQ) action and with a pion mass of $161$ MeV. At zero temperature the Bethe-Salpeter amplitudes follow the expectations based on non-relativistic potential models. At non-zero temperatures, the interpretation of Bethe-Salpeter amplitudes turns out to be more nuanced, but consistent with our previous lattice QCD study of excited Upsilons in quark-gluon plasma. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.00100v3-abstract-full').style.display = 'none'; document.getElementById('2008.00100v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">RevTex, 10pages, 11 figures, minor changes, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 114508 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.08530">arXiv:2001.08530</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.08530">pdf</a>, <a href="https://arxiv.org/format/2001.08530">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.074502">10.1103/PhysRevD.101.074502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Skewness, kurtosis and the 5th and 6th order cumulants of net baryon-number distributions from lattice QCD confront high-statistics STAR data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bazavov%2C+A">A. Bazavov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bollweg%2C+D">D. Bollweg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ding%2C+H+-">H. -T. Ding</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Enns%2C+P">P. Enns</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Goswami%2C+J">J. Goswami</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hegde%2C+P">P. Hegde</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kaczmarek%2C+O">O. Kaczmarek</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Karsch%2C+F">F. Karsch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Larsen%2C+R">R. Larsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ohno%2C+H">H. Ohno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petreczky%2C+P">P. Petreczky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schmidt%2C+C">C. Schmidt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sharma%2C+S">S. Sharma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Steinbrecher%2C+P">P. Steinbrecher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.08530v2-abstract-short" style="display: inline;"> We present new results on up to $6^{th}$ order cumulants of net baryon-number fluctuations at small values of the baryon chemical potential, $渭_B$, obtained in lattice QCD calculations with physical values of light and strange quark masses. Representation of the Taylor expansions of higher order cumulants in terms of the ratio of the two lowest order cumulants,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.08530v2-abstract-full').style.display = 'inline'; document.getElementById('2001.08530v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.08530v2-abstract-full" style="display: none;"> We present new results on up to $6^{th}$ order cumulants of net baryon-number fluctuations at small values of the baryon chemical potential, $渭_B$, obtained in lattice QCD calculations with physical values of light and strange quark masses. Representation of the Taylor expansions of higher order cumulants in terms of the ratio of the two lowest order cumulants, $M_B/蟽_B^2=蠂_1^B(T,渭_B)/蠂_2^B(T,渭_B)$, allows for a parameter free comparison with data on net proton-number cumulants obtained by the STAR Collaboration in the Beam Energy Scan at RHIC. We show that recent high statistics data on skewness and kurtosis ratios of net proton-number distributions, obtained at beam energy $\sqrt{s_{_{NN}}}=54.4$ GeV, agree well with lattice QCD results on cumulants of net baryon-number fluctuations close to the pseudo-critical temperature, $T_{pc}(渭_B)$, for the chiral transition in QCD. We also present first results from a next-to-leading order expansion of $5^{th}$ and $6^{th}$ order cumulants on the line of pseudo-critical temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.08530v2-abstract-full').style.display = 'none'; document.getElementById('2001.08530v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 11 figures, minor corrections and updates of references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 074502 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.09141">arXiv:1912.09141</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.09141">pdf</a>, <a href="https://arxiv.org/format/1912.09141">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.034501">10.1103/PhysRevD.102.034501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards a semi-classical description of QCD vacuum around $T_c$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Larsen%2C+R+N">Rasmus N. Larsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sharma%2C+S">Sayantan Sharma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shuryak%2C+E">Edward Shuryak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.09141v1-abstract-short" style="display: inline;"> We study the vacuum topology of 2+1 flavor QCD above the chiral crossover transition, at $T \lesssim 1.2~T_c$, on lattices of size $32^3\times 8$. Since overlap fermions have exact chiral symmetry and an index theorem even on a finite lattice, we use them to detect the topological content of gauge fields generated using domain wall fermion discretization for quarks. We further use different period&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.09141v1-abstract-full').style.display = 'inline'; document.getElementById('1912.09141v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.09141v1-abstract-full" style="display: none;"> We study the vacuum topology of 2+1 flavor QCD above the chiral crossover transition, at $T \lesssim 1.2~T_c$, on lattices of size $32^3\times 8$. Since overlap fermions have exact chiral symmetry and an index theorem even on a finite lattice, we use them to detect the topological content of gauge fields generated using domain wall fermion discretization for quarks. We further use different periodicity phases along the temporal direction for the valence overlap quarks, which allows us to probe different topological structures present in the gauge field ensembles, through its zero modes. This procedure provides strong evidences that fermion zero-modes can be quantitatively understood to arise due to different species of instanton-dyons. We estimate their relative abundances from the Dirac-eigenvalue density and resolve the so called &#34;topological clusters&#34; via multi-parameter fits to their density, providing therefore an understanding of the interactions between instanton-dyons. The typical separation between dyons we obtain, is $\sim 0.3$ fm. Surprisingly, it emerges out from this study that a semi-classical description of the fermionic zero modes in the QCD vacuum is quite accurate just above $T_c$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.09141v1-abstract-full').style.display = 'none'; document.getElementById('1912.09141v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 11 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 034501 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.07374">arXiv:1910.07374</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.07374">pdf</a>, <a href="https://arxiv.org/format/1910.07374">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2019.135119">10.1016/j.physletb.2019.135119 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Excited bottomonia in quark-gluon plasma from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Larsen%2C+R">Rasmus Larsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meinel%2C+S">Stefan Meinel</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petreczky%2C+P">Peter Petreczky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.07374v3-abstract-short" style="display: inline;"> We present the first lattice QCD study of up to $3S$ and $2P$ bottomonia at non-zero temperatures. Correlation functions of bottomonia were computed using novel bottomonium operators and a variational technique, within the lattice non-relativistic QCD framework. We analyzed the bottomonium correlation functions based on simple physically-motivated spectral functions. We found evidence of sequentia&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.07374v3-abstract-full').style.display = 'inline'; document.getElementById('1910.07374v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.07374v3-abstract-full" style="display: none;"> We present the first lattice QCD study of up to $3S$ and $2P$ bottomonia at non-zero temperatures. Correlation functions of bottomonia were computed using novel bottomonium operators and a variational technique, within the lattice non-relativistic QCD framework. We analyzed the bottomonium correlation functions based on simple physically-motivated spectral functions. We found evidence of sequential in-medium modifications, in accordance with the sizes of the bottomonium states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.07374v3-abstract-full').style.display = 'none'; document.getElementById('1910.07374v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">published version with ancillary files added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Lett. B800 (2020) 135119 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.08437">arXiv:1908.08437</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.08437">pdf</a>, <a href="https://arxiv.org/format/1908.08437">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.074506">10.1103/PhysRevD.100.074506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal Broadening of Bottomonia: Lattice Non-Relativistic QCD with Extended Operators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Larsen%2C+R">Rasmus Larsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meinel%2C+S">Stefan Meinel</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petreczky%2C+P">Peter Petreczky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.08437v3-abstract-short" style="display: inline;"> We present lattice non-relativistic QCD calculations of bottomonium correlation functions at temperatures $T \simeq 150-350$ MeV. The correlation functions were computed using extended bottomonium operators, and on background gauge-field configurations for 2+1-flavor QCD having physical kaon and nearly-physical pion masses. We analyzed these correlation functions based on simple theoretically-moti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.08437v3-abstract-full').style.display = 'inline'; document.getElementById('1908.08437v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.08437v3-abstract-full" style="display: none;"> We present lattice non-relativistic QCD calculations of bottomonium correlation functions at temperatures $T \simeq 150-350$ MeV. The correlation functions were computed using extended bottomonium operators, and on background gauge-field configurations for 2+1-flavor QCD having physical kaon and nearly-physical pion masses. We analyzed these correlation functions based on simple theoretically-motivated parameterizations of the corresponding spectral functions. The results of our analyses are compatible with significant in-medium thermal broadening of the ground state S- and P-wave bottomonia. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.08437v3-abstract-full').style.display = 'none'; document.getElementById('1908.08437v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">published version with ancillary files</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 074506 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.08235">arXiv:1812.08235</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.08235">pdf</a>, <a href="https://arxiv.org/format/1812.08235">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2019.05.013">10.1016/j.physletb.2019.05.013 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral crossover in QCD at zero and non-zero chemical potentials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bazavov%2C+A">A. Bazavov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ding%2C+H+-">H. -T. Ding</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hegde%2C+P">P. Hegde</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kaczmarek%2C+O">O. Kaczmarek</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Karsch%2C+F">F. Karsch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Karthik%2C+N">N. Karthik</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Laermann%2C+E">E. Laermann</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lahiri%2C+A">Anirban Lahiri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Larsen%2C+R">R. Larsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Li%2C+S+-">S. -T. Li</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ohno%2C+H">H. Ohno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petreczky%2C+P">P. Petreczky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sandmeyer%2C+H">H. Sandmeyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schmidt%2C+C">C. Schmidt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sharma%2C+S">S. Sharma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Steinbrecher%2C+P">P. Steinbrecher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.08235v2-abstract-short" style="display: inline;"> We present results for pseudo-critical temperatures of QCD chiral crossovers at zero and non-zero values of baryon ($B$), strangeness ($S$), electric charge ($Q$), and isospin ($I$) chemical potentials $渭_{X=B,Q,S,I}$. The results were obtained using lattice QCD calculations carried out with two degenerate up and down dynamical quarks and a dynamical strange quark, with quark masses corresponding&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.08235v2-abstract-full').style.display = 'inline'; document.getElementById('1812.08235v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.08235v2-abstract-full" style="display: none;"> We present results for pseudo-critical temperatures of QCD chiral crossovers at zero and non-zero values of baryon ($B$), strangeness ($S$), electric charge ($Q$), and isospin ($I$) chemical potentials $渭_{X=B,Q,S,I}$. The results were obtained using lattice QCD calculations carried out with two degenerate up and down dynamical quarks and a dynamical strange quark, with quark masses corresponding to physical values of pion and kaon masses in the continuum limit. By parameterizing pseudo-critical temperatures as $ T_c(渭_X) = T_c(0) \left[ 1 -魏_2^{X}(渭_{X}/T_c(0))^2 -魏_4^{X}(渭_{X}/T_c(0))^4 \right] $, we determined $魏_2^X$ and $魏_4^X$ from Taylor expansions of chiral observables in $渭_X$. We obtained a precise result for $T_c(0)=(156.5\pm1.5)\;\mathrm{MeV}$. For analogous thermal conditions at the chemical freeze-out of relativistic heavy-ion collisions, i.e., $渭_{S}(T,渭_{B})$ and $渭_{Q}(T,渭_{B})$ fixed from strangeness-neutrality and isospin-imbalance, we found $魏_2^B=0.012(4)$ and $魏_4^B=0.000(4)$. For $渭_{B}\lesssim300\;\mathrm{MeV}$, the chemical freeze-out takes place in the vicinity of the QCD phase boundary, which coincides with the lines of constant energy density of $0.42(6)\;\mathrm{GeV/fm}^3$ and constant entropy density of $3.7(5)\;\mathrm{fm}^{-3}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.08235v2-abstract-full').style.display = 'none'; document.getElementById('1812.08235v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Lett.B 795 (2019) 15 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.07914">arXiv:1811.07914</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.07914">pdf</a>, <a href="https://arxiv.org/format/1811.07914">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2019.05.019">10.1016/j.physletb.2019.05.019 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The topological objects near the chiral crossover transition in QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Larsen%2C+R+N">Rasmus N. Larsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sharma%2C+S">Sayantan Sharma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shuryak%2C+E">Edward Shuryak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.07914v3-abstract-short" style="display: inline;"> We study the underlying topology of gauge fields in 2+1 flavor QCD with domain wall fermions on lattices of size $32^3\times 8$, at and immediately above the chiral crossover transition. Using valence overlap fermions with exact index theorem, we focus on its zero modes for different choices of periodicity phases along the temporal direction. Our studies show that the zero modes are due to fractio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.07914v3-abstract-full').style.display = 'inline'; document.getElementById('1811.07914v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.07914v3-abstract-full" style="display: none;"> We study the underlying topology of gauge fields in 2+1 flavor QCD with domain wall fermions on lattices of size $32^3\times 8$, at and immediately above the chiral crossover transition. Using valence overlap fermions with exact index theorem, we focus on its zero modes for different choices of periodicity phases along the temporal direction. Our studies show that the zero modes are due to fractionally charged topological objects, the instanton-dyons. We further provide qualitative study of the interactions between those and compare with the available semi-classical results, finding remarkably accurate agreement in all cases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.07914v3-abstract-full').style.display = 'none'; document.getElementById('1811.07914v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">V3</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.06315">arXiv:1807.06315</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.06315">pdf</a>, <a href="https://arxiv.org/format/1807.06315">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysa.2018.09.075">10.1016/j.nuclphysa.2018.09.075 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charmonium and bottomonium spectral functions in the vector channel </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ding%2C+H">Heng-Tong Ding</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kaczmarek%2C+O">Olaf Kaczmarek</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kruse%2C+A">Anna-Lena Kruse</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Larsen%2C+R">Rasmus Larsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mazur%2C+L">Lukas Mazur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ohno%2C+H">Hiroshi Ohno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sandmeyer%2C+H">Hauke Sandmeyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shu%2C+H">Hai-Tao Shu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.06315v1-abstract-short" style="display: inline;"> In this paper we report our results on quarkonium spectral functions in the vector channel obtained from quenched lattice QCD simulations at $T\in[0.75, 2.25]~T_c$. The calculations have been performed on very large and fine isotropic lattices where both charm and bottom quarks can be treated relativistically. The spectral functions are reconstructed using the Maximum Entropy Method. We study the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.06315v1-abstract-full').style.display = 'inline'; document.getElementById('1807.06315v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.06315v1-abstract-full" style="display: none;"> In this paper we report our results on quarkonium spectral functions in the vector channel obtained from quenched lattice QCD simulations at $T\in[0.75, 2.25]~T_c$. The calculations have been performed on very large and fine isotropic lattices where both charm and bottom quarks can be treated relativistically. The spectral functions are reconstructed using the Maximum Entropy Method. We study the dissociation of quarkonium states from the temperature dependence of the spectral functions and estimate heavy quark diffusion coefficients using the low-frequency behavior of the vector spectral functions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.06315v1-abstract-full').style.display = 'none'; document.getElementById('1807.06315v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 5 figures, oral contribution to the XXVII International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2018), Venezia, Italy, May 13-19, 2018</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Phys.,A982(2019),715-718 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.04707">arXiv:1705.04707</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.04707">pdf</a>, <a href="https://arxiv.org/format/1705.04707">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.034508">10.1103/PhysRevD.96.034508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hadronic Correlation Functions in the Random Instanton-dyon Ensemble </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Larsen%2C+R">Rasmus Larsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shuryak%2C+E">Edward Shuryak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.04707v2-abstract-short" style="display: inline;"> It is known since 1980&#39;s that the instanton-induced &#39;t Hooft effective Lagrangian not only can solve the so called $U(1)a$ problem, by making the $畏&#39;$ meson heavy etc, but it can also lead to chiral symmetry breaking. In 1990&#39;s it was demonstrated that, taken to higher orders, this Lagrangian correctly reproduces effective forces in a large set of hadronic channels, mesonic and baryonic ones. Rece&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.04707v2-abstract-full').style.display = 'inline'; document.getElementById('1705.04707v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.04707v2-abstract-full" style="display: none;"> It is known since 1980&#39;s that the instanton-induced &#39;t Hooft effective Lagrangian not only can solve the so called $U(1)a$ problem, by making the $畏&#39;$ meson heavy etc, but it can also lead to chiral symmetry breaking. In 1990&#39;s it was demonstrated that, taken to higher orders, this Lagrangian correctly reproduces effective forces in a large set of hadronic channels, mesonic and baryonic ones. Recent progress in understanding gauge topology at finite temperatures is related with the so called {\em instanton-dyons}, the constituents of the instantons. Some of them, called $L$-dyons, possess the anti-periodic fermionic zero modes, and thus form a new version of the &#39;t Hooft effective Lagrangian. This paper is our first study of a wide set of hadronic correlation function. We found that, at the lowest temperatures at which this approach is expected to be applicable, those may be well compatible with what is known about them based on phenomenological and lattice studies, provided $L$ and $M$ type dyons are strongly correlated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.04707v2-abstract-full').style.display = 'none'; document.getElementById('1705.04707v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 12 figures, Version 2: Added figure showing effect of changing density and holonomy for mesonic correlators</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 034508 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.02434">arXiv:1703.02434</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.02434">pdf</a>, <a href="https://arxiv.org/format/1703.02434">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Correlations and fluctuations of the gauge topology at finite temperatures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Larsen%2C+R">Rasmus Larsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shuryak%2C+E">Edward Shuryak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.02434v1-abstract-short" style="display: inline;"> Instanton-dyons are topological solitons -- solutions of Yang-Mills equations -- which appear at non-trivial expectation value of $A_0$ at nonzero temperatures. Using the ensembles of those, generated in our previous work, for 2-color and 2-flavor QCD, below and above the deconfinement-chiral phase transition, we study the correlations between them, as well as fluctuations of several global charge&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.02434v1-abstract-full').style.display = 'inline'; document.getElementById('1703.02434v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.02434v1-abstract-full" style="display: none;"> Instanton-dyons are topological solitons -- solutions of Yang-Mills equations -- which appear at non-trivial expectation value of $A_0$ at nonzero temperatures. Using the ensembles of those, generated in our previous work, for 2-color and 2-flavor QCD, below and above the deconfinement-chiral phase transition, we study the correlations between them, as well as fluctuations of several global charges in the sub-volumes of the total volume. The determined correlation lengths are the finite-$T$ extension of hadronic masses, such as that of $畏&#39;$ meson. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.02434v1-abstract-full').style.display = 'none'; document.getElementById('1703.02434v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.02237">arXiv:1511.02237</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.02237">pdf</a>, <a href="https://arxiv.org/format/1511.02237">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.93.054029">10.1103/PhysRevD.93.054029 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Instanton-dyon Ensemble with two Dynamical Quarks: the Chiral Symmetry Breaking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Larsen%2C+R">Rasmus Larsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shuryak%2C+E">Edward Shuryak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.02237v2-abstract-short" style="display: inline;"> This is the second paper of the series aimed at understanding the ensemble of instanton-dyons, now with two flavors of light dynamical quarks. The partition function is appended by the fermionic factor, $(det T)^{N_f}$ and Dirac eigenvalue spectra at small values are derived from the numerical simulation of 64 and 128 dyons. Those spectra show clear chiral symmetry breaking pattern at high dyon de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.02237v2-abstract-full').style.display = 'inline'; document.getElementById('1511.02237v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.02237v2-abstract-full" style="display: none;"> This is the second paper of the series aimed at understanding the ensemble of instanton-dyons, now with two flavors of light dynamical quarks. The partition function is appended by the fermionic factor, $(det T)^{N_f}$ and Dirac eigenvalue spectra at small values are derived from the numerical simulation of 64 and 128 dyons. Those spectra show clear chiral symmetry breaking pattern at high dyon density. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.02237v2-abstract-full').style.display = 'none'; document.getElementById('1511.02237v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 17 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 93, 054029 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.03341">arXiv:1504.03341</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1504.03341">pdf</a>, <a href="https://arxiv.org/format/1504.03341">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.92.094022">10.1103/PhysRevD.92.094022 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interacting Ensemble of the Instanton-dyons and Deconfinement Phase Transition in the SU(2) Gauge Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Larsen%2C+R">Rasmus Larsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shuryak%2C+E">Edward Shuryak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.03341v1-abstract-short" style="display: inline;"> Instanton-dyons, also known as instanton-monopoles or instanton-quarks, are topological constituents of the instantons at nonzero temperature and holonomy. We perform numerical simulations of the ensemble of interacting dyons for the SU(2) pure gauge theory. Unlike previous studies, we focus on back reaction on the holonomy and the issue of confinement. We calculate the free energy as a function o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.03341v1-abstract-full').style.display = 'inline'; document.getElementById('1504.03341v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.03341v1-abstract-full" style="display: none;"> Instanton-dyons, also known as instanton-monopoles or instanton-quarks, are topological constituents of the instantons at nonzero temperature and holonomy. We perform numerical simulations of the ensemble of interacting dyons for the SU(2) pure gauge theory. Unlike previous studies, we focus on back reaction on the holonomy and the issue of confinement. We calculate the free energy as a function of the holonomy and the dyon densities, using standard Metropolis Monte Carlo and integration over parameter methods. We observe that as the temperature decreases and the dyon density grows, its minimum indeed moves from small holonomy to the value corresponding to confinement. We then report various parameters of the self-consistent ensembles as a function of temperature, and investigate the role of inter-particle correlations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.03341v1-abstract-full').style.display = 'none'; document.getElementById('1504.03341v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 Pages, 13 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1408.6563">arXiv:1408.6563</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1408.6563">pdf</a>, <a href="https://arxiv.org/format/1408.6563">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysa.2016.03.013">10.1016/j.nuclphysa.2016.03.013 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Classical interactions of the instanton-dyons with antidyons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Larsen%2C+R">Rasmus Larsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shuryak%2C+E">Edward Shuryak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1408.6563v3-abstract-short" style="display: inline;"> Instanton-dyons, also known as instanton-monopoles or instanton-quarks, are topological constituents of the instantons at nonzero temperature and nonzero expectation value of $A_4$. While the interaction between instanton-dyons has been calculated to one-loop order by a number of authors, that for dyon-antidyon pairs remains unknown even at the classical level. In this work we are filling this gap&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.6563v3-abstract-full').style.display = 'inline'; document.getElementById('1408.6563v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1408.6563v3-abstract-full" style="display: none;"> Instanton-dyons, also known as instanton-monopoles or instanton-quarks, are topological constituents of the instantons at nonzero temperature and nonzero expectation value of $A_4$. While the interaction between instanton-dyons has been calculated to one-loop order by a number of authors, that for dyon-antidyon pairs remains unknown even at the classical level. In this work we are filling this gap, by solving the gradient flow equation on a 3d lattice. We start with two well separated objects. We find that, after initial rapid relaxation, the configurations follow &#34;streamline&#34; set of configurations, which is basically independent on the initial configurations used. In striking difference to instanton-antiinstanton streamlines, in this case it ends at a quasi-stationary configuration, with an abrupt drop to perturbative fields. We parameterize the action of the streamline configurations, which is to be used in future many-body calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.6563v3-abstract-full').style.display = 'none'; document.getElementById('1408.6563v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl. Phys. A {\bf 950}, 110 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1110.5744">arXiv:1110.5744</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1110.5744">pdf</a>, <a href="https://arxiv.org/ps/1110.5744">ps</a>, <a href="https://arxiv.org/format/1110.5744">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2012.02.038">10.1016/j.physletb.2012.02.038 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Microscopic Spectral Density of the Wilson Dirac Operator for One Flavor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Larsen%2C+R+N">Rasmus Normann Larsen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1110.5744v1-abstract-short" style="display: inline;"> We consider the effect of a non-zero lattice spacing on the low-energy effective theory of Wilson fermions with one flavor. Analytical results are given for both the chiral condensate and the microscopic spectral density of the Wilson Dirac operator. A subtle mechanism ensures that a constant chiral condensate is recovered, once the sum over sectors of fixed index is performed. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1110.5744v1-abstract-full" style="display: none;"> We consider the effect of a non-zero lattice spacing on the low-energy effective theory of Wilson fermions with one flavor. Analytical results are given for both the chiral condensate and the microscopic spectral density of the Wilson Dirac operator. A subtle mechanism ensures that a constant chiral condensate is recovered, once the sum over sectors of fixed index is performed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.5744v1-abstract-full').style.display = 'none'; document.getElementById('1110.5744v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 8 figures</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10