CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 105 results for author: <span class="mathjax">Lehmer, B D</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Lehmer, B D"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Lehmer%2C+B+D&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Lehmer, B D"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Lehmer%2C+B+D&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Lehmer%2C+B+D&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Lehmer%2C+B+D&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Lehmer%2C+B+D&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.01868">arXiv:2502.01868</a> <span> [<a href="https://arxiv.org/pdf/2502.01868">pdf</a>, <a href="https://arxiv.org/format/2502.01868">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> ADF22-WEB: ALMA and JWST (sub)kpc-scale views of dusty star-forming galaxies in a $z\approx$3 proto-cluster </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Umehata%2C+H">Hideki Umehata</a>, <a href="/search/?searchtype=author&query=Kubo%2C+M">Mariko Kubo</a>, <a href="/search/?searchtype=author&query=Smail%2C+I">Ian Smail</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">Bret D. Lehmer</a>, <a href="/search/?searchtype=author&query=Monson%2C+E+B">Erik B. Monson</a>, <a href="/search/?searchtype=author&query=Nakanishi%2C+K">Kouichiro Nakanishi</a>, <a href="/search/?searchtype=author&query=Matsuda%2C+Y">Yuichi Matsuda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.01868v1-abstract-short" style="display: inline;"> We present a morphological analysis of ALMA and JWST NIRCam images of nine dusty star-forming galaxies (DSFGs) at zspec=3.09, all embedded within the cosmic web filaments at the SSA22 proto-cluster core. The ALMA 870um and 1.1mm images are obtained at spatial resolutions ranging from 0.5" to 0.05" (350 pc at z=3.09). The high-resolution images enable us to resolve inner structures traced by dust c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01868v1-abstract-full').style.display = 'inline'; document.getElementById('2502.01868v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.01868v1-abstract-full" style="display: none;"> We present a morphological analysis of ALMA and JWST NIRCam images of nine dusty star-forming galaxies (DSFGs) at zspec=3.09, all embedded within the cosmic web filaments at the SSA22 proto-cluster core. The ALMA 870um and 1.1mm images are obtained at spatial resolutions ranging from 0.5" to 0.05" (350 pc at z=3.09). The high-resolution images enable us to resolve inner structures traced by dust continuum, identifying compact dusty cores, clumps, and offset ridges within bars. Sersic profile fit was performed for both ALMA 870um and NIRCam F444W images at comparable resolutions (0.15"). The Sersic index measured for 870um, masking bright regions, indicates values close to unity, suggesting that dust emission arises from disks with superimposed compact core components. For the JWST F444W images (restframe 1um), the Sersic indices range between nF444W = 1-3, pointing to the coexistence of bulges and stellar disks in these DSFGs. A comparison of dust mass surface density, nF444W, and F200W-F444W color (restframe 0.5-1um) reveals diversity among the DSFGs, likely reflecting different evolutionary stages including some DSFGs with red cores, indicating ongoing rapid bulge growth phases heavily obscured by dust. The predominantly disk-like morphologies observed in most DSFGs in the proto-cluster core contrast sharply with early-type morphologies that dominate the highest density environment in the local universe. This suggests that we are witnessing the early formation of the morphology-density relation, as massive galaxies undergo rapid growth as late-type galaxies fueled by cosmic web gas filaments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01868v1-abstract-full').style.display = 'none'; document.getElementById('2502.01868v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 12 figures, 5 tables, submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.22155">arXiv:2410.22155</a> <span> [<a href="https://arxiv.org/pdf/2410.22155">pdf</a>, <a href="https://arxiv.org/format/2410.22155">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> ADF22-WEB: A giant barred spiral starburst galaxy in the z = 3.1 SSA22 protocluster core </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Umehata%2C+H">H. Umehata</a>, <a href="/search/?searchtype=author&query=Steidel%2C+C+C">C. C. Steidel</a>, <a href="/search/?searchtype=author&query=Smail%2C+I">I. Smail</a>, <a href="/search/?searchtype=author&query=Swinbank%2C+A+M">A. M. Swinbank</a>, <a href="/search/?searchtype=author&query=Monson%2C+E+B">E. B. Monson</a>, <a href="/search/?searchtype=author&query=Rosario%2C+D">D. Rosario</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">B. D. Lehmer</a>, <a href="/search/?searchtype=author&query=Nakanishi%2C+K">K. Nakanishi</a>, <a href="/search/?searchtype=author&query=Kubo%2C+M">M. Kubo</a>, <a href="/search/?searchtype=author&query=Iono%2C+D">D. Iono</a>, <a href="/search/?searchtype=author&query=Alexander%2C+D+M">D. M. Alexander</a>, <a href="/search/?searchtype=author&query=Kohno%2C+K">K. Kohno</a>, <a href="/search/?searchtype=author&query=Tamura%2C+Y">Y. Tamura</a>, <a href="/search/?searchtype=author&query=Ivison%2C+R+J">R. J. Ivison</a>, <a href="/search/?searchtype=author&query=Saito%2C+T">T. Saito</a>, <a href="/search/?searchtype=author&query=Mitsuhashi%2C+I">I. Mitsuhashi</a>, <a href="/search/?searchtype=author&query=Huang%2C+S">S. Huang</a>, <a href="/search/?searchtype=author&query=Matsuda%2C+Y">Y. Matsuda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.22155v2-abstract-short" style="display: inline;"> In the present-day universe, the most massive galaxies are ellipticals located in the cores of galaxy clusters, harboring the heaviest super-massive black holes (SMBHs). However the mechanisms that drive the early growth phase and subsequent transformation of these morphology and kinematics of galaxies remain elusive. Here we report (sub)kiloparsec scale observations of stars, gas, and dust in ADF… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22155v2-abstract-full').style.display = 'inline'; document.getElementById('2410.22155v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.22155v2-abstract-full" style="display: none;"> In the present-day universe, the most massive galaxies are ellipticals located in the cores of galaxy clusters, harboring the heaviest super-massive black holes (SMBHs). However the mechanisms that drive the early growth phase and subsequent transformation of these morphology and kinematics of galaxies remain elusive. Here we report (sub)kiloparsec scale observations of stars, gas, and dust in ADF22.A1, a bright dusty starburst galaxy at z=3.1, hosting a heavily obscured active galactic nucleus and residing in a proto-cluster core. ADF22.A1 is a giant spiral galaxy with the kinematics of a rotating disk with rotation velocity Vrot=530+/-10km/s and diameter larger than 30 kpc. The high specific stellar angular momentum of this system, j*=3400+/-600 kpc km/s, requires a mechanism to effectively spin-up ADF22.A1, indicating the importance of accretion from the cosmic web to supply both gas and angular momentum to galaxies in their early gas-rich starburst phase. In its inner region, gas flows along dust lanes in a bar connected with the bright dusty core and the estimated mass ratio of a bulge to SMBH matches the local relation, suggesting that bars are a key mechanism to shape the early co-evolution of these components. Comparison with cosmological simulations shows that ADF22.A1 will likely evolve into a massive elliptical at the present day, experiencing a significant reduction in angular momentum associated with subsequent galaxy mergers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22155v2-abstract-full').style.display = 'none'; document.getElementById('2410.22155v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 12 figures. accepted for publication in PASJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19901">arXiv:2410.19901</a> <span> [<a href="https://arxiv.org/pdf/2410.19901">pdf</a>, <a href="https://arxiv.org/format/2410.19901">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> An Empirical Framework Characterizing the Metallicity and Star-Formation History Dependence of X-ray Binary Population Formation and Emission in Galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">Bret D. Lehmer</a>, <a href="/search/?searchtype=author&query=Monson%2C+E+B">Erik B. Monson</a>, <a href="/search/?searchtype=author&query=Eufrasio%2C+R+T">Rafael T. Eufrasio</a>, <a href="/search/?searchtype=author&query=Amiri%2C+A">Amirnezam Amiri</a>, <a href="/search/?searchtype=author&query=Doore%2C+K">Keith Doore</a>, <a href="/search/?searchtype=author&query=Basu-Zych%2C+A">Antara Basu-Zych</a>, <a href="/search/?searchtype=author&query=Garofali%2C+K">Kristen Garofali</a>, <a href="/search/?searchtype=author&query=Oskinova%2C+L">Lidia Oskinova</a>, <a href="/search/?searchtype=author&query=Andrews%2C+J+J">Jeff J. Andrews</a>, <a href="/search/?searchtype=author&query=Antoniou%2C+V">Vallia Antoniou</a>, <a href="/search/?searchtype=author&query=Geda%2C+R">Robel Geda</a>, <a href="/search/?searchtype=author&query=Greene%2C+J+E">Jenny E. Greene</a>, <a href="/search/?searchtype=author&query=Kovlakas%2C+K">Konstantinos Kovlakas</a>, <a href="/search/?searchtype=author&query=Lazzarini%2C+M">Margaret Lazzarini</a>, <a href="/search/?searchtype=author&query=Richardson%2C+C+T">Chris T. Richardson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19901v1-abstract-short" style="display: inline;"> We present a new empirical framework modeling the metallicity and star-formation history (SFH) dependence of X-ray luminous ($L > 10^{36}$ ergs s$^{-1}$) point-source population luminosity functions (XLFs) in normal galaxies. We expect the X-ray point-source populations are dominated by X-ray binaries (XRBs), with contributions from supernova remnants near the low luminosity end of our observation… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19901v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19901v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19901v1-abstract-full" style="display: none;"> We present a new empirical framework modeling the metallicity and star-formation history (SFH) dependence of X-ray luminous ($L > 10^{36}$ ergs s$^{-1}$) point-source population luminosity functions (XLFs) in normal galaxies. We expect the X-ray point-source populations are dominated by X-ray binaries (XRBs), with contributions from supernova remnants near the low luminosity end of our observations. Our framework is calibrated using the collective statistical power of 3,731 X-ray detected point-sources within 88 Chandra-observed galaxies at $D <$ 40 Mpc that span broad ranges of metallicity ($Z \approx$ 0.03-2 $Z_\odot$), SFH, and morphology (dwarf irregulars, late-types, and early-types). Our best-fitting models indicate that the XLF normalization per unit stellar mass declines by $\approx$2-3 dex from 10 Myr to 10 Gyr, with a slower age decline for low-metallicity populations. The shape of the XLF for luminous X-ray sources ($L < 10^{38}$ ergs s$^{-1}$) significantly steepens with increasing age and metallicity, while the lower-luminosity XLF appears to flatten with increasing age. Integration of our models provide predictions for X-ray scaling relations that agree very well with past results presented in the literature, including, e.g., the $L_{\rm X}$-SFR-$Z$ relation for high-mass XRBs (HMXBs) in young stellar populations as well as the $L_{\rm X}/M_\star$ ratio observed in early-type galaxies that harbor old populations of low-mass XRBs (LMXBs). The model framework and data sets presented in this paper further provide unique benchmarks that can be used for calibrating binary population synthesis models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19901v1-abstract-full').style.display = 'none'; document.getElementById('2410.19901v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJS; extended figures/materials available at https://lehmer.uark.edu/downloads/ ; python SED fitting code Lightning available at https://github.com/ebmonson/lightningpy</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02828">arXiv:2408.02828</a> <span> [<a href="https://arxiv.org/pdf/2408.02828">pdf</a>, <a href="https://arxiv.org/format/2408.02828">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad4da4">10.3847/1538-4357/ad4da4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A NuSTAR Census of the X-ray Binary Population of the M31 Disk </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Moon%2C+H">Hannah Moon</a>, <a href="/search/?searchtype=author&query=Wik%2C+D+R">Daniel R. Wik</a>, <a href="/search/?searchtype=author&query=Antoniou%2C+V">V. Antoniou</a>, <a href="/search/?searchtype=author&query=Eracleous%2C+M">M. Eracleous</a>, <a href="/search/?searchtype=author&query=Hornschemeier%2C+A+E">Ann E. Hornschemeier</a>, <a href="/search/?searchtype=author&query=Lazzarini%2C+M">Margaret Lazzarini</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">Bret D. Lehmer</a>, <a href="/search/?searchtype=author&query=Vulic%2C+N">Neven Vulic</a>, <a href="/search/?searchtype=author&query=Williams%2C+B+F">Benjamin F. Williams</a>, <a href="/search/?searchtype=author&query=Maccarone%2C+T+J">T. J. Maccarone</a>, <a href="/search/?searchtype=author&query=Pottschmidt%2C+K">K. Pottschmidt</a>, <a href="/search/?searchtype=author&query=Ptak%2C+A">Andrew Ptak</a>, <a href="/search/?searchtype=author&query=Yukita%2C+M">Mihoko Yukita</a>, <a href="/search/?searchtype=author&query=Zezas%2C+A">Andreas Zezas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02828v1-abstract-short" style="display: inline;"> Using hard (E>10 keV) X-ray observations with NuSTAR, we are able to differentiate between accretion states, and thus compact object types, of neutron stars and black holes in X-ray binaries (XRBs) in M31, our nearest Milky Way-type neighbor. Using ten moderate-depth (20-50 ks) observations of the disk of M31 covering a total of ~0.45 deg$^{2}$, we detect 20 sources at 2$蟽$ in the 4-25 keV band pa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02828v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02828v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02828v1-abstract-full" style="display: none;"> Using hard (E>10 keV) X-ray observations with NuSTAR, we are able to differentiate between accretion states, and thus compact object types, of neutron stars and black holes in X-ray binaries (XRBs) in M31, our nearest Milky Way-type neighbor. Using ten moderate-depth (20-50 ks) observations of the disk of M31 covering a total of ~0.45 deg$^{2}$, we detect 20 sources at 2$蟽$ in the 4-25 keV band pass, 14 of which we consider to be XRB candidates. This complements an existing deeper (100-400 ks) survey covering ~0.2 deg$^{2}$ of the bulge and the northeastern disk. We make tentative classifications of 9 of these sources with the use of diagnostic color-intensity and color-color diagrams, which separate sources into various neutron star and black hole regimes, identifying 3 black holes and 6 neutron stars. In addition, we create X-ray luminosity functions for both the full (4-25 keV) and hard (12-25 keV) band, as well as sub-populations of the full band based on compact object type and association with globular clusters. Our best fit globular cluster XLF is shallower than the field XLF, and preliminary BH and NS XLFs suggest a difference in shape based on compact object type. We find that the cumulative disk XLFs in the full and hard band are best fit by power laws with indices of 1.32 and 1.28 respectively. This is consistent with models of the Milky Way XLF from Grimm et al. (2002), Voss & Ajello (2010), and Doroshenko et al. (2014). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02828v1-abstract-full').style.display = 'none'; document.getElementById('2408.02828v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 6 Figures, Published in ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 970, 167, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12158">arXiv:2407.12158</a> <span> [<a href="https://arxiv.org/pdf/2407.12158">pdf</a>, <a href="https://arxiv.org/format/2407.12158">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202451168">10.1051/0004-6361/202451168 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gas-Phase metallicity for the Seyfert galaxy NGC 7130 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Amiri%2C+A">Amirnezam Amiri</a>, <a href="/search/?searchtype=author&query=Knapen%2C+J+H">Johan H. Knapen</a>, <a href="/search/?searchtype=author&query=Comer%C3%B3n%2C+S">S茅bastien Comer贸n</a>, <a href="/search/?searchtype=author&query=Marconi%2C+A">Alessandro Marconi</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">Bret. D. Lehmer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12158v1-abstract-short" style="display: inline;"> Metallicity measurements in galaxies can give valuable clues about galaxy evolution. One of the mechanisms postulated for metallicity redistribution in galaxies is gas flows induced by AGN, but the details of this process remain elusive. We report the discovery of a positive radial gradient in the gas-phase metallicity of the narrow line region of the Seyfert 2 galaxy NGC 7130, which is not found… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12158v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12158v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12158v1-abstract-full" style="display: none;"> Metallicity measurements in galaxies can give valuable clues about galaxy evolution. One of the mechanisms postulated for metallicity redistribution in galaxies is gas flows induced by AGN, but the details of this process remain elusive. We report the discovery of a positive radial gradient in the gas-phase metallicity of the narrow line region of the Seyfert 2 galaxy NGC 7130, which is not found when considering the star-forming components in the galaxy disk. To determine gas-phase metallicities for each kinematic component, we use both active galactic nuclei (AGN) and star-forming (SF) strong-line abundance relations, as well as BPT diagnostic diagrams. These relations involve sensitive strong emission lines, namely [OIII]5007, [NII]6584, H$伪$, H$尾$, [SII]6716, and [SII]6731, observed with the adaptive-optics-assisted mode of the Multi Unit Spectroscopic Explorer (MUSE) at the Very Large Telescope (VLT). The presence of a positive radial metallicity gradient only in the AGN ionized component suggests that metals may be transported from central areas to its purlieus by AGN activity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12158v1-abstract-full').style.display = 'none'; document.getElementById('2407.12158v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Astronomy & Astrophysics (A&A)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 689, A193 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13005">arXiv:2406.13005</a> <span> [<a href="https://arxiv.org/pdf/2406.13005">pdf</a>, <a href="https://arxiv.org/format/2406.13005">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202450225">10.1051/0004-6361/202450225 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fast SMBH growth in the SPT2349--56 protocluster at $z=4.3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Vito%2C+F">Fabio Vito</a>, <a href="/search/?searchtype=author&query=Brandt%2C+W+N">William N. Brandt</a>, <a href="/search/?searchtype=author&query=Comastri%2C+A">Andrea Comastri</a>, <a href="/search/?searchtype=author&query=Gilli%2C+R">Roberto Gilli</a>, <a href="/search/?searchtype=author&query=Ivison%2C+R+J">Rob J. Ivison</a>, <a href="/search/?searchtype=author&query=Lanzuisi%2C+G">Giorgio Lanzuisi</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">Bret D. Lehmer</a>, <a href="/search/?searchtype=author&query=Lopez%2C+I+E">Ivan E. Lopez</a>, <a href="/search/?searchtype=author&query=Tozzi%2C+P">Paolo Tozzi</a>, <a href="/search/?searchtype=author&query=Vignali%2C+C">Cristian Vignali</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13005v1-abstract-short" style="display: inline;"> Protoclusters at $z>2$ are gas-rich regions characterized by high star-formation activity. The same physical properties that enhance star formation in protoclusters are also thought to boost the growth of SMBHs. We aim to test this scenario by probing the AGN content of SPT2349-56, a massive, gas-rich, and highly star-forming protocluster core at $z=4.3$ discovered as an overdensity of DSFGs, via… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13005v1-abstract-full').style.display = 'inline'; document.getElementById('2406.13005v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13005v1-abstract-full" style="display: none;"> Protoclusters at $z>2$ are gas-rich regions characterized by high star-formation activity. The same physical properties that enhance star formation in protoclusters are also thought to boost the growth of SMBHs. We aim to test this scenario by probing the AGN content of SPT2349-56, a massive, gas-rich, and highly star-forming protocluster core at $z=4.3$ discovered as an overdensity of DSFGs, via Chandra (200 ks) observations, and comparing the results with the field environment. We detected two protocluster members, corresponding to an AGN fraction among DSFGs of $\approx10\%$. This value is consistent with other protoclusters at $z=2-4$, but higher than the AGN incidence among DSFGs in the field environment. Both AGN are heavily obscured sources and hosted in star-forming galaxies with $\approx3\times10^{10}\,\mathrm{M_\odot}$ stellar masses. We estimate that the ISM in the host galaxies can contribute significantly to the nuclear obscuration. One of the two AGN is highly luminous ($L_X=2\times10^{45}\,\mathrm{erg\,s^{-1}}$) and Compton-thick ($N_H=2\times10^{24}\,\mathrm{cm^{-2}}$), and likely powered by a $M_{BH}>6\times10^8\,\mathrm{M_\odot}$ SMBH. Its high accretion rate suggests that it is in the phase of efficient growth required to explain the presence of extremely massive SMBHs in the centers of local galaxy clusters. Considering SPT2349-56 and DRC, a similar protocuster at $z=4$, we find that gas-rich protocluster cores at $z\approx4$ enhance the triggering of luminous (log$\frac{L_X}{\mathrm{erg\,s^{-1}}}=45-46$) AGN by 3-5 orders of magnitude with respect to the field environment. Our results indicate that gas-rich protoclusters at high redshift boost the growth of SMBHs, which will likely impact the subsequent evolution of the structures, and thus represent key science targets to obtain a complete understanding of the relation between environment and galaxy evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13005v1-abstract-full').style.display = 'none'; document.getElementById('2406.13005v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to A&A, referee comments included</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 689, A130 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.14477">arXiv:2401.14477</a> <span> [<a href="https://arxiv.org/pdf/2401.14477">pdf</a>, <a href="https://arxiv.org/format/2401.14477">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> The HMXB Luminosity Functions of Dwarf Galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Geda%2C+R">Robel Geda</a>, <a href="/search/?searchtype=author&query=Goulding%2C+A+D">Andy D. Goulding</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">Bret D. Lehmer</a>, <a href="/search/?searchtype=author&query=Greene%2C+J+E">Jenny E. Greene</a>, <a href="/search/?searchtype=author&query=Kulkarni%2C+A">Anish Kulkarni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.14477v1-abstract-short" style="display: inline;"> Drawing from the Chandra archive and using a carefully selected set of nearby dwarf galaxies, we present a calibrated high-mass X-ray binary (HMXB) luminosity function in the low-mass galaxy regime and search for an already hinted at dependence on metallicity. Our study introduces a new sample of local dwarf galaxies (D < 12.5 Mpc and M* < 5 x 10^9 M_sun), expanding the specific star-formation rat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14477v1-abstract-full').style.display = 'inline'; document.getElementById('2401.14477v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.14477v1-abstract-full" style="display: none;"> Drawing from the Chandra archive and using a carefully selected set of nearby dwarf galaxies, we present a calibrated high-mass X-ray binary (HMXB) luminosity function in the low-mass galaxy regime and search for an already hinted at dependence on metallicity. Our study introduces a new sample of local dwarf galaxies (D < 12.5 Mpc and M* < 5 x 10^9 M_sun), expanding the specific star-formation rates (sSFR) and gas-phase metallicities probed in previous investigations. Our analysis of the observed X-ray luminosity function indicates a shallower power-law slope for the dwarf galaxy HMXB population. In our study, we focus on dwarf galaxies that are more representative in terms of sSFR compared to prior work. In this regime, the HMXB luminosity function exhibits significant stochastic sampling at high luminosities. This likely accounts for the pronounced scatter observed in the galaxy-integrated HMXB population's Lx/SFR versus metallicity for our galaxy sample. Our calibration is necessary to understand the AGN content of low mass galaxies identified in current and future X-ray survey fields and has implications for binary population synthesis models, as well as X-ray driven cosmic heating in the early universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14477v1-abstract-full').style.display = 'none'; document.getElementById('2401.14477v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.07661">arXiv:2311.07661</a> <span> [<a href="https://arxiv.org/pdf/2311.07661">pdf</a>, <a href="https://arxiv.org/format/2311.07661">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> The evolution of galaxies and clusters at high spatial resolution with AXIS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Russell%2C+H+R">H. R. Russell</a>, <a href="/search/?searchtype=author&query=Lopez%2C+L+A">L. A. Lopez</a>, <a href="/search/?searchtype=author&query=Allen%2C+S+W">S. W. Allen</a>, <a href="/search/?searchtype=author&query=Chartas%2C+G">G. Chartas</a>, <a href="/search/?searchtype=author&query=Choudhury%2C+P+P">P. P. Choudhury</a>, <a href="/search/?searchtype=author&query=Dupke%2C+R+A">R. A. Dupke</a>, <a href="/search/?searchtype=author&query=Fabian%2C+A+C">A. C. Fabian</a>, <a href="/search/?searchtype=author&query=Flores%2C+A+M">A. M. Flores</a>, <a href="/search/?searchtype=author&query=Garofali%2C+K">K. Garofali</a>, <a href="/search/?searchtype=author&query=Hodges-Kluck%2C+E">E. Hodges-Kluck</a>, <a href="/search/?searchtype=author&query=Koss%2C+M+J">M. J. Koss</a>, <a href="/search/?searchtype=author&query=Lanz%2C+L">L. Lanz</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">B. D. Lehmer</a>, <a href="/search/?searchtype=author&query=Li%2C+J+-">J. -T. Li</a>, <a href="/search/?searchtype=author&query=Maksym%2C+W+P">W. P. Maksym</a>, <a href="/search/?searchtype=author&query=Mantz%2C+A+B">A. B. Mantz</a>, <a href="/search/?searchtype=author&query=McDonald%2C+M">M. McDonald</a>, <a href="/search/?searchtype=author&query=Miller%2C+E+D">E. D. Miller</a>, <a href="/search/?searchtype=author&query=Mushotzky%2C+R+F">R. F. Mushotzky</a>, <a href="/search/?searchtype=author&query=Qiu%2C+Y">Y. Qiu</a>, <a href="/search/?searchtype=author&query=Reynolds%2C+C+S">C. S. Reynolds</a>, <a href="/search/?searchtype=author&query=Tombesi%2C+F">F. Tombesi</a>, <a href="/search/?searchtype=author&query=Tozzi%2C+P">P. Tozzi</a>, <a href="/search/?searchtype=author&query=Trindade-Falcao%2C+A">A. Trindade-Falcao</a>, <a href="/search/?searchtype=author&query=Walker%2C+S+A">S. A. Walker</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.07661v1-abstract-short" style="display: inline;"> Stellar and black hole feedback heat and disperse surrounding cold gas clouds, launching gas flows off circumnuclear and galactic disks and producing a dynamic interstellar medium. On large scales bordering the cosmic web, feedback drives enriched gas out of galaxies and groups, seeding the intergalactic medium with heavy elements. In this way, feedback shapes galaxy evolution by shutting down sta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07661v1-abstract-full').style.display = 'inline'; document.getElementById('2311.07661v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.07661v1-abstract-full" style="display: none;"> Stellar and black hole feedback heat and disperse surrounding cold gas clouds, launching gas flows off circumnuclear and galactic disks and producing a dynamic interstellar medium. On large scales bordering the cosmic web, feedback drives enriched gas out of galaxies and groups, seeding the intergalactic medium with heavy elements. In this way, feedback shapes galaxy evolution by shutting down star formation and ultimately curtailing the growth of structure after the peak at redshift 2-3. To understand the complex interplay between gravity and feedback, we must resolve both the key physics within galaxies and map the impact of these processes over large scales, out into the cosmic web. The Advanced X-ray Imaging Satellite (AXIS) is a proposed X-ray probe mission for the 2030s with arcsecond spatial resolution, large effective area, and low background. AXIS will untangle the interactions of winds, radiation, jets, and supernovae with the surrounding ISM across the wide range of mass scales and large volumes driving galaxy evolution and trace the establishment of feedback back to the main event at cosmic noon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07661v1-abstract-full').style.display = 'none'; document.getElementById('2311.07661v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 18 figures; this white paper is part of a series commissioned for the AXIS Probe mission concept</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.04735">arXiv:2311.04735</a> <span> [<a href="https://arxiv.org/pdf/2311.04735">pdf</a>, <a href="https://arxiv.org/format/2311.04735">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> The High Energy X-ray Probe: Resolved X-ray Populations in Extragalactic Environments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">Bret D. Lehmer</a>, <a href="/search/?searchtype=author&query=Garofali%2C+K">Kristen Garofali</a>, <a href="/search/?searchtype=author&query=Binder%2C+B+A">Breanna A. Binder</a>, <a href="/search/?searchtype=author&query=Fornasini%2C+F">Francesca Fornasini</a>, <a href="/search/?searchtype=author&query=Vulic%2C+N">Neven Vulic</a>, <a href="/search/?searchtype=author&query=Zezas%2C+A">Andreas Zezas</a>, <a href="/search/?searchtype=author&query=Hornschemeier%2C+A">Ann Hornschemeier</a>, <a href="/search/?searchtype=author&query=Lazzarini%2C+M">Margaret Lazzarini</a>, <a href="/search/?searchtype=author&query=Moon%2C+H">Hannah Moon</a>, <a href="/search/?searchtype=author&query=Venters%2C+T">Toni Venters</a>, <a href="/search/?searchtype=author&query=Wik%2C+D">Daniel Wik</a>, <a href="/search/?searchtype=author&query=Yukita%2C+M">Mihoko Yukita</a>, <a href="/search/?searchtype=author&query=Bachetti%2C+M">Matteo Bachetti</a>, <a href="/search/?searchtype=author&query=Garc%C3%ADa%2C+J+A">Javier A. Garc铆a</a>, <a href="/search/?searchtype=author&query=Grefenstette%2C+B">Brian Grefenstette</a>, <a href="/search/?searchtype=author&query=Madsen%2C+K">Kristin Madsen</a>, <a href="/search/?searchtype=author&query=Mori%2C+K">Kaya Mori</a>, <a href="/search/?searchtype=author&query=Stern%2C+D">Daniel Stern</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.04735v1-abstract-short" style="display: inline;"> We construct simulated galaxy data sets based on the High Energy X-ray Probe (HEX-P) mission concept to demonstrate the significant advances in galaxy science that will be yielded by the HEX-P observatory. The combination of high spatial resolution imaging ($<$20 arcsec FWHM), broad spectral coverage (0.2-80 keV), and sensitivity superior to current facilities (e.g., XMM-Newton and NuSTAR) will en… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04735v1-abstract-full').style.display = 'inline'; document.getElementById('2311.04735v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.04735v1-abstract-full" style="display: none;"> We construct simulated galaxy data sets based on the High Energy X-ray Probe (HEX-P) mission concept to demonstrate the significant advances in galaxy science that will be yielded by the HEX-P observatory. The combination of high spatial resolution imaging ($<$20 arcsec FWHM), broad spectral coverage (0.2-80 keV), and sensitivity superior to current facilities (e.g., XMM-Newton and NuSTAR) will enable HEX-P to detect hard (4-25 keV) X-ray emission from resolved point-source populations within $\sim$800 galaxies and integrated emission from $\sim$6000 galaxies out to 100 Mpc. These galaxies cover wide ranges of galaxy types (e.g., normal, starburst, and passive galaxies) and properties (e.g., metallicities and star-formation histories). In such galaxies, HEX-P will: (1) provide unique information about X-ray binary populations, including accretor demographics (black hole and neutron stars), distributions of accretion states and state transition cadences; (2) place order-of-magnitude more stringent constraints on inverse Compton emission associated with particle acceleration in starburst environments; and (3) put into clear context the contributions from X-ray emitting populations to both ionizing the surrounding interstellar medium in low-metallicity galaxies and heating the intergalactic medium in the $z > 8$ Universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04735v1-abstract-full').style.display = 'none'; document.getElementById('2311.04735v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Frontiers in Astronomy and Space Sciences</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.00050">arXiv:2307.00050</a> <span> [<a href="https://arxiv.org/pdf/2307.00050">pdf</a>, <a href="https://arxiv.org/format/2307.00050">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Modeling the High-Energy Ionizing Output from Simple Stellar and X-ray Binary Populations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Garofali%2C+K">Kristen Garofali</a>, <a href="/search/?searchtype=author&query=Basu-Zych%2C+A+R">Antara R. Basu-Zych</a>, <a href="/search/?searchtype=author&query=Johnson%2C+B+D">Benjamin D. Johnson</a>, <a href="/search/?searchtype=author&query=Tzanavaris%2C+P">Panayiotis Tzanavaris</a>, <a href="/search/?searchtype=author&query=Jaskot%2C+A">Anne Jaskot</a>, <a href="/search/?searchtype=author&query=Richardson%2C+C+T">Chris T. Richardson</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">Bret D. Lehmer</a>, <a href="/search/?searchtype=author&query=Yukita%2C+M">Mihoko Yukita</a>, <a href="/search/?searchtype=author&query=Hodges-Kluck%2C+E">Edmund Hodges-Kluck</a>, <a href="/search/?searchtype=author&query=Hornschemeier%2C+A">Ann Hornschemeier</a>, <a href="/search/?searchtype=author&query=Ptak%2C+A">Andrew Ptak</a>, <a href="/search/?searchtype=author&query=Vulic%2C+N">Neven Vulic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.00050v2-abstract-short" style="display: inline;"> We present a methodology for modeling the joint ionizing impact due to a "simple X-ray population" (SXP) and its corresponding simple stellar population (SSP), where "simple" refers to a single age and metallicity population. We construct composite spectral energy distributions (SEDs) including contributions from ultra-luminous X-ray sources (ULXs) and stars, with physically meaningful and consist… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00050v2-abstract-full').style.display = 'inline'; document.getElementById('2307.00050v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.00050v2-abstract-full" style="display: none;"> We present a methodology for modeling the joint ionizing impact due to a "simple X-ray population" (SXP) and its corresponding simple stellar population (SSP), where "simple" refers to a single age and metallicity population. We construct composite spectral energy distributions (SEDs) including contributions from ultra-luminous X-ray sources (ULXs) and stars, with physically meaningful and consistent consideration of the relative contributions of each component as a function of instantaneous burst age and stellar metallicity. These composite SEDs are used as input for photoionization modeling with Cloudy, from which we produce a grid for the time- and metallicity-dependent nebular emission from these composite populations. We make the results from the photoionization simulations publicly available. We find that the addition of the SXP prolongs the high-energy ionizing output from the population, and correspondingly increases the intensity of nebular lines such as He II $位$1640,4686, [Ne V] $位$3426,14.3$渭$m, and [O IV] 25.9$渭$m by factors of at least two relative to models without an SXP spectral component. This effect is most pronounced for instantaneous bursts of star formation on timescales $>$ 10 Myr and at low metallicities ($\sim$ 0.1 $Z_{\odot}$), due to the imposed time- and metallicity-dependent behavior of the SXP relative to the SSP. We propose nebular emission line diagnostics accessible with JWST suitable for inferring the presence of a composite SXP + SSP, and discuss how the ionization signatures compare to models for sources such as intermediate mass black holes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00050v2-abstract-full').style.display = 'none'; document.getElementById('2307.00050v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted for publication in ApJ; simulation results available through FSPS (see Section 5.4)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.19491">arXiv:2305.19491</a> <span> [<a href="https://arxiv.org/pdf/2305.19491">pdf</a>, <a href="https://arxiv.org/format/2305.19491">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acd9aa">10.3847/1538-4357/acd9aa <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Large Deficit of HMXB Emission from Luminous Infrared Galaxies: the Case of the Circumnuclear Starburst Ring in NGC 7552 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=West%2C+L">Lacey West</a>, <a href="/search/?searchtype=author&query=Garofali%2C+K">Kristen Garofali</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">Bret D. Lehmer</a>, <a href="/search/?searchtype=author&query=Prestwich%2C+A">Andrea Prestwich</a>, <a href="/search/?searchtype=author&query=Eufrasio%2C+R">Rafael Eufrasio</a>, <a href="/search/?searchtype=author&query=Luangtip%2C+W">Wasutep Luangtip</a>, <a href="/search/?searchtype=author&query=Roberts%2C+T+P">Timothy P. Roberts</a>, <a href="/search/?searchtype=author&query=Zezas%2C+A">Andreas Zezas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.19491v1-abstract-short" style="display: inline;"> Luminous infrared galaxies (LIRGs), the most extreme star-forming galaxies in the nearby (D$<$30 Mpc) Universe, show a notable X-ray emission deficiency (up to a factor of $\sim$10) compared with predictions from scaling relations of galaxy-wide high mass X-ray binary (HMXB) luminosity with star-formation rate. In the nearby ($\approx$20 Mpc) LIRG NGC 7552, the majority of the IR emission originat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.19491v1-abstract-full').style.display = 'inline'; document.getElementById('2305.19491v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.19491v1-abstract-full" style="display: none;"> Luminous infrared galaxies (LIRGs), the most extreme star-forming galaxies in the nearby (D$<$30 Mpc) Universe, show a notable X-ray emission deficiency (up to a factor of $\sim$10) compared with predictions from scaling relations of galaxy-wide high mass X-ray binary (HMXB) luminosity with star-formation rate. In the nearby ($\approx$20 Mpc) LIRG NGC 7552, the majority of the IR emission originates in a circumnuclear starburst ring, which has been resolved into several discrete knots of star formation. We present results from recent Chandra observations of NGC 7552, which reveal significant deficits in the 2-7 keV X-ray luminosities from two of the most powerful star-forming knots. We hypothesize that the expected luminous HMXB populations in these knots are either (1) obscured by very large column densities or (2) suppressed due to the knots having relatively high metallicity and/or very young ages ($\lesssim$ 5 Myr). We distinguish between these possibilities using data from recent NuSTAR observations, whose sensitivity above 10 keV is capable of uncovering heavily obscured HMXB populations, since emission at these energies is more immune to absorption effects. We find no evidence of a heavily obscured HMXB population in the central region of NGC 7552, suggesting suppressed HMXB formation. We further show that metallicity-dependent scaling relations cannot fully account for the observed deficit from the most powerful star-forming knots or the central region as a whole. Thus, we suggest that recent bursts in local star formation activity likely drive the high $L_{\rm{IR}}$ within these regions on timescales $\lesssim$ 5 Myr, shorter than the timescale required for the formation of HMXBs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.19491v1-abstract-full').style.display = 'none'; document.getElementById('2305.19491v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ (17 pages, 3 tables, 8 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.06400">arXiv:2305.06400</a> <span> [<a href="https://arxiv.org/pdf/2305.06400">pdf</a>, <a href="https://arxiv.org/format/2305.06400">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acd449">10.3847/1538-4357/acd449 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revisiting the Properties of X-ray AGN in the SSA22 Protocluster: Normal SMBH and Host-Galaxy Growth for AGN in a $z=3.09$ Overdensity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Monson%2C+E+B">Erik B. Monson</a>, <a href="/search/?searchtype=author&query=Doore%2C+K">Keith Doore</a>, <a href="/search/?searchtype=author&query=Eufrasio%2C+R+T">Rafael T. Eufrasio</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">Bret D. Lehmer</a>, <a href="/search/?searchtype=author&query=Alexander%2C+D+M">David M. Alexander</a>, <a href="/search/?searchtype=author&query=Harrison%2C+C+M">Chris M. Harrison</a>, <a href="/search/?searchtype=author&query=Kubo%2C+M">Mariko Kubo</a>, <a href="/search/?searchtype=author&query=Saez%2C+C">Cristian Saez</a>, <a href="/search/?searchtype=author&query=Umehata%2C+H">Hideki Umehata</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.06400v2-abstract-short" style="display: inline;"> We analyze the physical properties of 8 X-ray selected active galactic nuclei (AGN) and one candidate protoquasar system (ADF22A1) in the $z = 3.09$ SSA22 protocluster by fitting their X-ray-to-IR spectral energy distributions (SEDs) using our SED fitting code, Lightning. We recover star formation histories (SFH) for 7 of these systems which are well-fit by composite stellar population plus AGN mo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06400v2-abstract-full').style.display = 'inline'; document.getElementById('2305.06400v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.06400v2-abstract-full" style="display: none;"> We analyze the physical properties of 8 X-ray selected active galactic nuclei (AGN) and one candidate protoquasar system (ADF22A1) in the $z = 3.09$ SSA22 protocluster by fitting their X-ray-to-IR spectral energy distributions (SEDs) using our SED fitting code, Lightning. We recover star formation histories (SFH) for 7 of these systems which are well-fit by composite stellar population plus AGN models. We find indications that 4/9 of the SSA22 AGN systems we study have host galaxies below the main sequence, with $\rm SFR/SFR_{MS} \leq -0.4$. The remaining SSA22 systems, including ADF22A1, are consistent with obscured supermassive black hole (SMBH) growth in star forming galaxies. We estimate the SMBH accretion rates and masses, and compare the properties and SFH of the 9 protocluster AGN systems with X-ray detected AGN candidates in the Chandra Deep Fields (CDF), finding that the distributions of SMBH growth rates, star formation rates, SMBH masses, and stellar masses for the protocluster AGN are consistent with field AGN. We constrain the ratio between the sample-averaged SSA22 SMBH mass and CDF SMBH mass to $<1.41$. While the AGN are located near the density peaks of the protocluster, we find no statistically significant trends between the AGN or host galaxy properties and their location in the protocluster. We interpret the similarity of the protocluster and field AGN populations together with existing results as suggesting that the protocluster and field AGN co-evolve with their hosts in the same ways, while AGN-triggering events are more likely in the protocluster. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06400v2-abstract-full').style.display = 'none'; document.getElementById('2305.06400v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 14 figures, 8 tables. Updated with published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 951 (2023), 15 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.06753">arXiv:2304.06753</a> <span> [<a href="https://arxiv.org/pdf/2304.06753">pdf</a>, <a href="https://arxiv.org/format/2304.06753">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/accc29">10.3847/1538-4365/accc29 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lightning: An X-ray to Submillimeter Galaxy SED-Fitting Code With Physically-Motivated Stellar, Dust, and AGN Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Doore%2C+K">Keith Doore</a>, <a href="/search/?searchtype=author&query=Monson%2C+E+B">Erik B. Monson</a>, <a href="/search/?searchtype=author&query=Eufrasio%2C+R+T">Rafael T. Eufrasio</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">Bret D. Lehmer</a>, <a href="/search/?searchtype=author&query=Garofali%2C+K">Kristen Garofali</a>, <a href="/search/?searchtype=author&query=Basu-Zych%2C+A">Antara Basu-Zych</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.06753v2-abstract-short" style="display: inline;"> We present an updated version of Lightning, a galaxy spectral energy distribution (SED) fitting code that can model X-ray to submillimeter observations. The models in Lightning include the options to contain contributions from stellar populations, dust attenuation and emission, and active galactic nuclei (AGN). X-ray emission, when utilized, can be modeled as originating from stellar compact binar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06753v2-abstract-full').style.display = 'inline'; document.getElementById('2304.06753v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.06753v2-abstract-full" style="display: none;"> We present an updated version of Lightning, a galaxy spectral energy distribution (SED) fitting code that can model X-ray to submillimeter observations. The models in Lightning include the options to contain contributions from stellar populations, dust attenuation and emission, and active galactic nuclei (AGN). X-ray emission, when utilized, can be modeled as originating from stellar compact binary populations with the option to include emission from AGN. We have also included a variety of algorithms to fit the models to observations and sample parameter posteriors; these include an adaptive Markov-Chain Monte-Carlo (MCMC), affine-invariant MCMC, and Levenberg-Marquardt gradient decent (MPFIT) algorithms. To demonstrate some of the capabilities of Lightning, we present several examples using a variety of observational data. These examples include (1) deriving the spatially resolved stellar properties of the nearby galaxy M81, (2) demonstrating how X-ray emission can provide constrains on the properties of the supermassive black hole of a distant AGN, (3) exploring how to rectify the attenuation effects of inclination on the derived the star formation rate of the edge-on galaxy NGC 4631, (4) comparing the performance of Lightning to similar Bayesian SED fitting codes when deriving physical properties of the star-forming galaxy NGC 628, and (5) comparing the derived X-ray and UV-to-IR AGN properties from Lightning and CIGALE for a distant AGN. Lightning is an open-source application developed in the Interactive Data Language (IDL) and is available at https://github.com/rafaeleufrasio/lightning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06753v2-abstract-full').style.display = 'none'; document.getElementById('2304.06753v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 17 figures. Updated with published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJS 266 (2023) 39 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.05505">arXiv:2209.05505</a> <span> [<a href="https://arxiv.org/pdf/2209.05505">pdf</a>, <a href="https://arxiv.org/format/2209.05505">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202244929">10.1051/0004-6361/202244929 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> X-ray luminosity function of high-mass X-ray binaries: Studying the signatures of different physical processes using detailed binary evolution calculations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Misra%2C+D">Devina Misra</a>, <a href="/search/?searchtype=author&query=Kovlakas%2C+K">Konstantinos Kovlakas</a>, <a href="/search/?searchtype=author&query=Fragos%2C+T">Tassos Fragos</a>, <a href="/search/?searchtype=author&query=Lazzarini%2C+M">Margaret Lazzarini</a>, <a href="/search/?searchtype=author&query=Bavera%2C+S+S">Simone S. Bavera</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">Bret D. Lehmer</a>, <a href="/search/?searchtype=author&query=Zezas%2C+A">Andreas Zezas</a>, <a href="/search/?searchtype=author&query=Zapartas%2C+E">Emmanouil Zapartas</a>, <a href="/search/?searchtype=author&query=Xing%2C+Z">Zepei Xing</a>, <a href="/search/?searchtype=author&query=Andrews%2C+J+J">Jeff J. Andrews</a>, <a href="/search/?searchtype=author&query=Dotter%2C+A">Aaron Dotter</a>, <a href="/search/?searchtype=author&query=Rocha%2C+K+A">Kyle A. Rocha</a>, <a href="/search/?searchtype=author&query=Srivastava%2C+P+M">Philipp M. Srivastava</a>, <a href="/search/?searchtype=author&query=Sun%2C+M">Meng Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.05505v2-abstract-short" style="display: inline;"> The ever-expanding observational sample of X-ray binaries (XRBs) makes them excellent laboratories for constraining binary evolution theory. Such constraints can be obtained by studying the effects of various physical assumptions on synthetic X-ray luminosity functions (XLFs) and comparing to observed XLFs. In this work, we focus on high-mass XRBs (HMXBs) and study the effects on the XLF of variou… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.05505v2-abstract-full').style.display = 'inline'; document.getElementById('2209.05505v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.05505v2-abstract-full" style="display: none;"> The ever-expanding observational sample of X-ray binaries (XRBs) makes them excellent laboratories for constraining binary evolution theory. Such constraints can be obtained by studying the effects of various physical assumptions on synthetic X-ray luminosity functions (XLFs) and comparing to observed XLFs. In this work, we focus on high-mass XRBs (HMXBs) and study the effects on the XLF of various, poorly-constrained assumptions regarding physical processes such as the common-envelope phase, the core-collapse, and wind-fed accretion. We use the new binary population synthesis code POSYDON, which employs extensive pre-computed grids of detailed stellar structure and binary evolution models, to simulate the evolution of binaries. We generate 96 synthetic XRB populations corresponding to different combinations of model assumptions. The generated HMXB XLFs are feature-rich, deviating from the commonly assumed single-power law. We find a break in our synthetic XLF at luminosity $\sim 10^{38}$ erg s$^{-1}$, similar to observed XLFs. However, we find also a general overabundance of XRBs (up to a factor of $\sim$10 for certain model parameter combinations) driven primarily by XRBs with black hole accretors. Assumptions about the transient behavior of Be-XRBs, asymmetric supernova kicks, and common-envelope physics can significantly affect the shape and normalization of our synthetic XLFs. We find that less well-studied assumptions regarding the circularization of the orbit at the onset of Roche-lobe overflow and criteria for the formation of an X-ray emitting accretion disk around wind-accreting black holes can also impact our synthetic XLFs. Our study reveals the importance of large-scale parameter studies, highlighting the power of XRBs in constraining binary evolution theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.05505v2-abstract-full').style.display = 'none'; document.getElementById('2209.05505v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 32 figures, Accepted by A&A. Fixed typos and updated references. Referee's comments were addressed</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 672, A99 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.09580">arXiv:2204.09580</a> <span> [<a href="https://arxiv.org/pdf/2204.09580">pdf</a>, <a href="https://arxiv.org/format/2204.09580">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac67e8">10.3847/1538-4357/ac67e8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Impact of Inclination-dependent Attenuation on Ultraviolet Star Formation Rate Tracers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Doore%2C+K">Keith Doore</a>, <a href="/search/?searchtype=author&query=Eufrasio%2C+R+T">Rafael T. Eufrasio</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">Bret D. Lehmer</a>, <a href="/search/?searchtype=author&query=Monson%2C+E+B">Erik B. Monson</a>, <a href="/search/?searchtype=author&query=Basu-Zych%2C+A">Antara Basu-Zych</a>, <a href="/search/?searchtype=author&query=Garofali%2C+K">Kristen Garofali</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.09580v2-abstract-short" style="display: inline;"> We examine and quantify how hybrid (e.g., UV+IR) star formation rate (SFR) estimators and the $A_{\rm FUV}$-$尾$ relation depend on inclination for disk-dominated galaxies using spectral energy distribution modeling that utilizes the inclination-dependent attenuation curves described in Doore et al. We perform this analysis on a sample of 133 disk-dominated galaxies from the CANDELS fields and 18 d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.09580v2-abstract-full').style.display = 'inline'; document.getElementById('2204.09580v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.09580v2-abstract-full" style="display: none;"> We examine and quantify how hybrid (e.g., UV+IR) star formation rate (SFR) estimators and the $A_{\rm FUV}$-$尾$ relation depend on inclination for disk-dominated galaxies using spectral energy distribution modeling that utilizes the inclination-dependent attenuation curves described in Doore et al. We perform this analysis on a sample of 133 disk-dominated galaxies from the CANDELS fields and 18 disk galaxies from the Spitzer Infrared Nearby Galaxies Survey and Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel samples. We find that both the hybrid SFR estimators and the $A_{\rm FUV}$-$尾$ relation present clear dependencies on inclination. To quantify this dependence in the hybrid SFR estimators, we derive an inclination and a far-UV and near-IR color-dependent parametric relation for converting observed UV and IR luminosities into SFRs. For the $A_{\rm FUV}$-$尾$ relation, we introduce an inclination-dependent component that accounts for the majority of the inclination dependence with the scatter of the relation increasing with inclination. We then compare both of these inclination-dependent relations to similar inclination-independent relations found in the literature. From this comparison, we find that the UV+IR correction factor and $A_{\rm FUV}$ for our hybrid and $A_{\rm FUV}$-$尾$ relations, respectively, result in a reduction in the residual scatter of our sample by approximately a factor of 2. Therefore, we demonstrate that inclination must be considered in hybrid SFR estimators and the $A_{\rm FUV}$-$尾$ relation to produce more accurate SFR estimates in disk-dominated galaxies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.09580v2-abstract-full').style.display = 'none'; document.getElementById('2204.09580v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 15 figures. 23 page body and 1 page appendix. Updated with published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 931 (2022) 53 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.16566">arXiv:2203.16566</a> <span> [<a href="https://arxiv.org/pdf/2203.16566">pdf</a>, <a href="https://arxiv.org/format/2203.16566">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac63a7">10.3847/1538-4357/ac63a7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Elevated Hot Gas and High-Mass X-ray Binary Emission in Low Metallicity Galaxies: Implications for Nebular Ionization and Intergalactic Medium Heating in the Early Universe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">Bret D. Lehmer</a>, <a href="/search/?searchtype=author&query=Eufrasio%2C+R+T">Rafael T. Eufrasio</a>, <a href="/search/?searchtype=author&query=Basu-Zych%2C+A">Antara Basu-Zych</a>, <a href="/search/?searchtype=author&query=Garofali%2C+K">Kristen Garofali</a>, <a href="/search/?searchtype=author&query=Gilbertson%2C+W">Woodrow Gilbertson</a>, <a href="/search/?searchtype=author&query=Mesinger%2C+A">Andrei Mesinger</a>, <a href="/search/?searchtype=author&query=Yukita%2C+M">Mihoko Yukita</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.16566v1-abstract-short" style="display: inline;"> High-energy emission associated with star formation has been proposed as a significant source of interstellar medium (ISM) ionization in low-metallicity starbursts and an important contributor to the heating of the intergalactic medium (IGM) in the high-redshift ($z > 8$) Universe. Using Chandra observations of a sample of 30 galaxies at $D \approx$~200--450 Mpc that have high specific star-format… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16566v1-abstract-full').style.display = 'inline'; document.getElementById('2203.16566v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.16566v1-abstract-full" style="display: none;"> High-energy emission associated with star formation has been proposed as a significant source of interstellar medium (ISM) ionization in low-metallicity starbursts and an important contributor to the heating of the intergalactic medium (IGM) in the high-redshift ($z > 8$) Universe. Using Chandra observations of a sample of 30 galaxies at $D \approx$~200--450 Mpc that have high specific star-formation rates of 3--9 Gyr$^{-1}$ and metallicities near $Z \approx 0.3 Z_\odot$, we provide new measurements of the average 0.5--8 keV spectral shape and normalization per unit star-formation rate (SFR). We model the sample-combined X-ray spectrum as a combination of hot gas and high-mass X-ray binary (HMXB) populations and constrain their relative contributions. We derive scaling relations of $\log L_{\rm 0.5-8 keV}^{\rm HMXB}$/SFR $= 40.19 \pm 0.06$ and $\log L_{\rm 0.5-2 keV}^{\rm gas}$/SFR $= 39.58^{+0.17}_{-0.28}$; significantly elevated compared to local relations. The HMXB scaling is also somewhat higher than $L_{\rm 0.5-8 keV}^{\rm HMXB}$-SFR-$Z$ relations presented in the literature, potentially due to our galaxies having relatively low HMXB obscuration and young and X-ray luminous stellar populations. The elevation of the hot gas scaling relation is at the level expected for diminished attenuation due to a reduction of metals; however, we cannot conclude that an $L_{\rm 0.5-2 keV}^{\rm gas}$-SFR-$Z$ relation is driven solely by changes in ISM metal content. Finally, we present SFR-scaled spectral models (both emergent and intrinsic) that span the X-ray--to--IR band, providing new benchmarks for studies of the impact of ISM ionization and IGM heating in the early Universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16566v1-abstract-full').style.display = 'none'; document.getElementById('2203.16566v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ (25 pages, 9 figures, and 4 tables)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.03718">arXiv:2201.03718</a> <span> [<a href="https://arxiv.org/pdf/2201.03718">pdf</a>, <a href="https://arxiv.org/format/2201.03718">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac4971">10.3847/1538-4357/ac4971 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fitting AGN/galaxy X-ray-to-radio SEDs with CIGALE and improvement of the code </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Yang%2C+G">Guang Yang</a>, <a href="/search/?searchtype=author&query=Boquien%2C+M">M茅d茅ric Boquien</a>, <a href="/search/?searchtype=author&query=Brandt%2C+W+N">William N. Brandt</a>, <a href="/search/?searchtype=author&query=Buat%2C+V">V茅ronique Buat</a>, <a href="/search/?searchtype=author&query=Burgarella%2C+D">Denis Burgarella</a>, <a href="/search/?searchtype=author&query=Ciesla%2C+L">Laure Ciesla</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">Bret D. Lehmer</a>, <a href="/search/?searchtype=author&query=Ma%C5%82ek%2C+K+E">Katarzyna E. Ma艂ek</a>, <a href="/search/?searchtype=author&query=Mountrichas%2C+G">George Mountrichas</a>, <a href="/search/?searchtype=author&query=Papovich%2C+C">Casey Papovich</a>, <a href="/search/?searchtype=author&query=Pons%2C+E">Estelle Pons</a>, <a href="/search/?searchtype=author&query=Stalevski%2C+M">Marko Stalevski</a>, <a href="/search/?searchtype=author&query=Theul%C3%A9%2C+P">Patrice Theul茅</a>, <a href="/search/?searchtype=author&query=Zhu%2C+S">Shifu Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.03718v1-abstract-short" style="display: inline;"> Modern and future surveys effectively provide a panchromatic view for large numbers of extragalactic objects. Consistently modeling these multiwavelength survey data is a critical but challenging task for extragalactic studies. The Code Investigating GALaxy Emission (CIGALE) is an efficient PYTHON code for spectral energy distribution (SED) fitting of galaxies and active galactic nuclei (AGNs). Re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03718v1-abstract-full').style.display = 'inline'; document.getElementById('2201.03718v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.03718v1-abstract-full" style="display: none;"> Modern and future surveys effectively provide a panchromatic view for large numbers of extragalactic objects. Consistently modeling these multiwavelength survey data is a critical but challenging task for extragalactic studies. The Code Investigating GALaxy Emission (CIGALE) is an efficient PYTHON code for spectral energy distribution (SED) fitting of galaxies and active galactic nuclei (AGNs). Recently, a major extension of CIGALE (named X-CIGALE) has been developed to account for AGN/galaxy X-ray emission and improve AGN modeling at UV-to-IR wavelengths. Here, we apply X-CIGALE to different samples, including COSMOS spectroscopic type 2 AGNs, CDF-S X-ray detected normal galaxies, SDSS quasars, and COSMOS radio objects. From these tests, we identify several weaknesses of X-CIGALE and improve the code accordingly. These improvements are mainly related to AGN intrinsic X-ray anisotropy, X-ray binary emission, AGN accretion-disk SED shape, and AGN radio emission. These updates improve the fit quality and allow new interpretation of the results, based on which we discuss physical implications. For example, we find that AGN intrinsic X-ray anisotropy is moderate, and can be modeled as $L_X(胃) \propto 1+\cos 胃$, where $胃$ is the viewing angle measured from the AGN axis. We merge the new code into the major branch of CIGALE, and publicly release this new version as CIGALE v2022.0 on https://cigale.lam.fr <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03718v1-abstract-full').style.display = 'none'; document.getElementById('2201.03718v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ApJ accepted. The code is available at https://cigale.lam.fr/news/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.05039">arXiv:2109.05039</a> <span> [<a href="https://arxiv.org/pdf/2109.05039">pdf</a>, <a href="https://arxiv.org/format/2109.05039">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac25f3">10.3847/1538-4357/ac25f3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the Impact of Inclination-Dependent Attenuation on Derived Star Formation Histories: Results from Disk Galaxies in the Great Observatories Origins Deep Survey Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Doore%2C+K">Keith Doore</a>, <a href="/search/?searchtype=author&query=Eufrasio%2C+R+T">Rafael T. Eufrasio</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">Bret D. Lehmer</a>, <a href="/search/?searchtype=author&query=Monson%2C+E+B">Erik B. Monson</a>, <a href="/search/?searchtype=author&query=Basu-Zych%2C+A">Antara Basu-Zych</a>, <a href="/search/?searchtype=author&query=Garofali%2C+K">Kristen Garofali</a>, <a href="/search/?searchtype=author&query=Ptak%2C+A">Andrew Ptak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.05039v2-abstract-short" style="display: inline;"> We develop and implement an inclination-dependent attenuation prescription for spectral energy distribution (SED) fitting and study its impact on derived star-formation histories. We apply our prescription within the SED fitting code Lightning to a clean sample of 82, z=0.21-1.35 disk-dominated galaxies in the Great Observatories Origins Deep Survey North and South fields. To compare our inclinati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.05039v2-abstract-full').style.display = 'inline'; document.getElementById('2109.05039v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.05039v2-abstract-full" style="display: none;"> We develop and implement an inclination-dependent attenuation prescription for spectral energy distribution (SED) fitting and study its impact on derived star-formation histories. We apply our prescription within the SED fitting code Lightning to a clean sample of 82, z=0.21-1.35 disk-dominated galaxies in the Great Observatories Origins Deep Survey North and South fields. To compare our inclination-dependent attenuation prescription with more traditional fitting prescriptions, we also fit the SEDs with the inclination-independent Calzetti et al. (2000) attenuation curve. From this comparison, we find that fits to a subset of 58, z < 0.7 galaxies in our sample, utilizing the Calzetti et al. (2000) prescription, recover similar trends with inclination as the inclination-dependent fits for the far-UV-band attenuation and recent star-formation rates. However, we find a difference between prescriptions in the optical attenuation (AV) that is strongly correlated with inclination (p-value < 10^-11). For more face-on galaxies, with i < 50 deg, (edge-on, i = 90 deg), the average derived AV is 0.31 +\- 0.11 magnitudes lower (0.56 +\- 0.16 magnitudes higher) for the inclination-dependent model compared to traditional methods. Further, the ratio of stellar masses between prescriptions also has a significant (p-value < 10^-2) trend with inclination. For i = 0-65 deg, stellar masses are systematically consistent between fits, with log(Mstar_inc/Mstar_Calzetti) = -0.05 +/- 0.03 dex and scatter of 0.11 dex. However, for i = 80-90 deg, derived stellar masses are lower for the Calzetti et al. (2000) fits by an average factor of 0.17 +\- 0.03 dex and scatter of 0.13 dex. Therefore, these results suggest that SED fitting assuming the Calzetti et al. (2000) attenuation law potentially underestimates stellar masses in highly inclined disk-dominated galaxies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.05039v2-abstract-full').style.display = 'none'; document.getElementById('2109.05039v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 22 figures. 30 page body and 8 page appendix. Updated with published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 923 (2021) 26 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.13846">arXiv:2106.13846</a> <span> [<a href="https://arxiv.org/pdf/2106.13846">pdf</a>, <a href="https://arxiv.org/format/2106.13846">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac0f84">10.3847/1538-4357/ac0f84 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the Nature of AGN and Star Formation Enhancement in the $z = 3.1$ SSA22 Protocluster: The HST WFC3 IR View </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Monson%2C+E+B">Erik B. Monson</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">Bret D. Lehmer</a>, <a href="/search/?searchtype=author&query=Doore%2C+K">Keith Doore</a>, <a href="/search/?searchtype=author&query=Eufrasio%2C+R+T">Rafael T. Eufrasio</a>, <a href="/search/?searchtype=author&query=Bonine%2C+B">Brett Bonine</a>, <a href="/search/?searchtype=author&query=Alexander%2C+D+M">David M. Alexander</a>, <a href="/search/?searchtype=author&query=Harrison%2C+C+M">Chris M. Harrison</a>, <a href="/search/?searchtype=author&query=Kubo%2C+M">Mariko Kubo</a>, <a href="/search/?searchtype=author&query=Mantha%2C+K+B">Kameswara B. Mantha</a>, <a href="/search/?searchtype=author&query=Saez%2C+C">Cristian Saez</a>, <a href="/search/?searchtype=author&query=Straughn%2C+A">Amber Straughn</a>, <a href="/search/?searchtype=author&query=Umehata%2C+H">Hideki Umehata</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.13846v2-abstract-short" style="display: inline;"> We examine possible environmental sources of the enhanced star formation and active galactic nucleus (AGN) activity in the $z = 3.09$ SSA22 protocluster using Hubble WFC3 F160W ($\sim1.6\ \rm 渭m$) observations of the SSA22 field, including new observations centered on eight X-ray selected protocluster AGN. To investigate the role of mergers in the observed AGN and star formation enhancement, we ap… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13846v2-abstract-full').style.display = 'inline'; document.getElementById('2106.13846v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.13846v2-abstract-full" style="display: none;"> We examine possible environmental sources of the enhanced star formation and active galactic nucleus (AGN) activity in the $z = 3.09$ SSA22 protocluster using Hubble WFC3 F160W ($\sim1.6\ \rm 渭m$) observations of the SSA22 field, including new observations centered on eight X-ray selected protocluster AGN. To investigate the role of mergers in the observed AGN and star formation enhancement, we apply both quantitative (S茅rsic-fit and Gini-$M_{20}$) and visual morphological classifications to F160W images of protocluster Lyman break galaxies (LBGs) in the fields of the X-ray AGN and $z \sim 3$ field LBGs in SSA22 and GOODS-N. We find no statistically significant differences between the morphologies and merger fractions of protocluster and field LBGs, though we are limited by small number statistics in the protocluster. We also fit the UV-to-near-IR spectral energy distributions (SED) of F160W-detected protocluster and field LBGs to characterize their stellar masses and star formation histories (SFH). We find that the mean protocluster LBG is by a factor of $\sim2$ times more massive and more attenuated than the mean $z \sim 3$ field LBG. We take our results to suggest that ongoing mergers are not more common among protocluster LBGs than field LBGs, though protocluster LBGs appear to be more massive. We speculate that the larger mass of the protocluster LBGs contributes to the enhancement of SMBH mass and accretion rate in the protocluster, which in turn drives the observed protocluster AGN enhancement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13846v2-abstract-full').style.display = 'none'; document.getElementById('2106.13846v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages, 18 figures. 32 page body and 11 page appendix. Updated with published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 919 (2021), 51 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.10572">arXiv:2106.10572</a> <span> [<a href="https://arxiv.org/pdf/2106.10572">pdf</a>, <a href="https://arxiv.org/format/2106.10572">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/ac0dc6">10.3847/1538-4365/ac0dc6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The XMM-SERVS survey: XMM-Newton point-source catalogs for the W-CDF-S and ELAIS-S1 fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Ni%2C+Q">Q. Ni</a>, <a href="/search/?searchtype=author&query=Brandt%2C+W+N">W. N. Brandt</a>, <a href="/search/?searchtype=author&query=Chen%2C+C+-">C. -T. Chen</a>, <a href="/search/?searchtype=author&query=Luo%2C+B">B. Luo</a>, <a href="/search/?searchtype=author&query=Nyland%2C+K">K. Nyland</a>, <a href="/search/?searchtype=author&query=Yang%2C+G">G. Yang</a>, <a href="/search/?searchtype=author&query=Zou%2C+F">F. Zou</a>, <a href="/search/?searchtype=author&query=Aird%2C+J">J. Aird</a>, <a href="/search/?searchtype=author&query=Alexander%2C+D+M">D. M. Alexander</a>, <a href="/search/?searchtype=author&query=Bauer%2C+F+E">F. E. Bauer</a>, <a href="/search/?searchtype=author&query=Lacy%2C+M">M. Lacy</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">B. D. Lehmer</a>, <a href="/search/?searchtype=author&query=Mallick%2C+L">L. Mallick</a>, <a href="/search/?searchtype=author&query=Salvato%2C+M">M. Salvato</a>, <a href="/search/?searchtype=author&query=Schneider%2C+D+P">D. P. Schneider</a>, <a href="/search/?searchtype=author&query=Tozzi%2C+P">P. Tozzi</a>, <a href="/search/?searchtype=author&query=Traulsen%2C+I">I. Traulsen</a>, <a href="/search/?searchtype=author&query=Vaccari%2C+M">M. Vaccari</a>, <a href="/search/?searchtype=author&query=Vignali%2C+C">C. Vignali</a>, <a href="/search/?searchtype=author&query=Vito%2C+F">F. Vito</a>, <a href="/search/?searchtype=author&query=Xue%2C+Y">Y. Xue</a>, <a href="/search/?searchtype=author&query=Banerji%2C+M">M. Banerji</a>, <a href="/search/?searchtype=author&query=Chow%2C+K">K. Chow</a>, <a href="/search/?searchtype=author&query=Comastri%2C+A">A. Comastri</a>, <a href="/search/?searchtype=author&query=Del+Moro%2C+A">A. Del Moro</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.10572v1-abstract-short" style="display: inline;"> We present the X-ray point-source catalogs in two of the XMM-Spitzer Extragalactic Representative Volume Survey (XMM-SERVS) fields, W-CDF-S (4.6 deg$^2$) and ELAIS-S1 (3.2 deg$^2$), aiming to fill the gap between deep pencil-beam X-ray surveys and shallow X-ray surveys over large areas. The W-CDF-S and ELAIS-S1 regions were targeted with 2.3 Ms and 1.0 Ms of XMM-Newton observations, respectively;… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.10572v1-abstract-full').style.display = 'inline'; document.getElementById('2106.10572v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.10572v1-abstract-full" style="display: none;"> We present the X-ray point-source catalogs in two of the XMM-Spitzer Extragalactic Representative Volume Survey (XMM-SERVS) fields, W-CDF-S (4.6 deg$^2$) and ELAIS-S1 (3.2 deg$^2$), aiming to fill the gap between deep pencil-beam X-ray surveys and shallow X-ray surveys over large areas. The W-CDF-S and ELAIS-S1 regions were targeted with 2.3 Ms and 1.0 Ms of XMM-Newton observations, respectively; 1.8 Ms and 0.9 Ms exposures remain after flare filtering. The survey in W-CDF-S has a flux limit of 1.0 $\times$ 10$^{-14}$ erg cm$^{-2}$ s$^{-1}$ over 90% of its area in the 0.5-10 keV band; 4053 sources are detected in total. The survey in ELAIS-S1 has a flux limit of 1.3 $\times$ 10$^{-14}$ erg cm$^{-2}$ s$^{-1}$ over 90% of its area in the 0.5-10 keV band; 2630 sources are detected in total. Reliable optical-to-IR multiwavelength counterpart candidates are identified for $\approx$ 89% of the sources in W-CDF-S and $\approx$ 87% of the sources in ELAIS-S1. 3186 sources in W-CDF-S and 1985 sources in ELAIS-S1 are classified as AGNs. We also provide photometric redshifts for X-ray sources; $\approx$ 84% of the 3319/2001 sources in W-CDF-S/ELAIS-S1 with optical-to-NIR forced photometry available have either spectroscopic redshifts or high-quality photometric redshifts. The completion of the XMM-Newton observations in the W-CDF-S and ELAIS-S1 fields marks the end of the XMM-SERVS survey data gathering. The $\approx$ 12,000 point-like X-ray sources detected in the whole $\approx$ 13 deg$^2$ XMM-SERVS survey will benefit future large-sample AGN studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.10572v1-abstract-full').style.display = 'none'; document.getElementById('2106.10572v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 35 figures. Accepted for publication in ApJS. Data products available at: https://personal.psu.edu/wnb3/xmmservs/xmmservs.html</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.09476">arXiv:2011.09476</a> <span> [<a href="https://arxiv.org/pdf/2011.09476">pdf</a>, <a href="https://arxiv.org/ps/2011.09476">ps</a>, <a href="https://arxiv.org/format/2011.09476">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/abcec1">10.3847/1538-4357/abcec1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Metallicity Dependence of the High-Mass X-ray Binary Luminosity Function </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">Bret D. Lehmer</a>, <a href="/search/?searchtype=author&query=Eufrasio%2C+R+T">Rafael T. Eufrasio</a>, <a href="/search/?searchtype=author&query=Basu-Zych%2C+A">Antara Basu-Zych</a>, <a href="/search/?searchtype=author&query=Doore%2C+K">Keith Doore</a>, <a href="/search/?searchtype=author&query=Fragos%2C+T">Tassos Fragos</a>, <a href="/search/?searchtype=author&query=Garofali%2C+K">Kristen Garofali</a>, <a href="/search/?searchtype=author&query=Kovlakas%2C+K">Konstantinos Kovlakas</a>, <a href="/search/?searchtype=author&query=Williams%2C+B+J">Benjamin J. Williams</a>, <a href="/search/?searchtype=author&query=Zezas%2C+A">Andreas Zezas</a>, <a href="/search/?searchtype=author&query=Santana-Silva%2C+L">Luidhy Santana-Silva</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.09476v1-abstract-short" style="display: inline;"> We present detailed constraints on the metallicity dependence of the high mass X-ray binary (HMXB) X-ray luminosity function (XLF). We analyze ~5 Ms of Chandra data for 55 actively star-forming galaxies at D < 30 Mpc with gas-phase metallicities spanning 12 + log(O/H) = 7-9.2. Within the galactic footprints, our sample contains a total of 1311 X-ray point sources, of which ~49% are expected to be… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09476v1-abstract-full').style.display = 'inline'; document.getElementById('2011.09476v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.09476v1-abstract-full" style="display: none;"> We present detailed constraints on the metallicity dependence of the high mass X-ray binary (HMXB) X-ray luminosity function (XLF). We analyze ~5 Ms of Chandra data for 55 actively star-forming galaxies at D < 30 Mpc with gas-phase metallicities spanning 12 + log(O/H) = 7-9.2. Within the galactic footprints, our sample contains a total of 1311 X-ray point sources, of which ~49% are expected to be HMXBs, with the remaining sources likely to be low-mass X-ray binaries (LMXBs; ~22%) and unrelated background sources (~29%). We construct a model that successfully characterizes the average HMXB XLF over the full metallicity range. We demonstrate that the SFR-normalized HMXB XLF shows clear trends with metallicity, with steadily increasing numbers of luminous and ultraluminous X-ray sources (logL(erg/s) = 38-40.5) with declining metallicity. However, we find that the low-luminosity (logL(erg/s) = 36-38) HMXB XLF appears to show a nearly constant SFR scaling and slope with metallicity. Our model provides a revised scaling relation of integrated LX/SFR versus 12 + log(O/H) and a new characterization of its the SFR-dependent stochastic scatter. The general trend of this relation is broadly consistent with past studies based on integrated galaxy emission; however, our model suggests that this relation is driven primarily by the high-luminosity end of the HMXB XLF. Our results have implications for binary population synthesis models, the nature of super-Eddington accreting objects (e.g., ultraluminous X-ray sources), recent efforts to identify active galactic nucleus candidates in dwarf galaxies, and the X-ray radiation fields in the early Universe during the epoch of cosmic heating at z > 10. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09476v1-abstract-full').style.display = 'none'; document.getElementById('2011.09476v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.08985">arXiv:2009.08985</a> <span> [<a href="https://arxiv.org/pdf/2009.08985">pdf</a>, <a href="https://arxiv.org/format/2009.08985">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/abba2d">10.3847/1538-4357/abba2d <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the X-ray Spectral Energy Distributions of Star-Forming Galaxies: the 0.3-30 keV Spectrum of the Low-Metallicity Starburst Galaxy VV 114 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Garofali%2C+K">Kristen Garofali</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">Bret D. Lehmer</a>, <a href="/search/?searchtype=author&query=Basu-Zych%2C+A">Antara Basu-Zych</a>, <a href="/search/?searchtype=author&query=West%2C+L+A">Lacey A. West</a>, <a href="/search/?searchtype=author&query=Wik%2C+D">Daniel Wik</a>, <a href="/search/?searchtype=author&query=Yukita%2C+M">Mihoko Yukita</a>, <a href="/search/?searchtype=author&query=Vulic%2C+N">Neven Vulic</a>, <a href="/search/?searchtype=author&query=Ptak%2C+A">Andrew Ptak</a>, <a href="/search/?searchtype=author&query=Hornschemeier%2C+A">Ann Hornschemeier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.08985v1-abstract-short" style="display: inline;"> Binary population synthesis combined with cosmological models suggest that X-ray emission from star-forming galaxies, consisting primarily of emission from X-ray binaries (XRBs) and the hot interstellar medium (ISM), could be an important, and perhaps dominant, source of heating of the intergalactic medium prior to the epoch of reionization. However, such models rely on empirical constraints for t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.08985v1-abstract-full').style.display = 'inline'; document.getElementById('2009.08985v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.08985v1-abstract-full" style="display: none;"> Binary population synthesis combined with cosmological models suggest that X-ray emission from star-forming galaxies, consisting primarily of emission from X-ray binaries (XRBs) and the hot interstellar medium (ISM), could be an important, and perhaps dominant, source of heating of the intergalactic medium prior to the epoch of reionization. However, such models rely on empirical constraints for the X-ray spectral energy distributions (SEDs) of star-forming galaxies, which are currently lacking for low-metallicity galaxies. Using a combination of Chandra, XMM-Newton, and NuSTAR observations, we present new constraints on the 0.3-30 keV SED of the low-metallicity starburst galaxy VV 114, which is known to host several ultra-luminous X-ray sources (ULXs) with luminosities above 10$^{40}$ erg s$^{-1}$. We use an archival Chandra observation of VV 114 to constrain the contributions to the X-ray SED from the major X-ray emitting components of the galaxy, and newly acquired, nearly simultaneous XMM-Newton and NuSTAR observations to extend the spectral model derived from Chandra to cover the 0.3-30 keV range. Using our best-fit galaxy-wide spectral model, we derive the 0.3-30 keV SED of VV 114, which we find is dominated by emission from the XRB population, and in particular ULXs, at energies > 1.5 keV, and which we find to have an elevated galaxy-integrated X-ray luminosity per unit star formation rate relative to higher-metallicity star-forming galaxies. We discuss our results in terms of the effect of metallicity on XRB populations and the hot ISM, and the importance of X-ray emission from star-forming galaxies in the high redshift Universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.08985v1-abstract-full').style.display = 'none'; document.getElementById('2009.08985v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ApJ accepted. 25 pages, 8 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.10613">arXiv:2008.10613</a> <span> [<a href="https://arxiv.org/pdf/2008.10613">pdf</a>, <a href="https://arxiv.org/format/2008.10613">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202038848">10.1051/0004-6361/202038848 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chandra reveals a luminous Compton-thick QSO powering a $Ly伪$ blob in a $z=4$ starbursting protocluster </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Vito%2C+F">Fabio Vito</a>, <a href="/search/?searchtype=author&query=Brandt%2C+W+N">William Nielsen Brandt</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">Bret Darby Lehmer</a>, <a href="/search/?searchtype=author&query=Vignali%2C+C">Cristian Vignali</a>, <a href="/search/?searchtype=author&query=Zou%2C+F">Fan Zou</a>, <a href="/search/?searchtype=author&query=Bauer%2C+F+E">Franz Erik Bauer</a>, <a href="/search/?searchtype=author&query=Bremer%2C+M">Malcolm Bremer</a>, <a href="/search/?searchtype=author&query=Gilli%2C+R">Roberto Gilli</a>, <a href="/search/?searchtype=author&query=Ivison%2C+R+J">Rob J. Ivison</a>, <a href="/search/?searchtype=author&query=Spingola%2C+C">Cristiana Spingola</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.10613v1-abstract-short" style="display: inline;"> Galaxy clusters in the local universe descend from high-redshift overdense regions known as protoclusters. The large gas reservoirs and high rate of galaxy interaction in protoclusters are expected to trigger star-formation activity and luminous SMBH accretion in the host galaxies. We investigated the AGN content of a gas-rich and starbursting protocluster at $z=4$, known as the Distant Red Core (… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.10613v1-abstract-full').style.display = 'inline'; document.getElementById('2008.10613v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.10613v1-abstract-full" style="display: none;"> Galaxy clusters in the local universe descend from high-redshift overdense regions known as protoclusters. The large gas reservoirs and high rate of galaxy interaction in protoclusters are expected to trigger star-formation activity and luminous SMBH accretion in the host galaxies. We investigated the AGN content of a gas-rich and starbursting protocluster at $z=4$, known as the Distant Red Core (DRC). We observed with Chandra (139 ks) the 13 identified members of the structure, and searched for luminous and possibly obscured AGN among them. We also tested whether a hidden AGN can power the $Ly伪$ blob (LAB) detected with VLT/MUSE in the DRC. We detected obscured X-ray emission from the two most gas-rich members of the DRC, named DRC-1 and DRC-2. Both of them are resolved into multiple interacting clumps in high-resolution ALMA and HST observations. In particular, DRC-2 is found to host a luminous ($L_{2-10\,\mathrm{keV}}\approx3\times10^{45}\,\mathrm{erg\,s^{-1}}$) Compton-thick ($N_H\gtrsim10^{24}\,\mathrm{cm^{-2}}$) QSO, comparable to the most luminous QSOs known at all cosmic times. The AGN fraction among DRC members is consistent with results found for lower redshift protoclusters. However, X-ray stacking analysis reveals that SMBH accretion is likely also taking place in other DRC galaxies that are not detected individually by Chandra. Our results point toward the presence of a strong link between large gas reservoirs, galaxy interactions, and luminous and obscured nuclear activity in protocluster members. The powerful and obscured QSO detected in DRC-2 is likely powering the nearby LAB detected with VLT/MUSE, possibly through photoionization; however, we propose that the diffuse $Ly伪$ emission may be due to gas shocked by a massive outflow launched by DRC-2 over a $\approx10$ kpc scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.10613v1-abstract-full').style.display = 'none'; document.getElementById('2008.10613v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, accepted for publication in A&A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 642, A149 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.13045">arXiv:2004.13045</a> <span> [<a href="https://arxiv.org/pdf/2004.13045">pdf</a>, <a href="https://arxiv.org/ps/2004.13045">ps</a>, <a href="https://arxiv.org/format/2004.13045">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/ab9175">10.3847/1538-4365/ab9175 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> X-ray Binary Luminosity Function Scaling Relations in Elliptical Galaxies: Evidence for Globular Cluster Seeding of Low-Mass X-ray Binaries in Galactic Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">Bret D. Lehmer</a>, <a href="/search/?searchtype=author&query=Ferrell%2C+A+P">Andrew P. Ferrell</a>, <a href="/search/?searchtype=author&query=Doore%2C+K">Keith Doore</a>, <a href="/search/?searchtype=author&query=Eufrasio%2C+R+T">Rafael T. Eufrasio</a>, <a href="/search/?searchtype=author&query=Monson%2C+E+B">Erik B. Monson</a>, <a href="/search/?searchtype=author&query=Alexander%2C+D+M">David M. Alexander</a>, <a href="/search/?searchtype=author&query=Basu-Zych%2C+A">Antara Basu-Zych</a>, <a href="/search/?searchtype=author&query=Brandt%2C+W+N">William N. Brandt</a>, <a href="/search/?searchtype=author&query=Sivakoff%2C+G">Greg Sivakoff</a>, <a href="/search/?searchtype=author&query=Tzanavaris%2C+P">Panayiotis Tzanavaris</a>, <a href="/search/?searchtype=author&query=Yukita%2C+M">Mihoko Yukita</a>, <a href="/search/?searchtype=author&query=Fragos%2C+T">Tassos Fragos</a>, <a href="/search/?searchtype=author&query=Ptak%2C+A">Andrew Ptak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.13045v1-abstract-short" style="display: inline;"> We investigate X-ray binary (XRB) luminosity function (XLF) scaling relations for Chandra detected populations of low-mass XRBs (LMXBs) within the footprints of 24 early-type galaxies. Our sample includes Chandra and HST observed galaxies at D < 25 Mpc that have estimates of the globular cluster (GC) specific frequency (SN) reported in the literature. As such, we are able to directly classify X-ra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.13045v1-abstract-full').style.display = 'inline'; document.getElementById('2004.13045v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.13045v1-abstract-full" style="display: none;"> We investigate X-ray binary (XRB) luminosity function (XLF) scaling relations for Chandra detected populations of low-mass XRBs (LMXBs) within the footprints of 24 early-type galaxies. Our sample includes Chandra and HST observed galaxies at D < 25 Mpc that have estimates of the globular cluster (GC) specific frequency (SN) reported in the literature. As such, we are able to directly classify X-ray-detected sources as being either coincident with unrelated background/foreground objects, GCs, or sources that are within the fields of the galaxy targets. We model the GC and field LMXB population XLFs for all galaxies separately, and then construct global models characterizing how the LMXB XLFs vary with galaxy stellar mass and SN. We find that our field LMXB XLF models require a component that scales with SN, and has a shape consistent with that found for the GC LMXB XLF. We take this to indicate that GCs are "seeding" the galactic field LMXB population, through the ejection of GC-LMXBs and/or the diffusion of the GCs in the galactic fields themselves. However, we also find that an important LMXB XLF component is required for all galaxies that scales with stellar mass, implying that a substantial population of LMXBs are formed "in situ," which dominates the LMXB population emission for galaxies with SN < 2. For the first time, we provide a framework quantifying how directly-associated GC LMXBs, GC-seeded LMXBs, and in-situ LMXBs contribute to LMXB XLFs in the broader early-type galaxy population. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.13045v1-abstract-full').style.display = 'none'; document.getElementById('2004.13045v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJS. Data products and catalogs available at https://lehmer.uark.edu/downloads/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.11110">arXiv:1909.11110</a> <span> [<a href="https://arxiv.org/pdf/1909.11110">pdf</a>, <a href="https://arxiv.org/format/1909.11110">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab3f32">10.3847/1538-4357/ab3f32 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutron Stars and Black Holes in the Small Magellanic Cloud: The SMC NuSTAR Legacy Survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Lazzarini%2C+M">M. Lazzarini</a>, <a href="/search/?searchtype=author&query=Williams%2C+B+F">B. F. Williams</a>, <a href="/search/?searchtype=author&query=Hornschemeier%2C+A+E">A. E. Hornschemeier</a>, <a href="/search/?searchtype=author&query=Antoniou%2C+V">V. Antoniou</a>, <a href="/search/?searchtype=author&query=Vasilopoulos%2C+G">G. Vasilopoulos</a>, <a href="/search/?searchtype=author&query=Haberl%2C+F">F. Haberl</a>, <a href="/search/?searchtype=author&query=Vulic%2C+N">N. Vulic</a>, <a href="/search/?searchtype=author&query=Yukita%2C+M">M. Yukita</a>, <a href="/search/?searchtype=author&query=Zezas%2C+A">A. Zezas</a>, <a href="/search/?searchtype=author&query=Bodaghee%2C+A">A. Bodaghee</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">B. D. Lehmer</a>, <a href="/search/?searchtype=author&query=Maccarone%2C+T+J">T. J. Maccarone</a>, <a href="/search/?searchtype=author&query=Ptak%2C+A">A. Ptak</a>, <a href="/search/?searchtype=author&query=Wik%2C+D">D. Wik</a>, <a href="/search/?searchtype=author&query=Fornasini%2C+F+M">F. M. Fornasini</a>, <a href="/search/?searchtype=author&query=Hong%2C+J">Jaesub Hong</a>, <a href="/search/?searchtype=author&query=Kennea%2C+J+A">J. A. Kennea</a>, <a href="/search/?searchtype=author&query=Tomsick%2C+J+A">J. A. Tomsick</a>, <a href="/search/?searchtype=author&query=Venters%2C+T">T. Venters</a>, <a href="/search/?searchtype=author&query=Udalski%2C+A">A. Udalski</a>, <a href="/search/?searchtype=author&query=Cassity%2C+A">A. Cassity</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.11110v1-abstract-short" style="display: inline;"> We present a source catalog from the first deep hard X-ray ($E>10$ keV) survey of the Small Magellanic Cloud (SMC), the NuSTAR Legacy Survey of the SMC. We observed three fields, for a total exposure time of 1 Ms, along the bar of this nearby star-forming galaxy. Fields were chosen for their young stellar and accreting binary populations. We detected 10 sources above a 3$蟽$ significance level (4… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.11110v1-abstract-full').style.display = 'inline'; document.getElementById('1909.11110v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.11110v1-abstract-full" style="display: none;"> We present a source catalog from the first deep hard X-ray ($E>10$ keV) survey of the Small Magellanic Cloud (SMC), the NuSTAR Legacy Survey of the SMC. We observed three fields, for a total exposure time of 1 Ms, along the bar of this nearby star-forming galaxy. Fields were chosen for their young stellar and accreting binary populations. We detected 10 sources above a 3$蟽$ significance level (4$-$25 keV) and obtained upper limits on an additional 40 sources. We reached a 3$蟽$ limiting luminosity in the 4$-$25 keV band of $\sim$ $10^{35}$ erg s$^{-1}$, allowing us to probe fainter X-ray binary (XRB) populations than has been possible with other extragalactic NuSTAR surveys. We used hard X-ray colors and luminosities to constrain the compact-object type, exploiting the spectral differences between accreting black holes and neutron stars at $E>10$ keV. Several of our sources demonstrate variability consistent with previously observed behavior. We confirmed pulsations for seven pulsars in our 3$蟽$ sample. We present the first detection of pulsations from a Be-XRB, SXP305 (CXO J005215.4$-$73191), with an X-ray pulse period of $305.69\pm0.16$ seconds and a likely orbital period of $\sim$1160-1180 days. Bright sources ($\gtrsim 5\times 10^{36}$ erg s$^{-1}$) in our sample have compact-object classifications consistent with their previously reported types in the literature. Lower luminosity sources ($\lesssim 5\times 10^{36}$ erg s$^{-1}$) have X-ray colors and luminosities consistent with multiple classifications. We raise questions about possible spectral differences at low luminosity between SMC pulsars and the Galactic pulsars used to create the diagnostic diagrams. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.11110v1-abstract-full').style.display = 'none'; document.getElementById('1909.11110v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 tables, 18 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.05197">arXiv:1905.05197</a> <span> [<a href="https://arxiv.org/pdf/1905.05197">pdf</a>, <a href="https://arxiv.org/ps/1905.05197">ps</a>, <a href="https://arxiv.org/format/1905.05197">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/ab22a8">10.3847/1538-4365/ab22a8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> X-ray Binary Luminosity Function Scaling Relations for Local Galaxies Based on Subgalactic Modeling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">Bret D. Lehmer</a>, <a href="/search/?searchtype=author&query=Eufrasio%2C+R+T">Rafael T. Eufrasio</a>, <a href="/search/?searchtype=author&query=Tzanavaris%2C+P">Panayiotis Tzanavaris</a>, <a href="/search/?searchtype=author&query=Basu-Zych%2C+A">Antara Basu-Zych</a>, <a href="/search/?searchtype=author&query=Fragos%2C+T">Tassos Fragos</a>, <a href="/search/?searchtype=author&query=Prestwich%2C+A">Andrea Prestwich</a>, <a href="/search/?searchtype=author&query=Yukita%2C+M">Mihoko Yukita</a>, <a href="/search/?searchtype=author&query=Zezas%2C+A">Andreas Zezas</a>, <a href="/search/?searchtype=author&query=Hornschemeier%2C+A+E">Ann E. Hornschemeier</a>, <a href="/search/?searchtype=author&query=Ptak%2C+A">Andrew Ptak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.05197v1-abstract-short" style="display: inline;"> We present new Chandra constraints on the X-ray luminosity functions (XLFs) of X-ray binary (XRB) populations, and their scaling relations, for a sample of 38 nearby galaxies (D = 3.4-29 Mpc). Our galaxy sample is drawn primarily from the Spitzer infrared nearby galaxy survey (SINGS), and contains a wealth of Chandra (5.8 Ms total) and multiwavelength data, allowing for star-formation rates (SFRs)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.05197v1-abstract-full').style.display = 'inline'; document.getElementById('1905.05197v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.05197v1-abstract-full" style="display: none;"> We present new Chandra constraints on the X-ray luminosity functions (XLFs) of X-ray binary (XRB) populations, and their scaling relations, for a sample of 38 nearby galaxies (D = 3.4-29 Mpc). Our galaxy sample is drawn primarily from the Spitzer infrared nearby galaxy survey (SINGS), and contains a wealth of Chandra (5.8 Ms total) and multiwavelength data, allowing for star-formation rates (SFRs) and stellar masses (M*) to be measured on subgalactic scales. We divided the 2478 X-ray detected sources into 21 subsamples in bins of specific-SFR (sSFR = SFR/M*) and constructed XLFs. To model the XLF dependence on sSFR, we fit a global XLF model, containing contributions from high-mass XRBs (HMXBs), low-mass XRBs (LMXBs), and background sources from the cosmic X-ray background (CXB) that respectively scale with SFR, M*, and sky area. We find an HMXB XLF that is more complex in shape than previously reported and an LMXB XLF that likely varies with sSFR, potentially due to an age dependence. When applying our global model to XLF data for each individual galaxy, we discover a few galaxy XLFs that significantly deviate from our model beyond statistical scatter. Most notably, relatively low-metallicity galaxies have an excess of HMXBs above ~10^38 erg/s and elliptical galaxies that have relatively rich populations of globular clusters (GCs) show excesses of LMXBs compared to the global model. Additional modeling of how the XRB XLF depends on stellar age, metallicity, and GC specific frequency is required to sufficiently characterize the XLFs of galaxies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.05197v1-abstract-full').style.display = 'none'; document.getElementById('1905.05197v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJS (37 pages, 16 figures, and 7 tables). Data products available (https://lehmer.uark.edu/downloads/)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.05368">arXiv:1904.05368</a> <span> [<a href="https://arxiv.org/pdf/1904.05368">pdf</a>, <a href="https://arxiv.org/format/1904.05368">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-019-1079-5">10.1038/s41586-019-1079-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A magnetar-powered X-ray transient as the aftermath of a binary neutron-star merger </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Xue%2C+Y+Q">Y. Q. Xue</a>, <a href="/search/?searchtype=author&query=Zheng%2C+X+C">X. C. Zheng</a>, <a href="/search/?searchtype=author&query=Li%2C+Y">Y. Li</a>, <a href="/search/?searchtype=author&query=Brandt%2C+W+N">W. N. Brandt</a>, <a href="/search/?searchtype=author&query=Zhang%2C+B">B. Zhang</a>, <a href="/search/?searchtype=author&query=Luo%2C+B">B. Luo</a>, <a href="/search/?searchtype=author&query=Zhang%2C+B+B">B. B. Zhang</a>, <a href="/search/?searchtype=author&query=Bauer%2C+F+E">F. E. Bauer</a>, <a href="/search/?searchtype=author&query=Sun%2C+H">H. Sun</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">B. D. Lehmer</a>, <a href="/search/?searchtype=author&query=Wu%2C+X+F">X. F. Wu</a>, <a href="/search/?searchtype=author&query=Yang%2C+G">G. Yang</a>, <a href="/search/?searchtype=author&query=Kong%2C+X">X. Kong</a>, <a href="/search/?searchtype=author&query=Li%2C+J+Y">J. Y. Li</a>, <a href="/search/?searchtype=author&query=Sun%2C+M+Y">M. Y. Sun</a>, <a href="/search/?searchtype=author&query=Wang%2C+J+-">J. -X. Wang</a>, <a href="/search/?searchtype=author&query=Vito%2C+F">F. Vito</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.05368v1-abstract-short" style="display: inline;"> Neutron star-neutron star mergers are known to be associated with short gamma-ray bursts. If the neutron star equation of state is sufficiently stiff, at least some of such mergers will leave behind a supramassive or even a stable neutron star that spins rapidly with a strong magnetic field (i.e., a magnetar). Such a magnetar signature may have been observed as the X-ray plateau following a good f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.05368v1-abstract-full').style.display = 'inline'; document.getElementById('1904.05368v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.05368v1-abstract-full" style="display: none;"> Neutron star-neutron star mergers are known to be associated with short gamma-ray bursts. If the neutron star equation of state is sufficiently stiff, at least some of such mergers will leave behind a supramassive or even a stable neutron star that spins rapidly with a strong magnetic field (i.e., a magnetar). Such a magnetar signature may have been observed as the X-ray plateau following a good fraction (up to 50%) of short gamma-ray bursts, and it has been expected that one may observe short gamma-ray burst-less X-ray transients powered by double neutron star mergers. A fast X-ray transient (CDF-S XT1) was recently found to be associated with a faint host galaxy whose redshift is unknown. Its X-ray and host-galaxy properties allow several possibleexplanations including a short gamma-ray burst seen off axis, a low-luminosity gamma-ray burst at high redshift, or a tidal disruption event involving an intermediate mass black hole and a white dwarf. Here we report a second X-ray transient, CDF-S XT2, that is associated with a galaxy at redshift z = 0.738. The light curve is fully consistent with being powered by a millisecond magnetar. More intriguingly, CDF-S XT2 lies in the outskirts of its star-forming host galaxy with a moderate offset from the galaxy center, as short bursts often do. The estimated event rate density of similar X-ray transients, when corrected to the local value, is consistent with the double neutron star merger rate density inferred from the detection of GW170817. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.05368v1-abstract-full').style.display = 'none'; document.getElementById('1904.05368v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 4 figures, 3 tables, published in Nature on 11 April 2019</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature, Vol. 568, 198-201 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.09858">arXiv:1903.09858</a> <span> [<a href="https://arxiv.org/pdf/1903.09858">pdf</a>, <a href="https://arxiv.org/ps/1903.09858">ps</a>, <a href="https://arxiv.org/format/1903.09858">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Astro 2020 Science White Paper: Time Domain Studies of Neutron Star and Black Hole Populations: X-ray Identification of Compact Object Types </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Vulic%2C+N">N. Vulic</a>, <a href="/search/?searchtype=author&query=Hornschemeier%2C+A+E">A. E. Hornschemeier</a>, <a href="/search/?searchtype=author&query=Antoniou%2C+V">V. Antoniou</a>, <a href="/search/?searchtype=author&query=Basu-Zych%2C+A+R">A. R. Basu-Zych</a>, <a href="/search/?searchtype=author&query=Binder%2C+B">B. Binder</a>, <a href="/search/?searchtype=author&query=Fornasini%2C+F+M">F. M. Fornasini</a>, <a href="/search/?searchtype=author&query=Furst%2C+F">F. Furst</a>, <a href="/search/?searchtype=author&query=Haberl%2C+F">F. Haberl</a>, <a href="/search/?searchtype=author&query=Heida%2C+M">M. Heida</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">B. D. Lehmer</a>, <a href="/search/?searchtype=author&query=Maccarone%2C+T+J">T. J. Maccarone</a>, <a href="/search/?searchtype=author&query=Ptak%2C+A+F">A. F. Ptak</a>, <a href="/search/?searchtype=author&query=Sivakoff%2C+G+R">G. R. Sivakoff</a>, <a href="/search/?searchtype=author&query=Tzanavaris%2C+P">P. Tzanavaris</a>, <a href="/search/?searchtype=author&query=Wik%2C+D+R">D. R. Wik</a>, <a href="/search/?searchtype=author&query=Williams%2C+B+F">B. F. Williams</a>, <a href="/search/?searchtype=author&query=Wilms%2C+J">J. Wilms</a>, <a href="/search/?searchtype=author&query=Yukita%2C+M">M. Yukita</a>, <a href="/search/?searchtype=author&query=Zezas%2C+A">A. Zezas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.09858v1-abstract-short" style="display: inline;"> What are the most important conditions and processes governing the growth of stellar-origin compact objects? The identification of compact object type as either black hole (BH) or neutron star (NS) is fundamental to understanding their formation and evolution. To date, time-domain determination of compact object type remains a relatively untapped tool. Measurement of orbital periods, pulsations, a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.09858v1-abstract-full').style.display = 'inline'; document.getElementById('1903.09858v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.09858v1-abstract-full" style="display: none;"> What are the most important conditions and processes governing the growth of stellar-origin compact objects? The identification of compact object type as either black hole (BH) or neutron star (NS) is fundamental to understanding their formation and evolution. To date, time-domain determination of compact object type remains a relatively untapped tool. Measurement of orbital periods, pulsations, and bursts will lead to a revolution in the study of the demographics of NS and BH populations, linking source phenomena to accretion and galaxy parameters (e.g., star formation, metallicity). To perform these measurements over sufficient parameter space, a combination of a wide-field (>5000 deg^2) transient X-ray monitor over a dynamic energy range (~1-100 keV) and an X-ray telescope for deep surveys with <5 arcsec PSF half-energy width (HEW) angular resolution are required. Synergy with multiwavelength data for characterizing the underlying stellar population will transform our understanding of the time domain properties of transient sources, helping to explain details of supernova explosions and gravitational wave event rates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.09858v1-abstract-full').style.display = 'none'; document.getElementById('1903.09858v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 2 figures. Submitted to the Astro2020 Decadal Survey</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.11483">arXiv:1810.11483</a> <span> [<a href="https://arxiv.org/pdf/1810.11483">pdf</a>, <a href="https://arxiv.org/ps/1810.11483">ps</a>, <a href="https://arxiv.org/format/1810.11483">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aaec6b">10.3847/1538-4357/aaec6b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the Nature of the X-ray Emission from the Ultraluminous X-ray Source, M33 X-8: New Constraints from NuSTAR and XMM-Newton </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=West%2C+L+A">Lacey A. West</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">Bret D. Lehmer</a>, <a href="/search/?searchtype=author&query=Wik%2C+D">Daniel Wik</a>, <a href="/search/?searchtype=author&query=Yang%2C+J">Jun Yang</a>, <a href="/search/?searchtype=author&query=Walton%2C+D+J">Dominic J. Walton</a>, <a href="/search/?searchtype=author&query=Antoniou%2C+V">Vallia Antoniou</a>, <a href="/search/?searchtype=author&query=Haberl%2C+F">Frank Haberl</a>, <a href="/search/?searchtype=author&query=Hornschemeier%2C+A">Ann Hornschemeier</a>, <a href="/search/?searchtype=author&query=Maccarone%2C+T+J">Thomas J. Maccarone</a>, <a href="/search/?searchtype=author&query=Plucinsky%2C+P+P">Paul P. Plucinsky</a>, <a href="/search/?searchtype=author&query=Ptak%2C+A">Andrew Ptak</a>, <a href="/search/?searchtype=author&query=Williams%2C+B+F">Benjamin F. Williams</a>, <a href="/search/?searchtype=author&query=Vulic%2C+N">Neven Vulic</a>, <a href="/search/?searchtype=author&query=Yukita%2C+M">Mihoko Yukita</a>, <a href="/search/?searchtype=author&query=Zezas%2C+A">Andreas Zezas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.11483v1-abstract-short" style="display: inline;"> We present nearly simultaneous NuSTAR and XMM-Newton observations of the nearby (832 kpc) ultraluminous X-ray source (ULX) M33 X-8. M33 X-8 has a 0.3-10 keV luminosity of LX ~ 1.4 x 10^39 erg/s, near the boundary of the "ultraluminous" classification, making it an important source for understanding the link between typical Galactic X-ray binaries and ULXs. Past studies have shown that the 0.3-10 k… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.11483v1-abstract-full').style.display = 'inline'; document.getElementById('1810.11483v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.11483v1-abstract-full" style="display: none;"> We present nearly simultaneous NuSTAR and XMM-Newton observations of the nearby (832 kpc) ultraluminous X-ray source (ULX) M33 X-8. M33 X-8 has a 0.3-10 keV luminosity of LX ~ 1.4 x 10^39 erg/s, near the boundary of the "ultraluminous" classification, making it an important source for understanding the link between typical Galactic X-ray binaries and ULXs. Past studies have shown that the 0.3-10 keV spectrum of X-8 can be characterized using an advection-dominated accretion disk model. We find that when fitting to our NuSTAR and XMM-Newton observations, an additional high-energy (>10 keV) Comptonization component is required, which allows us to rule out single advection-dominated disk and classical sub-Eddington models. With our new constraints, we analyze XMM-Newton data taken over the last 17 years to show that small (~30%) variations in the 0.3-10 keV flux of M33 X-8 result in spectral changes similar to those observed for other ULXs. The two most likely phenomenological scenarios suggested by the data are degenerate in terms of constraining the nature of the accreting compact object (i.e., black hole versus neutron star). We further present a search for pulsations using our suite of data; however, no clear pulsations are detected. Future observations designed to observe M33 X-8 at different flux levels across the full 0.3-30 keV range would significantly improve our constraints on the nature of this important source. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.11483v1-abstract-full').style.display = 'none'; document.getElementById('1810.11483v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ (15 pages, 4 tables, 6 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.09465">arXiv:1810.09465</a> <span> [<a href="https://arxiv.org/pdf/1810.09465">pdf</a>, <a href="https://arxiv.org/format/1810.09465">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aaea60">10.3847/1538-4357/aaea60 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Variability-selected low-luminosity active galactic nuclei candidates in the 7 Ms Chandra Deep Field-South </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Ding%2C+N">N. Ding</a>, <a href="/search/?searchtype=author&query=Luo%2C+B">B. Luo</a>, <a href="/search/?searchtype=author&query=Brandt%2C+W+N">W. N. Brandt</a>, <a href="/search/?searchtype=author&query=Paolillo%2C+M">M. Paolillo</a>, <a href="/search/?searchtype=author&query=Yang%2C+G">G. Yang</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">B. D. Lehmer</a>, <a href="/search/?searchtype=author&query=Shemmer%2C+O">O. Shemmer</a>, <a href="/search/?searchtype=author&query=Schneider%2C+D+P">D. P. Schneider</a>, <a href="/search/?searchtype=author&query=Tozzi%2C+P">P. Tozzi</a>, <a href="/search/?searchtype=author&query=Xue%2C+Y+Q">Y. Q. Xue</a>, <a href="/search/?searchtype=author&query=Zheng%2C+X+C">X. C. Zheng</a>, <a href="/search/?searchtype=author&query=Gu%2C+Q+S">Q. S. Gu</a>, <a href="/search/?searchtype=author&query=Koekemoer%2C+A+M">A. M. Koekemoer</a>, <a href="/search/?searchtype=author&query=Vignali%2C+C">C. Vignali</a>, <a href="/search/?searchtype=author&query=Vito%2C+F">F. Vito</a>, <a href="/search/?searchtype=author&query=Wang%2C+J+X">J. X. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.09465v1-abstract-short" style="display: inline;"> In deep X-ray surveys, active galactic nuclei (AGNs) with a broad range of luminosities have been identified. However, cosmologically distant low-luminosity AGN (LLAGN, $L_{\mathrm{X}} \lesssim 10^{42}$ erg s$^{-1}$) identification still poses a challenge due to significant contamination from host galaxies. Based on the 7 Ms Chandra Deep Field-South (CDF-S) survey, the longest timescale (… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.09465v1-abstract-full').style.display = 'inline'; document.getElementById('1810.09465v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.09465v1-abstract-full" style="display: none;"> In deep X-ray surveys, active galactic nuclei (AGNs) with a broad range of luminosities have been identified. However, cosmologically distant low-luminosity AGN (LLAGN, $L_{\mathrm{X}} \lesssim 10^{42}$ erg s$^{-1}$) identification still poses a challenge due to significant contamination from host galaxies. Based on the 7 Ms Chandra Deep Field-South (CDF-S) survey, the longest timescale ($\sim 17$ years) deep X-ray survey to date, we utilize an X-ray variability selection technique to search for LLAGNs that remain unidentified among the CDF-S X-ray sources. We find 13 variable sources from 110 unclassified CDF-S X-ray sources. Except for one source which could be an ultraluminous X-ray source, the variability of the remaining 12 sources is most likely due to accreting supermassive black holes. These 12 AGN candidates have low intrinsic X-ray luminosities, with a median value of $7 \times10^{40}$ erg s$^{-1}$. They are generally not heavily obscured, with an average effective power-law photon index of 1.8. The fraction of variable AGNs in the CDF-S is independent of X-ray luminosity and is only restricted by the total number of observed net counts, confirming previous findings that X-ray variability is a near-ubiquitous property of AGNs over a wide range of luminosities. There is an anti-correlation between X-ray luminosity and variability amplitude for high-luminosity AGNs, but as the luminosity drops to $\lesssim 10^{42}$ erg s$^{-1}$, the variability amplitude no longer appears dependent on the luminosity. The entire observed luminosity-variability trend can be roughly reproduced by an empirical AGN variability model based on a broken power-law power spectral density function. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.09465v1-abstract-full').style.display = 'none'; document.getElementById('1810.09465v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 11 figures, accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.05617">arXiv:1808.05617</a> <span> [<a href="https://arxiv.org/pdf/1808.05617">pdf</a>, <a href="https://arxiv.org/ps/1808.05617">ps</a>, <a href="https://arxiv.org/format/1808.05617">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aad500">10.3847/1538-4357/aad500 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Black Holes and Neutron Stars in Nearby Galaxies: Insights from NuSTAR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Vulic%2C+N">Neven Vulic</a>, <a href="/search/?searchtype=author&query=Hornschemeier%2C+A+E">Ann E. Hornschemeier</a>, <a href="/search/?searchtype=author&query=Wik%2C+D+R">Daniel R. Wik</a>, <a href="/search/?searchtype=author&query=Yukita%2C+M">Mihoko Yukita</a>, <a href="/search/?searchtype=author&query=Zezas%2C+A">Andreas Zezas</a>, <a href="/search/?searchtype=author&query=Ptak%2C+A+F">Andrew F. Ptak</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">Bret D. Lehmer</a>, <a href="/search/?searchtype=author&query=Antoniou%2C+V">Valsamo Antoniou</a>, <a href="/search/?searchtype=author&query=Maccarone%2C+T+J">Thomas J. Maccarone</a>, <a href="/search/?searchtype=author&query=Williams%2C+B+F">Benjamin F. Williams</a>, <a href="/search/?searchtype=author&query=Fornasini%2C+F+M">Francesca M. Fornasini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.05617v1-abstract-short" style="display: inline;"> Nearby galaxy surveys have long classified X-ray binaries (XRBs) by the mass category of their donor stars (high-mass and low-mass). The NuSTAR observatory, which provides imaging data at E $>10$ keV, has enabled the classification of extragalactic XRBs by their compact object type: neutron star (NS) or black hole (BH). We analyzed NuSTAR/Chandra/XMM-Newton observations from a NuSTAR-selected samp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.05617v1-abstract-full').style.display = 'inline'; document.getElementById('1808.05617v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.05617v1-abstract-full" style="display: none;"> Nearby galaxy surveys have long classified X-ray binaries (XRBs) by the mass category of their donor stars (high-mass and low-mass). The NuSTAR observatory, which provides imaging data at E $>10$ keV, has enabled the classification of extragalactic XRBs by their compact object type: neutron star (NS) or black hole (BH). We analyzed NuSTAR/Chandra/XMM-Newton observations from a NuSTAR-selected sample of 12 galaxies within 5 Mpc having stellar masses ($M_{\star}$) $10^{7-11}$ $M_{\odot}$ and star formation rates (SFR) $\approx0.01-15$ $M_{\odot}$ yr$^{-1}$. We detect 128 NuSTAR sources to a sensitivity of $\approx10^{38}$ erg s$^{-1}$. Using NuSTAR color-intensity and color-color diagrams we classify 43 of these sources as candidate NS and 47 as candidate BH. We further subdivide BH by accretion states (soft, intermediate, and hard) and NS by weak (Z/Atoll) and strong (accreting pulsar) magnetic field. Using 8 normal (Milky Way-type) galaxies in the sample, we confirm the relation between SFR and galaxy X-ray point source luminosity in the 4-25 and 12-25 keV energy bands. We also constrain galaxy X-ray point source luminosity using the relation $L_{\rm{X}}=伪M_{\star}+尾\text{SFR}$, finding agreement with previous work. The XLF of all sources in the 4-25 and 12-25 keV energy bands matches with the $伪=1.6$ slope for high-mass XRBs. We find that NS XLFs suggest a decline beginning at the Eddington limit for a 1.4 $M_{\odot}$ NS, whereas the BH fraction shows an approximate monotonic increase in the 4-25 and 12-25keV energy bands. We calculate the overall ratio of BH to NS to be $\approx1$ for 4-25 keV and $\approx2$ for 12-25 keV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.05617v1-abstract-full').style.display = 'none'; document.getElementById('1808.05617v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 12 figures, 8 tables. ApJ, in press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.07933">arXiv:1807.07933</a> <span> [<a href="https://arxiv.org/pdf/1807.07933">pdf</a>, <a href="https://arxiv.org/ps/1807.07933">ps</a>, <a href="https://arxiv.org/format/1807.07933">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/pasj/psy087">10.1093/pasj/psy087 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A high dust emissivity index beta for a CO-faint galaxy in a filamentary Lyman-alpha nebula at z=3.1 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Kato%2C+Y">Yuta Kato</a>, <a href="/search/?searchtype=author&query=Matsuda%2C+Y">Yuichi Matsuda</a>, <a href="/search/?searchtype=author&query=Iono%2C+D">Daisuke Iono</a>, <a href="/search/?searchtype=author&query=Hatsukade%2C+B">Bunyo Hatsukade</a>, <a href="/search/?searchtype=author&query=Umehata%2C+H">Hideki Umehata</a>, <a href="/search/?searchtype=author&query=Kohno%2C+K">Kotaro Kohno</a>, <a href="/search/?searchtype=author&query=Alexander%2C+D+M">David M. Alexander</a>, <a href="/search/?searchtype=author&query=Ao%2C+Y">Yiping Ao</a>, <a href="/search/?searchtype=author&query=Chapman%2C+S+C">Scott C. Chapman</a>, <a href="/search/?searchtype=author&query=Hayes%2C+M">Matthew Hayes</a>, <a href="/search/?searchtype=author&query=Kubo%2C+M">Mariko Kubo</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">Bret D. Lehmer</a>, <a href="/search/?searchtype=author&query=Malkan%2C+M+A">Matthew A. Malkan</a>, <a href="/search/?searchtype=author&query=Michiyama%2C+T">Tomonari Michiyama</a>, <a href="/search/?searchtype=author&query=Nagao%2C+T">Tohru Nagao</a>, <a href="/search/?searchtype=author&query=Saito%2C+T">Tomoki Saito</a>, <a href="/search/?searchtype=author&query=Tanaka%2C+I">Ichi Tanaka</a>, <a href="/search/?searchtype=author&query=Taniguchi%2C+Y">Yoshiaki Taniguchi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.07933v2-abstract-short" style="display: inline;"> We present CO J=4-3 line and 3 mm dust continuum observations of a 100 kpc-scale filamentary Ly伪 nebula (SSA22 LAB18) at z=3.1 using the Atacama Large Millimeter/submillimeter Array (ALMA). We detected the CO J=4-3 line at a systemic z(CO)=3.093 {\pm} 0.001 at 11 蟽 from one of the ALMA continuum sources associated with the Ly伪 filament. We estimated the CO J=4-3 luminosity of L'CO(4-3)=(2.3\pm0.2)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.07933v2-abstract-full').style.display = 'inline'; document.getElementById('1807.07933v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.07933v2-abstract-full" style="display: none;"> We present CO J=4-3 line and 3 mm dust continuum observations of a 100 kpc-scale filamentary Ly伪 nebula (SSA22 LAB18) at z=3.1 using the Atacama Large Millimeter/submillimeter Array (ALMA). We detected the CO J=4-3 line at a systemic z(CO)=3.093 {\pm} 0.001 at 11 蟽 from one of the ALMA continuum sources associated with the Ly伪 filament. We estimated the CO J=4-3 luminosity of L'CO(4-3)=(2.3\pm0.2)x10^9 K km s^{-1} pc^2 for this CO source, which is one order of magnitude smaller than those of typical z>1 dusty star-forming galaxies (DSFGs) of similar far-infrared luminosity L(IR)~10^{12} Lsun. We derived a molecular gas mass of Mgas=(4.4^{+0.9}_{-0.6})x10^9 Msun and a star-formation rate of SFR=270\pm160 Msun yr^{-1}. We also estimated a gas depletion time of 蟿(dep)=17\pm10 Myr, being shorter than those of typical DSFGs. It is suggested that this source is in a transition phase from DSFG to a gas-poor, early-type galaxy. From ALMA to Herschel multi-band dust continuum observations, we measured a dust emissivity index 尾=2.3\pm0.2, which is similar to those of local gas-poor, early-type galaxies. Such a high 尾 can be reproduced by specific chemical compositions for interstellar dust at the submillimeter wavelengths from recent laboratory experiments. ALMA CO and multi-band dust continuum observations can constrain the evolutionary stage of high-redshift galaxies through 蟿(dep) and 尾, and thus we can investigate dust chemical compositions even in the early Universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.07933v2-abstract-full').style.display = 'none'; document.getElementById('1807.07933v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pagers, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.03305">arXiv:1806.03305</a> <span> [<a href="https://arxiv.org/pdf/1806.03305">pdf</a>, <a href="https://arxiv.org/format/1806.03305">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aacb2a">10.3847/1538-4357/aacb2a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Young Accreting Compact Objects in M31: The Combined Power of NuSTAR, Chandra, and Hubble </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Lazzarini%2C+M">M. Lazzarini</a>, <a href="/search/?searchtype=author&query=Hornschemeier%2C+A+E">A. E. Hornschemeier</a>, <a href="/search/?searchtype=author&query=Williams%2C+B+F">B. F. Williams</a>, <a href="/search/?searchtype=author&query=Wik%2C+D">D. Wik</a>, <a href="/search/?searchtype=author&query=Vulic%2C+N">N. Vulic</a>, <a href="/search/?searchtype=author&query=Yukita%2C+M">M. Yukita</a>, <a href="/search/?searchtype=author&query=Zezas%2C+A">A. Zezas</a>, <a href="/search/?searchtype=author&query=Lewis%2C+A+R">A. R. Lewis</a>, <a href="/search/?searchtype=author&query=Durbin%2C+M">M. Durbin</a>, <a href="/search/?searchtype=author&query=Ptak%2C+A">A. Ptak</a>, <a href="/search/?searchtype=author&query=Bodaghee%2C+A">A. Bodaghee</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">B. D. Lehmer</a>, <a href="/search/?searchtype=author&query=Antoniou%2C+V">V. Antoniou</a>, <a href="/search/?searchtype=author&query=Maccarone%2C+T">T. Maccarone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.03305v1-abstract-short" style="display: inline;"> We present 15 high mass X-ray binary (HMXB) candidates in the disk of M31 for which we are able to infer compact object type, spectral type of the donor star, and age using multiwavelength observations from NuSTAR, Chandra, and the Hubble Space Telescope (HST). The hard X-ray colors and luminosities from NuSTAR permit the tentative classification of accreting X-ray binary systems by compact object… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.03305v1-abstract-full').style.display = 'inline'; document.getElementById('1806.03305v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.03305v1-abstract-full" style="display: none;"> We present 15 high mass X-ray binary (HMXB) candidates in the disk of M31 for which we are able to infer compact object type, spectral type of the donor star, and age using multiwavelength observations from NuSTAR, Chandra, and the Hubble Space Telescope (HST). The hard X-ray colors and luminosities from NuSTAR permit the tentative classification of accreting X-ray binary systems by compact object type, distinguishing black hole from neutron star systems. We find hard state black holes, pulsars, and non-magnetized neutron stars associated with optical point source counterparts with similar frequency. We also find nine non-magnetized neutron stars coincident with globular clusters and an equal number of pulsars with and without point source optical counterparts. We perform spectral energy distribution (SED) fitting for the most likely optical counterparts to the HMXB candidates, finding 7 likely high mass stars and 1 possible red Helium burning star. The remaining 7 HMXB optical counterparts have poor SED fits, so their companion stars remain unclassified. Using published star formation histories, we find that the majority of HMXB candidates --- X-ray sources with UV-bright point source optical counterpart candidates --- are found in regions with star formation bursts less than 50 Myr ago, with 3 associated with young stellar ages (<10 Myr). This is consistent with similar studies of HMXB populations in the Magellanic Clouds, M33, NGC 300, and NGC 2403. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.03305v1-abstract-full').style.display = 'none'; document.getElementById('1806.03305v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 9 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.07763">arXiv:1804.07763</a> <span> [<a href="https://arxiv.org/pdf/1804.07763">pdf</a>, <a href="https://arxiv.org/format/1804.07763">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/sty1036">10.1093/mnras/sty1036 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The XMM-SERVS survey: new XMM-Newton point-source catalog for the XMM-LSS field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Chen%2C+C+-+J">C. -T. J. Chen</a>, <a href="/search/?searchtype=author&query=Brandt%2C+W+N">W. N. Brandt</a>, <a href="/search/?searchtype=author&query=Luo%2C+B">B. Luo</a>, <a href="/search/?searchtype=author&query=Ranalli%2C+P">P. Ranalli</a>, <a href="/search/?searchtype=author&query=Yang%2C+G">G. Yang</a>, <a href="/search/?searchtype=author&query=Alexander%2C+D+M">D. M. Alexander</a>, <a href="/search/?searchtype=author&query=Bauer%2C+F+E">F. E. Bauer</a>, <a href="/search/?searchtype=author&query=Kelson%2C+D+D">D. D. Kelson</a>, <a href="/search/?searchtype=author&query=Lacy%2C+M">M. Lacy</a>, <a href="/search/?searchtype=author&query=Nyland%2C+K">K. Nyland</a>, <a href="/search/?searchtype=author&query=Tozzi%2C+P">P. Tozzi</a>, <a href="/search/?searchtype=author&query=Vito%2C+F">F. Vito</a>, <a href="/search/?searchtype=author&query=Cirasuolo%2C+M">M. Cirasuolo</a>, <a href="/search/?searchtype=author&query=Gilli%2C+R">R. Gilli</a>, <a href="/search/?searchtype=author&query=Jarvis%2C+M+J">M. J. Jarvis</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">B. D. Lehmer</a>, <a href="/search/?searchtype=author&query=Paolillo%2C+M">M. Paolillo</a>, <a href="/search/?searchtype=author&query=Schneider%2C+D+P">D. P. Schneider</a>, <a href="/search/?searchtype=author&query=Shemmer%2C+O">O. Shemmer</a>, <a href="/search/?searchtype=author&query=Smail%2C+I">I. Smail</a>, <a href="/search/?searchtype=author&query=Sun%2C+M">M. Sun</a>, <a href="/search/?searchtype=author&query=Tanaka%2C+M">M. Tanaka</a>, <a href="/search/?searchtype=author&query=Vaccari%2C+M">M. Vaccari</a>, <a href="/search/?searchtype=author&query=Vignali%2C+C">C. Vignali</a>, <a href="/search/?searchtype=author&query=Xue%2C+Y+Q">Y. Q. Xue</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.07763v1-abstract-short" style="display: inline;"> We present an X-ray point-source catalog from the XMM-Large Scale Structure survey region (XMM-LSS), one of the XMM-Spitzer Extragalactic Representative Volume Survey (XMM-SERVS) fields. We target the XMM-LSS region with $1.3$ Ms of new XMM-Newton AO-15 observations, transforming the archival X-ray coverage in this region into a 5.3 deg$^2$ contiguous field with uniform X-ray coverage totaling… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.07763v1-abstract-full').style.display = 'inline'; document.getElementById('1804.07763v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.07763v1-abstract-full" style="display: none;"> We present an X-ray point-source catalog from the XMM-Large Scale Structure survey region (XMM-LSS), one of the XMM-Spitzer Extragalactic Representative Volume Survey (XMM-SERVS) fields. We target the XMM-LSS region with $1.3$ Ms of new XMM-Newton AO-15 observations, transforming the archival X-ray coverage in this region into a 5.3 deg$^2$ contiguous field with uniform X-ray coverage totaling $2.7$ Ms of flare-filtered exposure, with a $46$ ks median PN exposure time. We provide an X-ray catalog of 5242 sources detected in the soft (0.5-2 keV), hard (2-10 keV), and/or full (0.5-10 keV) bands with a 1% expected spurious fraction determined from simulations. A total of 2381 new X-ray sources are detected compared to previous source catalogs in the same area. Our survey has flux limits of $1.7\times10^{-15}$, $1.3\times10^{-14}$, and $6.5\times10^{-15}$ erg cm$^{-2}$ s$^{-1}$ over 90% of its area in the soft, hard, and full bands, respectively, which is comparable to those of the XMM-COSMOS survey. We identify multiwavelength counterpart candidates for 99.9% of the X-ray sources, of which 93% are considered as reliable based on their matching likelihood ratios. The reliabilities of these high-likelihood-ratio counterparts are further confirmed to be $\approx 97$% reliable based on deep Chandra coverage over $\approx 5$% of the XMM-LSS region. Results of multiwavelength identifications are also included in the source catalog, along with basic optical-to-infrared photometry and spectroscopic redshifts from publicly available surveys. We compute photometric redshifts for X-ray sources in 4.5 deg$^2$ of our field where forced-aperture multi-band photometry is available; $>70$% of the X-ray sources in this subfield have either spectroscopic or high-quality photometric redshifts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.07763v1-abstract-full').style.display = 'none'; document.getElementById('1804.07763v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">MNRAS, accepted. 34 pages, 25 figures, and 8 tables. The data products are available at this http url: http://personal.psu.edu/wnb3/xmmservs/xmmservs.html</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.09403">arXiv:1710.09403</a> <span> [<a href="https://arxiv.org/pdf/1710.09403">pdf</a>, <a href="https://arxiv.org/ps/1710.09403">ps</a>, <a href="https://arxiv.org/format/1710.09403">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aa9578">10.3847/1538-4357/aa9578 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the Spatially Resolved Star-Formation History in M51 II: X-ray Binary Population Evolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">B. D. Lehmer</a>, <a href="/search/?searchtype=author&query=Eufrasio%2C+R+T">R. T Eufrasio</a>, <a href="/search/?searchtype=author&query=Markwardt%2C+L">L. Markwardt</a>, <a href="/search/?searchtype=author&query=Zezas%2C+A">A. Zezas</a>, <a href="/search/?searchtype=author&query=Basu-Zych%2C+A">A. Basu-Zych</a>, <a href="/search/?searchtype=author&query=Fragos%2C+T">T. Fragos</a>, <a href="/search/?searchtype=author&query=Hornschemeier%2C+A+E">A. E. Hornschemeier</a>, <a href="/search/?searchtype=author&query=Ptak%2C+A">A. Ptak</a>, <a href="/search/?searchtype=author&query=Tzanavaris%2C+P">P. Tzanavaris</a>, <a href="/search/?searchtype=author&query=Yukita%2C+M">M. Yukita</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.09403v1-abstract-short" style="display: inline;"> We present a new technique for empirically calibrating how the X-ray luminosity function (XLF) of X-ray binary (XRB) populations evolves following a star-formation event. We first utilize detailed stellar population synthesis modeling of far-UV to far-IR photometry of the nearby face-on spiral galaxy M51 to construct maps of the star-formation histories (SFHs) on subgalactic (~400 pc) scales. Next… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.09403v1-abstract-full').style.display = 'inline'; document.getElementById('1710.09403v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.09403v1-abstract-full" style="display: none;"> We present a new technique for empirically calibrating how the X-ray luminosity function (XLF) of X-ray binary (XRB) populations evolves following a star-formation event. We first utilize detailed stellar population synthesis modeling of far-UV to far-IR photometry of the nearby face-on spiral galaxy M51 to construct maps of the star-formation histories (SFHs) on subgalactic (~400 pc) scales. Next, we use the ~850 ks cumulative Chandra exposure of M51 to identify and isolate 2-7 keV detected point sources within the galaxy, and we use our SFH maps to recover the local properties of the stellar populations in which each X-ray source is located. We then divide the galaxy into various subregions based on their SFH properties (e.g., star-formation rate [SFR] per stellar mass [M*] and mass-weighted stellar age) and group the X-ray point sources according to the characteristics of the regions in which they are found. Finally, we construct and fit a parameterized XLF model that quantifies how the XLF shape and normalization evolves as a function of the XRB population age. Our best-fit model indicates the XRB XLF per unit stellar mass declines in normalization, by ~3-3.5 dex, and steepens in slope from ~10 Myr to ~10 Gyr. We find that our technique recovers results from past studies of how XRB XLFs and XRB luminosity scaling relations vary with age and provides a self-consistent picture for how the XRB XLF evolves with age. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.09403v1-abstract-full').style.display = 'none'; document.getElementById('1710.09403v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ (19 pages, 15 figures, and 2 tables)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.09401">arXiv:1710.09401</a> <span> [<a href="https://arxiv.org/pdf/1710.09401">pdf</a>, <a href="https://arxiv.org/ps/1710.09401">ps</a>, <a href="https://arxiv.org/format/1710.09401">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aa9569">10.3847/1538-4357/aa9569 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the Spatially Resolved Star Formation History in M51 I: Hybrid UV+IR Star Formation Laws and IR Emission from Dust Heated by Old Stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Eufrasio%2C+R+T">R. T. Eufrasio</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">B. D. Lehmer</a>, <a href="/search/?searchtype=author&query=Zezas%2C+A">A. Zezas</a>, <a href="/search/?searchtype=author&query=Dwek%2C+E">E. Dwek</a>, <a href="/search/?searchtype=author&query=Arendt%2C+R+G">R. G. Arendt</a>, <a href="/search/?searchtype=author&query=Basu-Zych%2C+A">A. Basu-Zych</a>, <a href="/search/?searchtype=author&query=Wiklind%2C+T">T. Wiklind</a>, <a href="/search/?searchtype=author&query=Yukita%2C+M">M. Yukita</a>, <a href="/search/?searchtype=author&query=Fragos%2C+T">T. Fragos</a>, <a href="/search/?searchtype=author&query=Hornschemeier%2C+A+E">A. E. Hornschemeier</a>, <a href="/search/?searchtype=author&query=Markwardt%2C+L">L. Markwardt</a>, <a href="/search/?searchtype=author&query=Ptak%2C+A">A. Ptak</a>, <a href="/search/?searchtype=author&query=Tzanavaris%2C+P">P. Tzanavaris</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.09401v1-abstract-short" style="display: inline;"> We present Lightning, a new spectral energy distribution (SED) fitting procedure, capable of quickly and reliably recovering star formation history (SFH) and extinction parameters. The SFH is modeled as discrete steps in time. In this work, we assumed lookback times of 0-10 Myr, 10-100 Myr, 0.1-1 Gyr, 1-5 Gyr, and 5-13.6 Gyr. Lightning consists of a fully vectorized inversion algorithm to determin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.09401v1-abstract-full').style.display = 'inline'; document.getElementById('1710.09401v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.09401v1-abstract-full" style="display: none;"> We present Lightning, a new spectral energy distribution (SED) fitting procedure, capable of quickly and reliably recovering star formation history (SFH) and extinction parameters. The SFH is modeled as discrete steps in time. In this work, we assumed lookback times of 0-10 Myr, 10-100 Myr, 0.1-1 Gyr, 1-5 Gyr, and 5-13.6 Gyr. Lightning consists of a fully vectorized inversion algorithm to determine SFH step intensities and combines this with a grid-based approach to determine three extinction parameters. We apply our procedure to the extensive FUV-to-FIR photometric data of M51, convolved to a common spatial resolution and pixel scale, and make the resulting maps publicly available. We recover, for M51a, a peak star formation rate (SFR) between 0.1 and 5 Gyr ago, with much lower star formation activity over the last 100 Myr. For M51b, we find a declining SFR toward the present day. In the outskirt regions of M51a, which includes regions between M51a and M51b, we recover a SFR peak between 0.1 and 1 Gyr ago, which corresponds to the effects of the interaction between M51a and M51b. We utilize our results to (1) illustrate how UV+IR hybrid SFR laws vary across M51, and (2) provide first-order estimates for how the IR luminosity per unit stellar mass varies as a function of the stellar age. From the latter result, we find that IR emission from dust heated by stars is not always associated with young stars, and that the IR emission from M51b is primarily powered by stars older than 5 Gyr. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.09401v1-abstract-full').style.display = 'none'; document.getElementById('1710.09401v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.07892">arXiv:1709.07892</a> <span> [<a href="https://arxiv.org/pdf/1709.07892">pdf</a>, <a href="https://arxiv.org/format/1709.07892">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stx2486">10.1093/mnras/stx2486 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-redshift AGN in the Chandra Deep Fields: the obscured fraction and space density of the sub-$L_*$ population </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Vito%2C+F">F. Vito</a>, <a href="/search/?searchtype=author&query=Brandt%2C+W+N">W. N. Brandt</a>, <a href="/search/?searchtype=author&query=Yang%2C+G">G. Yang</a>, <a href="/search/?searchtype=author&query=Gilli%2C+R">R. Gilli</a>, <a href="/search/?searchtype=author&query=Luo%2C+B">B. Luo</a>, <a href="/search/?searchtype=author&query=Vignali%2C+C">C. Vignali</a>, <a href="/search/?searchtype=author&query=Xue%2C+Y+Q">Y. Q. Xue</a>, <a href="/search/?searchtype=author&query=Comastri%2C+A">A. Comastri</a>, <a href="/search/?searchtype=author&query=Koekemoer%2C+A+M">A. M. Koekemoer</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">B. D. Lehmer</a>, <a href="/search/?searchtype=author&query=Liu%2C+T">T. Liu</a>, <a href="/search/?searchtype=author&query=Paolillo%2C+M">M. Paolillo</a>, <a href="/search/?searchtype=author&query=Ranalli%2C+P">P. Ranalli</a>, <a href="/search/?searchtype=author&query=Schneider%2C+D+P">D. P. Schneider</a>, <a href="/search/?searchtype=author&query=Shemmer%2C+O">O. Shemmer</a>, <a href="/search/?searchtype=author&query=Volonteri%2C+M">M. Volonteri</a>, <a href="/search/?searchtype=author&query=Wang%2C+J">J. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.07892v1-abstract-short" style="display: inline;"> We investigate the population of high-redshift ($3\leq z < 6$) AGN selected in the two deepest X-ray surveys, the 7 Ms \textit{Chandra} Deep Field-South and 2 Ms \textit{Chandra} Deep Field-North. Their outstanding sensitivity and spectral characterization of faint sources allow us to focus on the sub-$L_*$ regime (log$L_{\mathrm{X}}\lesssim44$), poorly sampled by previous works using shallower da… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.07892v1-abstract-full').style.display = 'inline'; document.getElementById('1709.07892v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.07892v1-abstract-full" style="display: none;"> We investigate the population of high-redshift ($3\leq z < 6$) AGN selected in the two deepest X-ray surveys, the 7 Ms \textit{Chandra} Deep Field-South and 2 Ms \textit{Chandra} Deep Field-North. Their outstanding sensitivity and spectral characterization of faint sources allow us to focus on the sub-$L_*$ regime (log$L_{\mathrm{X}}\lesssim44$), poorly sampled by previous works using shallower data, and the obscured population. Taking fully into account the individual photometric-redshift probability distribution functions, the final sample consists of $\approx102$ X-ray selected AGN at $3\leq z < 6$. The fraction of AGN obscured by column densities log$N_{\mathrm{H}}>23$ is $\sim0.6-0.8$, once incompleteness effects are taken into account, with no strong dependence on redshift or luminosity. We derived the high-redshift AGN number counts down to $F_{\mathrm{0.5-2\,keV}}=7\times10^{-18}\,\mathrm{erg\,cm^{-2}\,s^{-1}}$, extending previous results to fainter fluxes, especially at $z>4$. We put the tightest constraints to date on the low-luminosity end of AGN luminosity function at high redshift. The space-density, in particular, declines at $z>3$ at all luminosities, with only a marginally steeper slope for low-luminosity AGN. By comparing the evolution of the AGN and galaxy densities, we suggest that such a decline at high luminosities is mainly driven by the underlying galaxy population, while at low luminosities there are hints of an intrinsic evolution of the parameters driving nuclear activity. Also, the black-hole accretion rate density and star-formation rate density, which are usually found to evolve similarly at $z\lesssim3$, appear to diverge at higher redshifts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.07892v1-abstract-full').style.display = 'none'; document.getElementById('1709.07892v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted 2017 September 15 (MNRAS). 31 Pages, 25 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.08895">arXiv:1705.08895</a> <span> [<a href="https://arxiv.org/pdf/1705.08895">pdf</a>, <a href="https://arxiv.org/format/1705.08895">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aa755b">10.3847/1538-4357/aa755b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Galaxy-scale Bars in Late-type Sloan Digital Sky Survey Galaxies Do Not Influence the Average Accretion Rates of Supermassive Black Holes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Goulding%2C+A+D">Andy D. Goulding</a>, <a href="/search/?searchtype=author&query=Matthaey%2C+E">Eve Matthaey</a>, <a href="/search/?searchtype=author&query=Greene%2C+J+E">Jenny E. Greene</a>, <a href="/search/?searchtype=author&query=Hickox%2C+R+C">Ryan C. Hickox</a>, <a href="/search/?searchtype=author&query=Alexander%2C+D+M">David M. Alexander</a>, <a href="/search/?searchtype=author&query=Forman%2C+W+R">William R. Forman</a>, <a href="/search/?searchtype=author&query=Jones%2C+C">Christine Jones</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">Bret D. Lehmer</a>, <a href="/search/?searchtype=author&query=Griffis%2C+S">Samuel Griffis</a>, <a href="/search/?searchtype=author&query=Kanev%2C+S">Svilen Kanev</a>, <a href="/search/?searchtype=author&query=Oulmakki%2C+M">Mehdi Oulmakki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.08895v1-abstract-short" style="display: inline;"> Galaxy-scale bars are expected to provide an effective means for driving material towards the central region in spiral galaxies, and possibly feeding supermassive black holes (BHs). Here we present a statistically-complete study of the effect of bars on average BH accretion. From a well-selected sample of 50,794 spiral galaxies (with M* ~ 0.2-30 x 10^10 Msun) extracted from the Sloan Digital Sky S… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.08895v1-abstract-full').style.display = 'inline'; document.getElementById('1705.08895v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.08895v1-abstract-full" style="display: none;"> Galaxy-scale bars are expected to provide an effective means for driving material towards the central region in spiral galaxies, and possibly feeding supermassive black holes (BHs). Here we present a statistically-complete study of the effect of bars on average BH accretion. From a well-selected sample of 50,794 spiral galaxies (with M* ~ 0.2-30 x 10^10 Msun) extracted from the Sloan Digital Sky Survey Galaxy Zoo 2 project, we separate those sources considered to contain galaxy-scale bars from those that do not. Using archival data taken by the Chandra X-ray Observatory, we identify X-ray luminous (L_X >~ 10^41 erg/s) active galactic nuclei (AGN) and perform an X-ray stacking analysis on the remaining X-ray undetected sources. Through X-ray stacking, we derive a time-averaged look at accretion for galaxies at fixed stellar mass and star formation rate, finding that the average nuclear accretion rates of galaxies with bar structures are fully consistent with those lacking bars (Mdot_acc ~ 3 x 10^-5 Msun/yr). Hence, we robustly conclude that large-scale bars have little or no effect on the average growth of BHs in nearby (z < 0.15) galaxies over gigayear timescales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.08895v1-abstract-full').style.display = 'none'; document.getElementById('1705.08895v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures, accepted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.01115">arXiv:1705.01115</a> <span> [<a href="https://arxiv.org/pdf/1705.01115">pdf</a>, <a href="https://arxiv.org/format/1705.01115">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aa70eb">10.3847/1538-4357/aa70eb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Further constraints on variations in the IMF from LMXB populations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Peacock%2C+M+B">Mark B. Peacock</a>, <a href="/search/?searchtype=author&query=Zepf%2C+S+E">Stephen E. Zepf</a>, <a href="/search/?searchtype=author&query=Kundu%2C+A">Arunav Kundu</a>, <a href="/search/?searchtype=author&query=Maccarone%2C+T+J">Thomas J. Maccarone</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">Bret D. Lehmer</a>, <a href="/search/?searchtype=author&query=Maraston%2C+C">Claudia Maraston</a>, <a href="/search/?searchtype=author&query=Gonzalez%2C+A+H">Anthony H. Gonzalez</a>, <a href="/search/?searchtype=author&query=Eufrasio%2C+R+T">Rafael T. Eufrasio</a>, <a href="/search/?searchtype=author&query=Coulter%2C+D+A">David A. Coulter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.01115v1-abstract-short" style="display: inline;"> We present constraints on variations in the initial mass function (IMF) of nine local early-type galaxies based on their low mass X-ray binary (LMXB) populations. Comprised of accreting black holes and neutron stars, these LMXBs can be used to constrain the important high mass end of the IMF. We consider the LMXB populations beyond the cores of the galaxies ($>0.2R_{e}$; covering $75-90\%$ of thei… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.01115v1-abstract-full').style.display = 'inline'; document.getElementById('1705.01115v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.01115v1-abstract-full" style="display: none;"> We present constraints on variations in the initial mass function (IMF) of nine local early-type galaxies based on their low mass X-ray binary (LMXB) populations. Comprised of accreting black holes and neutron stars, these LMXBs can be used to constrain the important high mass end of the IMF. We consider the LMXB populations beyond the cores of the galaxies ($>0.2R_{e}$; covering $75-90\%$ of their stellar light) and find no evidence for systematic variations of the IMF with velocity dispersion ($蟽$). We reject IMFs which become increasingly bottom heavy with $蟽$, up to steep power-laws (exponent, $伪>2.8$) in massive galaxies ($蟽>300$km/s), for galactocentric radii $>1/4\ R_{e}$. Previously proposed IMFs that become increasingly bottom heavy with $蟽$ are consistent with these data if only the number of low mass stars $(<0.5M_{\odot}$) varies. We note that our results are consistent with some recent work which proposes that extreme IMFs are only present in the central regions of these galaxies. We also consider IMFs that become increasingly top-heavy with $蟽$, resulting in significantly more LMXBs. Such a model is consistent with these observations, but additional data are required to significantly distinguish between this and an invariant IMF. For six of these galaxies, we directly compare with published IMF mismatch parameters from the Atlas3D survey, $伪_{dyn}$. We find good agreement with the LMXB population if galaxies with higher $伪_{dyn}$ have more top-heavy IMFs -- although we caution that our sample is quite small. Future LMXB observations can provide further insights into the origin of $伪_{dyn}$ variations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.01115v1-abstract-full').style.display = 'none'; document.getElementById('1705.01115v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures, accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.06658">arXiv:1704.06658</a> <span> [<a href="https://arxiv.org/pdf/1704.06658">pdf</a>, <a href="https://arxiv.org/format/1704.06658">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aa7564">10.3847/1538-4357/aa7564 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Black-Hole Growth is Mainly Linked to Host-Galaxy Stellar Mass rather than Star Formation Rate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Yang%2C+G">G. Yang</a>, <a href="/search/?searchtype=author&query=Chen%2C+C+-+J">C. -T. J. Chen</a>, <a href="/search/?searchtype=author&query=Vito%2C+F">F. Vito</a>, <a href="/search/?searchtype=author&query=Brandt%2C+W+N">W. N. Brandt</a>, <a href="/search/?searchtype=author&query=Alexander%2C+D+M">D. M. Alexander</a>, <a href="/search/?searchtype=author&query=Luo%2C+B">B. Luo</a>, <a href="/search/?searchtype=author&query=Sun%2C+M+Y">M. Y. Sun</a>, <a href="/search/?searchtype=author&query=Xue%2C+Y+Q">Y. Q. Xue</a>, <a href="/search/?searchtype=author&query=Bauer%2C+F+E">F. E. Bauer</a>, <a href="/search/?searchtype=author&query=Koekemoer%2C+A+M">A. M. Koekemoer</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">B. D. Lehmer</a>, <a href="/search/?searchtype=author&query=Liu%2C+T">T. Liu</a>, <a href="/search/?searchtype=author&query=Schneider%2C+D+P">D. P. Schneider</a>, <a href="/search/?searchtype=author&query=Shemmer%2C+O">O. Shemmer</a>, <a href="/search/?searchtype=author&query=Trump%2C+J+R">J. R. Trump</a>, <a href="/search/?searchtype=author&query=Vignali%2C+C">C. Vignali</a>, <a href="/search/?searchtype=author&query=Wang%2C+J+-">J. -X. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.06658v2-abstract-short" style="display: inline;"> We investigate the dependence of black-hole accretion rate (BHAR) on host-galaxy star formation rate (SFR) and stellar mass ($M_*$) in the CANDELS/GOODS-South field in the redshift range of $0.5\leq z < 2.0$. Our sample consists of $\approx 18000$ galaxies, allowing us to probe galaxies with $0.1 \lesssim \mathrm{SFR} \lesssim 100\ M_\odot\ \mathrm{yr}^{-1}$ and/or… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.06658v2-abstract-full').style.display = 'inline'; document.getElementById('1704.06658v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.06658v2-abstract-full" style="display: none;"> We investigate the dependence of black-hole accretion rate (BHAR) on host-galaxy star formation rate (SFR) and stellar mass ($M_*$) in the CANDELS/GOODS-South field in the redshift range of $0.5\leq z < 2.0$. Our sample consists of $\approx 18000$ galaxies, allowing us to probe galaxies with $0.1 \lesssim \mathrm{SFR} \lesssim 100\ M_\odot\ \mathrm{yr}^{-1}$ and/or $10^8 \lesssim M_* \lesssim 10^{11}\ M_{\odot}$. We use sample-mean BHAR to approximate long-term average BHAR. Our sample-mean BHARs are derived from the $Chandra$ Deep Field-South 7 Ms observations, while the SFRs and $M_*$ have been estimated by the CANDELS team through SED fitting. The average BHAR is correlated positively with both SFR and $M_*$, and the BHAR-SFR and BHAR-$M_*$ relations can both be described acceptably by linear models with a slope of unity. However, BHAR appears to be correlated more strongly with $M_*$ than SFR. This result indicates that $M_*$ is the primary host-galaxy property related to black-hole growth, and the apparent BHAR-SFR relation is largely a secondary effect due to the star-forming main sequence. Among our sources, massive galaxies ($M_* \gtrsim 10^{10} M_{\odot}$) have significantly higher BHAR/SFR ratios than less-massive galaxies, indicating the former have higher black-hole fueling efficiency and/or higher SMBH occupation fraction than the latter. Our results can naturally explain the observed proportionality between $M_{\rm BH}$ and $M_*$ for local giant ellipticals, and suggest their $M_{\rm BH}/M_*$ is higher than that of local star-forming galaxies. Among local star-forming galaxies, massive systems might have higher $M_{\rm BH}/M_*$ compared to dwarfs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.06658v2-abstract-full').style.display = 'none'; document.getElementById('1704.06658v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 11 figures, 3 tables; accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.07318">arXiv:1703.07318</a> <span> [<a href="https://arxiv.org/pdf/1703.07318">pdf</a>, <a href="https://arxiv.org/ps/1703.07318">ps</a>, <a href="https://arxiv.org/format/1703.07318">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aa62a3">10.3847/1538-4357/aa62a3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Identification of the Hard X-ray Source Dominating the E > 25 keV Emission of the Nearby Galaxy M31 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Yukita%2C+M">M. Yukita</a>, <a href="/search/?searchtype=author&query=Ptak%2C+A">A. Ptak</a>, <a href="/search/?searchtype=author&query=Hornschemeier%2C+A+E">A. E. Hornschemeier</a>, <a href="/search/?searchtype=author&query=Wik%2C+D">D. Wik</a>, <a href="/search/?searchtype=author&query=Maccarone%2C+T+J">T. J. Maccarone</a>, <a href="/search/?searchtype=author&query=Pottschmidt%2C+K">K. Pottschmidt</a>, <a href="/search/?searchtype=author&query=Zezas%2C+A">A. Zezas</a>, <a href="/search/?searchtype=author&query=Antoniou%2C+V">V. Antoniou</a>, <a href="/search/?searchtype=author&query=Ballhausen%2C+R">R. Ballhausen</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">B. D. Lehmer</a>, <a href="/search/?searchtype=author&query=Lien%2C+A">A. Lien</a>, <a href="/search/?searchtype=author&query=Williams%2C+B">B. Williams</a>, <a href="/search/?searchtype=author&query=Baganoff%2C+F">F. Baganoff</a>, <a href="/search/?searchtype=author&query=Boyd%2C+P+T">P. T. Boyd</a>, <a href="/search/?searchtype=author&query=Enoto%2C+T">T. Enoto</a>, <a href="/search/?searchtype=author&query=Kennea%2C+J">J. Kennea</a>, <a href="/search/?searchtype=author&query=Page%2C+K+L">K. L. Page</a>, <a href="/search/?searchtype=author&query=Choi%2C+Y">Y. Choi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.07318v1-abstract-short" style="display: inline;"> We report the identification of a bright hard X-ray source dominating the M31 bulge above 25 keV from a simultaneous NuSTAR-Swift observation. We find that this source is the counterpart to Swift J0042.6+4112, which was previously detected in the Swift BAT All-sky Hard X-ray Survey. This Swift BAT source had been suggested to be the combined emission from a number of point sources; our new observa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.07318v1-abstract-full').style.display = 'inline'; document.getElementById('1703.07318v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.07318v1-abstract-full" style="display: none;"> We report the identification of a bright hard X-ray source dominating the M31 bulge above 25 keV from a simultaneous NuSTAR-Swift observation. We find that this source is the counterpart to Swift J0042.6+4112, which was previously detected in the Swift BAT All-sky Hard X-ray Survey. This Swift BAT source had been suggested to be the combined emission from a number of point sources; our new observations have identified a single X-ray source from 0.5 to 50 keV as the counterpart for the first time. In the 0.5-10 keV band, the source had been classified as an X-ray binary candidate in various Chandra and XMM studies; however, since it was not clearly associated with Swift J0042.6+4112, the previous E < 10 keV observations did not generate much attention. This source has a spectrum with a soft X-ray excess (kT~ 0.2 keV) plus a hard spectrum with a power law of Gamma ~ 1 and a cutoff around 15-20 keV, typical of the spectral characteristics of accreting pulsars. Unfortunately, any potential pulsation was undetected in the NuSTAR data, possibly due to insufficient photon statistics. The existing deep HST images exclude high-mass (>3 Msun) donors at the location of this source. The best interpretation for the nature of this source is an X-ray pulsar with an intermediate-mass (<3 Msun) companion or a symbiotic X-ray binary. We discuss other possibilities in more detail. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.07318v1-abstract-full').style.display = 'none'; document.getElementById('1703.07318v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures, accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.00482">arXiv:1701.00482</a> <span> [<a href="https://arxiv.org/pdf/1701.00482">pdf</a>, <a href="https://arxiv.org/format/1701.00482">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stw3375">10.1093/mnras/stw3375 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deep Chandra observations of NGC~7457, the X-ray point source populations of a low mass early-type galaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Peacock%2C+M+B">Mark B. Peacock</a>, <a href="/search/?searchtype=author&query=Zepf%2C+S+E">Stephen E. Zepf</a>, <a href="/search/?searchtype=author&query=Kundu%2C+A">Arunav Kundu</a>, <a href="/search/?searchtype=author&query=Maccarone%2C+T+J">Thomas J. Maccarone</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">Bret D. Lehmer</a>, <a href="/search/?searchtype=author&query=Gonzalez%2C+A+H">Anthony H. Gonzalez</a>, <a href="/search/?searchtype=author&query=Maraston%2C+C">Claudia Maraston</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.00482v1-abstract-short" style="display: inline;"> We present the X-ray point source population of NGC 7457 based on 124 ks of Chandra observations. Previous deep Chandra observations of low mass X-ray binaries (LMXBs) in early-type galaxies have typically targeted the large populations of massive galaxies. NGC 7457 is a nearby, early-type galaxy with a stellar luminosity of $1.7\times10^{10} L_{K\odot}$, allowing us to investigate the populations… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.00482v1-abstract-full').style.display = 'inline'; document.getElementById('1701.00482v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.00482v1-abstract-full" style="display: none;"> We present the X-ray point source population of NGC 7457 based on 124 ks of Chandra observations. Previous deep Chandra observations of low mass X-ray binaries (LMXBs) in early-type galaxies have typically targeted the large populations of massive galaxies. NGC 7457 is a nearby, early-type galaxy with a stellar luminosity of $1.7\times10^{10} L_{K\odot}$, allowing us to investigate the populations in a relatively low mass galaxy. We classify the detected X-ray sources into field LMXBs, globular cluster LMXBs, and background AGN based on identifying optical counterparts in new HST/ACS images. We detect 10 field LMXBs within the $r_{ext}$ ellipse of NGC 7457 (with semi-major axis $\sim$ 9.1 kpc, ellipticity = 0.55). The corresponding number of LMXBs with $L_{x}>2\times10^{37}erg/s$ per stellar luminosity is consistent with that observed in more massive galaxies, $\sim 7$ per $10^{10} L_{K\odot}$. We detect a small globular cluster population in these HST data and show that its colour distribution is likely bimodal and that its specific frequency is similar to that of other early type galaxies. However, no X-ray emission is detected from any of these clusters. Using published data for other galaxies, we show that this non-detection is consistent with the small stellar mass of these clusters. We estimate that 0.11 (and 0.03) LMXBs are expected per $10^{6}M_{\odot}$ in metal-rich (and metal-poor) globular clusters. This corresponds to 1100 (and 330) LMXBs per $10^{10} L_{K\odot}$, highlighting the enhanced formation efficiency of LMXBs in globular clusters. A nuclear X-ray source is detected with $L_{x}$ varying from $2.8-6.8\times10^{38}erg/s$. Combining this $L_{x}$ with a published dynamical mass estimate for the central SMBH in NGC 7457, we find that $L_{x}/L_{Edd}$ varies from $0.5-1.3\times10^{-6}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.00482v1-abstract-full').style.display = 'none'; document.getElementById('1701.00482v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures, 1 table, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.05189">arXiv:1612.05189</a> <span> [<a href="https://arxiv.org/pdf/1612.05189">pdf</a>, <a href="https://arxiv.org/ps/1612.05189">ps</a>, <a href="https://arxiv.org/format/1612.05189">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/835/2/183">10.3847/1538-4357/835/2/183 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Testing the Universality of the Stellar IMF with Chandra and HST </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Coulter%2C+D+A">D. A. Coulter</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">B. D. Lehmer</a>, <a href="/search/?searchtype=author&query=Eufrasio%2C+R+T">R. T. Eufrasio</a>, <a href="/search/?searchtype=author&query=Kundu%2C+A">A. Kundu</a>, <a href="/search/?searchtype=author&query=Maccarone%2C+T">T. Maccarone</a>, <a href="/search/?searchtype=author&query=Peacock%2C+M">M. Peacock</a>, <a href="/search/?searchtype=author&query=Hornschemeier%2C+A+E">A. E. Hornschemeier</a>, <a href="/search/?searchtype=author&query=Basu-Zych%2C+A">A. Basu-Zych</a>, <a href="/search/?searchtype=author&query=Gonzalez%2C+A+H">A. H. Gonzalez</a>, <a href="/search/?searchtype=author&query=Maraston%2C+C">C. Maraston</a>, <a href="/search/?searchtype=author&query=Zepf%2C+S+E">S. E. Zepf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.05189v1-abstract-short" style="display: inline;"> The stellar initial mass function (IMF), which is often assumed to be universal across unresolved stellar populations, has recently been suggested to be "bottom-heavy" for massive ellipticals. In these galaxies, the prevalence of gravity-sensitive absorption lines (e.g. Na I and Ca II) in their near-IR spectra implies an excess of low-mass ($m <= 0.5$ $M_\odot$) stars over that expected from a can… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.05189v1-abstract-full').style.display = 'inline'; document.getElementById('1612.05189v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.05189v1-abstract-full" style="display: none;"> The stellar initial mass function (IMF), which is often assumed to be universal across unresolved stellar populations, has recently been suggested to be "bottom-heavy" for massive ellipticals. In these galaxies, the prevalence of gravity-sensitive absorption lines (e.g. Na I and Ca II) in their near-IR spectra implies an excess of low-mass ($m <= 0.5$ $M_\odot$) stars over that expected from a canonical IMF observed in low-mass ellipticals. A direct extrapolation of such a bottom-heavy IMF to high stellar masses ($m >= 8$ $M_\odot$) would lead to a corresponding deficit of neutron stars and black holes, and therefore of low-mass X-ray binaries (LMXBs), per unit near-IR luminosity in these galaxies. Peacock et al. (2014) searched for evidence of this trend and found that the observed number of LMXBs per unit $K$-band luminosity ($N/L_K$) was nearly constant. We extend this work using new and archival Chandra X-ray Observatory (Chandra) and Hubble Space Telescope (HST) observations of seven low-mass ellipticals where $N/L_K$ is expected to be the largest and compare these data with a variety of IMF models to test which are consistent with the observed $N/L_K$. We reproduce the result of Peacock et al. (2014), strengthening the constraint that the slope of the IMF at $m >= 8$ $M_\odot$ must be consistent with a Kroupa-like IMF. We construct an IMF model that is a linear combination of a Milky Way-like IMF and a broken power-law IMF, with a steep slope ($伪_1=$ $3.84$) for stars < 0.5 $M_\odot$ (as suggested by near-IR indices), and that flattens out ($伪_2=$ $2.14$) for stars > 0.5 $M_\odot$, and discuss its wider ramifications and limitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.05189v1-abstract-full').style.display = 'none'; document.getElementById('1612.05189v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ; 7 pages, 2 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.05080">arXiv:1608.05080</a> <span> [<a href="https://arxiv.org/pdf/1608.05080">pdf</a>, <a href="https://arxiv.org/format/1608.05080">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8205/828/2/L21">10.3847/2041-8205/828/2/L21 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A resolved map of the infrared excess in a Lyman Break Galaxy at z=3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Koprowski%2C+M+P">M. P. Koprowski</a>, <a href="/search/?searchtype=author&query=Coppin%2C+K+E+K">K. E. K. Coppin</a>, <a href="/search/?searchtype=author&query=Geach%2C+J+E">J. E. Geach</a>, <a href="/search/?searchtype=author&query=Hine%2C+N+K">N. K. Hine</a>, <a href="/search/?searchtype=author&query=Bremer%2C+M">M. Bremer</a>, <a href="/search/?searchtype=author&query=Chapman%2C+S+C">S. C. Chapman</a>, <a href="/search/?searchtype=author&query=Davies%2C+L+J+M">L. J. M. Davies</a>, <a href="/search/?searchtype=author&query=Hayashino%2C+T">T. Hayashino</a>, <a href="/search/?searchtype=author&query=Knudsen%2C+K+K">K. K. Knudsen</a>, <a href="/search/?searchtype=author&query=Kubo%2C+M">M. Kubo</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">B. D. Lehmer</a>, <a href="/search/?searchtype=author&query=Matsuda%2C+Y">Y. Matsuda</a>, <a href="/search/?searchtype=author&query=Smith%2C+D+J+B">D. J. B. Smith</a>, <a href="/search/?searchtype=author&query=van+der+Werf%2C+P+P">P. P. van der Werf</a>, <a href="/search/?searchtype=author&query=Violino%2C+G">G. Violino</a>, <a href="/search/?searchtype=author&query=Yamada%2C+T">T. Yamada</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.05080v1-abstract-short" style="display: inline;"> We have observed the dust continuum of ten z=3.1 Lyman Break Galaxies with the Atacama Large Millimeter/Submillimeter Array at ~450 mas resolution in Band 7. We detect and resolve the 870um emission in one of the targets with an integrated flux density of S(870)=(192+/-57) uJy, and measure a stacked 3-sigma signal of S(870)=(67+/-23) uJy for the remaining nine. The total infrared luminosities esti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.05080v1-abstract-full').style.display = 'inline'; document.getElementById('1608.05080v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.05080v1-abstract-full" style="display: none;"> We have observed the dust continuum of ten z=3.1 Lyman Break Galaxies with the Atacama Large Millimeter/Submillimeter Array at ~450 mas resolution in Band 7. We detect and resolve the 870um emission in one of the targets with an integrated flux density of S(870)=(192+/-57) uJy, and measure a stacked 3-sigma signal of S(870)=(67+/-23) uJy for the remaining nine. The total infrared luminosities estimated from full spectral energy distribution fits are L(8-1000um)=(8.4+/-2.3)x10^10 Lsun for the detection and L(8-1000um)=(2.9+/-0.9)x10^10 Lsun for the stack. With HST ACS I-band imaging we map the rest-frame UV emission on the same scale as the dust, effectively resolving the 'infrared excess' (IRX=L_FIR/L_UV) in a normal galaxy at z=3. Integrated over the galaxy we measure IRX=0.56+/-0.15, and the galaxy-averaged UV slope is beta=-1.25+/-0.03. This puts the galaxy a factor of ~10 below the IRX-beta relation for local starburst nuclei of Meurer et al. (1999). However, IRX varies by more than a factor of 3 across the galaxy, and we conclude that the complex relative morphology of the dust relative to UV emission is largely responsible for the scatter in the IRX-beta relation at high-z. A naive application of a Meurer-like dust correction based on the UV slope would dramatically over-estimate the total star formation rate, and our results support growing evidence that when integrated over the galaxy, the typical conditions in high-z star-forming galaxies are not analogous to those in the local starburst nuclei used to establish the Meurer relation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.05080v1-abstract-full').style.display = 'none'; document.getElementById('1608.05080v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in The Astrophysical Journal Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.02614">arXiv:1608.02614</a> <span> [<a href="https://arxiv.org/pdf/1608.02614">pdf</a>, <a href="https://arxiv.org/format/1608.02614">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stw1998">10.1093/mnras/stw1998 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The deepest X-ray view of high-redshift galaxies: constraints on low-rate black-hole accretion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Vito%2C+F">Fabio Vito</a>, <a href="/search/?searchtype=author&query=Gilli%2C+R">Roberto Gilli</a>, <a href="/search/?searchtype=author&query=Vignali%2C+C">Cristian Vignali</a>, <a href="/search/?searchtype=author&query=Brandt%2C+W+N">William N. Brandt</a>, <a href="/search/?searchtype=author&query=Comastri%2C+A">Andrea Comastri</a>, <a href="/search/?searchtype=author&query=Yang%2C+G">Guang Yang</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">Bret D. Lehmer</a>, <a href="/search/?searchtype=author&query=Luo%2C+B">Bin Luo</a>, <a href="/search/?searchtype=author&query=Basu-Zych%2C+A">Antara Basu-Zych</a>, <a href="/search/?searchtype=author&query=Bauer%2C+F+E">Franz E. Bauer</a>, <a href="/search/?searchtype=author&query=Cappelluti%2C+N">Nico Cappelluti</a>, <a href="/search/?searchtype=author&query=Koekemoer%2C+A">Anton Koekemoer</a>, <a href="/search/?searchtype=author&query=Mainieri%2C+V">Vincenzo Mainieri</a>, <a href="/search/?searchtype=author&query=Paolillo%2C+M">Maurizio Paolillo</a>, <a href="/search/?searchtype=author&query=Ranalli%2C+P">Piero Ranalli</a>, <a href="/search/?searchtype=author&query=Shemmer%2C+O">Ohad Shemmer</a>, <a href="/search/?searchtype=author&query=Trump%2C+J">Jonathan Trump</a>, <a href="/search/?searchtype=author&query=Wang%2C+J">Junxian Wang</a>, <a href="/search/?searchtype=author&query=Xue%2C+Y">Yongquan Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.02614v1-abstract-short" style="display: inline;"> We exploit the 7 Ms \textit{Chandra} observations in the \chandra\,Deep Field-South (\mbox{CDF-S}), the deepest X-ray survey to date, coupled with CANDELS/GOODS-S data, to measure the total X-ray emission arising from 2076 galaxies at $3.5\leq z < 6.5$. This aim is achieved by stacking the \textit{Chandra} data at the positions of optically selected galaxies, reaching effective exposure times of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.02614v1-abstract-full').style.display = 'inline'; document.getElementById('1608.02614v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.02614v1-abstract-full" style="display: none;"> We exploit the 7 Ms \textit{Chandra} observations in the \chandra\,Deep Field-South (\mbox{CDF-S}), the deepest X-ray survey to date, coupled with CANDELS/GOODS-S data, to measure the total X-ray emission arising from 2076 galaxies at $3.5\leq z < 6.5$. This aim is achieved by stacking the \textit{Chandra} data at the positions of optically selected galaxies, reaching effective exposure times of $\geq10^9\mathrm{s}$. We detect significant ($>3.7蟽$) X-ray emission from massive galaxies at $z\approx4$. We also report the detection of massive galaxies at $z\approx5$ at a $99.7\%$ confidence level ($2.7蟽$), the highest significance ever obtained for X-ray emission from galaxies at such high redshifts. No significant signal is detected from galaxies at even higher redshifts. The stacking results place constraints on the BHAD associated with the known high-redshift galaxy samples, as well as on the SFRD at high redshift, assuming a range of prescriptions for X-ray emission due to X- ray binaries. We find that the X-ray emission from our sample is likely dominated by processes related to star formation. Our results show that low-rate mass accretion onto SMBHs in individually X-ray-undetected galaxies is negligible, compared with the BHAD measured for samples of X-ray detected AGN, for cosmic SMBH mass assembly at high redshift. We also place, for the first time, constraints on the faint-end of the AGN X-ray luminosity function ($\mathrm{logL_X\sim42}$) at $z>4$, with evidence for fairly flat slopes. The implications of all of these findings are discussed in the context of the evolution of the AGN population at high redshift. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.02614v1-abstract-full').style.display = 'none'; document.getElementById('1608.02614v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to MNRAS. Accepted 2016 August 5. Received 2016 August 5; in original form 2016 April 18</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.07370">arXiv:1605.07370</a> <span> [<a href="https://arxiv.org/pdf/1605.07370">pdf</a>, <a href="https://arxiv.org/ps/1605.07370">ps</a>, <a href="https://arxiv.org/format/1605.07370">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stw1237">10.1093/mnras/stw1237 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Herschel protocluster survey: A search for dusty star-forming galaxies in protoclusters at z=2-3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Kato%2C+Y">Y. Kato</a>, <a href="/search/?searchtype=author&query=Matsuda%2C+Y">Y. Matsuda</a>, <a href="/search/?searchtype=author&query=Smail%2C+I">Ian Smail</a>, <a href="/search/?searchtype=author&query=Swinbank%2C+A+M">A. M. Swinbank</a>, <a href="/search/?searchtype=author&query=Hatsukade%2C+B">B. Hatsukade</a>, <a href="/search/?searchtype=author&query=Umehata%2C+H">H. Umehata</a>, <a href="/search/?searchtype=author&query=Tanaka%2C+I">I. Tanaka</a>, <a href="/search/?searchtype=author&query=Saito%2C+T">T. Saito</a>, <a href="/search/?searchtype=author&query=Iono%2C+D">D. Iono</a>, <a href="/search/?searchtype=author&query=Tamura%2C+Y">Y. Tamura</a>, <a href="/search/?searchtype=author&query=Kohno%2C+K">K. Kohno</a>, <a href="/search/?searchtype=author&query=Erb%2C+D+K">D. K. Erb</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">B. D. Lehmer</a>, <a href="/search/?searchtype=author&query=Geach%2C+J+E">J. E. Geach</a>, <a href="/search/?searchtype=author&query=Steidel%2C+C+C">C. C. Steidel</a>, <a href="/search/?searchtype=author&query=Alexander%2C+D+M">D. M. Alexander</a>, <a href="/search/?searchtype=author&query=Yamada%2C+T">T. Yamada</a>, <a href="/search/?searchtype=author&query=Hayashino%2C+T">T. Hayashino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.07370v1-abstract-short" style="display: inline;"> We present a Herschel/SPIRE survey of three protoclusters at z=2-3 (2QZCluster, HS1700, SSA22). Based on the SPIRE colours (S350/S250 and S500/S350) of 250 $渭$m sources, we selected high redshift dusty star-forming galaxies potentially associated with the protoclusters. In the 2QZCluster field, we found a 4-sigma overdensity of six SPIRE sources around 4.5' (~2.2 Mpc) from a density peak of H$伪$ e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.07370v1-abstract-full').style.display = 'inline'; document.getElementById('1605.07370v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.07370v1-abstract-full" style="display: none;"> We present a Herschel/SPIRE survey of three protoclusters at z=2-3 (2QZCluster, HS1700, SSA22). Based on the SPIRE colours (S350/S250 and S500/S350) of 250 $渭$m sources, we selected high redshift dusty star-forming galaxies potentially associated with the protoclusters. In the 2QZCluster field, we found a 4-sigma overdensity of six SPIRE sources around 4.5' (~2.2 Mpc) from a density peak of H$伪$ emitters at z=2.2. In the HS1700 field, we found a 5-sigma overdensity of eight SPIRE sources around 2.1' (~1.0 Mpc) from a density peak of LBGs at z=2.3. We did not find any significant overdensities in SSA22 field, but we found three 500 $渭$m sources are concentrated 3' (~1.4 Mpc) east to the LAEs overdensity. If all the SPIRE sources in these three overdensities are associated with protoclusters, the inferred star-formation rate densities are 10$^3$-10$^4$ times higher than the average value at the same redshifts. This suggests that dusty star-formation activity could be very strongly enhanced in z~2-3 protoclusters. Further observations are needed to confirm the redshifts of the SPIRE sources and to investigate what processes enhance the dusty star-formation activity in z~2-3 protoclusters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.07370v1-abstract-full').style.display = 'none'; document.getElementById('1605.07370v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures, 12 tables, Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.04912">arXiv:1605.04912</a> <span> [<a href="https://arxiv.org/pdf/1605.04912">pdf</a>, <a href="https://arxiv.org/format/1605.04912">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stw1185">10.1093/mnras/stw1185 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The average submillimetre properties of Lyman-alpha Blobs at z=3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Hine%2C+N+K">N. K. Hine</a>, <a href="/search/?searchtype=author&query=Geach%2C+J+E">J. E. Geach</a>, <a href="/search/?searchtype=author&query=Matsuda%2C+Y">Y. Matsuda</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">B. D. Lehmer</a>, <a href="/search/?searchtype=author&query=Michalowski%2C+M+J">M. J. Michalowski</a>, <a href="/search/?searchtype=author&query=Farrah%2C+D">D. Farrah</a>, <a href="/search/?searchtype=author&query=Spaans%2C+M">M. Spaans</a>, <a href="/search/?searchtype=author&query=Oliver%2C+S+J">S. J. Oliver</a>, <a href="/search/?searchtype=author&query=Smith%2C+D+J+B">D. J. B. Smith</a>, <a href="/search/?searchtype=author&query=Chapman%2C+S+C">S. C. Chapman</a>, <a href="/search/?searchtype=author&query=Jenness%2C+T">T. Jenness</a>, <a href="/search/?searchtype=author&query=Alexander%2C+D+M">D. M. Alexander</a>, <a href="/search/?searchtype=author&query=Robson%2C+I">I. Robson</a>, <a href="/search/?searchtype=author&query=van+der+Werf%2C+P">P. van der Werf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.04912v1-abstract-short" style="display: inline;"> Ly-alpha blobs (LABs) offer insight into the complex interface between galaxies and their circumgalactic medium. Whilst some LABs have been found to contain luminous star-forming galaxies and active galactic nuclei that could potentially power the Ly-alpha emission, others appear not to be associated with obvious luminous galaxy counterparts. It has been speculated that LABs may be powered by cold… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.04912v1-abstract-full').style.display = 'inline'; document.getElementById('1605.04912v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.04912v1-abstract-full" style="display: none;"> Ly-alpha blobs (LABs) offer insight into the complex interface between galaxies and their circumgalactic medium. Whilst some LABs have been found to contain luminous star-forming galaxies and active galactic nuclei that could potentially power the Ly-alpha emission, others appear not to be associated with obvious luminous galaxy counterparts. It has been speculated that LABs may be powered by cold gas streaming on to a central galaxy, providing an opportunity to directly observe the `cold accretion' mode of galaxy growth. Star-forming galaxies in LABs could be dust obscured and therefore detectable only at longer wavelengths. We stack deep SCUBA-2 observations of the SSA22 field to determine the average 850um flux density of 34 LABs. We measure S_850 = 0.6 +/- 0.2mJy for all LABs, but stacking the LABs by size indicates that only the largest third (area > 1794 kpc^2) have a mean detection, at 4.5 sigma, with S_850 = 1.4 +/- 0.3mJy. Only two LABs (1 and 18) have individual SCUBA-2 > 3.5 sigma detections at a depth of 1.1mJy/beam. We consider two possible mechanisms for powering the LABs and find that central star formation is likely to dominate the emission of Ly-alpha, with cold accretion playing a secondary role. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.04912v1-abstract-full').style.display = 'none'; document.getElementById('1605.04912v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted MNRAS 16 May 2016</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.07441">arXiv:1604.07441</a> <span> [<a href="https://arxiv.org/pdf/1604.07441">pdf</a>, <a href="https://arxiv.org/ps/1604.07441">ps</a>, <a href="https://arxiv.org/format/1604.07441">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/0004-637X/824/2/107">10.3847/0004-637X/824/2/107 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Hard X-ray Study of the Normal Star-Forming Galaxy M83 with NuSTAR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Yukita%2C+M">M. Yukita</a>, <a href="/search/?searchtype=author&query=Hornschemeier%2C+A+E">A. E. Hornschemeier</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">B. D. Lehmer</a>, <a href="/search/?searchtype=author&query=Ptak%2C+A">A. Ptak</a>, <a href="/search/?searchtype=author&query=Wik%2C+D+R">D. R. Wik</a>, <a href="/search/?searchtype=author&query=Zezas%2C+A">A. Zezas</a>, <a href="/search/?searchtype=author&query=Antoniou%2C+V">V. Antoniou</a>, <a href="/search/?searchtype=author&query=Maccarone%2C+T+J">T. J. Maccarone</a>, <a href="/search/?searchtype=author&query=Replicon%2C+V">V. Replicon</a>, <a href="/search/?searchtype=author&query=Tyler%2C+J+B">J. B. Tyler</a>, <a href="/search/?searchtype=author&query=Venters%2C+T">T. Venters</a>, <a href="/search/?searchtype=author&query=Argo%2C+M+K">M. K. Argo</a>, <a href="/search/?searchtype=author&query=Bechtol%2C+K">K. Bechtol</a>, <a href="/search/?searchtype=author&query=Boggs%2C+S">S. Boggs</a>, <a href="/search/?searchtype=author&query=Christensen%2C+F+E">F. E. Christensen</a>, <a href="/search/?searchtype=author&query=Craig%2C+W+W">W. W. Craig</a>, <a href="/search/?searchtype=author&query=Hailey%2C+C">C. Hailey</a>, <a href="/search/?searchtype=author&query=Harrison%2C+F">F. Harrison</a>, <a href="/search/?searchtype=author&query=Krivonos%2C+R">R. Krivonos</a>, <a href="/search/?searchtype=author&query=Kuntz%2C+K">K. Kuntz</a>, <a href="/search/?searchtype=author&query=Stern%2C+D">D. Stern</a>, <a href="/search/?searchtype=author&query=Zhang%2C+W+W">W. W. Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.07441v1-abstract-short" style="display: inline;"> We present results from sensitive, multi-epoch NuSTAR observations of the late-type star-forming galaxy M83 (d=4.6 Mpc), which is the first investigation to spatially resolve the hard (E>10 keV) X-ray emission of this galaxy. The nuclear region and ~ 20 off-nuclear point sources, including a previously discovered ultraluminous X-ray (ULX) source, are detected in our NuSTAR observations. The X-ray… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.07441v1-abstract-full').style.display = 'inline'; document.getElementById('1604.07441v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.07441v1-abstract-full" style="display: none;"> We present results from sensitive, multi-epoch NuSTAR observations of the late-type star-forming galaxy M83 (d=4.6 Mpc), which is the first investigation to spatially resolve the hard (E>10 keV) X-ray emission of this galaxy. The nuclear region and ~ 20 off-nuclear point sources, including a previously discovered ultraluminous X-ray (ULX) source, are detected in our NuSTAR observations. The X-ray hardnesses and luminosities of the majority of the point sources are consistent with hard X-ray sources resolved in the starburst galaxy NGC 253. We infer that the hard X-ray emission is most likely dominated by intermediate accretion state black hole binaries and neutron star low-mass X-ray binaries (Z-sources). We construct the X-ray binary luminosity function (XLF) in the NuSTAR band for an extragalactic environment for the first time. The M83 XLF has a steeper XLF than the X-ray binary XLF in NGC 253, consistent with previous measurements by Chandra at softer X-ray energies. The NuSTAR integrated galaxy spectrum of M83 drops quickly above 10 keV, which is also seen in the starburst galaxies NGC253, NGC 3310 and NGC 3256. The NuSTAR observations constrain any AGN to be either highly obscured or to have an extremely low luminosity of $_{\sim}^<$10$^{38}$ erg/s (10-30 keV), implying it is emitting at a very low Eddington ratio. An X-ray point source consistent with the location of the nuclear star cluster with an X-ray luminosity of a few times 10$^{38}$ erg/s may be a low-luminosity AGN but is more consistent with being an X-ray binary. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.07441v1-abstract-full').style.display = 'none'; document.getElementById('1604.07441v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ (25 pages, 17 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.06461">arXiv:1604.06461</a> <span> [<a href="https://arxiv.org/pdf/1604.06461">pdf</a>, <a href="https://arxiv.org/ps/1604.06461">ps</a>, <a href="https://arxiv.org/format/1604.06461">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/0004-637X/825/1/7">10.3847/0004-637X/825/1/7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Evolution of Normal Galaxy X-ray Emission Through Cosmic History: Constraints from the 6 Ms Chandra Deep Field-South </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">B. D. Lehmer</a>, <a href="/search/?searchtype=author&query=Basu-Zych%2C+A+R">A. R. Basu-Zych</a>, <a href="/search/?searchtype=author&query=Mineo%2C+S">S. Mineo</a>, <a href="/search/?searchtype=author&query=Brandt%2C+W+N">W. N. Brandt</a>, <a href="/search/?searchtype=author&query=Eufrasio%2C+R+T">R. T. Eufrasio</a>, <a href="/search/?searchtype=author&query=Fragos%2C+T">T. Fragos</a>, <a href="/search/?searchtype=author&query=Hornschemeier%2C+A+E">A. E. Hornschemeier</a>, <a href="/search/?searchtype=author&query=Luo%2C+B">B. Luo</a>, <a href="/search/?searchtype=author&query=Xue%2C+Y+Q">Y. Q. Xue</a>, <a href="/search/?searchtype=author&query=Bauer%2C+F+E">F. E. Bauer</a>, <a href="/search/?searchtype=author&query=Gilfanov%2C+M">M. Gilfanov</a>, <a href="/search/?searchtype=author&query=Ranalli%2C+P">P. Ranalli</a>, <a href="/search/?searchtype=author&query=Schneider%2C+D+P">D. P. Schneider</a>, <a href="/search/?searchtype=author&query=Shemmer%2C+O">O. Shemmer</a>, <a href="/search/?searchtype=author&query=Tozzi%2C+P">P. Tozzi</a>, <a href="/search/?searchtype=author&query=Trump%2C+J+R">J. R. Trump</a>, <a href="/search/?searchtype=author&query=Vignali%2C+C">C. Vignali</a>, <a href="/search/?searchtype=author&query=Wang%2C+J+-">J. -X. Wang</a>, <a href="/search/?searchtype=author&query=Yukita%2C+M">M. Yukita</a>, <a href="/search/?searchtype=author&query=Zezas%2C+A">A. Zezas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.06461v1-abstract-short" style="display: inline;"> We present measurements of the evolution of normal-galaxy X-ray emission from $z \approx$ 0-7 using local galaxies and galaxy samples in the 6 Ms Chandra Deep Field-South (CDF-S) survey. The majority of the CDF-S galaxies are observed at rest-frame energies above 2 keV, where the emission is expected to be dominated by X-ray binary (XRB) populations; however, hot gas is expected to provide small c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.06461v1-abstract-full').style.display = 'inline'; document.getElementById('1604.06461v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.06461v1-abstract-full" style="display: none;"> We present measurements of the evolution of normal-galaxy X-ray emission from $z \approx$ 0-7 using local galaxies and galaxy samples in the 6 Ms Chandra Deep Field-South (CDF-S) survey. The majority of the CDF-S galaxies are observed at rest-frame energies above 2 keV, where the emission is expected to be dominated by X-ray binary (XRB) populations; however, hot gas is expected to provide small contributions to the observed- frame < 1 keV emission at $z < 1$. We show that a single scaling relation between X-ray luminosity ($L_{\rm X}$) and star-formation rate (SFR) is insufficient for characterizing the average X-ray emission at all redshifts. We establish that scaling relations involving not only SFR, but also stellar mass ($M_\star$) and redshift, provide significantly improved characterizations of the average X-ray emission from normal galaxy populations at $z \approx$ 0-7. We further provide the first empirical constraints on the redshift evolution of X-ray emission from both low-mass XRB (LMXB) and high-mass XRB (HMXB) populations and their scalings with $M_\star$ and SFR, respectively. We find $L_{\rm 2-10 keV}({\rm LMXB})/M_\star \propto (1 + z)^{2-3}$ and $L_{\rm 2-10 keV}({\rm HMXB})$/SFR $\propto (1 + z)$, and show that these relations are consistent with XRB population-synthesis model predictions, which attribute the increase in LMXB and HMXB scaling relations with redshift as being due to declining host galaxy stellar ages and metallicities, respectively. We discuss how emission from XRBs could provide an important source of heating to the intergalactic medium in the early Universe, exceeding that of active galactic nuclei. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.06461v1-abstract-full').style.display = 'none'; document.getElementById('1604.06461v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ (23 pages, 13 figures, 5 tables)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.00552">arXiv:1603.00552</a> <span> [<a href="https://arxiv.org/pdf/1603.00552">pdf</a>, <a href="https://arxiv.org/format/1603.00552">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stw530">10.1093/mnras/stw530 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Demonstrating the likely neutron star nature of five M31 globular cluster sources with Swift-NuSTAR spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Maccarone%2C+T+J">Thomas J. Maccarone</a>, <a href="/search/?searchtype=author&query=Yukita%2C+M">Mihoko Yukita</a>, <a href="/search/?searchtype=author&query=Hornschemeier%2C+A">Ann Hornschemeier</a>, <a href="/search/?searchtype=author&query=Lehmer%2C+B+D">Bret D. Lehmer</a>, <a href="/search/?searchtype=author&query=Antoniou%2C+V">Vallia Antoniou</a>, <a href="/search/?searchtype=author&query=Ptak%2C+A">Andrew Ptak</a>, <a href="/search/?searchtype=author&query=Wik%2C+D+R">Daniel R. Wik</a>, <a href="/search/?searchtype=author&query=Zezas%2C+A">Andreas Zezas</a>, <a href="/search/?searchtype=author&query=Boyd%2C+P">Padi Boyd</a>, <a href="/search/?searchtype=author&query=Kennea%2C+J">Jamie Kennea</a>, <a href="/search/?searchtype=author&query=Page%2C+K">Kim Page</a>, <a href="/search/?searchtype=author&query=Eracleous%2C+M">Mike Eracleous</a>, <a href="/search/?searchtype=author&query=Williams%2C+B+F">Benjamin F. Williams</a>, <a href="/search/?searchtype=author&query=Boggs%2C+S+E">Steven E. Boggs</a>, <a href="/search/?searchtype=author&query=Christensen%2C+F+E">Finn E. Christensen</a>, <a href="/search/?searchtype=author&query=Craig%2C+W+W">William W. Craig</a>, <a href="/search/?searchtype=author&query=Hailey%2C+C+J">Charles J. Hailey</a>, <a href="/search/?searchtype=author&query=Harrison%2C+F">Fiona Harrison</a>, <a href="/search/?searchtype=author&query=Stern%2C+D">Dan Stern</a>, <a href="/search/?searchtype=author&query=Zhang%2C+W+W">William W. Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.00552v1-abstract-short" style="display: inline;"> We present the results of a joint Swift-NuSTAR spectroscopy campaign on M31. We focus on the five brightest globular cluster X-ray sources in our fields. Two of these had previously been argued to be black hole candidates on the basis of apparent hard-state spectra at luminosities above those for which neutron stars are in hard states. We show that these two sources are likely to be Z-sources (i.e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.00552v1-abstract-full').style.display = 'inline'; document.getElementById('1603.00552v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.00552v1-abstract-full" style="display: none;"> We present the results of a joint Swift-NuSTAR spectroscopy campaign on M31. We focus on the five brightest globular cluster X-ray sources in our fields. Two of these had previously been argued to be black hole candidates on the basis of apparent hard-state spectra at luminosities above those for which neutron stars are in hard states. We show that these two sources are likely to be Z-sources (i.e. low magnetic field neutron stars accreting near their Eddington limits), or perhaps bright atoll sources (low magnetic field neutron stars which are just a bit fainter than this level) on the basis of simultaneous Swift and NuSTAR spectra which cover a broader range of energies. These new observations reveal spectral curvature above 6-8 keV that would be hard to detect without the broader energy coverage the NuSTAR data provide relative to Chandra and XMM-Newton. We show that the other three sources are also likely to be bright neutron star X-ray binaries, rather than black hole X-ray binaries. We discuss why it should already have been realized that it was unlikely that these objects were black holes on the basis of their being persistent sources, and we re-examine past work which suggested that tidal capture products would be persistently bright X-ray emitters. We discuss how this problem is likely due to neglecting disk winds in older work that predict which systems will be persistent and which will be transient. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.00552v1-abstract-full').style.display = 'none'; document.getElementById('1603.00552v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 3 figures, accepted to MNRAS</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Lehmer%2C+B+D&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Lehmer%2C+B+D&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Lehmer%2C+B+D&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Lehmer%2C+B+D&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>