CINXE.COM
Search results for: reinforced concrete panels
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: reinforced concrete panels</title> <meta name="description" content="Search results for: reinforced concrete panels"> <meta name="keywords" content="reinforced concrete panels"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="reinforced concrete panels" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="reinforced concrete panels"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2912</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: reinforced concrete panels</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2912</span> The Effect of Masonry Infills on the Seismic Response of Reinforced Concrete Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Ameri">Mohammad Reza Ameri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Massumi"> Ali Massumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Behnam%20Mahboubi"> Behnam Mahboubi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of masonry infilled frames during the past earthquakes shows that the infill panels play a major role as earthquake-resistant elements. The present study examines the influence of infill panels on seismic behavior of RC frame structures. For this purpose, several low- and mid-rise RC frames (two-, four-, seven-, and ten story) were numerically investigated. Reinforced masonry infill panels were then placed within the frames and the models were subjected to several nonlinear incremental static and dynamic analyses. The results of analyses showed that the use of reinforced masonry infill panels in RC frame structures can have beneficial effects on structural performance. It was confirmed that the use of masonry infill panels results in an increment in strength and stiffness of the framed buildings, followed by a reduction in displacement demand for the structural systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforced%20masonry%20infill%20panels" title="reinforced masonry infill panels">reinforced masonry infill panels</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20static%20analysis" title=" nonlinear static analysis"> nonlinear static analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=incremental%20dynamic%20analysis" title=" incremental dynamic analysis"> incremental dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=low-rise%20reinforced%20concrete%20frames" title=" low-rise reinforced concrete frames"> low-rise reinforced concrete frames</a>, <a href="https://publications.waset.org/abstracts/search?q=mid-rise%20reinforced%20concrete%20frames" title=" mid-rise reinforced concrete frames"> mid-rise reinforced concrete frames</a> </p> <a href="https://publications.waset.org/abstracts/14413/the-effect-of-masonry-infills-on-the-seismic-response-of-reinforced-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2911</span> Response of Concrete Panels Subjected to Compression-Tension State of Stresses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20F.%20Almograbi">Mohammed F. Almograbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For reinforced concrete panels the risk of failure due to compression -tension state of stresses, results from pure shear or torsion, can be a major problem. The present calculation methods for such stresses from multiple influences are without taking into account the softening of cracked concrete remains conservative. The non-linear finite element method has become an important and increasingly used tool for the analysis and assessment of the structures by including cracking softening and tension-stiffening. The aim of this paper is to test a computer program refined recently and to simulate the compression response of cracked concrete element and to compare with the available experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20panels" title="reinforced concrete panels">reinforced concrete panels</a>, <a href="https://publications.waset.org/abstracts/search?q=compression-tension" title=" compression-tension"> compression-tension</a>, <a href="https://publications.waset.org/abstracts/search?q=shear" title=" shear"> shear</a>, <a href="https://publications.waset.org/abstracts/search?q=torsion" title=" torsion"> torsion</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20softening" title=" compression softening"> compression softening</a>, <a href="https://publications.waset.org/abstracts/search?q=tension%20stiffening" title=" tension stiffening"> tension stiffening</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20finite%20element%20analysis" title=" non-linear finite element analysis"> non-linear finite element analysis</a> </p> <a href="https://publications.waset.org/abstracts/5311/response-of-concrete-panels-subjected-to-compression-tension-state-of-stresses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2910</span> Reinforced Concrete, Problems and Solutions: A Literature Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20Alhamad">Omar Alhamad</a>, <a href="https://publications.waset.org/abstracts/search?q=Waleed%20Eid"> Waleed Eid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete is a concrete lined with steel so that the materials work together in the resistance forces. Reinforcement rods or mesh are used for tensile, shear, and sometimes intense pressure in a concrete structure. Reinforced concrete is subject to many natural problems or industrial errors. The result of these problems is that it reduces the efficiency of the reinforced concrete or its usefulness. Some of these problems are cracks, earthquakes, high temperatures or fires, as well as corrosion of reinforced iron inside reinforced concrete. There are also factors of ancient buildings or monuments that require some techniques to preserve them. This research presents some general information about reinforced concrete, the pros and cons of reinforced concrete, and then presents a series of literary studies of some of the late published researches on the subject of reinforced concrete and how to preserve it, propose solutions or treatments for the treatment of reinforced concrete problems, raise efficiency and quality for a longer period. These studies have provided advanced and modern methods and techniques in the field of reinforced concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title="reinforced concrete">reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a>, <a href="https://publications.waset.org/abstracts/search?q=cracks" title=" cracks"> cracks</a> </p> <a href="https://publications.waset.org/abstracts/110089/reinforced-concrete-problems-and-solutions-a-literature-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2909</span> Pull-Out Analysis of Composite Loops Embedded in Steel Reinforced Concrete Retaining Wall Panels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pierre%20van%20Tonder">Pierre van Tonder</a>, <a href="https://publications.waset.org/abstracts/search?q=Christoff%20Kruger"> Christoff Kruger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modular concrete elements are used for retaining walls to provide lateral support. Depending on the retaining wall layout, these precast panels may be interlocking and may be tied into the soil backfill via geosynthetic strips. This study investigates the ultimate pull-out load increase, which is possible by adding varied diameter supplementary reinforcement through embedded anchor loops within concrete retaining wall panels. Full-scale panels used in practice have four embedded anchor points. However, only one anchor loop was embedded in the center of the experimental panels. The experimental panels had the same thickness but a smaller footprint (600mm x 600mm x 140mm) area than the full-sized panels to accommodate the space limitations of the laboratory and experimental setup. The experimental panels were also cast without any bending reinforcement as would typically be obtained in the full-scale panels. The exclusion of these reinforcements was purposefully neglected to evaluate the impact of a single bar reinforcement through the center of the anchor loops. The reinforcement bars had of 8 mm, 10 mm, 12 mm, and 12 mm. 30 samples of concrete panels with embedded anchor loops were tested. The panels were supported on the edges and the anchor loops were subjected to an increasing tensile force using an Instron piston. Failures that occurred were loop failures and panel failures and a mixture thereof. There was an increase in ultimate load vs. increasing diameter as expected, but this relationship persisted until the reinforcement diameter exceeded 10 mm. For diameters larger than 10 mm, the ultimate failure load starts to decrease due to the dependency of the reinforcement bond strength to the concrete matrix. Overall, the reinforced panels showed a 14 to 23% increase in the factor of safety. Using anchor loops of 66kN ultimate load together with Y10 steel reinforcement with bent ends had shown the most promising results in reducing concrete panel pull-out failure. The Y10 reinforcement had shown, on average, a 24% increase in ultimate load achieved. Previous research has investigated supplementary reinforcement around the anchor loops. This paper extends this investigation by evaluating supplementary reinforcement placed through the panel anchor loops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supplementary%20reinforcement" title="supplementary reinforcement">supplementary reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=anchor%20loops" title=" anchor loops"> anchor loops</a>, <a href="https://publications.waset.org/abstracts/search?q=retaining%20panels" title=" retaining panels"> retaining panels</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=pull-out%20failure" title=" pull-out failure"> pull-out failure</a> </p> <a href="https://publications.waset.org/abstracts/143106/pull-out-analysis-of-composite-loops-embedded-in-steel-reinforced-concrete-retaining-wall-panels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2908</span> Analytical Investigation of Ductility of Reinforced Concrete Beams Strengthening with Polypropylene Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rifat%20Sezer">Rifat Sezer</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulhamid%20Aryan"> Abdulhamid Aryan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to research both the ductility of the reinforced concrete beams without fiber and the ductility of the reinforced concrete beams with fiber. For this purpose, the analytical load - displacement curves of the beams were formed and the areas under these curves were compared. According to the results of this comparison, it is concluded that the reinforced concrete beams with polypropylene fiber are more ductile. The dimension of the used beam-samples for analytical model in this study is 20x30 cm, their length is 200 cm and their scale is ½. The reinforced concrete reference-beams are produced as one item and the reinforced concrete beams with P-0.60 kg/m3 polypropylene fiber are produced as one item. The modeling of reinforced concrete beams was utilized with Abaqus software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title="polypropylene">polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber-reinforced%20beams" title=" fiber-reinforced beams"> fiber-reinforced beams</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening%20of%20the%20beams" title=" strengthening of the beams"> strengthening of the beams</a>, <a href="https://publications.waset.org/abstracts/search?q=abaqus%20program" title=" abaqus program"> abaqus program</a> </p> <a href="https://publications.waset.org/abstracts/43511/analytical-investigation-of-ductility-of-reinforced-concrete-beams-strengthening-with-polypropylene-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2907</span> Analytical Investigation on Seismic Behavior of Infilled Reinforced Concrete Frames Strengthened with Precast Diagonal Concrete Panels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ceyhun%20Aksoylu">Ceyhun Aksoylu</a>, <a href="https://publications.waset.org/abstracts/search?q=Rifat%20Sezer"> Rifat Sezer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a strengthening method applicable without any evacuation process was investigated. In this analytical study, the pushover analysis results carry out by using the software of SAP2000. For this purpose, 1/3 scaled, 1-bay and 2-story R/C seven frames having usual deficiencies faults produced, one of which were not strengthened, but having brick-infill wall and the other 3 frames with infill walls strengthened with various shaped of high strength-precast diagonal concrete panels. The prepared analytical models investigated under reversed-cyclic loading that resembles the seismic effect. As a result of the analytical study, the properties of the reinforced concrete frames, such as strength, rigidity, energy dissipation capacity, etc. were determined and the strengthened models were compared with the unstrengthened one having the same properties. As a result of this study, the contributions of precast diagonal concrete applied on the infill walls of the existing frame systems against seismic effects were introduced with its advantages and disadvantages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RC%20frame" title="RC frame">RC frame</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20effect" title=" seismic effect"> seismic effect</a>, <a href="https://publications.waset.org/abstracts/search?q=infill%20wall" title=" infill wall"> infill wall</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=precast%20diagonal%20concrete%20panel" title=" precast diagonal concrete panel"> precast diagonal concrete panel</a>, <a href="https://publications.waset.org/abstracts/search?q=pushover%20analysis" title=" pushover analysis"> pushover analysis</a> </p> <a href="https://publications.waset.org/abstracts/43507/analytical-investigation-on-seismic-behavior-of-infilled-reinforced-concrete-frames-strengthened-with-precast-diagonal-concrete-panels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2906</span> Proposal of Analytical Model for the Seismic Performance Evaluation of Reinforced Concrete Frames with Coupled Cross-laminated Timber Infill Panels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vel%C3%A1zquez%20Alejandro">Velázquez Alejandro</a>, <a href="https://publications.waset.org/abstracts/search?q=Pradhan%20Sujan"> Pradhan Sujan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoon%20Rokhyun"> Yoon Rokhyun</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanada%20Yasushi"> Sanada Yasushi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The utilization of new materials as an alternative solution to decrease the environmental impact of the construction industry has been gaining more relevance in the architectural design and construction industry. One such material is cross-laminated timber (CLT), an engineered timber solution that excels for its faster construction times, workability, lightweight, and capacity for carbon storage. This material is usually used alone for the entire structure or combined with steel frames, but a hybrid with reinforced concrete (RC) is rarer. Since RC is one of the most used materials worldwide, a hybrid with CLT would allow further utilization of the latter, and in the process, it would help reduce the environmental impact of RC construction to achieve a sustainable society, but first, the structural performance of such hybrids must be understood. This paper focuses on proposing a model to predict the seismic performance of RC frames with CLT panels as infills. A series of static horizontal cyclic loading experiments were conducted on two 40% scale specimens of reinforced concrete frames with and without CLT panels at Osaka University, Japan. An analytical model was created to simulate the seismic performance of the RC frame with CLT infill based on the experimental results. The proposed model was verified by comparing the experimental and analytical results, showing that the load-deformation relationship and the failure mechanism agreed well with limited error. Hence, the proposed analytical model can be implemented for the seismic performance evaluation of the RC frames with CLT infill. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20model" title="analytical model">analytical model</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20spring" title=" multi spring"> multi spring</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20evaluation" title=" performance evaluation"> performance evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=rocking%20mechanism" title=" rocking mechanism"> rocking mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=wooden%20wall" title=" wooden wall"> wooden wall</a> </p> <a href="https://publications.waset.org/abstracts/159793/proposal-of-analytical-model-for-the-seismic-performance-evaluation-of-reinforced-concrete-frames-with-coupled-cross-laminated-timber-infill-panels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2905</span> Flexural Strength of Alkali Resistant Glass Textile Reinforced Concrete Beam with Prestressing </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jongho%20Park">Jongho Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Taekyun%20Kim"> Taekyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jungbhin%20You"> Jungbhin You</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungnam%20Hong"> Sungnam Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun-Kyu%20Park"> Sun-Kyu Park </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the aging of bridges, increasing of maintenance costs and decreasing of structural safety is occurred. The steel corrosion of reinforced concrete bridge is the most common problem and this phenomenon is accelerating due to abnormal weather and increasing CO<sub>2</sub> concentration due to climate change. To solve these problems, composite members using textile have been studied. A textile reinforced concrete can reduce carbon emissions by reduced concrete and without steel bars, so a lot of structural behavior studies are needed. Therefore, in this study, textile reinforced concrete beam was made and flexural test was performed. Also, the change of flexural strength according to the prestressing was conducted. As a result, flexural strength of TRC with prestressing was increased compared and flexural behavior was shown as reinforced concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AR-glass" title="AR-glass">AR-glass</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=prestressing" title=" prestressing"> prestressing</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20reinforced%20concrete" title=" textile reinforced concrete"> textile reinforced concrete</a> </p> <a href="https://publications.waset.org/abstracts/74475/flexural-strength-of-alkali-resistant-glass-textile-reinforced-concrete-beam-with-prestressing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2904</span> Behaviour of Reinforced Concrete Infilled Frames under Seismic Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Badla">W. Badla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A significant portion of the buildings constructed in Algeria is structural frames with infill panels which are usually considered as non structural components and are neglected in the analysis. However, these masonry panels tend to influence the structural response. Thus, these structures can be regarded as seismic risk buildings, although in the Algerian seismic code there is little guidance on the seismic evaluation of infilled frame buildings. In this study, three RC frames with 2, 4, and 8 story and subjected to three recorded Algerian accelerograms are studied. The diagonal strut approach is adopted for modeling the infill panels and a fiber model is used to model RC members. This paper reports on the seismic evaluation of RC frames with brick infill panels. The results obtained show that the masonry panels enhance the load lateral capacity of the buildings and the infill panel configuration influences the response of the structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20design" title="seismic design">seismic design</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20frames" title=" RC frames"> RC frames</a>, <a href="https://publications.waset.org/abstracts/search?q=infill%20panels" title=" infill panels"> infill panels</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20linear%20dynamic%20analysis" title=" non linear dynamic analysis"> non linear dynamic analysis</a> </p> <a href="https://publications.waset.org/abstracts/21693/behaviour-of-reinforced-concrete-infilled-frames-under-seismic-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">546</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2903</span> Flexural Behavior of Heat-Damaged Concrete Beams Reinforced with Fiber Reinforced Polymer (FRP) Bars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20R.%20Irshidat">Mohammad R. Irshidat</a>, <a href="https://publications.waset.org/abstracts/search?q=Rami%20H.%20Haddad"> Rami H. Haddad</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanadi%20Al-Mahmoud"> Hanadi Al-Mahmoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete (RC) is the most common used material for construction in the world. In the past decades, fiber reinforced polymer (FRP) bars had been widely used to substitute the steel bars due to their high resistance to corrosion, high tensile capacity, and low weight in comparison with steel. Experimental studies on the behavior of FRP bar reinforced concrete beams had been carried out worldwide for a few decades. While the research on such structural members under elevated temperatures is still very limited. In this research, the flexural behavior of heat-damaged concrete beams reinforced with FRP bars is studied. Two types of FRP rebar namely, carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP), are used. The beams are subjected to four levels of temperature before tested to monitor their flexural behavior. The results are compared with other concrete beams reinforced with regular steel bars. The results show that the beams reinforced with CFRP bars and GFRP bars had higher flexural capacity than the beams reinforced with steel bars even if heated up to 400°C and 300°C, respectively. After that the beams reinforced with steel bars had the superiority. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20beams" title="concrete beams">concrete beams</a>, <a href="https://publications.waset.org/abstracts/search?q=FRP%20rebar" title=" FRP rebar"> FRP rebar</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20behavior" title=" flexural behavior"> flexural behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=heat-damaged" title=" heat-damaged"> heat-damaged</a> </p> <a href="https://publications.waset.org/abstracts/1470/flexural-behavior-of-heat-damaged-concrete-beams-reinforced-with-fiber-reinforced-polymer-frp-bars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2902</span> Numerical Investigation of the Jacketing Method of Reinforced Concrete Column </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Boukais">S. Boukais</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nekmouche"> A. Nekmouche</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Khelil"> N. Khelil</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kezmane"> A. Kezmane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The first intent of this study is to develop a finite element model that can predict correctly the behavior of the reinforced concrete column. Second aim is to use the finite element model to investigate and evaluate the effect of the strengthening method by jacketing of the reinforced concrete column, by considering different interface contact between the old and the new concrete. Four models were evaluated, one by considering perfect contact, the other three models by using friction coefficient of 0.1, 0.3 and 0.5. The simulation was carried out by using Abaqus software. The obtained results show that the jacketing reinforcement led to significant increase of the global performance of the behavior of the simulated reinforced concrete column. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=strengthening" title="strengthening">strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=jacketing" title=" jacketing"> jacketing</a>, <a href="https://publications.waset.org/abstracts/search?q=rienforced%20concrete%20column" title=" rienforced concrete column"> rienforced concrete column</a>, <a href="https://publications.waset.org/abstracts/search?q=Abaqus" title=" Abaqus"> Abaqus</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/118072/numerical-investigation-of-the-jacketing-method-of-reinforced-concrete-column" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2901</span> Flexural Behavior of Eco-Friendly Prefabricated Low Cost Bamboo Reinforced Wall Panels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishal%20Puri">Vishal Puri</a>, <a href="https://publications.waset.org/abstracts/search?q=Pradipta%20Chakrabortty"> Pradipta Chakrabortty</a>, <a href="https://publications.waset.org/abstracts/search?q=Swapan%20Majumdar"> Swapan Majumdar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Precast concrete construction is the most commonly used technique for a rapid construction. This technique is very frequently used in the developed countries. Different guidelines required to utilize the potential of prefabricated construction are still not available in the developing countries. This causes over dependence on in-situ construction procedure which further affects the quality, scheduling, and duration of construction. Also with the ever increasing costs of building materials and their negative impact on the environment it has become imperative to look out for alternate construction materials which are cheap and sustainable. Bamboo and fly ash are alternate construction materials having great potential in the construction industry. Thus there is a great need to develop prefabricated components by utilizing the potential of these materials. Bamboo reinforced beams, bamboo reinforced columns and bamboo arches as researched previously have shown great prospects for prefabricated construction industry. But, many other prefabricated components still need to be studied and widely tested before their utilization in the prefabricated construction industry. In the present study, authors have showcased prefabricated bamboo reinforced wall panel for the prefabricated construction industry. It presents a detailed methodology for the development of such prefabricated panels. It also presents the flexural behavior of such panels as tested under flexural loads following ASTM guidelines. It was observed that these wall panels are much flexible and do not show brittle failure as observed in traditional brick walls. It was observed that prefabricated walls are about 42% cheaper as compared to conventional brick walls. It was also observed that prefabricated walls are considerably lighter in weight and are environment friendly. It was thus concluded that this type of wall panels are an excellent alternative for partition brick walls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo" title="bamboo">bamboo</a>, <a href="https://publications.waset.org/abstracts/search?q=prefabricated%20walls" title=" prefabricated walls"> prefabricated walls</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20structure" title=" reinforced structure"> reinforced structure</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20infrastructure" title=" sustainable infrastructure"> sustainable infrastructure</a> </p> <a href="https://publications.waset.org/abstracts/54325/flexural-behavior-of-eco-friendly-prefabricated-low-cost-bamboo-reinforced-wall-panels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2900</span> Pullout Strength of Textile Reinforcement in Concrete by Embedded Length and Concrete Strength</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jongho%20Park">Jongho Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Taekyun%20Kim"> Taekyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jungbhin%20You"> Jungbhin You</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungnam%20Hong"> Sungnam Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun-Kyu%20Park"> Sun-Kyu Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The deterioration of the reinforced concrete is continuously accelerated due to aging of the reinforced concrete, enlargement of the structure, increase if the self-weight due to the manhattanization and cracking due to external force. Also, due to the abnormal climate phenomenon, cracking of reinforced concrete structures is accelerated. Therefore, research on the Textile Reinforced Concrete (TRC) which replaced reinforcement with textile is under study. However, in previous studies, adhesion performance to single yarn was examined without parameters, which does not reflect the effect of fiber twisting and concrete strength. In the present paper, the effect of concrete strength and embedded length on 2400tex (gram per 1000 meters) and 640tex textile were investigated. The result confirm that the increasing compressive strength of the concrete did not affect the pullout strength. However, as the embedded length increased, the pullout strength tended to increase gradually, especially at 2400tex with more twists. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=textile" title="textile">textile</a>, <a href="https://publications.waset.org/abstracts/search?q=TRC" title=" TRC"> TRC</a>, <a href="https://publications.waset.org/abstracts/search?q=pullout" title=" pullout"> pullout</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20length" title=" embedded length"> embedded length</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a> </p> <a href="https://publications.waset.org/abstracts/67482/pullout-strength-of-textile-reinforcement-in-concrete-by-embedded-length-and-concrete-strength" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2899</span> Studying the Bond Strength of Geo-Polymer Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rama%20Seshu%20Doguparti">Rama Seshu Doguparti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the experimental investigation on the bond behavior of geo polymer concrete. The bond behavior of geo polymer concrete cubes of grade M35 reinforced with 16 mm TMT rod is analyzed. The results indicate that the bond performance of reinforced geo polymer concrete is good and thus proves its application for construction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geo-polymer" title="geo-polymer">geo-polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=bond%20strength" title=" bond strength"> bond strength</a>, <a href="https://publications.waset.org/abstracts/search?q=behaviour" title=" behaviour"> behaviour</a> </p> <a href="https://publications.waset.org/abstracts/19114/studying-the-bond-strength-of-geo-polymer-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2898</span> Cover Spalling in Reinforced Concrete Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bambang%20Piscesa">Bambang Piscesa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mario%20M.%20Attard"> Mario M. Attard</a>, <a href="https://publications.waset.org/abstracts/search?q=Dwi%20Presetya"> Dwi Presetya</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20K.%20Samani"> Ali K. Samani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical strategy formulated using a plasticity approach is presented to model spalling of the concrete cover in reinforced concrete columns. The stage at which the concrete cover within reinforced concrete column spalls has a direct bearing on the load capacity. The concrete cover can prematurely spall before the full cross-section can be utilized if the concrete is very brittle under compression such as for very high strength concretes. If the confinement to the core is high enough, the column can achieve a higher peak load by utilizing the core. A numerical strategy is presented to model spalling of the concrete cover. Various numerical strategies are employed to model the behavior of reinforced concrete columns which include: (1) adjusting the material properties to incorporate restrained shrinkage; (2) modifying the plastic dilation rate in the presence of the tensile pressure; (3) adding a tension cut-off failure surface and (4) giving the concrete cover region and the column core different material properties. Numerical comparisons against experimental results are carried out that shown excellent agreement with the experimental results and justify the use of the proposed strategies to predict the axial load capacity of reinforce concrete columns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spalling" title="spalling">spalling</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20dilation" title=" plastic dilation"> plastic dilation</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20columns" title=" reinforced concrete columns "> reinforced concrete columns </a> </p> <a href="https://publications.waset.org/abstracts/111464/cover-spalling-in-reinforced-concrete-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2897</span> Numerical Investigation of Fiber-Reinforced Polymer (FRP) Panels Resistance to Blast Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sameh%20Ahmed">Sameh Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Galal"> Khaled Galal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fiber-reinforced polymer (FRP) sandwich panels are increasingly making their way into structural engineering applications. One of these applications is the blast mitigation. This is attributed to FRP ability of absorbing considerable amount of energy relative to their low density. In this study, FRP sandwich panels are numerically studied using an explicit finite element code ANSYS AUTODYN. The numerical model is then validated with the experimental field tests in the literature. The inner core configurations that have been studied in the experimental field tests were formed from different orientations of the honeycomb shape. On the other hand, the conducted numerical study has proposed a new core configuration. The new core configuration is formulated from a combination of woven and honeycomb shapes. Throughout this study, two performance parameters are considered; the amount of the energy absorbed by the panels and the peak deformation of the panels. Following, a parametric study has been conducted with more variations of the studied parameters to examine the enhancement of the panels' performance. It is found that the numerical results have shown a good agreement with the experimental measurements. Furthermore, the analyses have revealed that using the proposed core configuration obviously enhances the FRP panels’ behavior when subjected to blast loads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blast%20load" title="blast load">blast load</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20reinforced%20polymers" title=" fiber reinforced polymers"> fiber reinforced polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20modeling" title=" finite element modeling"> finite element modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=sandwich%20panels" title=" sandwich panels"> sandwich panels</a> </p> <a href="https://publications.waset.org/abstracts/40612/numerical-investigation-of-fiber-reinforced-polymer-frp-panels-resistance-to-blast-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2896</span> Effect of Stirrup Corrosion on Concrete Confinement Strength </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mucip%20Tapan">Mucip Tapan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ozvan"> Ali Ozvan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Akkaya"> Ismail Akkaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated how the concrete confinement strength and axial load carrying capacity of reinforced concrete columns are affected by corrosion damage to the stirrups. A total of small-scale 12 test specimens were cast for evaluating the effect of stirrup corrosion on confinement strength of concrete. The results of this study show that the stirrup corrosion alone dramatically decreases the axial load carrying capacity of corroded reinforced concrete columns. Recommendations were presented for improved inspection practices which will allow estimating concrete confinement strength of corrosion-damaged reinforced concrete bridge columns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge" title="bridge">bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=column" title=" column"> column</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=inspection" title=" inspection"> inspection</a>, <a href="https://publications.waset.org/abstracts/search?q=stirrup%20reinforcement" title=" stirrup reinforcement"> stirrup reinforcement</a> </p> <a href="https://publications.waset.org/abstracts/31558/effect-of-stirrup-corrosion-on-concrete-confinement-strength" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2895</span> Numerical Simulation of Precast Concrete Panels for Airfield Pavement </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Josef%20Nov%C3%A1k">Josef Novák</a>, <a href="https://publications.waset.org/abstracts/search?q=Alena%20Kohoutkov%C3%A1"> Alena Kohoutková</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladim%C3%ADr%20K%C5%99%C3%ADstek"> Vladimír Křístek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Vodi%C4%8Dka"> Jan Vodička</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical analysis software belong to the main tools for simulating the real behavior of various concrete structures and elements. In comparison with experimental tests, they offer an affordable way to study the mechanical behavior of structures under various conditions. The contribution deals with a precast element of an innovative airfield pavement system which is being developed within an ongoing scientific project. The proposed system consists a two-layer surface course of precast concrete panels positioned on a two-layer base of fiber-reinforced concrete with recycled aggregate. As the panels are supposed to be installed directly on the hardened base course, imperfections at the interface between the base course and surface course are expected. Considering such circumstances, three various behavior patterns could be established and considered when designing the precast element. Enormous costs of full-scale experiments force to simulate the behavior of the element in a numerical analysis software using finite element method. The simulation was conducted on a nonlinear model in order to obtain such results which could fully compensate results from the experiments. First, several loading schemes were considered with the aim to observe the critical one which was used for the simulation later on. The main objective of the simulation was to optimize reinforcement of the element subject to quasi-static loading from airplanes. When running the simulation several parameters were considered. Namely, it concerns geometrical imperfections, manufacturing imperfections, stress state in reinforcement, stress state in concrete and crack width. The numerical simulation revealed that the precast element should be heavily reinforced to fulfill all the demands assumed. The main cause of using high amount of reinforcement is the size of the imperfections which could occur at real structure. Improving manufacturing quality, the installation of the precast panels on a fresh base course or using a bedding layer underneath the surface course belong to the main steps how to reduce the size of imperfections and consequently lower the consumption of reinforcement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20analysis" title="nonlinear analysis">nonlinear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=precast%20concrete" title=" precast concrete"> precast concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement" title=" pavement"> pavement</a> </p> <a href="https://publications.waset.org/abstracts/90378/numerical-simulation-of-precast-concrete-panels-for-airfield-pavement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2894</span> Non-Homogeneous Layered Fiber Reinforced Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vitalijs%20Lusis">Vitalijs Lusis</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrejs%20Krasnikovs"> Andrejs Krasnikovs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fiber reinforced concrete is important material for load bearing structural elements. Usually fibers are homogeneously distributed in a concrete body having arbitrary spatial orientations. At the same time, in many situations, fiber concrete with oriented fibers is more optimal. Is obvious, that is possible to create constructions with oriented short fibers in them, in different ways. Present research is devoted to one of such approaches- fiber reinforced concrete prisms having dimensions 100 mm×100 mm×400 mm with layers of non-homogeneously distributed fibers inside them were fabricated. Simultaneously prisms with homogeneously dispersed fibers were produced for reference as well. Prisms were tested under four point bending conditions. During the tests vertical deflection at the center of every prism and crack opening were measured (using linear displacements transducers in real timescale). Prediction results were discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20reinforced%20concrete" title="fiber reinforced concrete">fiber reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=4-point%20bending" title=" 4-point bending"> 4-point bending</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fiber" title=" steel fiber"> steel fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20engineering" title=" construction engineering"> construction engineering</a> </p> <a href="https://publications.waset.org/abstracts/8031/non-homogeneous-layered-fiber-reinforced-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2893</span> Strength of Fine Concrete Used in Textile Reinforced Concrete by Changing Water-Binder Ratio</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taekyun%20Kim">Taekyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jongho%20Park"> Jongho Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinwoong%20Choi"> Jinwoong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun-Kyu%20Park"> Sun-Kyu Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the abnormal climate phenomenon has enlarged due to the global warming. As a result, temperature variation is increasing and the term is being prolonged, frequency of high and low temperature is increasing by heat wave and severe cold. Especially for reinforced concrete structure, the corrosion of reinforcement has occurred by concrete crack due to temperature change and the durability of the structure that has decreased by concrete crack. Accordingly, the textile reinforced concrete (TRC) which does not corrode due to using textile is getting the interest and the investigation of TRC is proceeding. The study of TRC structure behavior has proceeded, but the characteristic study of the concrete used in TRC is insufficient. Therefore, characteristic of the concrete by changing mixing ratio is studied in this paper. As a result, mixing ratio with different water-binder ratio has influenced to the strength of concrete. Also, as the water-binder ratio has decreased, strength of concrete has increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing%20ratio" title=" mixing ratio"> mixing ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=textile" title=" textile"> textile</a>, <a href="https://publications.waset.org/abstracts/search?q=TRC" title=" TRC"> TRC</a> </p> <a href="https://publications.waset.org/abstracts/46094/strength-of-fine-concrete-used-in-textile-reinforced-concrete-by-changing-water-binder-ratio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2892</span> First Cracking Moments of Hybrid Fiber Reinforced Polymer-Steel Reinforced Concrete Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saruhan%20Kartal">Saruhan Kartal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilker%20Kalkan"> Ilker Kalkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper reports the cracking moment estimates of a set of steel-reinforced, Fiber Reinforced Polymer (FRP)-reinforced and hybrid steel-FRP reinforced concrete beams, calculated from different analytical formulations in the codes, together with the experimental cracking load values. A total of three steel-reinforced, four FRP-reinforced, 12 hybrid FRP-steel over-reinforced and five hybrid FRP-steel under-reinforced concrete beam tests were analyzed within the scope of the study. Glass FRP (GFRP) and Basalt FRP (BFRP) bars were used in the beams as FRP bars. In under-reinforced hybrid beams, rupture of the FRP bars preceded crushing of concrete, while concrete crushing preceded FRP rupture in over-reinforced beams. In both types, steel yielding took place long before the FRP rupture and concrete crushing. The cracking moment mainly depends on two quantities, namely the moment of inertia of the section at the initiation of cracking and the flexural tensile strength of concrete, i.e. the modulus of rupture. In the present study, two different definitions of uncracked moment of inertia, i.e. the gross and the uncracked transformed moments of inertia, were adopted. Two analytical equations for the modulus of rupture (ACI 318M and Eurocode 2) were utilized in the calculations as well as the experimental tensile strength of concrete from prismatic specimen tests. The ACI 318M modulus of rupture expression produced cracking moment estimates closer to the experimental cracking moments of FRP-reinforced and hybrid FRP-steel reinforced concrete beams when used in combination with the uncracked transformed moment of inertia, yet the Eurocode 2 modulus of rupture expression gave more accurate cracking moment estimates in steel-reinforced concrete beams. All of the analytical definitions produced analytical values considerably different from the experimental cracking load values of the solely FRP-reinforced concrete beam specimens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20reinforcement" title="polymer reinforcement">polymer reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=four-point%20bending" title=" four-point bending"> four-point bending</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20use%20of%20reinforcement" title=" hybrid use of reinforcement"> hybrid use of reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=cracking%20moment" title=" cracking moment"> cracking moment</a> </p> <a href="https://publications.waset.org/abstracts/107997/first-cracking-moments-of-hybrid-fiber-reinforced-polymer-steel-reinforced-concrete-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2891</span> Experimental Study on the Creep Characteristics of FRC Base for Composite Pavement System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Woo-Tai%20Jung">Woo-Tai Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Yong%20Choi"> Sung-Yong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Hwan%20Park"> Young-Hwan Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The composite pavement system considered in this paper is composed of a functional surface layer, a fiber reinforced asphalt middle layer and a fiber reinforced lean concrete base layer. The mix design of the fiber reinforced lean concrete corresponds to the mix composition of conventional lean concrete but reinforced by fibers. The quasi-absence of research on the durability or long-term performances (fatigue, creep, etc.) of such mix design stresses the necessity to evaluate experimentally the long-term characteristics of this layer composition. This study tests the creep characteristics as one of the long-term characteristics of the fiber reinforced lean concrete layer for composite pavement using a new creep device. The test results reveal that the lean concrete mixed with fiber reinforcement and fly ash develops smaller creep than the conventional lean concrete. The results of the application of the CEB-FIP prediction equation indicate that a modified creep prediction equation should be developed to fit with the new mix design of the layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=creep" title="creep">creep</a>, <a href="https://publications.waset.org/abstracts/search?q=lean%20concrete" title=" lean concrete"> lean concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement" title=" pavement"> pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20reinforced%20concrete" title=" fiber reinforced concrete"> fiber reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=base" title=" base"> base</a> </p> <a href="https://publications.waset.org/abstracts/1482/experimental-study-on-the-creep-characteristics-of-frc-base-for-composite-pavement-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">522</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2890</span> Size Effect on Shear Strength of Slender Reinforced Concrete Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subhan%20Ahmad">Subhan Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Pradeep%20Bhargava"> Pradeep Bhargava</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Chourasia"> Ajay Chourasia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shear failure in reinforced concrete beams without shear reinforcement leads to loss of property and life since a very little or no warning occurs before failure as in case of flexural failure. Shear strength of reinforced concrete beams decreases as its depth increases. This phenomenon is generally called as the size effect. In this paper, a comparative analysis is performed to estimate the performance of shear strength models in capturing the size effect of reinforced concrete beams made with conventional concrete, self-compacting concrete, and recycled aggregate concrete. Four shear strength models that account for the size effect in shear are selected from the literature and applied on the datasets of slender reinforced concrete beams. Beams prepared with conventional concrete, self-compacting concrete, and recycled aggregate concrete are considered for the analysis. Results showed that all the four models captured the size effect in shear effectively and produced conservative estimates of the shear strength for beams made with normal strength conventional concrete. These models yielded unconservative estimates for high strength conventional concrete beams with larger effective depths ( > 450 mm). Model of Bazant and Kim (1984) captured the size effect precisely and produced conservative estimates of shear strength of self-compacting concrete beams at all the effective depths. Also, shear strength models considered in this study produced unconservative estimates of shear strength for recycled aggregate concrete beams at all effective depths. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20beams%3B%20shear%20strength%3B%20prediction%20models%3B%20size%20effect" title="reinforced concrete beams; shear strength; prediction models; size effect">reinforced concrete beams; shear strength; prediction models; size effect</a> </p> <a href="https://publications.waset.org/abstracts/122714/size-effect-on-shear-strength-of-slender-reinforced-concrete-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2889</span> Airfield Pavements Made of Reinforced Concrete: Dimensioning According to the Theory of Limit States and Eurocode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Linek">M. Linek</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Nita"> P. Nita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the previous airfield construction industry, pavements made of reinforced concrete have been used very rarely; however, the necessity to use this type of pavements in an emergency situations justifies the need reference to this issue. The paper concerns the problem of airfield pavement dimensioning made of reinforced concrete and the evaluation of selected dimensioning methods of reinforced concrete slabs intended for airfield pavements. Analysis of slabs dimensioning, according to classical method of limit states has been performed and it has been compared to results obtained in case of methods complying with Eurocode 2 guidelines. Basis of an analysis was a concrete slab of class C35/45 with reinforcement, located in tension zone. Steel bars of 16.0 mm have been used as slab reinforcement. According to comparative analysis of obtained results, conclusions were reached regarding application legitimacy of the discussed methods and their design advantages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rainforced%20concrete" title="rainforced concrete">rainforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20concrete" title=" cement concrete"> cement concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=airport%20pavements" title=" airport pavements"> airport pavements</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensioning" title=" dimensioning"> dimensioning</a> </p> <a href="https://publications.waset.org/abstracts/53911/airfield-pavements-made-of-reinforced-concrete-dimensioning-according-to-the-theory-of-limit-states-and-eurocode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2888</span> Toughness Factor of Polypropylene Fiber Reinforced Concrete in Aggressive Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20E.%20Vasconcelos">R. E. Vasconcelos</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20R.%20M.%20da%20Silva"> K. R. M. da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20B.%20Pinto"> J. M. B. Pinto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to determine and to present the results of an experimental study of Synthetic (polypropylene) Fibers Reinforced Concrete (SFRC), in levels of 0.33% - 3kg/m3, 0.50% - 4.5kg/m3, and 0.66% - 6kg/m3, using cement CP V – ARI, at ages 28 and 88 days after specimens molding. The specimens were exposed for 60 days in aggressive environment (in solution of water and 3% of sodium chloride), after 28 days. The bending toughness tests were performed in prismatic specimens of 150 x 150 x 500 mm. The toughness factor values of the specimens in aggressive environment were the same to those obtained in normal environment (in air). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20reinforced%20with%20polypropylene%20fibers" title="concrete reinforced with polypropylene fibers">concrete reinforced with polypropylene fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=toughness%20in%20bending" title=" toughness in bending"> toughness in bending</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20fibers" title=" synthetic fibers"> synthetic fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20reinforced" title=" concrete reinforced"> concrete reinforced</a> </p> <a href="https://publications.waset.org/abstracts/31274/toughness-factor-of-polypropylene-fiber-reinforced-concrete-in-aggressive-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2887</span> Effect of Concrete Strength on the Bond Between Carbon Fiber Reinforced Polymer and Concrete in Hot Weather</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Usama%20Mohamed%20Ahamed">Usama Mohamed Ahamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research deals with the bond behavior of carbon FRP composite wraps adhered/bonded to the surface of the concrete. Four concrete mixes were designed to achieve a concrete compressive strength of 18, 22.5,25 and 30 MP after 28 days of curing. The focus of the study is on bond degradation when the hybrid structure is exposed to hot weather conditions. Specimens were exposed to 50 0C temperature duration 6 months and other specimens were sustained in laboratory temperature ( 20-24) 0C. Upon removing the specimens from their conditioning environment, tension tests were performed in the machine using a specially manufactured concrete cube holder. A lightweight mortar layer is used to protect the bonded carbon FRP layer on the concrete surface. The results show that the higher the concrete's compressive, the higher the bond strength. The high temperature decreases the bond strength between concrete and carbon fiber-reinforced polymer. The use of a protection layer is essential for concrete exposed to hot weather. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=bond" title=" bond"> bond</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20weather%20and%20carbon%20fiber" title=" hot weather and carbon fiber"> hot weather and carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20polymers" title=" carbon fiber reinforced polymers"> carbon fiber reinforced polymers</a> </p> <a href="https://publications.waset.org/abstracts/169015/effect-of-concrete-strength-on-the-bond-between-carbon-fiber-reinforced-polymer-and-concrete-in-hot-weather" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2886</span> Reinforced Concrete Design Construction Issues and Earthquake Failure-Damage Responses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Husnu%20Korkmaz">Hasan Husnu Korkmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Serra%20Zerrin%20Korkmaz"> Serra Zerrin Korkmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthquakes are the natural disasters that threat several countries. Turkey is situated on a very active earthquake zone. During the recent earthquakes, thousands of people died due to failure of reinforced concrete structures. Although Turkey has a very sufficient earthquake code, the design and construction mistakes were repeated for old structures. Lack of the control mechanism during the construction process may be the most important reason of failure. The quality of the concrete and poor detailing of steel or reinforcement is the most important headings. In this paper, the reasons of failure of reinforced concrete structures were summarized with relevant photos. The paper is beneficial for civil engineers as well as architect who are in the process of construction and design of structures in earthquake zones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake" title="earthquake">earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20structure" title=" reinforced concrete structure"> reinforced concrete structure</a>, <a href="https://publications.waset.org/abstracts/search?q=failure" title=" failure"> failure</a>, <a href="https://publications.waset.org/abstracts/search?q=material" title=" material"> material</a> </p> <a href="https://publications.waset.org/abstracts/47736/reinforced-concrete-design-construction-issues-and-earthquake-failure-damage-responses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2885</span> Nonlinear Analysis of Reinforced Concrete Arched Structures Considering Soil-Structure Interaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20M.%20El%20Gendy">Mohamed M. El Gendy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20A.%20El%20Arabi"> Ibrahim A. El Arabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafeek%20W.%20Abdel-Missih"> Rafeek W. Abdel-Missih</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20A.%20Kandil"> Omar A. Kandil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nonlinear analysis is one of the most important design and safety tools in structural engineering. Based on the finite-element method, a geometrical and material nonlinear analysis of large span reinforced concrete arches is carried out considering soil-structure interaction. The concrete section details and reinforcement distribution are taken into account. The behavior of soil is considered via Winkler's and continuum models. A computer program (NARC II) is specially developed in order to follow the structural behavior of large span reinforced concrete arches up to failure. The results obtained by the proposed model are compared with available literature for verification. This work confirmed that the geometrical and material nonlinearities, as well as soil structure interaction, have considerable influence on the structural response of reinforced concrete arches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20analysis" title="nonlinear analysis">nonlinear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20arched%20structure" title=" reinforced concrete arched structure"> reinforced concrete arched structure</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interaction" title=" soil-structure interaction"> soil-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnical%20engineering" title=" geotechnical engineering"> geotechnical engineering</a> </p> <a href="https://publications.waset.org/abstracts/8429/nonlinear-analysis-of-reinforced-concrete-arched-structures-considering-soil-structure-interaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2884</span> The Current Practices of Analysis of Reinforced Concrete Panels Subjected to Blast Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Palak%20J.%20Shukla">Palak J. Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=Atul%20K.%20Desai"> Atul K. Desai</a>, <a href="https://publications.waset.org/abstracts/search?q=Chentankumar%20D.%20Modhera"> Chentankumar D. Modhera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For any country in the world, it has become a priority to protect the critical infrastructure from looming risks of terrorism. In any infrastructure system, the structural elements like lower floors, exterior columns, walls etc. are key elements which are the most susceptible to damage due to blast load. The present study revisits the state of art review of the design and analysis of reinforced concrete panels subjected to blast loading. Various aspects in association with blast loading on structure, i.e. estimation of blast load, experimental works carried out previously, the numerical simulation tools, various material models, etc. are considered for exploring the current practices adopted worldwide. Discussion on various parametric studies to investigate the effect of reinforcement ratios, thickness of slab, different charge weight and standoff distance is also made. It was observed that for the simulation of blast load, CONWEP blast function or equivalent numerical equations were successfully employed by many researchers. The study of literature indicates that the researches were carried out using experimental works and numerical simulation using well known generalized finite element methods, i.e. LS-DYNA, ABAQUS, AUTODYN. Many researchers recommended to use concrete damage model to represent concrete and plastic kinematic material model to represent steel under action of blast loads for most of the numerical simulations. Most of the studies reveal that the increase reinforcement ratio, thickness of slab, standoff distance was resulted in better blast resistance performance of reinforced concrete panel. The study summarizes the various research results and appends the present state of knowledge for the structures exposed to blast loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blast%20phenomenon" title="blast phenomenon">blast phenomenon</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20methods" title=" experimental methods"> experimental methods</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20models" title=" material models"> material models</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20methods" title=" numerical methods"> numerical methods</a> </p> <a href="https://publications.waset.org/abstracts/96432/the-current-practices-of-analysis-of-reinforced-concrete-panels-subjected-to-blast-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2883</span> Performance of Fiber-Reinforced Polymer as an Alternative Reinforcement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salah%20E.%20El-Metwally">Salah E. El-Metwally</a>, <a href="https://publications.waset.org/abstracts/search?q=Marwan%20Abdo"> Marwan Abdo</a>, <a href="https://publications.waset.org/abstracts/search?q=Basem%20Abdel%20Wahed"> Basem Abdel Wahed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fiber-reinforced polymer (FRP) bars have been proposed as an alternative to conventional steel bars; hence, the use of these non-corrosive and nonmetallic reinforcing bars has increased in various concrete projects. This concrete material is lightweight, has a long lifespan, and needs minor maintenance; however, its non-ductile nature and weak bond with the surrounding concrete create a significant challenge. The behavior of concrete elements reinforced with FRP bars has been the subject of several experimental investigations, even with their high cost. This study aims to numerically assess the viability of using FRP bars, as longitudinal reinforcement, in comparison with traditional steel bars, and also as prestressing tendons instead of the traditional prestressing steel. The nonlinear finite element analysis has been utilized to carry out the current study. Numerical models have been developed to examine the behavior of concrete beams reinforced with FRP bars or tendons against similar models reinforced with either conventional steel or prestressing steel. These numerical models were verified by experimental test results available in the literature. The obtained results revealed that concrete beams reinforced with FRP bars, as passive reinforcement, exhibited less ductility and less stiffness than similar beams reinforced with steel bars. On the other hand, when FRP tendons are employed in prestressing concrete beams, the results show that the performance of these beams is similar to those beams prestressed by conventional active reinforcement but with a difference caused by the two tendon materials’ moduli of elasticity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title="reinforced concrete">reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=prestressed%20concrete" title=" prestressed concrete"> prestressed concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20finite%20element%20analysis" title=" nonlinear finite element analysis"> nonlinear finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber-reinforced%20polymer" title=" fiber-reinforced polymer"> fiber-reinforced polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a> </p> <a href="https://publications.waset.org/abstracts/192629/performance-of-fiber-reinforced-polymer-as-an-alternative-reinforcement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">13</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20panels&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20panels&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20panels&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20panels&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20panels&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20panels&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20panels&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20panels&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20panels&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20panels&page=97">97</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20panels&page=98">98</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20panels&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>