CINXE.COM

Search results for: medical diagnostics

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: medical diagnostics</title> <meta name="description" content="Search results for: medical diagnostics"> <meta name="keywords" content="medical diagnostics"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="medical diagnostics" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="medical diagnostics"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3631</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: medical diagnostics</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3631</span> Photoplethysmography-Based Device Designing for Cardiovascular System Diagnostics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Botman">S. Botman</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Borchevkin"> D. Borchevkin</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Petrov"> V. Petrov</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Bogdanov"> E. Bogdanov</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Patrushev"> M. Patrushev</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Shusharina"> N. Shusharina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we report the development of the device for diagnostics of cardiovascular system state and associated automated workstation for large-scale medical measurement data collection and analysis. It was shown that optimal design for the monitoring device is wristband as it represents engineering trade-off between accuracy and usability. The monitoring device is based on the infrared reflective photoplethysmographic sensor, which allows collecting multiple physiological parameters, such as heart rate and pulsing wave characteristics. Developed device use BLE interface for medical and supplementary data transmission to the coupled mobile phone, which process it and send it to the doctor's automated workstation. Results of this experimental model approbation confirmed the applicability of the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardiovascular%20diseases" title="cardiovascular diseases">cardiovascular diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20monitoring%20systems" title=" health monitoring systems"> health monitoring systems</a>, <a href="https://publications.waset.org/abstracts/search?q=photoplethysmography" title=" photoplethysmography"> photoplethysmography</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20wave" title=" pulse wave"> pulse wave</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20diagnostics" title=" remote diagnostics"> remote diagnostics</a> </p> <a href="https://publications.waset.org/abstracts/29151/photoplethysmography-based-device-designing-for-cardiovascular-system-diagnostics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3630</span> Highly-Sensitive Nanopore-Based Sensors for Point-Of-Care Medical Diagnostics </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leyla%20Esfandiari">Leyla Esfandiari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid, sensitive detection of nucleic acid (NA) molecules of specific sequence is of interest for a range of diverse health-related applications such as screening for genetic diseases, detecting pathogenic microbes in food and water, and identifying biological warfare agents in homeland security. Sequence-specific nucleic acid detection platforms rely on base pairing interaction between two complementary single stranded NAs, which can be detected by the optical, mechanical, or electrochemical readout. However, many of the existing platforms require amplification by polymerase chain reaction (PCR), fluorescent or enzymatic labels, and expensive or bulky instrumentation. In an effort to address these shortcomings, our research is focused on utilizing the cutting edge nanotechnology and microfluidics along with resistive pulse electrical measurements to design and develop a cost-effective, handheld and highly-sensitive nanopore-based sensor for point-of-care medical diagnostics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diagnostics" title="diagnostics">diagnostics</a>, <a href="https://publications.waset.org/abstracts/search?q=nanopore" title=" nanopore"> nanopore</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleic%20acids" title=" nucleic acids"> nucleic acids</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor "> sensor </a> </p> <a href="https://publications.waset.org/abstracts/35912/highly-sensitive-nanopore-based-sensors-for-point-of-care-medical-diagnostics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3629</span> Diagnostics via Biophysical Resistotrons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matt%20Vellkorn">Matt Vellkorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Mara%20Sarinski"> Mara Sarinski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The field of advanced diagnostics is a very rapidly changing one. A new technology that has not been fully used yet are resistotrons. A resistotron is a physical device thatis used to detect the presence of low energy alpha particles. It has been used for many years in nuclear physics as an alpha particle detector. Since they are used in nuclear physics, they have to be accurate. They have to be able to differentiate between alpha particles and other types of radiation. The resistotrons are primarily used for safety. They are used in areas where people or animals can get exposed to radiation. A typical example is in the treatment of nuclear waste. As it is with any nuclear physics instrument, a resistotron has to be very accurate and reliable. In the past, the instrument was very expensive because they were made out of copper. Today, they are made out of brass. The main difference is that brass is much less expensive than copper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensors" title="biosensors">biosensors</a>, <a href="https://publications.waset.org/abstracts/search?q=resistotrons" title=" resistotrons"> resistotrons</a>, <a href="https://publications.waset.org/abstracts/search?q=biophysics" title=" biophysics"> biophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostics" title=" diagnostics"> diagnostics</a> </p> <a href="https://publications.waset.org/abstracts/148720/diagnostics-via-biophysical-resistotrons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3628</span> Information System for Early Diabetic Retinopathy Diagnostics Based on Multiscale Texture Gradient Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20S.%20Godlevsky">L. S. Godlevsky</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20V.%20Kresyun"> N. V. Kresyun</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20P.%20Martsenyuk"> V. P. Martsenyuk</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Shakun"> K. S. Shakun</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20V.%20Tatarchuk"> T. V. Tatarchuk</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20O.%20Prybolovets"> K. O. Prybolovets</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20F.%20Kalinichenko"> L. F. Kalinichenko</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Karpinski"> M. Karpinski</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Gancarczyk"> T. Gancarczyk </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structures of eye bottom were extracted using multiscale texture gradient method and color characteristics of macular zone and vessels were verified in CIELAB scale. The difference of average values of L*, a* and b* coordinates of CIE (International Commision of Illumination) scale in patients with diabetes and healthy volunteers was compared. The average value of L* in diabetic patients exceeded such one in the group of practically healthy persons by 2.71 times (<em>P</em>&nbsp;&lt;&nbsp;0.05), while the value of a* index was reduced by 3.8 times when compared with control one (<em>P</em>&nbsp;&lt;&nbsp;0.05). b* index exceeded such one in the control group by 12.4 times (<em>P</em>&nbsp;&lt;&nbsp;0.05). The integrated index on color difference (&Delta;<em>E</em>) exceeded control value by 2.87 times (<em>P</em>&nbsp;&lt;&nbsp;0.05). More pronounced differences with &Delta;<em>E</em> were followed by a shorter period of MA appearance with a correlation level at -0.56 (<em>P</em>&nbsp;&lt;&nbsp;0.05). The specificity of diagnostics raised by 2.17 times (<em>P</em>&nbsp;&lt;&nbsp;0.05) and negative prognostic index exceeded such one determined with the expert method by 2.26 times (<em>P</em>&nbsp;&lt;&nbsp;0.05). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetic%20retinopathy" title="diabetic retinopathy">diabetic retinopathy</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale%20texture%20gradient" title=" multiscale texture gradient"> multiscale texture gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20spectrum%20analysis" title=" color spectrum analysis"> color spectrum analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20diagnostics" title=" medical diagnostics"> medical diagnostics</a> </p> <a href="https://publications.waset.org/abstracts/116592/information-system-for-early-diabetic-retinopathy-diagnostics-based-on-multiscale-texture-gradient-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3627</span> Research Design for Developing and Validating Ice-Hockey Team Diagnostics Scale</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gergely%20Geczi">Gergely Geczi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the modern world, ice hockey (and, in a broader sense, team sports) is becoming an increasingly popular field of entertainment. Although the main element is most likely perceived as the show itself, winning is an inevitable part of the successful operation of any sports team. In this paper, the author creates a research design allowing him to develop and validate an ice-hockey team-focused diagnostics scale, which enables researchers and practitioners to identify the problems associated with underperforming teams. The construction of the scale starts with personal interviews with experts of the field, carefully chosen from the sector of Hungarian ice hockey. Based on the interviews, the author is shown to be in the position to create the categories and the relevant items for the scale. When constructed, the next step is the validation process on a Hungarian sample. Data for validation are acquired through reaching the licensed database of the Hungarian Ice-Hockey Federation involving Hungarian ice-hockey coaches and players. The Ice-Hockey Team Diagnostics Scale is to be created to orient practitioners in understanding both effective and underperforming teamwork. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diagnostics%20scale" title="diagnostics scale">diagnostics scale</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20versus%20underperforming%20team%20work" title=" effective versus underperforming team work"> effective versus underperforming team work</a>, <a href="https://publications.waset.org/abstracts/search?q=ice-hockey" title=" ice-hockey"> ice-hockey</a>, <a href="https://publications.waset.org/abstracts/search?q=research%20design" title=" research design"> research design</a> </p> <a href="https://publications.waset.org/abstracts/132475/research-design-for-developing-and-validating-ice-hockey-team-diagnostics-scale" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3626</span> Numerical Modelling of Skin Tumor Diagnostics through Dynamic Thermography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luiz%20Carlos%20Wrobel">Luiz Carlos Wrobel</a>, <a href="https://publications.waset.org/abstracts/search?q=Matjaz%20Hribersek"> Matjaz Hribersek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jure%20Marn"> Jure Marn</a>, <a href="https://publications.waset.org/abstracts/search?q=Jurij%20Iljaz"> Jurij Iljaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamic thermography has been clinically proven to be a valuable diagnostic technique for skin tumor detection as well as for other medical applications such as breast cancer diagnostics, diagnostics of vascular diseases, fever screening, dermatological and other applications. Thermography for medical screening can be done in two different ways, observing the temperature response under steady-state conditions (passive or static thermography), and by inducing thermal stresses by cooling or heating the observed tissue and measuring the thermal response during the recovery phase (active or dynamic thermography). The numerical modelling of heat transfer phenomena in biological tissue during dynamic thermography can aid the technique by improving process parameters or by estimating unknown tissue parameters based on measured data. This paper presents a nonlinear numerical model of multilayer skin tissue containing a skin tumor, together with the thermoregulation response of the tissue during the cooling-rewarming processes of dynamic thermography. The model is based on the Pennes bioheat equation and solved numerically by using a subdomain boundary element method which treats the problem as axisymmetric. The paper includes computational tests and numerical results for Clark II and Clark IV tumors, comparing the models using constant and temperature-dependent thermophysical properties, which showed noticeable differences and highlighted the importance of using a local thermoregulation model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20element%20method" title="boundary element method">boundary element method</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20thermography" title=" dynamic thermography"> dynamic thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20thermography" title=" static thermography"> static thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20tumor%20diagnostic" title=" skin tumor diagnostic"> skin tumor diagnostic</a> </p> <a href="https://publications.waset.org/abstracts/158809/numerical-modelling-of-skin-tumor-diagnostics-through-dynamic-thermography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3625</span> Analysis of Transformer by Gas and Moisture Sensor during Laboratory Time Monitoring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miroslav%20Gutten">Miroslav Gutten</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Korenciak"> Daniel Korenciak</a>, <a href="https://publications.waset.org/abstracts/search?q=Milan%20Simko"> Milan Simko</a>, <a href="https://publications.waset.org/abstracts/search?q=Milan%20Chupac"> Milan Chupac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ensure the reliable and correct function of transformers is the main essence of on-line non-destructive diagnostic tool, which allows the accurately track of the status parameters. Devices for on-line diagnostics are very costly. However, there are devices, whose price is relatively low and when used correctly, they can be executed a complex diagnostics. One of these devices is sensor HYDRAN M2, which is used to detect the moisture and gas content in the insulation oil. Using the sensor HYDRAN M2 in combination with temperature, load measurement, and physicochemical analysis can be made the economically inexpensive diagnostic system, which use is not restricted to distribution transformers. This system was tested in educational laboratory environment at measured oil transformer 22/0.4 kV. From the conclusions referred in article is possible to determine, which kind of fault was occurred in the transformer and how was an impact on the temperature, evolution of gases and water content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transformer" title="transformer">transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostics" title=" diagnostics"> diagnostics</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20and%20moisture%20sensor" title=" gas and moisture sensor"> gas and moisture sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a> </p> <a href="https://publications.waset.org/abstracts/77770/analysis-of-transformer-by-gas-and-moisture-sensor-during-laboratory-time-monitoring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3624</span> Pantograph-Catenary Contact Force: Features Evaluation for Catenary Diagnostics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Brahimi">Mehdi Brahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamal%20Medjaher"> Kamal Medjaher</a>, <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Zerhouni"> Noureddine Zerhouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Leouatni"> Mohammed Leouatni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Prognostics and Health Management is a system engineering discipline which provides solutions and models to the implantation of a predictive maintenance. The approach is based on extracting useful information from monitoring data to assess the “health” state of an industrial equipment or an asset. In this paper, we examine multiple extracted features from Pantograph-Catenary contact force in order to select the most relevant ones to achieve a diagnostics function. The feature extraction methodology is based on simulation data generated thanks to a Pantograph-Catenary simulation software called INPAC and measurement data. The feature extraction method is based on both statistical and signal processing analyses. The feature selection method is based on statistical criteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catenary%2Fpantograph%20interaction" title="catenary/pantograph interaction">catenary/pantograph interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostics" title=" diagnostics"> diagnostics</a>, <a href="https://publications.waset.org/abstracts/search?q=Prognostics%20and%20Health%20Management%20%28PHM%29" title=" Prognostics and Health Management (PHM)"> Prognostics and Health Management (PHM)</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20current%20collection" title=" quality of current collection"> quality of current collection</a> </p> <a href="https://publications.waset.org/abstracts/63877/pantograph-catenary-contact-force-features-evaluation-for-catenary-diagnostics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3623</span> Fluorescent Ph-Sensing Bandage for Point-of-Care Wound Diagnostics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cherifi%20Katia">Cherifi Katia</a>, <a href="https://publications.waset.org/abstracts/search?q=Al-Hawat%20Marie-Lynn"> Al-Hawat Marie-Lynn</a>, <a href="https://publications.waset.org/abstracts/search?q=Tricou%20Leo-Paul"> Tricou Leo-Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamontagne%20Stephanie"> Lamontagne Stephanie</a>, <a href="https://publications.waset.org/abstracts/search?q=Tran%20Minh"> Tran Minh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ngu%20Amy%20Ching%20Yie"> Ngu Amy Ching Yie</a>, <a href="https://publications.waset.org/abstracts/search?q=Manrique%20Gabriela"> Manrique Gabriela</a>, <a href="https://publications.waset.org/abstracts/search?q=Guirguis%20Natalie"> Guirguis Natalie</a>, <a href="https://publications.waset.org/abstracts/search?q=Machuca%20Parra%20Arturo%20Israel"> Machuca Parra Arturo Israel</a>, <a href="https://publications.waset.org/abstracts/search?q=Matoori%20Simon"> Matoori Simon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetic foot ulcers (DFUs) are a serious and prevalent complication of diabetes. Current diagnostic options are limited to macroscopic wound analysis such as wound size, depth, and infection. Molecular diagnostics promise to improve DFU diagnosis, staging, and assessment of treatment response. Here, we developed a rapid and easy-to-use fluorescent pH-sensing bandage for wound diagnostics. In a fluorescent dye screen, we identified pyranine as the lead compound due to its suitable pH-sensing properties in the clinically relevant pH range of 6 to 9. To minimize the release of this dye into the wound bed, we screened a library of ionic microparticles and found a strong adhesion of the anionic dye to a cationic polymeric microparticle. These dye-loaded microparticles showed a strong fluorescence response in the clinically relevant pH range of 6 to 9 and a dye release below 1% after one day in biological media. The dye-loaded microparticles were subsequently encapsulated in a calcium alginate hydrogel to minimize the interaction of the microparticles with the wound tissue. This pH-sensing diagnostic wound dressing was tested on full-thickness dorsal wounds of mice, and a linear fluorescence response (R2 = 0.9909) to clinically relevant pH values was observed. These findings encourage further development of this pH-sensing system for molecular diagnostics in DFUs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wound%20ph" title="wound ph">wound ph</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostics" title=" diagnostics"> diagnostics</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetic%20foot%20ulcer" title=" diabetic foot ulcer"> diabetic foot ulcer</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20healing" title=" wound healing"> wound healing</a>, <a href="https://publications.waset.org/abstracts/search?q=chronic%20wounds" title=" chronic wounds"> chronic wounds</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a> </p> <a href="https://publications.waset.org/abstracts/177542/fluorescent-ph-sensing-bandage-for-point-of-care-wound-diagnostics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3622</span> Combining the Production of Radiopharmaceuticals with the Department of Radionuclide Diagnostics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umedov%20Mekhroz">Umedov Mekhroz</a>, <a href="https://publications.waset.org/abstracts/search?q=Griaznova%20Svetlana"> Griaznova Svetlana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In connection with the growth of oncological diseases, the design of centers for diagnostics and the production of radiopharmaceuticals is the most relevant area of healthcare facilities. The design of new nuclear medicine centers should be carried out from the standpoint of solving the following tasks: the availability of medical care, functionality, environmental friendliness, sustainable development, improving the safety of drugs, the use of which requires special care, reducing the rate of environmental pollution, ensuring comfortable conditions for the internal microclimate, adaptability. The purpose of this article is to substantiate architectural and planning solutions, formulate recommendations and principles for the design of nuclear medicine centers and determine the connections between the production and medical functions of a building. The advantages of combining the production of radiopharmaceuticals and the department of medical care: less radiation activity is accumulated, the cost of the final product is lower, and there is no need to hire a transport company with a special license for transportation. A medical imaging department is a structural unit of a medical institution in which diagnostic procedures are carried out in order to gain an idea of the internal structure of various organs of the body for clinical analysis. Depending on the needs of a particular institution, the department may include various rooms that provide medical imaging using radiography, ultrasound diagnostics, and the phenomenon of nuclear magnetic resonance. The production of radiopharmaceuticals is an object intended for the production of a pharmaceutical substance containing a radionuclide and intended for introduction into the human body or laboratory animal for the purpose of diagnosis, evaluation of the effectiveness of treatment, or for biomedical research. The research methodology includes the following subjects: study and generalization of international experience in scientific research, literature, standards, teaching aids, and design materials on the topic of research; An integrated approach to the study of existing international experience of PET / CT scan centers and the production of radiopharmaceuticals; Elaboration of graphical analysis and diagrams based on the system analysis of the processed information; Identification of methods and principles of functional zoning of nuclear medicine centers. The result of the research is the identification of the design principles of nuclear medicine centers with the functions of the production of radiopharmaceuticals and the department of medical imaging. This research will be applied to the design and construction of healthcare facilities in the field of nuclear medicine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=architectural%20planning%20solutions" title="architectural planning solutions">architectural planning solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20zoning" title=" functional zoning"> functional zoning</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20medicine" title=" nuclear medicine"> nuclear medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=PET%2FCT%20scan" title=" PET/CT scan"> PET/CT scan</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20of%20radiopharmaceuticals" title=" production of radiopharmaceuticals"> production of radiopharmaceuticals</a>, <a href="https://publications.waset.org/abstracts/search?q=radiotherapy" title=" radiotherapy"> radiotherapy</a> </p> <a href="https://publications.waset.org/abstracts/141814/combining-the-production-of-radiopharmaceuticals-with-the-department-of-radionuclide-diagnostics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141814.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3621</span> Diagnostics of Subclinical Mastitis in Dairy Cows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Tanbayeva">G. Tanbayeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Myrzabekov"> Z. Myrzabekov</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Tagayev"> O. Tagayev</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Barakhov"> B. Barakhov</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Tokayeva"> M. Tokayeva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mastitis is widely spread among dairy cows bringing large economic damage resulting in decreased milk yield, deterioration of the milk quality, gastrointestinal tract disorders among young animals, culling of breeding stock, and expenses for sick animal treatment. Up-to-date and accurate diagnostics of subclinical (latent) mastitis in dairy cows has huge practical and economical significance. The aim of the research was to develop a new optimal alternative rapid method for the diagnosis of subclinical mastitis in cows. The study was performed in the laboratory of the Hygiene and Sanitation of Kazakh National Agrarian University. The first stage was to evaluate the different percentages of “Promastit” preparation. It showed that the best diagnostics capacity had 10% dilution. The second stage was to compare “Promastit” with some of the domestic and foreign analogues “Somatic-Test” (Denmark), “MastTest” (Russia), “Mastidin” (Ukraine), “Diagmast” (Kazakhstan). The observation was carried out on 520 dairy cows with subclinical mastitis on farms of Almaty region of Kazakhstan. The effectiveness was checked by milk sedimentation test. Our research tends to show that the diagnostic test "Promastitis" revealed subclinical mastitis in 193 out of 520 lactating cows (37.1% of those examined). At the same time, in the case of using other diagnostic tests, the given index was as follows: 35.5% (mastidin), 34.4% (masttest-AF), 33.8% (somatic-test Ecotest), 30.7% (diagmast). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dairy%20cows" title="dairy cows">dairy cows</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostics" title=" diagnostics"> diagnostics</a>, <a href="https://publications.waset.org/abstracts/search?q=subclinical%20mastitis" title=" subclinical mastitis"> subclinical mastitis</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20Promastit" title=" test Promastit"> test Promastit</a> </p> <a href="https://publications.waset.org/abstracts/43472/diagnostics-of-subclinical-mastitis-in-dairy-cows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3620</span> Fast Prototyping of Precise, Flexible, Multiplexed, Printed Electrochemical Enzyme-Linked Immunosorbent Assay System for Point-of-Care Biomarker Quantification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahrasadat%20Hosseini">Zahrasadat Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie%20Yuan"> Jie Yuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Point-of-care (POC) diagnostic devices based on lab-on-a-chip (LOC) technology have the potential to revolutionize medical diagnostics. However, the development of an ideal microfluidic system based on LOC technology for diagnostics purposes requires overcoming several obstacles, such as improving sensitivity, selectivity, portability, cost-effectiveness, and prototyping methods. While numerous studies have introduced technologies and systems that advance these criteria, existing systems still have limitations. Electrochemical enzyme-linked immunosorbent assay (e-ELISA) in a LOC device offers numerous advantages, including enhanced sensitivity, decreased turnaround time, minimized sample and analyte consumption, reduced cost, disposability, and suitability for miniaturization, integration, and multiplexing. In this study, we present a novel design and fabrication method for a microfluidic diagnostic platform that integrates screen-printed electrochemical carbon/silver chloride electrodes on flexible printed circuit boards with flexible, multilayer, polydimethylsiloxane (PDMS) microfluidic networks to accurately manipulate and pre-immobilize analytes for performing electrochemical enzyme-linked immunosorbent assay (e-ELISA) for multiplexed quantification of blood serum biomarkers. We further demonstrate fast, cost-effective prototyping, as well as accurate and reliable detection performance of this device for quantification of interleukin-6-spiked samples through electrochemical analytics methods. We anticipate that our invention represents a significant step towards the development of user-friendly, portable, medical-grade, POC diagnostic devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lab-on-a-chip" title="lab-on-a-chip">lab-on-a-chip</a>, <a href="https://publications.waset.org/abstracts/search?q=point-of-care%20diagnostics" title=" point-of-care diagnostics"> point-of-care diagnostics</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20ELISA" title=" electrochemical ELISA"> electrochemical ELISA</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarker%20quantification" title=" biomarker quantification"> biomarker quantification</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20prototyping" title=" fast prototyping"> fast prototyping</a> </p> <a href="https://publications.waset.org/abstracts/169509/fast-prototyping-of-precise-flexible-multiplexed-printed-electrochemical-enzyme-linked-immunosorbent-assay-system-for-point-of-care-biomarker-quantification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3619</span> Fast Prototyping of Precise, Flexible, Multiplexed, Printed Electrochemical Enzyme-Linked Immunosorbent Assay Platform for Point-of-Care Biomarker Quantification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahrasadat%20Hosseini">Zahrasadat Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie%20Yuan"> Jie Yuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Point-of-care (POC) diagnostic devices based on lab-on-a-chip (LOC) technology have the potential to revolutionize medical diagnostics. However, the development of an ideal microfluidic system based on LOC technology for diagnostics purposes requires overcoming several obstacles, such as improving sensitivity, selectivity, portability, cost-effectiveness, and prototyping methods. While numerous studies have introduced technologies and systems that advance these criteria, existing systems still have limitations. Electrochemical enzyme-linked immunosorbent assay (e-ELISA) in a LOC device offers numerous advantages, including enhanced sensitivity, decreased turnaround time, minimized sample and analyte consumption, reduced cost, disposability, and suitability for miniaturization, integration, and multiplexing. In this study, we present a novel design and fabrication method for a microfluidic diagnostic platform that integrates screen-printed electrochemical carbon/silver chloride electrodes on flexible printed circuit boards with flexible, multilayer, polydimethylsiloxane (PDMS) microfluidic networks to accurately manipulate and pre-immobilize analytes for performing electrochemical enzyme-linked immunosorbent assay (e-ELISA) for multiplexed quantification of blood serum biomarkers. We further demonstrate fast, cost-effective prototyping, as well as accurate and reliable detection performance of this device for quantification of interleukin-6-spiked samples through electrochemical analytics methods. We anticipate that our invention represents a significant step towards the development of user-friendly, portable, medical-grade POC diagnostic devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lab-on-a-chip" title="lab-on-a-chip">lab-on-a-chip</a>, <a href="https://publications.waset.org/abstracts/search?q=point-of-care%20diagnostics" title=" point-of-care diagnostics"> point-of-care diagnostics</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20ELISA" title=" electrochemical ELISA"> electrochemical ELISA</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarker%20quantification" title=" biomarker quantification"> biomarker quantification</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20prototyping" title=" fast prototyping"> fast prototyping</a> </p> <a href="https://publications.waset.org/abstracts/169508/fast-prototyping-of-precise-flexible-multiplexed-printed-electrochemical-enzyme-linked-immunosorbent-assay-platform-for-point-of-care-biomarker-quantification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3618</span> Diagnostics of Existing Steel Structures of Winter Sport Halls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcela%20Karmaz%C3%ADnov%C3%A1">Marcela Karmazínová</a>, <a href="https://publications.waset.org/abstracts/search?q=Jindrich%20Melcher"> Jindrich Melcher</a>, <a href="https://publications.waset.org/abstracts/search?q=Lubom%C3%ADr%20V%C3%ADtek"> Lubomír Vítek</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20Cikrle"> Petr Cikrle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with the diagnostics of steel roof structure of the winter sports stadiums built in 1970 year. The necessity of the diagnostics has been given by the requirement to the evaluation design of this structure, which has been caused by the new situation in the field of the loadings given by the validity of the European Standards in the Czech Republic from 2010 year. Due to these changes in the normative rules, in practice, existing structures are gradually subjected to the evaluation design and depending on its results to the strengthening or reconstruction, respectively. The steel roof is composed of plane truss main girders, purlins and bracings and the roof structure is supported by two arch main girders with the span of L=84 m. The in situ diagnostics of the roof structure was oriented to the following parts: (i) determination and evaluation of the actual material properties of used steel and (ii) verification of the actual dimensions of the structural members. For the solution, the non-destructive methods have been used for in situ measurement. For the indicative determination of steel strengths the modified method based on the determination of Rockwell’s hardness has been used. For the verification of the member’s dimensions (thickness of hollow sections) the ultrasound method has been used. This paper presents the results obtained using these testing methods and their evaluation, from the viewpoint of the usage for the subsequent static assessment and design evaluation of the existing structure. For the comparison, the examples of the similar evaluations realized for steel structures of the stadiums in Olomouc and Jihlava cities are briefly illustrated, too. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actual%20dimensions" title="actual dimensions">actual dimensions</a>, <a href="https://publications.waset.org/abstracts/search?q=destructive%20methods" title=" destructive methods"> destructive methods</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostics" title=" diagnostics"> diagnostics</a>, <a href="https://publications.waset.org/abstracts/search?q=existing%20steel%20structure" title=" existing steel structure"> existing steel structure</a>, <a href="https://publications.waset.org/abstracts/search?q=indirect%20non-destructive%20methods" title=" indirect non-destructive methods"> indirect non-destructive methods</a>, <a href="https://publications.waset.org/abstracts/search?q=Rockwel%E2%80%99s%20hardness" title=" Rockwel’s hardness"> Rockwel’s hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=sport%20hall" title=" sport hall"> sport hall</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20strength" title=" steel strength"> steel strength</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20method." title=" ultrasound method."> ultrasound method.</a> </p> <a href="https://publications.waset.org/abstracts/24272/diagnostics-of-existing-steel-structures-of-winter-sport-halls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3617</span> Failure Analysis of the Gasoline Engines Injection System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jozef%20Jurcik">Jozef Jurcik</a>, <a href="https://publications.waset.org/abstracts/search?q=Miroslav%20Gutten"> Miroslav Gutten</a>, <a href="https://publications.waset.org/abstracts/search?q=Milan%20Sebok"> Milan Sebok</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Korenciak"> Daniel Korenciak</a>, <a href="https://publications.waset.org/abstracts/search?q=Jerzy%20Roj"> Jerzy Roj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents the research results of electronic fuel injection system, which can be used for diagnostics of automotive systems. In the paper is described the construction and operation of a typical fuel injection system and analyzed its electronic part. It has also been proposed method for the detection of the injector malfunction, based on the analysis of differential current or voltage characteristics. In order to detect the fault state, it is needed to use self-learning process, by the use of an appropriate self-learning algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electronic%20fuel%20injector" title="electronic fuel injector">electronic fuel injector</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostics" title=" diagnostics"> diagnostics</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement" title=" measurement"> measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=testing%20device" title=" testing device"> testing device</a> </p> <a href="https://publications.waset.org/abstracts/23302/failure-analysis-of-the-gasoline-engines-injection-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">552</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3616</span> Testing Immunochemical Method for the Bacteriological Diagnosis of Bovine Tuberculosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Assiya%20Madenovna%20Borsynbayeva">Assiya Madenovna Borsynbayeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Kairat%20Altynbekovich%20Turgenbayev"> Kairat Altynbekovich Turgenbayev</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolay%20Petrovich%20Ivanov"> Nikolay Petrovich Ivanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article presents the results of rapid diagnostics of tuberculosis in comparison with classical bacteriological method. The proposed method of rapid diagnosis of tuberculosis than bacteriological method allows shortening the time of diagnosis to 7 days, to visualize the growth of mycobacteria in the semi-liquid medium and differentiate the type of mycobacterium. Fast definition of Mycobacterium tuberculosis and its derivatives in the culture medium is a new and promising direction in the diagnosis of tuberculosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=animal%20diagnosis%20of%20tuberculosis" title="animal diagnosis of tuberculosis">animal diagnosis of tuberculosis</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteriological%20diagnostics" title=" bacteriological diagnostics"> bacteriological diagnostics</a>, <a href="https://publications.waset.org/abstracts/search?q=antigen" title=" antigen"> antigen</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20antibodies" title=" specific antibodies"> specific antibodies</a>, <a href="https://publications.waset.org/abstracts/search?q=immunological%20reaction" title=" immunological reaction"> immunological reaction</a> </p> <a href="https://publications.waset.org/abstracts/46923/testing-immunochemical-method-for-the-bacteriological-diagnosis-of-bovine-tuberculosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3615</span> Electrohydrodynamic Patterning for Surface Enhanced Raman Scattering for Point-of-Care Diagnostics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20J.%20Rickard">J. J. Rickard</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Belli"> A. Belli</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Goldberg%20Oppenheimer"> P. Goldberg Oppenheimer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medical diagnostics, environmental monitoring, homeland security and forensics increasingly demand specific and field-deployable analytical technologies for quick point-of-care diagnostics. Although technological advancements have made optical methods well-suited for miniaturization, a highly-sensitive detection technique for minute sample volumes is required. Raman spectroscopy is a well-known analytical tool, but has very weak signals and hence is unsuitable for trace level analysis. Enhancement via localized optical fields (surface plasmons resonances) on nanoscale metallic materials generates huge signals in surface-enhanced Raman scattering (SERS), enabling single molecule detection. This enhancement can be tuned by manipulation of the surface roughness and architecture at the sub-micron level. Nevertheless, the development and application of SERS has been inhibited by the irreproducibility and complexity of fabrication routes. The ability to generate straightforward, cost-effective, multiplex-able and addressable SERS substrates with high enhancements is of profound interest for SERS-based sensing devices. While most SERS substrates are manufactured by conventional lithographic methods, the development of a cost-effective approach to create nanostructured surfaces is a much sought-after goal in the SERS community. Here, a method is established to create controlled, self-organized, hierarchical nanostructures using electrohydrodynamic (HEHD) instabilities. The created structures are readily fine-tuned, which is an important requirement for optimizing SERS to obtain the highest enhancements. HEHD pattern formation enables the fabrication of multiscale 3D structured arrays as SERS-active platforms. Importantly, each of the HEHD-patterned individual structural units yield a considerable SERS enhancement. This enables each single unit to function as an isolated sensor. Each of the formed structures can be effectively tuned and tailored to provide high SERS enhancement, while arising from different HEHD morphologies. The HEHD fabrication of sub-micrometer architectures is straightforward and robust, providing an elegant route for high-throughput biological and chemical sensing. The superior detection properties and the ability to fabricate SERS substrates on the miniaturized scale, will facilitate the development of advanced and novel opto-fluidic devices, such as portable detection systems, and will offer numerous applications in biomedical diagnostics, forensics, ecological warfare and homeland security. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20electrohydrodynamic%20patterning" title="hierarchical electrohydrodynamic patterning">hierarchical electrohydrodynamic patterning</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20diagnostics" title=" medical diagnostics"> medical diagnostics</a>, <a href="https://publications.waset.org/abstracts/search?q=point-of%20care%20devices" title=" point-of care devices"> point-of care devices</a>, <a href="https://publications.waset.org/abstracts/search?q=SERS" title=" SERS"> SERS</a> </p> <a href="https://publications.waset.org/abstracts/39331/electrohydrodynamic-patterning-for-surface-enhanced-raman-scattering-for-point-of-care-diagnostics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3614</span> An Advanced Automated Brain Tumor Diagnostics Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Berkan%20Ural">Berkan Ural</a>, <a href="https://publications.waset.org/abstracts/search?q=Arif%20Eser"> Arif Eser</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinan%20Apaydin"> Sinan Apaydin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medical image processing is generally become a challenging task nowadays. Indeed, processing of brain MRI images is one of the difficult parts of this area. This study proposes a hybrid well-defined approach which is consisted from tumor detection, extraction and analyzing steps. This approach is mainly consisted from a computer aided diagnostics system for identifying and detecting the tumor formation in any region of the brain and this system is commonly used for early prediction of brain tumor using advanced image processing and probabilistic neural network methods, respectively. For this approach, generally, some advanced noise removal functions, image processing methods such as automatic segmentation and morphological operations are used to detect the brain tumor boundaries and to obtain the important feature parameters of the tumor region. All stages of the approach are done specifically with using MATLAB software. Generally, for this approach, firstly tumor is successfully detected and the tumor area is contoured with a specific colored circle by the computer aided diagnostics program. Then, the tumor is segmented and some morphological processes are achieved to increase the visibility of the tumor area. Moreover, while this process continues, the tumor area and important shape based features are also calculated. Finally, with using the probabilistic neural network method and with using some advanced classification steps, tumor area and the type of the tumor are clearly obtained. Also, the future aim of this study is to detect the severity of lesions through classes of brain tumor which is achieved through advanced multi classification and neural network stages and creating a user friendly environment using GUI in MATLAB. In the experimental part of the study, generally, 100 images are used to train the diagnostics system and 100 out of sample images are also used to test and to check the whole results. The preliminary results demonstrate the high classification accuracy for the neural network structure. Finally, according to the results, this situation also motivates us to extend this framework to detect and localize the tumors in the other organs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20processing%20algorithms" title="image processing algorithms">image processing algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20recognition" title=" pattern recognition"> pattern recognition</a> </p> <a href="https://publications.waset.org/abstracts/69471/an-advanced-automated-brain-tumor-diagnostics-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3613</span> Plasmonic Nanoshells Based Metabolite Detection for in-vitro Metabolic Diagnostics and Therapeutic Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepanjali%20Gurav">Deepanjali Gurav</a>, <a href="https://publications.waset.org/abstracts/search?q=Kun%20Qian"> Kun Qian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In-vitro metabolic diagnosis relies on designed materials-based analytical platforms for detection of selected metabolites in biological samples, which has a key role in disease detection and therapeutic evaluation in clinics. However, the basic challenge deals with developing a simple approach for metabolic analysis in bio-samples with high sample complexity and low molecular abundance. In this work, we report a designer plasmonic nanoshells based platform for direct detection of small metabolites in clinical samples for in-vitro metabolic diagnostics. We first synthesized a series of plasmonic core-shell particles with tunable nanoshell structures. The optimized plasmonic nanoshells as new matrices allowed fast, multiplex, sensitive, and selective LDI MS (Laser desorption/ionization mass spectrometry) detection of small metabolites in 0.5 μL of bio-fluids without enrichment or purification. Furthermore, coupling with isotopic quantification of selected metabolites, we demonstrated the use of these plasmonic nanoshells for disease detection and therapeutic evaluation in clinics. For disease detection, we identified patients with postoperative brain infection through glucose quantitation and daily monitoring by cerebrospinal fluid (CSF) analysis. For therapeutic evaluation, we investigated drug distribution in blood and CSF systems and validated the function and permeability of blood-brain/CSF-barriers, during therapeutic treatment of patients with cerebral edema for pharmacokinetic study. Our work sheds light on the design of materials for high-performance metabolic analysis and precision diagnostics in real cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasmonic%20nanoparticles" title="plasmonic nanoparticles">plasmonic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolites" title=" metabolites"> metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=fingerprinting" title=" fingerprinting"> fingerprinting</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry" title=" mass spectrometry"> mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=in-vitro%20diagnostics" title=" in-vitro diagnostics"> in-vitro diagnostics</a> </p> <a href="https://publications.waset.org/abstracts/91905/plasmonic-nanoshells-based-metabolite-detection-for-in-vitro-metabolic-diagnostics-and-therapeutic-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3612</span> Condition Based Assessment of Power Transformer with Modern Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piush%20Verma">Piush Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20R.%20Sood"> Y. R. Sood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper provides the information on the diagnostics techniques for condition monitoring of power transformer (PT). This paper deals with the practical importance of the transformer diagnostic in the Electrical Engineering field. The life of the transformer depends upon its insulation i.e paper and oil. The major testing techniques applies on transformer oil and paper i.e dissolved gas analysis, furfural analysis, radio interface, acoustic emission, infra-red emission, frequency response analysis, power factor, polarization spectrum, magnetizing currents, turn and winding ratio. A review has been made on the modern development of this practical technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=temperature" title="temperature">temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=condition%20monitoring" title=" condition monitoring"> condition monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostics%20methods" title=" diagnostics methods"> diagnostics methods</a>, <a href="https://publications.waset.org/abstracts/search?q=paper%20analysis%20techniques" title=" paper analysis techniques"> paper analysis techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20analysis%20techniques" title=" oil analysis techniques"> oil analysis techniques</a> </p> <a href="https://publications.waset.org/abstracts/46784/condition-based-assessment-of-power-transformer-with-modern-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3611</span> A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hritwik%20Ghosh">Hritwik Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Irfan%20Sadiq%20Rahat"> Irfan Sadiq Rahat</a>, <a href="https://publications.waset.org/abstracts/search?q=Sachi%20Nandan%20Mohanty"> Sachi Nandan Mohanty</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20V.%20R.%20Ravindra"> J. V. R. Ravindra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of Artificial Intelligence (AI), specifically Deep Learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our pioneering approach introduces a hybrid model, amalgamating the strengths of two renowned Convolutional Neural Networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20cancer" title=" skin cancer"> skin cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=dermatology" title=" dermatology"> dermatology</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20networks" title=" convolutional neural networks"> convolutional neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20classification" title=" image classification"> image classification</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare%20technology" title=" healthcare technology"> healthcare technology</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20detection" title=" cancer detection"> cancer detection</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20imaging" title=" medical imaging"> medical imaging</a> </p> <a href="https://publications.waset.org/abstracts/173583/a-study-on-the-application-of-machine-learning-and-deep-learning-techniques-for-skin-cancer-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3610</span> Clustered Regularly Interspaced Short Palindromic Repeat/cas9-Based Lateral Flow and Fluorescence Diagnostics for Rapid Pathogen Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mark%20Osborn">Mark Osborn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clustered, regularly interspaced short palindromic repeat (CRISPR/Cas) proteins can be designed to bind specified DNA and RNA sequences and hold great promise for the accurate detection of nucleic acids for diagnostics. Commercially available reagents were integrated into a CRISPR/Cas9-based lateral flow assay that can detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequences with single-base specificity. This approach requires minimal equipment and represents a simplified platform for field-based deployment. A rapid, multiplex fluorescence CRISPR/Cas9 nuclease cleavage assay capable of detecting and differentiating SARS-CoV-2, influenza A and B, and respiratory syncytial virus in a single reaction was also developed. These findings provide proof of principle for CRISPR/Cas9 point-of-care diagnosis that can detect specific SARS-CoV-2 strain(s). Further, Cas9 cleavage allows for a scalable fluorescent platform for identifying respiratory viral pathogens with overlapping symptomology. Collectively, this approach is a facile platform for diagnostics with broad application to user-defined sequence interrogation and detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CRISPR%2FCas9" title="CRISPR/Cas9">CRISPR/Cas9</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20flow%20assay" title=" lateral flow assay"> lateral flow assay</a>, <a href="https://publications.waset.org/abstracts/search?q=SARS-Co-V2" title=" SARS-Co-V2"> SARS-Co-V2</a>, <a href="https://publications.waset.org/abstracts/search?q=single-nucleotide%20resolution" title=" single-nucleotide resolution"> single-nucleotide resolution</a> </p> <a href="https://publications.waset.org/abstracts/134880/clustered-regularly-interspaced-short-palindromic-repeatcas9-based-lateral-flow-and-fluorescence-diagnostics-for-rapid-pathogen-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3609</span> Using Scanning Electron Microscope and Computed Tomography for Concrete Diagnostics of Airfield Pavements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Linek">M. Linek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents the comparison of selected evaluation methods regarding microstructure modification of hardened cement concrete intended for airfield pavements. Basic test results were presented for two pavement quality concrete lots. Analysis included standard concrete used for airfield pavements and modern material solutions based on concrete composite modification. In case of basic grain size distribution of concrete cement CEM I 42,5HSR NA, fine aggregate and coarse aggregate fractions in the form of granite chippings, water and admixtures were considered. In case of grain size distribution of modified concrete, the use of modern modifier as substitute of fine aggregate was suggested. Modification influence on internal concrete structure parameters using scanning electron microscope was defined. Obtained images were compared to the results obtained using computed tomography. Opportunity to use this type of equipment for internal concrete structure diagnostics and an attempt of its parameters evaluation was presented. Obtained test results enabled to reach a conclusion that both methods can be applied for pavement quality concrete diagnostics, with particular purpose of airfield pavements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope" title="scanning electron microscope">scanning electron microscope</a>, <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title=" computed tomography"> computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20concrete" title=" cement concrete"> cement concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=airfield%20pavements" title=" airfield pavements"> airfield pavements</a> </p> <a href="https://publications.waset.org/abstracts/53038/using-scanning-electron-microscope-and-computed-tomography-for-concrete-diagnostics-of-airfield-pavements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3608</span> Laser Ultrasonic Diagnostics and Acoustic Emission Technique for Examination of Rock Specimens under Uniaxial Compression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elena%20B.%20Cherepetskaya">Elena B. Cherepetskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20A.%20Makarov"> Vladimir A. Makarov</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20V.%20Morozov"> Dmitry V. Morozov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20E.%20Sas"> Ivan E. Sas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laboratory studies of the stress-strain behavior of rocks specimens were conducted by using acoustic emission and laser-ultrasonic diagnostics. The sensitivity of the techniques allowed changes in the internal structure of the specimens under uniaxial compressive load to be examined at micro- and macro scales. It was shown that microcracks appear in geologic materials when the stress level reaches about 50% of breaking strength. Also, the characteristic stress of the main crack formation was registered in the process of single-stage compression of rocks. On the base of laser-ultrasonic echoscopy, 2D visualization of the internal structure of rocky soil specimens was realized, and the microcracks arising during uniaxial compression were registered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20emission" title="acoustic emission">acoustic emission</a>, <a href="https://publications.waset.org/abstracts/search?q=geomaterial" title=" geomaterial"> geomaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20ultrasound" title=" laser ultrasound"> laser ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=uniaxial%20compression" title=" uniaxial compression"> uniaxial compression</a> </p> <a href="https://publications.waset.org/abstracts/54531/laser-ultrasonic-diagnostics-and-acoustic-emission-technique-for-examination-of-rock-specimens-under-uniaxial-compression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3607</span> The Invaluable Contributions of Radiography and Radiotherapy in Modern Medicine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahar%20Heidary">Sahar Heidary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radiography and radiotherapy have emerged as crucial pillars of modern medical practice, revolutionizing diagnostics and treatment for a myriad of health conditions. This abstract highlights the pivotal role of radiography and radiotherapy in favor of healthcare and society. Radiography, a non-invasive imaging technique, has significantly advanced medical diagnostics by enabling the visualization of internal structures and abnormalities within the human body. With the advent of digital radiography, clinicians can obtain high-resolution images promptly, leading to faster diagnoses and informed treatment decisions. Radiography plays a pivotal role in detecting fractures, tumors, infections, and various other conditions, allowing for timely interventions and improved patient outcomes. Moreover, its widespread accessibility and cost-effectiveness make it an indispensable tool in healthcare settings worldwide. On the other hand, radiotherapy, a branch of medical science that utilizes high-energy radiation, has become an integral component of cancer treatment and management. By precisely targeting and damaging cancerous cells, radiotherapy offers a potent strategy to control tumor growth and, in many cases, leads to cancer eradication. Additionally, radiotherapy is often used in combination with surgery and chemotherapy, providing a multifaceted approach to combat cancer comprehensively. The continuous advancements in radiotherapy techniques, such as intensity-modulated radiotherapy and stereotactic radiosurgery, have further improved treatment precision while minimizing damage to surrounding healthy tissues. Furthermore, radiography and radiotherapy have demonstrated their worth beyond oncology. Radiography is instrumental in guiding various medical procedures, including catheter placement, joint injections, and dental evaluations, reducing complications and enhancing procedural accuracy. On the other hand, radiotherapy finds applications in non-cancerous conditions like benign tumors, vascular malformations, and certain neurological disorders, offering therapeutic options for patients who may not benefit from traditional surgical interventions. In conclusion, radiography and radiotherapy stand as indispensable tools in modern medicine, driving transformative improvements in patient care and treatment outcomes. Their ability to diagnose, treat, and manage a wide array of medical conditions underscores their favor in medical practice. As technology continues to advance, radiography and radiotherapy will undoubtedly play an ever more significant role in shaping the future of healthcare, ultimately saving lives and enhancing the quality of life for countless individuals worldwide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiology" title="radiology">radiology</a>, <a href="https://publications.waset.org/abstracts/search?q=radiotherapy" title=" radiotherapy"> radiotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20imaging" title=" medical imaging"> medical imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20treatment" title=" cancer treatment"> cancer treatment</a> </p> <a href="https://publications.waset.org/abstracts/170385/the-invaluable-contributions-of-radiography-and-radiotherapy-in-modern-medicine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3606</span> Developing Manufacturing Process for the Graphene Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Faqihi">Abdullah Faqihi</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Hedley"> John Hedley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biosensors play a significant role in the healthcare sectors, scientific and technological progress. Developing electrodes that are easy to manufacture and deliver better electrochemical performance is advantageous for diagnostics and biosensing. They can be implemented extensively in various analytical tasks such as drug discovery, food safety, medical diagnostics, process controls, security and defence, in addition to environmental monitoring. Development of biosensors aims to create high-performance electrochemical electrodes for diagnostics and biosensing. A biosensor is a device that inspects the biological and chemical reactions generated by the biological sample. A biosensor carries out biological detection via a linked transducer and transmits the biological response into an electrical signal; stability, selectivity, and sensitivity are the dynamic and static characteristics that affect and dictate the quality and performance of biosensors. In this research, a developed experimental study for laser scribing technique for graphene oxide inside a vacuum chamber for processing of graphene oxide is presented. The processing of graphene oxide (GO) was achieved using the laser scribing technique. The effect of the laser scribing on the reduction of GO was investigated under two conditions: atmosphere and vacuum. GO solvent was coated onto a LightScribe DVD. The laser scribing technique was applied to reduce GO layers to generate rGO. The micro-details for the morphological structures of rGO and GO were visualised using scanning electron microscopy (SEM) and Raman spectroscopy so that they could be examined. The first electrode was a traditional graphene-based electrode model, made under normal atmospheric conditions, whereas the second model was a developed graphene electrode fabricated under a vacuum state using a vacuum chamber. The purpose was to control the vacuum conditions, such as the air pressure and the temperature during the fabrication process. The parameters to be assessed include the layer thickness and the continuous environment. Results presented show high accuracy and repeatability achieving low cost productivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20scribing" title="laser scribing">laser scribing</a>, <a href="https://publications.waset.org/abstracts/search?q=lightscribe%20DVD" title=" lightscribe DVD"> lightscribe DVD</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscopy" title=" scanning electron microscopy"> scanning electron microscopy</a> </p> <a href="https://publications.waset.org/abstracts/132492/developing-manufacturing-process-for-the-graphene-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3605</span> Bioengineering System for Prediction and Early Prenosological Diagnostics of Stomach Diseases Based on Energy Characteristics of Bioactive Points with Fuzzy Logic </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Alshamasin">Mahdi Alshamasin</a>, <a href="https://publications.waset.org/abstracts/search?q=Riad%20Al-Kasasbeh"> Riad Al-Kasasbeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolay%20Korenevskiy"> Nikolay Korenevskiy </a> </p> <p class="card-text"><strong>Abstract:</strong></p> We apply mathematical models for the interaction of the internal and biologically active points of meridian structures. Amongst the diseases for which reflex diagnostics are effective are those of the stomach disease. It is shown that use of fuzzy logic decision-making yields good results for the prediction and early diagnosis of gastrointestinal tract diseases, depending on the reaction energy of biologically active points (acupuncture points). It is shown that good results for the prediction and early diagnosis of diseases from the reaction energy of biologically active points (acupuncture points) are obtained by using fuzzy logic decision-making. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acupuncture%20points" title="acupuncture points">acupuncture points</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostically%20important%20points%20%28DIP%29" title=" diagnostically important points (DIP)"> diagnostically important points (DIP)</a>, <a href="https://publications.waset.org/abstracts/search?q=confidence%20factors" title=" confidence factors"> confidence factors</a>, <a href="https://publications.waset.org/abstracts/search?q=membership%20functions" title=" membership functions"> membership functions</a>, <a href="https://publications.waset.org/abstracts/search?q=stomach%20diseases" title=" stomach diseases "> stomach diseases </a> </p> <a href="https://publications.waset.org/abstracts/34901/bioengineering-system-for-prediction-and-early-prenosological-diagnostics-of-stomach-diseases-based-on-energy-characteristics-of-bioactive-points-with-fuzzy-logic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3604</span> Comprehensive Ultrasonography During Low-flow Bypass in Patients with Symptomatic Internal Carotid Artery (ICA) Occlusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20K.%20Guseynova">G. K. Guseynova</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20V.%20Krylov"> V. V. Krylov</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20T.%20Khamidova"> L. T. Khamidova</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Polunina"> N. A. Polunina</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20A.%20Lukyanchikov"> V. A. Lukyanchikov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The report presents complex ultrasound diagnostics in patients with symptomatic steno-occlusive lesions of extra- and intracranial branches of brachiocephalic arteries (BCA). The tasks and possibilities of ultrasound diagnostics at different stages of treatment of patients with symptomatic occlusion of internal carotid artery (ICA) are covered in detail; qualitative and quantitative characteristics of blood flow; parameters of the wall and lumen of the main arteries of the head; methods of ultrasound examination of indirect assessment of the functional status are presented. Special attention is paid to the description of indicators that are predictors of the consistency of formed extra-intracranial low-flow shunts, examples of functioning and failed anastomoses are analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CBF" title="CBF">CBF</a>, <a href="https://publications.waset.org/abstracts/search?q=cerebral%20blood%20flow%3B%20CTA" title=" cerebral blood flow; CTA"> cerebral blood flow; CTA</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20carotid%20artery%3B%20ICA" title=" external carotid artery; ICA"> external carotid artery; ICA</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20carotid%20artery%3B%20MCA" title=" internal carotid artery; MCA"> internal carotid artery; MCA</a>, <a href="https://publications.waset.org/abstracts/search?q=middle%20cerebral%20artery%3B%20MRA" title=" middle cerebral artery; MRA"> middle cerebral artery; MRA</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20angiography%3B%20OEF" title=" magnetic resonance angiography; OEF"> magnetic resonance angiography; OEF</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20extraction%20fraction%3B%20TIA" title=" oxygen extraction fraction; TIA"> oxygen extraction fraction; TIA</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20ischaemic%20attack" title=" transient ischaemic attack"> transient ischaemic attack</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=low-flow%20bypass" title=" low-flow bypass"> low-flow bypass</a>, <a href="https://publications.waset.org/abstracts/search?q=anastomoses" title=" anastomoses"> anastomoses</a> </p> <a href="https://publications.waset.org/abstracts/186846/comprehensive-ultrasonography-during-low-flow-bypass-in-patients-with-symptomatic-internal-carotid-artery-ica-occlusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">42</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3603</span> Integrated Gas Turbine Performance Diagnostics and Condition Monitoring Using Adaptive GPA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi-Guang%20Li">Yi-Guang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Sampath"> Suresh Sampath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas turbine performance degrades over time, and the degradation is greatly affected by environmental, ambient, and operating conditions. The engines may degrade slowly under favorable conditions and result in a waste of engine life if a scheduled maintenance scheme is followed. They may also degrade fast and fail before a scheduled overhaul if the conditions are unfavorable, resulting in serious secondary damage, loss of engine availability, and increased maintenance costs. To overcome these problems, gas turbine owners are gradually moving from scheduled maintenance to condition-based maintenance, where condition monitoring is one of the key supporting technologies. This paper presents an integrated adaptive GPA diagnostics and performance monitoring system developed at Cranfield University for gas turbine gas path condition monitoring. It has the capability to predict the performance degradation of major gas path components of gas turbine engines, such as compressors, combustors, and turbines, using gas path measurement data. It is also able to predict engine key performance parameters for condition monitoring, such as turbine entry temperature that cannot be directly measured. The developed technology has been implemented into digital twin computer Software, Pythia, to support the condition monitoring of gas turbine engines. The capabilities of the integrated GPA condition monitoring system are demonstrated in three test cases using a model gas turbine engine similar to the GE aero-derivative LM2500 engine widely used in power generation and marine propulsion. It shows that when the compressor of the model engine degrades, the Adaptive GPA is able to predict the degradation and the changing engine performance accurately using gas path measurements. Such a presented technology and software are generic, can be applied to different types of gas turbine engines, and provide crucial engine health and performance parameters to support condition monitoring and condition-based maintenance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title="gas turbine">gas turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20GPA" title=" adaptive GPA"> adaptive GPA</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostics" title=" diagnostics"> diagnostics</a>, <a href="https://publications.waset.org/abstracts/search?q=condition%20monitoring" title=" condition monitoring"> condition monitoring</a> </p> <a href="https://publications.waset.org/abstracts/171241/integrated-gas-turbine-performance-diagnostics-and-condition-monitoring-using-adaptive-gpa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3602</span> A Computational Diagnostics for Dielectric Barrier Discharge Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zainab%20D.%20Abd%20Ali">Zainab D. Abd Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Thamir%20H.%20Khalaf"> Thamir H. Khalaf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the characteristics of electric discharge in gap between two (parallel-plate) dielectric plates are studies, the gap filled with Argon gas in atm pressure at ambient temperature, the thickness of gap typically less than 1 mm and dielectric may be up 10 cm in diameter. One of dielectric plates a sinusoidal voltage is applied with Rf frequency, the other plates is electrically grounded. The simulation in this work depending on Boltzmann equation solver in first few moments, fluid model and plasma chemistry, in one dimensional modeling. This modeling have insight into characteristics of Dielectric Barrier Discharge through studying properties of breakdown of gas, electric field, electric potential, and calculating electron density, mean electron energy, electron current density ,ion current density, total plasma current density. The investigation also include: 1. The influence of change in thickness of gap between two plates if we doubled or reduced gap to half. 2. The effect of thickness of dielectric plates. 3. The influence of change in type and properties of dielectric material (gass, silicon, Teflon). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20diagnostics" title="computational diagnostics">computational diagnostics</a>, <a href="https://publications.waset.org/abstracts/search?q=Boltzmann%20equation" title=" Boltzmann equation"> Boltzmann equation</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20discharge" title=" electric discharge"> electric discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20density" title=" electron density"> electron density</a> </p> <a href="https://publications.waset.org/abstracts/12511/a-computational-diagnostics-for-dielectric-barrier-discharge-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">777</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=medical%20diagnostics&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=medical%20diagnostics&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=medical%20diagnostics&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=medical%20diagnostics&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=medical%20diagnostics&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=medical%20diagnostics&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=medical%20diagnostics&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=medical%20diagnostics&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=medical%20diagnostics&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=medical%20diagnostics&amp;page=121">121</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=medical%20diagnostics&amp;page=122">122</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=medical%20diagnostics&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10