CINXE.COM

Search results for: field tests

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: field tests</title> <meta name="description" content="Search results for: field tests"> <meta name="keywords" content="field tests"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="field tests" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="field tests"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 12331</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: field tests</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12331</span> Comparison of Visual Field Tests in Glaucoma Patients with a Central Visual Field Defect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hye-Young%20Shin">Hye-Young Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hae-Young%20Lopilly%20Park"> Hae-Young Lopilly Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Chan%20Kee%20Park"> Chan Kee Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We compared the 24-2 and 10-2 visual fields (VFs) and investigate the degree of discrepancy between the two tests in glaucomatous eyes with central VF defects. In all, 99 eyes of 99 glaucoma patients who underwent both the 24-2 VF and 10-2 VF tests within 6 months were enrolled retrospectively. Glaucomatous eyes involving a central VF defect were divided into three groups based on the average total deviation (TD) of 12 central points in the 24-2 VF test (N = 33, in each group): group 1 (tercile with the highest TD), group 2 (intermediate TD), and group 3 (lowest TD). The TD difference was calculated by subtracting the average TD of the 10-2 VF test from the average TD of 12 central points in the 24-2 VF test. The absolute central TD difference in each quadrant was defined as the absolute value of the TD value obtained by subtracting the average TD of four central points in the 10-2 VF test from the innermost TD in the 24-2 VF test in each quadrant. The TD differences differed significantly between group 3 and groups 1 and 2 (P < 0.001). In the superonasal quadrant, the absolute central TD difference was significantly greater in group 2 than in group 1 (P < 0.05). In the superotemporal quadrant, the absolute central TD difference was significantly greater in group 3 than in groups 1 and 2 (P < 0.001). Our results indicate that the results of VF tests for different VFs can be inconsistent, depending on the degree of central defects and the VF quadrant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=central%20visual%20field%20defect" title="central visual field defect">central visual field defect</a>, <a href="https://publications.waset.org/abstracts/search?q=glaucoma" title=" glaucoma"> glaucoma</a>, <a href="https://publications.waset.org/abstracts/search?q=10-2%20visual%20field" title=" 10-2 visual field"> 10-2 visual field</a>, <a href="https://publications.waset.org/abstracts/search?q=24-2%20visual%20field" title=" 24-2 visual field"> 24-2 visual field</a> </p> <a href="https://publications.waset.org/abstracts/97801/comparison-of-visual-field-tests-in-glaucoma-patients-with-a-central-visual-field-defect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12330</span> Field Investigating the Effects of Lateral Support Elements on Lateral Resistance of Ballasted Tracks with Sharp Curves </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milad%20Alizadeh%20Galdiani">Milad Alizadeh Galdiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Jabbar%20Ali%20Zakeri"> Jabbar Ali Zakeri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lateral movement of CWR ballasted track occurs in sharp curves because of the lack of adequate lateral resistance. Several strategies have been proposed and used for increase the lateral resistance of ballasted tracks, but still there are some problems in tracks with small radius curves. In this paper, a new method has been presented for increase the lateral resistance. This method is using the lateral supports as numerical and field studies. In this paper, the field and laboratory tests have been conducted by using the single tie pressure test (STPT) and track panel loading test (LTPT). Then, their results were compared with the numerical results. The results of numerical and field tests showed that the lateral stiffness of ballasted tracks significantly increased when there were lateral supports in ballasted tracks. Also, the track structure had a bilinear behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballasted%20railway" title="ballasted railway">ballasted railway</a>, <a href="https://publications.waset.org/abstracts/search?q=Lateral%20resistance" title=" Lateral resistance"> Lateral resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20buckling" title=" railway buckling"> railway buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20and%20numerical%20studies" title=" field and numerical studies"> field and numerical studies</a> </p> <a href="https://publications.waset.org/abstracts/67093/field-investigating-the-effects-of-lateral-support-elements-on-lateral-resistance-of-ballasted-tracks-with-sharp-curves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12329</span> Design of a Laboratory Test for InvestigatingPermanent Deformation of Asphalt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esmaeil%20Ahmadinia">Esmaeil Ahmadinia</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20%20Bullen"> Frank Bullen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ron%20%20Ayers"> Ron Ayers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many concerns have been raised in recent years about the adequacy of existing creep test methods for evaluating rut-resistance of asphalt mixes. Many researchers believe the main reason for the creep tests being unable to duplicate field results is related to a lack of a realistic confinement for laboratory specimens. In-situ asphalt under axle loads is surrounded by a mass of asphalt, which provides stress-strain generated confinement. However, most existing creep tests are largely unconfined in their nature. It has been hypothesised that by providing a degree of confinement, representative of field conditions, in a creep test, it could be possible to establish a better correlation between the field and laboratory. In this study, a new methodology is explored where confinement for asphalt specimens is provided. The proposed methodology is founded on the current Australian test method, adapted to provide simulated field conditions through the provision of sample confinement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt%20mixture" title="asphalt mixture">asphalt mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=creep%20test" title=" creep test"> creep test</a>, <a href="https://publications.waset.org/abstracts/search?q=confinements" title=" confinements"> confinements</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20deformation" title=" permanent deformation"> permanent deformation</a> </p> <a href="https://publications.waset.org/abstracts/59793/design-of-a-laboratory-test-for-investigatingpermanent-deformation-of-asphalt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12328</span> Comparison between Open and Closed System for Dewatering with Geotextile: Field and Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matheus%20M%C3%BCller">Matheus Müller</a>, <a href="https://publications.waset.org/abstracts/search?q=Delma%20Vidal"> Delma Vidal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper aims to expose two techniques of dewatering for sludge, analyzing its operations and dewatering processes, aiming at improving the conditions of disposal of residues with high liquid content. It describes the field tests performed on two geotextile systems, a closed geotextile tube and an open geotextile drying bed, both of which are submitted to two filling cycles. The sludge used in the filling cycles for the field trials is from the water treatment plant of the Technological Center of Aeronautics &ndash; CTA, in S&atilde;o Jos&eacute; dos Campos, Brazil. Data about volume and height abatement due to the dewatering and consolidation were collected per time, until it was observed constancy. With the laboratory analysis of the sludge allied to the data collected in the field, it was possible to perform a critical comparative study between the observed and the scientific literature, in this way, this paper expresses the data obtained and compares them with the bibliography. The tests were carried out on three fronts: field tests, including the filling cycles of the systems with the sludge from CTA, taking measurements of filling time per cycle and maximum filling height per cycle, heights against the abatement by dewatering of the systems over time; tests carried out in the laboratory, including the characterization of the sludge and removal of material samples from the systems to ascertain the solids content within the systems per time and; comparing the data obtained in the field and laboratory tests with the scientific literature. Through the study, it was possible to perceive that the process of densification of the material inside a closed system, such as the geotextile tube, occurs faster than the observed in the drying bed system. This process of accelerated densification can be brought about by the pumping pressure of the sludge in its filling and by the confinement of the residue through the permeable geotextile membrane (allowing water to pass through), accelerating the process of densification and dewatering by its own weight after the filling with sludge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consolidation" title="consolidation">consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=dewatering" title=" dewatering"> dewatering</a>, <a href="https://publications.waset.org/abstracts/search?q=geotextile%20drying%20bed" title=" geotextile drying bed"> geotextile drying bed</a>, <a href="https://publications.waset.org/abstracts/search?q=geotextile%20tube" title=" geotextile tube"> geotextile tube</a> </p> <a href="https://publications.waset.org/abstracts/104393/comparison-between-open-and-closed-system-for-dewatering-with-geotextile-field-and-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12327</span> Experimental Simulation of Soil Boundary Condition for Dynamic Studies </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20S.%20Qaftan">Omar S. Qaftan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20T.%20Sabbagh"> T. T. Sabbagh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies the free-field response by adopting a flexible membrane container as soil boundary for experimental shaking table tests. The influence of the soil container boundary on the soil behaviour and the dynamic soil properties under seismic effect were examined. A flexible container with 1/50 scale factor was adopted in the experimental tests, including construction, instrumentation, and determination of the results of dynamic tests on a shaking table. Horizontal face displacements and accelerations were analysed to determine the influence of the container boundary on the performance of the soil. The outputs results show that the flexible boundary container allows more displacement and larger accelerations. The soil in a rigid wall container cannot deform as similar as the soil in the real field does. Therefore, the response of flexible container tested is believed to be more reliable for soil boundary than that in the rigid container. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil" title="soil">soil</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a> </p> <a href="https://publications.waset.org/abstracts/74384/experimental-simulation-of-soil-boundary-condition-for-dynamic-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12326</span> Effect of the Keyword Strategy on Lexical Semantic Acquisition: Recognition, Retention and Comprehension in an English as Second Language Context</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Muhammad%20Shitu">Fatima Muhammad Shitu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study seeks to investigate the effect of the keyword strategy on lexico–semantic acquisition, recognition, retention and comprehension in an ESL context. The aim of the study is to determine whether the keyword strategy can be used to enhance acquisition. As a quasi- experimental research, the objectives of the study include: To determine the extent to which the scores obtained by the subjects, who were trained on the use of the keyword strategy for acquisition, differ at the pre-tests and the post–tests and also to find out the relationship in the scores obtained at these tests levels. The sample for the study consists of 300 hundred undergraduate ESL Students in the Federal College of Education, Kano. The seventy-five lexical items for acquisition belong to the lexical field category known as register, and they include Medical, Agriculture and Photography registers (MAP). These were divided in the ratio twenty-five (25) lexical items in each lexical field. The testing technique was used to collect the data while the descriptive and inferential statistics were employed for data analysis. For the purpose of testing, the two kinds of tests administered at each test level include the WARRT (Word Acquisition, Recognition, and Retention Test) and the CCPT (Cloze Comprehension Passage Test). The results of the study revealed that there are significant differences in the scores obtained between the pre-tests, and the post–tests and there are no correlations in the scores obtained as well. This implies that the keyword strategy has effectively enhanced the acquisition of the lexical items studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=keyword" title="keyword">keyword</a>, <a href="https://publications.waset.org/abstracts/search?q=lexical" title=" lexical"> lexical</a>, <a href="https://publications.waset.org/abstracts/search?q=semantics" title=" semantics"> semantics</a>, <a href="https://publications.waset.org/abstracts/search?q=strategy" title=" strategy"> strategy</a> </p> <a href="https://publications.waset.org/abstracts/50708/effect-of-the-keyword-strategy-on-lexical-semantic-acquisition-recognition-retention-and-comprehension-in-an-english-as-second-language-context" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12325</span> Reduction of Wear via Hardfacing of Rotavator Blades</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurjinder%20Singh%20Randhawa">Gurjinder Singh Randhawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonny%20Garg"> Jonny Garg</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukhraj%20Singh"> Sukhraj Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurmeet%20Singh%20Cheema"> Gurmeet Singh Cheema</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A major problem related to the use of rotavator is wear of rotavator blades due to abrasion by soil hard particles, as it seriously affects tillage quality and agricultural production economy. The objective of this study was to increase the wear resistance by covering the rotavator blades with two different hard facing electrodes. These blades are generally produced from low carbon or low alloy steel. During the field work i.e. preparing land for the cultivation these blades are subjected to severe wear conditions. Comparative wear tests on a regular rotavator blade and two kinds of hardfacing with electrodes were conducted in the field. These two different hardfacing electrodes, which are designated HARD ALLOY-400 and HARD ALLOY-650, were used for hardfacing. The wear rate in the field tests was found to be significantly different statistically. When the cost is taken into consideration; HARD ALLOY-650 and HARD ALLOY-400 have been found to be the best hardfacing electrodes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hardfacing" title="hardfacing">hardfacing</a>, <a href="https://publications.waset.org/abstracts/search?q=rotavator%20blades" title=" rotavator blades"> rotavator blades</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20alloy-400" title=" hard alloy-400"> hard alloy-400</a>, <a href="https://publications.waset.org/abstracts/search?q=abrasive%20wear" title=" abrasive wear"> abrasive wear</a> </p> <a href="https://publications.waset.org/abstracts/52466/reduction-of-wear-via-hardfacing-of-rotavator-blades" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12324</span> The Failure and Energy Mechanism of Rock-Like Material with Single Flaw</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20Chen">Yu Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the influence of flaw on failure process of rock-like material under uniaxial compression. In laboratory, the uniaxial compression tests of intact specimens and a series of specimens within single flaw were conducted. The inclination angle of flaws includes 0°, 15°, 30°, 45°, 60°, 75° and 90°. Based on the laboratory tests, the corresponding models of numerical simulation were built and loaded in PFC2D. After analysing the crack initiation and failure modes, deformation field, and energy mechanism for both laboratory tests and numerical simulation, it can be concluded that the influence of flaws on the failure process is determined by its inclination. The characteristic stresses increase as flaw angle rising basically. The tensile cracks develop from gentle flaws (α ≤ 30°) and the shear cracks develop from other flaws. The propagation of cracks changes during failure process and the failure mode of a specimen corresponds to the orientation of the flaw. A flaw has significant influence on the transverse deformation field at the middle of the specimen, except the 75° and 90° flaw sample. The input energy, strain energy and dissipation energy of specimens show approximate increase trends with flaw angle rising and it presents large difference on the energy distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=failure%20pattern" title="failure pattern">failure pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20deformation%20field" title=" particle deformation field"> particle deformation field</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20mechanism" title=" energy mechanism"> energy mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=PFC" title=" PFC"> PFC</a> </p> <a href="https://publications.waset.org/abstracts/74402/the-failure-and-energy-mechanism-of-rock-like-material-with-single-flaw" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74402.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12323</span> The Use of Psychological Tests in Polish Organizations - Empirical Evidence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milena%20Gojny-Zbierowska">Milena Gojny-Zbierowska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decades psychological tests have been gaining in popularity as a method used for evaluating personnel, and they bring consulting companies solid profits rising by up to 10% each year. The market is offering a growing range of tools for the assessment of personality. Tests are used in organizations mainly in the recruitment and selection of staff. This paper is an attempt to initially diagnose the state of the use of psychological tests in Polish companies on the basis of empirical research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=psychological%20tests" title="psychological tests">psychological tests</a>, <a href="https://publications.waset.org/abstracts/search?q=personality" title=" personality"> personality</a>, <a href="https://publications.waset.org/abstracts/search?q=content%20analysis" title=" content analysis"> content analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=NEO%20FFI" title=" NEO FFI"> NEO FFI</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20five%20personality%20model" title=" big five personality model"> big five personality model</a> </p> <a href="https://publications.waset.org/abstracts/39287/the-use-of-psychological-tests-in-polish-organizations-empirical-evidence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12322</span> Correlation between the Undrained Shear Strength of Clay of the Champlain Sea as Determined by the Vane Test and the Swedish Cone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahar%20Ayadat">Tahar Ayadat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The undrained shear strength is an essential parameter for determining the consistency and the ultimate bearing capacity of a clay layer. The undrained shear strength can be determined by field tests such as the in situ vane test or in laboratory, including hand vane test, triaxial, simple compression test, and the consistency penetrometer (i.e. Swedish cone). However, the field vane test and the Swedish cone are the most commonly used tests by geotechnical experts. In this technical note, a comparison between the shear strength results obtained by the in situ vane test and the cone penetration test (Swedish cone) was conducted. A correlation between the results of these two tests, concerning the undrained shear strength of the Champlain sea clay, has been developed. Moreover, some applications of the proposed correlation on some geotechnical problems have been included, such as the determination of the consistency and the bearing capacity of a clay layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation" title="correlation">correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a>, <a href="https://publications.waset.org/abstracts/search?q=vane%20test" title=" vane test"> vane test</a>, <a href="https://publications.waset.org/abstracts/search?q=Swedish%20cone" title=" Swedish cone"> Swedish cone</a> </p> <a href="https://publications.waset.org/abstracts/59650/correlation-between-the-undrained-shear-strength-of-clay-of-the-champlain-sea-as-determined-by-the-vane-test-and-the-swedish-cone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12321</span> Ground Deformation Module for the New Laboratory Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Giorgishvili">O. Giorgishvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For calculation of foundations one of the important characteristics is the module of deformation (E0). As we all know, the main goal of calculation of the foundations of buildings on deformation is to arrange the base settling and difference in settlings in such limits that do not cause origination of cracks and changes in design levels that will be dangerous to standard operation in the buildings and their individual structures. As is known from the literature and the practical application, the modulus of deformation is determined by two basic methods: laboratory method, soil test on compression (without the side widening) and soil test in field conditions. As we know, the deformation modulus of soil determined by field method is closer to the actual modulus deformation of soil, but the complexity of the tests to be carried out and the financial concerns did not allow determination of ground deformation modulus by field method. Therefore, we determine the ground modulus of deformation by compression method without side widening. Concerning this, we introduce a new way for determination of ground modulus of deformation by laboratory order that occurs by side widening and more accurately reflects the ground modulus of deformation and more accurately reflects the actual modulus of deformation and closer to the modulus of deformation determined by the field method. In this regard, we bring a new approach on the ground deformation detection laboratory module, which is done by widening sides. The tests and the results showed that the proposed method of ground deformation modulus is closer to the results that are obtained in the field, which reflects the foundation's work in real terms more accurately than the compression of the ground deformation module. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=build" title="build">build</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation%20modulus" title=" deformation modulus"> deformation modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=foundations" title=" foundations"> foundations</a>, <a href="https://publications.waset.org/abstracts/search?q=ground" title=" ground"> ground</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory%20research" title=" laboratory research"> laboratory research</a> </p> <a href="https://publications.waset.org/abstracts/36668/ground-deformation-module-for-the-new-laboratory-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12320</span> Study of the Effect of the Continuous Electric Field on the Rd Cancer Cell Line by Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radia%20Chemlal">Radia Chemlal</a>, <a href="https://publications.waset.org/abstracts/search?q=Salim%20Mehenni"> Salim Mehenni</a>, <a href="https://publications.waset.org/abstracts/search?q=Dahbia%20Leila%20Anes-boulahbal"> Dahbia Leila Anes-boulahbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Kherat"> Mohamed Kherat</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabil%20Mameri"> Nabil Mameri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of the electric field is considered to be a very promising method in cancer therapy. Indeed, cancer cells are very sensitive to the electric field, although the cellular response is not entirely clear. The tests carried out consisted in subjecting the RD cell line under the effect of the continuous electric field while varying certain parameters (voltage, exposure time, and cell concentration). The response surface methodology (RSM) was used to assess the effect of the chosen parameters, as well as the existence of interactions between them. The results obtained showed that the voltage, the cell concentration as well as the interaction between voltage and exposure time have an influence on the mortality rate of the RD cell line. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continuous%20electric%20field" title="continuous electric field">continuous electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=RD%20cancer%20cell%20line" title=" RD cancer cell line"> RD cancer cell line</a>, <a href="https://publications.waset.org/abstracts/search?q=RSM" title=" RSM"> RSM</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage" title=" voltage"> voltage</a> </p> <a href="https://publications.waset.org/abstracts/159144/study-of-the-effect-of-the-continuous-electric-field-on-the-rd-cancer-cell-line-by-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12319</span> Correlations Between Electrical Resistivity and Some Properties of Clayey Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20Hassona">F. A. Hassona</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Abu-Heleika"> M. M. Abu-Heleika</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Hassan"> M. A. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20E.%20Sidhom"> A. E. Sidhom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Application of electrical measurements to evaluate engineering properties of soils has gained a wide, promising field of research in recent years. So, understanding of the relation between in-situ electrical resistivity of clay soil, and their mechanical and physical properties consider a promising field of research. This would assist in introducing a new technique for the determination of soil properties based on electrical resistivity. In this work soil physical and mechanical properties of clayey soil have been determined by experimental tests and correlated with the in-situ electrical resistivity. The research program was conducted through measuring fifteen vertical electrical sounding stations along with fifteen selected boreholes. These samples were analyzed and subjected to experimental tests such as physical tests namely bulk density, water content, specific gravity, and grain size distribution, and Attereberg limits tests. Mechanical test was also conducted such as direct shear test. The electrical resistivity data were interpreted and correlated with each one of the measured experimental parameters. Based on this study mathematical relations were extracted and discussed. These results exhibit an excellent match with the results reported in the literature. This study demonstrates the utility of the developed methodology for determining the mechanical properties of soils easily and rapidly depending on their electrical resistivity measurements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20resistivity" title="electrical resistivity">electrical resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=clayey%20soil" title=" clayey soil"> clayey soil</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20properties" title=" physical properties"> physical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20properties" title=" shear properties"> shear properties</a> </p> <a href="https://publications.waset.org/abstracts/2558/correlations-between-electrical-resistivity-and-some-properties-of-clayey-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12318</span> Nonstationarity Modeling of Economic and Financial Time Series</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Slim">C. Slim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditional techniques for analyzing time series are based on the notion of stationarity of phenomena under study, but in reality most economic and financial series do not verify this hypothesis, which implies the implementation of specific tools for the detection of such behavior. In this paper, we study nonstationary non-seasonal time series tests in a non-exhaustive manner. We formalize the problem of nonstationary processes with numerical simulations and take stock of their statistical characteristics. The theoretical aspects of some of the most common unit root tests will be discussed. We detail the specification of the tests, showing the advantages and disadvantages of each. The empirical study focuses on the application of these tests to the exchange rate (USD/TND) and the Consumer Price Index (CPI) in Tunisia, in order to compare the Power of these tests with the characteristics of the series. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stationarity" title="stationarity">stationarity</a>, <a href="https://publications.waset.org/abstracts/search?q=unit%20root%20tests" title=" unit root tests"> unit root tests</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20time%20series" title=" economic time series"> economic time series</a>, <a href="https://publications.waset.org/abstracts/search?q=ADF%20tests" title=" ADF tests"> ADF tests</a> </p> <a href="https://publications.waset.org/abstracts/77063/nonstationarity-modeling-of-economic-and-financial-time-series" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12317</span> The Accuracy of an 8-Minute Running Field Test to Estimate Lactate Threshold</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Timothy%20Quinn">Timothy Quinn</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronald%20Croce"> Ronald Croce</a>, <a href="https://publications.waset.org/abstracts/search?q=Aliaksandr%20Leuchanka"> Aliaksandr Leuchanka</a>, <a href="https://publications.waset.org/abstracts/search?q=Justin%20Walker"> Justin Walker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many endurance athletes train at or just below an intensity associated with their lactate threshold (LT) and often the heart rate (HR) that these athletes use for their LT are above their true LT-HR measured in a laboratory. Training above their true LT-HR may lead to overtraining and injury. Few athletes have the capability of measuring their LT in a laboratory and rely on perception to guide them, as accurate field tests to determine LT are limited. Therefore, the purpose of this study was to determine if an 8-minute field test could accurately define the HR associated with LT as measured in the laboratory. On Day 1, fifteen male runners (mean±SD; age, 27.8±4.1 years; height, 177.9±7.1 cm; body mass, 72.3±6.2 kg; body fat, 8.3±3.1%) performed a discontinuous treadmill LT/maximal oxygen consumption (LT/VO2max) test using a portable metabolic gas analyzer (Cosmed K4b2) and a lactate analyzer (Analox GL5). The LT (and associated HR) was determined using the 1/+1 method, where blood lactate increased by 1 mMol•L-1 over baseline followed by an additional 1 mMol•L-1 increase. Days 2 and 3 were randomized, and the athletes performed either an 8-minute run on the treadmill (TM) or on a 160-m indoor track (TR) in an effort to cover as much distance as possible while maintaining a high intensity throughout the entire 8 minutes. VO2, HR, ventilation (VE), and respiratory exchange ratio (RER) were measured using the Cosmed system, and rating of perceived exertion (RPE; 6-20 scale) was recorded every minute. All variables were averaged over the 8 minutes. The total distance covered over the 8 minutes was measured in both conditions. At the completion of the 8-minute runs, blood lactate was measured. Paired sample t-tests and pairwise Pearson correlations were computed to determine the relationship between variables measured in the field tests versus those obtained in the laboratory at LT. An alpha level of <0.05 was required for statistical significance. The HR (mean +SD) during the TM (167+9 bpm) and TR (172+9 bpm) tests were strongly correlated to the HR measured during the laboratory LT (169+11 bpm) test (r=0.68; p<0.03 and r=0.88; p<0.001, respectively). Blood lactate values during the TM and TR tests were not different from each other but were strongly correlated with the laboratory LT (r=0.73; p<0.04 and r=0.66; p<0.05, respectively). VE (Lmin-1) was significantly greater during the TR (134.8+11.4 Lmin-1) as compared to the TM (123.3+16.2 Lmin-1) with moderately strong correlations to the laboratory threshold values (r=0.38; p=0.27 and r=0.58; p=0.06, respectively). VO2 was higher during TR (51.4 mlkg-1min-1) compared to TM (47.4 mlkg-1min-1) with correlations of 0.33 (p=0.35) and 0.48 (p=0.13), respectively to threshold values. Total distance run was significantly greater during the TR (2331.6+180.9 m) as compared to the TM (2177.0+232.6 m), but they were strongly correlated with each other (r=0.82; p<0.002). These results suggest that an 8-minute running field test can accurately predict the HR associated with the LT and may be a simple test that athletes and coaches could implement to aid in training techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20lactate" title="blood lactate">blood lactate</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate" title=" heart rate"> heart rate</a>, <a href="https://publications.waset.org/abstracts/search?q=running" title=" running"> running</a>, <a href="https://publications.waset.org/abstracts/search?q=training" title=" training"> training</a> </p> <a href="https://publications.waset.org/abstracts/60952/the-accuracy-of-an-8-minute-running-field-test-to-estimate-lactate-threshold" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12316</span> Electrodeposition of Nickel-Zinc Alloy on Stainless Steel in a Magnetic Field in a Chloride Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naima%20Benachour">Naima Benachour</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabiha%20Chouchane"> Sabiha Chouchane</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Paul%20Chopart"> J. Paul Chopart</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is to determine the appropriate conditions for a Ni-Zn deposit with good nickel content. The electrodeposition of zinc-nickel on a stainless steel is carried out in a chlorinated bath NiCl2.6H2O, ZnCl2, and H3BO3), whose composition is 1.1 M; 1.8 M; 0.1 M respectively. Studies show the effect of the concentration of NH4Cl, which reveals a significant effect on the reduction and ion transport in the electrolyte. In order to highlight the influence of magnetic field on the chemical composition and morphology of the deposit, chronopotentiometry tests were conducted, the curves obtained inform us that the application of a magnetic field promotes stability of the deposit. Characterization developed deposits was performed by scanning electron microscopy coupled with EDX and specified by the X-ray diffraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zn-Ni%20alloys" title="Zn-Ni alloys">Zn-Ni alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=electroplating" title=" electroplating"> electroplating</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=chronopotentiometry" title=" chronopotentiometry"> chronopotentiometry</a> </p> <a href="https://publications.waset.org/abstracts/21468/electrodeposition-of-nickel-zinc-alloy-on-stainless-steel-in-a-magnetic-field-in-a-chloride-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12315</span> The Effectiveness of Self-Compassion Training: A Field Trial Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esmaeil%20Sarikhani">Esmaeil Sarikhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: Considering the importance of introducing new methods of improving self-compassion and compassion to the others in nursing students, this study intends to evaluate the effect of self-compassion training on nursing students. Methods: This is a field trial study in which 52 nursing interns from Isfahan University of Medical Sciences were selected using convenience sampling method and divided in two experimental and control groups. The sampling was done during two phases: before and after the intervention. The intervention consisted of eight sessions over eight weeks of self-compassion training. The data were collected using the self-compassion standard questionnaire with 26 questions before and after the intervention. Data were then analyzed by the SPSS18 software and independent and paired T-tests, and also Chi-square and Mann-Whitney tests. Results: The results obtained from the independent t-test showed that the mean score of self-compassion and its components in the experimental group was significantly increased compared to the control group (p < 0.001). Comparing the groups, the mean overall score difference of self-compassion and its components had also a statistically significant change after the intervention (p < 0.001). Conclusion: Self-compassion training program, leads to improving nursing students' self-compassion. As it seems, this method can be used as an important training course in order to improve compassion of nursing students to themselves and the others. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-compassion" title="self-compassion">self-compassion</a>, <a href="https://publications.waset.org/abstracts/search?q=student" title=" student"> student</a>, <a href="https://publications.waset.org/abstracts/search?q=nursing%20students" title=" nursing students"> nursing students</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20trial" title=" field trial"> field trial</a> </p> <a href="https://publications.waset.org/abstracts/49098/the-effectiveness-of-self-compassion-training-a-field-trial-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12314</span> Numerical Assessment on the Unsaturated Behavior of Silty Sand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abolhassan%20Naeini">Seyed Abolhassan Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Namaei"> Ali Namaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This investigation presents the behavior of the unsaturated silty sand by calculating the shear resistance of the specimens by numerical method. In order to investigate this behavior, a series of triaxial tests have been simulated in constant water condition. The finite difference software FLAC3D has been carried out for analyzing the shear resistance and the results are compared with findings from a previous laboratory tests. Constant water tests correspond to a field condition where the rate of the loading is much quicker than the rate at which the pore water is able to drain out of the soil. Tests were simulated on two groups of the silty sands. The obtained results show that the FLAC software may be able to simulate the behavior of specimens with the low suction value magnitude. As the initial suction increased, the differences between numerical and experimental results increased, especially in loose sand. Since some assumptions were used for input parameters, a conclusive result needs more investigations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20difference" title="finite difference">finite difference</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20resistance" title=" shear resistance"> shear resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=unsaturated%20silty%20sand" title=" unsaturated silty sand"> unsaturated silty sand</a>, <a href="https://publications.waset.org/abstracts/search?q=constant%20water%20test" title=" constant water test"> constant water test</a> </p> <a href="https://publications.waset.org/abstracts/103999/numerical-assessment-on-the-unsaturated-behavior-of-silty-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12313</span> Termite Mound Floors: Ready-to-Use Ecological Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yann%C3%A9%20Etienne">Yanné Etienne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current climatic conditions necessarily impose the development and use of construction materials with low or no carbon footprint. The Far North Region of Cameroon has huge deposits of termite mounds. Various tests in this work have been carried out on these soils with the aim of using them as construction materials. They are mainly geotechnical tests, physical and mechanical tests. The different tests gave the following values: uniformity coefficient (4.95), curvature coefficient (1.80), plasticity index (12.85%), optimum moisture content (6.70%), maximum dry density (2.05 g.cm-³), friction angles (14.07°), and cohesion of 100.29 kN.m2. The results obtained show that termite mound soils, which are ecological materials, are plastic and water-stable can be used for the production of load-bearing elements in construction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=termite%20mound%20soil" title="termite mound soil">termite mound soil</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20materials" title=" ecological materials"> ecological materials</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title=" building materials"> building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnical%20tests" title=" geotechnical tests"> geotechnical tests</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20and%20mechanical%20tests" title=" physical and mechanical tests"> physical and mechanical tests</a> </p> <a href="https://publications.waset.org/abstracts/143494/termite-mound-floors-ready-to-use-ecological-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12312</span> An Analysis of Non-Elliptic Curve Based Primality Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=William%20Wong">William Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Zakaria%20Alomari"> Zakaria Alomari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hon%20Ching%20Lai"> Hon Ching Lai</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhida%20Li"> Zhida Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modern-day information security depends on implementing Diffie-Hellman, which requires the generation of prime numbers. Because the number of primes is infinite, it is impractical to store prime numbers for use, and therefore, primality tests are indispensable in modern-day information security. A primality test is a test to determine whether a number is prime or composite. There are two types of primality tests, which are deterministic tests and probabilistic tests. Deterministic tests are adopting algorithms that provide a definite answer whether a given number is prime or composite. While in probabilistic tests, a probabilistic result would be provided, there is a degree of uncertainty. In this paper, we review three probabilistic tests: the Fermat Primality Test, the Miller-Rabin Test, and the Baillie-PSW Test, as well as one deterministic test, the Agrawal-Kayal-Saxena (AKS) Test. Furthermore, we do an analysis of these tests. All of the reviews discussed are not based on the Elliptic Curve. The analysis demonstrates that, in the majority of real-world scenarios, the Baillie- PSW test’s favorability stems from its typical operational complexity of O(log 3n) and its capacity to deliver accurate results for numbers below 2^64. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=primality%20tests" title="primality tests">primality tests</a>, <a href="https://publications.waset.org/abstracts/search?q=Fermat%E2%80%99s%20primality%20test" title=" Fermat’s primality test"> Fermat’s primality test</a>, <a href="https://publications.waset.org/abstracts/search?q=Miller-Rabin%20primality%20test" title=" Miller-Rabin primality test"> Miller-Rabin primality test</a>, <a href="https://publications.waset.org/abstracts/search?q=Baillie-PSW%20primality%20test" title=" Baillie-PSW primality test"> Baillie-PSW primality test</a>, <a href="https://publications.waset.org/abstracts/search?q=AKS%20primality%20test" title=" AKS primality test"> AKS primality test</a> </p> <a href="https://publications.waset.org/abstracts/173827/an-analysis-of-non-elliptic-curve-based-primality-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12311</span> Thermal Degradation Kinetics of Field-Dried and Pelletized Switchgrass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karen%20E.%20Supan">Karen E. Supan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal degradation kinetics of switchgrass (Panicum virgatum) from the field, as well as in a pellet form, are presented. Thermogravimetric analysis tests were performed at heating rates of 10-40 K min⁻¹ in an inert atmosphere. The activation energy and the pre-exponential factor were calculated using the Ozawa/Flynn/Wall method as suggested by the ASTM Standard Test Method for Decomposition Kinetics by Thermogravimetry. Four stages were seen in the degradation: dehydration, active pyrolysis of hemicellulose, active pyrolysis of cellulose, and passive pyrolysis. The derivative mass loss peak for active pyrolysis of cellulose in the field-dried sample was much higher than the pelletized. The range of activation energy in the 0.15 – 0.70 conversion interval was 191 – 242 kJ mol⁻¹ for the field-dried and 130-192 kJ mol⁻¹ for the pellets. The highest activation energies were achieved at 0.50 conversion and were 242 kJ mol⁻¹ and 192 kJ mol⁻¹ for the field-dried and pellets, respectively. The thermal degradation and activation energies were comparable to switchgrass and other biomass reported in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=switchgrass" title=" switchgrass"> switchgrass</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20degradation" title=" thermal degradation"> thermal degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermogravimetric%20analysis" title=" thermogravimetric analysis"> thermogravimetric analysis</a> </p> <a href="https://publications.waset.org/abstracts/152009/thermal-degradation-kinetics-of-field-dried-and-pelletized-switchgrass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12310</span> The Effectiveness of Prefabricated Vertical Drains for Accelerating Consolidation of Tunis Soft Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marwa%20Ben%20Khalifa">Marwa Ben Khalifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeineb%20Ben%20Salem"> Zeineb Ben Salem</a>, <a href="https://publications.waset.org/abstracts/search?q=Wissem%20Frikha"> Wissem Frikha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the present work is to study the consolidation behavior of highly compressible Tunis soft soil “TSS” by means of prefabricated vertical drains (PVD’s) associated to preloading based on laboratory and field investigations. In the first hand, the field performance of PVD’s on the layer of Tunis soft soil was analysed based on the case study of the construction of embankments of “Radès la Goulette” bridge project. PVD’s Geosynthetics drains types were installed with triangular grid pattern until 10 m depth associated with step-by-step surcharge. The monitoring of the soil settlement during preloading stage for Radès La Goulette Bridge project was provided by an instrumentation composed by various type of tassometer installed in the soil. The distribution of water pressure was monitored through piezocone penetration. In the second hand, a laboratory reduced tests are performed on TSS subjected also to preloading and improved with PVD's Mebradrain 88 (Mb88) type. A specific test apparatus was designed and manufactured to study the consolidation. Two series of consolidation tests were performed on TSS specimens. The first series included consolidation tests for soil improved by one central drain. In thesecond series, a triangular mesh of three geodrains was used. The evolution of degree of consolidation and measured settlements versus time derived from laboratory tests and field data were presented and discussed. The obtained results have shown that PVD’s have considerably accelerated the consolidation of Tunis soft soil by shortening the drainage path. The model with mesh of three drains gives results more comparative to field one. A longer consolidation time is observed for the cell improved by a single central drain. A comparison with theoretical analysis, basically that of Barron (1948) and Carillo (1942), was presented. It’s found that these theories overestimate the degree of consolidation in the presence of PVD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tunis%20soft%20soil" title="tunis soft soil">tunis soft soil</a>, <a href="https://publications.waset.org/abstracts/search?q=prefabricated%20vertical%20drains" title=" prefabricated vertical drains"> prefabricated vertical drains</a>, <a href="https://publications.waset.org/abstracts/search?q=acceleration%20of%20consolidation" title=" acceleration of consolidation"> acceleration of consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipation%20of%20excess%20pore%20water%20pressures" title=" dissipation of excess pore water pressures"> dissipation of excess pore water pressures</a>, <a href="https://publications.waset.org/abstracts/search?q=rad%C3%A8s%20bridge%20project" title=" radès bridge project"> radès bridge project</a>, <a href="https://publications.waset.org/abstracts/search?q=barron%20and%20carillo%E2%80%99s%20theories" title=" barron and carillo’s theories"> barron and carillo’s theories</a> </p> <a href="https://publications.waset.org/abstracts/146148/the-effectiveness-of-prefabricated-vertical-drains-for-accelerating-consolidation-of-tunis-soft-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12309</span> Unit Root Tests Based On the Robust Estimator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wararit%20Panichkitkosolkul">Wararit Panichkitkosolkul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p class="Abstract" style="text-indent:10.2pt">The unit root tests based on the robust estimator for the first-order autoregressive process are proposed and compared with the unit root tests based on the ordinary least squares (OLS) estimator. The percentiles of the null distributions of the unit root test are also reported. The empirical probabilities of Type I error and powers of the unit root tests are estimated via Monte Carlo simulation. Simulation results show that all unit root tests can control the probability of Type I error for all situations. The empirical power of the unit root tests based on the robust estimator are higher than the unit root tests based on the OLS estimator.<o:p></o:p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autoregressive" title="autoregressive">autoregressive</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinary%20least%20squares" title=" ordinary least squares"> ordinary least squares</a>, <a href="https://publications.waset.org/abstracts/search?q=type%20i%20error" title=" type i error"> type i error</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20of%20the%20test" title=" power of the test"> power of the test</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a> </p> <a href="https://publications.waset.org/abstracts/3693/unit-root-tests-based-on-the-robust-estimator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12308</span> The Damage Assessment of Industrial Buildings Located on Clayey Soils Using in-Situ Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Akkaya">Ismail Akkaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Mucip%20Tapan"> Mucip Tapan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ozvan"> Ali Ozvan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Some of the industrially prefabricated buildings located on clayey soils were damaged due to soil conditions. The reasons of these damages are generally due to different settlement capacity, the different plasticity of soils and the level of ground water. The aim of this study is to determine the source of these building damages by conducting in situ tests. Therefore, pressuremeter test, which is one of the borehole loading test conducted to determine the properties of soils under the foundations and Standart Penetration Test (SPT). The results of these two field tests were then used to accurately obtain the consistency and firmness of soils. Pressuremeter Deformation Module (EM) and Net Limiting Pressure (PL) of soils were calculated after the pressuremeter tests. These values were then compared with the SPT (N30) and SPT (N60) results. An empirical equation was developed to obtain EM and PL values of such soils from SPT test results. These values were then used to calculate soil bearing capacity as well as the soil settlement. Finally, the relationship between the foundation settlement and the damage of these buildings were checked. It was found that calculated settlement values were almost the same as measured settlement values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damaged%20building" title="damaged building">damaged building</a>, <a href="https://publications.waset.org/abstracts/search?q=pressuremeter" title=" pressuremeter"> pressuremeter</a>, <a href="https://publications.waset.org/abstracts/search?q=standard%20penetration%20test" title=" standard penetration test"> standard penetration test</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20and%20high%20plasticity%20clay" title=" low and high plasticity clay"> low and high plasticity clay</a> </p> <a href="https://publications.waset.org/abstracts/58584/the-damage-assessment-of-industrial-buildings-located-on-clayey-soils-using-in-situ-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12307</span> A New Correlation between SPT and CPT for Various Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fauzi%20Jarushi">Fauzi Jarushi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinan%20Mohsin%20AlKaabi"> Sinan Mohsin AlKaabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Standard Penetration Test (SPT) is the most common insitu test for soil investigations. On the other hand, the Cone Penetration Test (CPT) is considered one of the best investigation tools. Due to the fast and accurate results that can be obtained it complaints the SPT in many applications like field explorations, design parameters, and quality control assessments. Many soil index and engineering properties have been correlated to both of SPT and CPT. Various foundation design methods were developed based on the outcome of these tests. Therefore it is vital to correlate these tests to each other so that either one of the tests can be used in the absence of the other, especially for preliminary evaluation and design purposes. The primary purpose of this study was to investigate the relationships between the SPT and CPT for different types of soil in Florida. Data for this research were collected from number of projects sponsored by the Florida Department of Transportation (FDOT), six sites served as the subject of SPT-CPT correlations. The correlations were established between the cone resistance (qc) and the SPT blows (i.e., N) for various soils. A positive linear relationship was found between fs and N for various soils. In general, qc versus N showed higher correlation coefficients than fs versus N. qc/N ratios were developed for different soil types and compared to literature values, the results of this research revealed higher ratios than literature values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=in%20situ%20tests" title="in situ tests">in situ tests</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation" title=" correlation"> correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=SPT" title=" SPT"> SPT</a>, <a href="https://publications.waset.org/abstracts/search?q=CPT" title=" CPT"> CPT</a> </p> <a href="https://publications.waset.org/abstracts/23108/a-new-correlation-between-spt-and-cpt-for-various-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12306</span> Magneto-Electric Behavior a Couple Aluminum / Steel Xc48</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mekroud">A. Mekroud</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Khemis"> A. Khemis</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Mecibah"> M. S. Mecibah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The tribological behavior of a pin of paramagnetic material (aluminum), rolling on a rotating disk made of ferromagnetic material (steel XC48) in the presence of an externally applied alternating magnetic field, with the passage of electric current were studied. All tests were performed using a conventional tribometer pin- disk. Structural characterization of the surfaces in contact, oxides and wear debris, by X-ray diffraction (θ-2θ angle), showed the significant effect of magnetic field on the activation of the contact surface of the pin in no ferromagnetic material. The absence of the magnetic field causes a change of wear mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20characterization%20of%20the%20surfaces" title="structural characterization of the surfaces">structural characterization of the surfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=oxides%20and%20wear%20debris" title=" oxides and wear debris"> oxides and wear debris</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction" title=" X-ray diffraction "> X-ray diffraction </a> </p> <a href="https://publications.waset.org/abstracts/28068/magneto-electric-behavior-a-couple-aluminum-steel-xc48" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12305</span> Turbine Engine Performance Experimental Tests of Subscale UAV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haluk%20Altay">Haluk Altay</a>, <a href="https://publications.waset.org/abstracts/search?q=Bilal%20Y%C3%BCcel"> Bilal Yücel</a>, <a href="https://publications.waset.org/abstracts/search?q=Berkcan%20Ulcay"> Berkcan Ulcay</a>, <a href="https://publications.waset.org/abstracts/search?q=Y%C3%BCcel%20Ayd%C4%B1n"> Yücel Aydın</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the design, integration, and testing of measurement systems required for performance tests of jet engines used in small-scale unmanned aerial vehicles are described. Performance tests are carried out as thrust and fuel consumption. For thrust tests, measurements are made using a load cell. Amplifier and filter designs have been made for the load cell to measure accurately to meet the desired sensitivity. It was calibrated by making multiple measurements at different thrust levels. As a result of these processes, the cycle thrust graph was obtained. For fuel consumption tests, tests are carried out using a flow meter. Performance graphics were obtained by finding the fuel consumption for different RPM levels of the engine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jet%20engine" title="jet engine">jet engine</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV" title=" UAV"> UAV</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20test" title=" experimental test"> experimental test</a>, <a href="https://publications.waset.org/abstracts/search?q=loadcell" title=" loadcell"> loadcell</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust" title=" thrust"> thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20consumption" title=" fuel consumption"> fuel consumption</a> </p> <a href="https://publications.waset.org/abstracts/168678/turbine-engine-performance-experimental-tests-of-subscale-uav" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12304</span> Field Evaluation of Pile Behavior in Sandy Soil Underlain by Clay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Bakr">R. Bakr</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Elmeligy"> M. Elmeligy</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ibrahim"> A. Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When the building loads are relatively small, challenges are often facing the foundation design especially when inappropriate soil conditions exist. These may be represented in the existence of soft soil in the upper layers of soil while sandy soil or firm cohesive soil exist in the deeper layers. In such cases, the design becomes infeasible if the piles are extended to the deeper layers, especially when there are sandy layers existing at shallower depths underlain by stiff clayey soil. In this research, models of piles terminated in sand underlain by clay soils are numerically simulated by different modelling theories. Finite element software, Plaxis 3-D Foundation was used to evaluate the pile behavior under different loading scenarios. The standard static load test according to ASTM D-1143 was simulated and compared with the real-life loading scenario. The results showed that the pile behavior obtained from the current static load test do not realistically represent that obtained from real-life loading. Attempts were carried out to capture the proper numerical loading scenario that simulates the pile behavior in real-life loading including the long-term effect. A modified method based on this research findings is proposed for the static pile loading tests. Field loading tests were carried out to validate the new method. Results obtained from both numerical and field tests by using the modified method prove that this method is more accurate in predicting the pile behavior in sand soil underlain by clay more than the current standard static load. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title="numerical simulation">numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20load%20test" title=" static load test"> static load test</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20behavior" title=" pile behavior"> pile behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20underlain%20with%20clay" title=" sand underlain with clay"> sand underlain with clay</a>, <a href="https://publications.waset.org/abstracts/search?q=creep" title=" creep"> creep</a> </p> <a href="https://publications.waset.org/abstracts/7296/field-evaluation-of-pile-behavior-in-sandy-soil-underlain-by-clay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12303</span> Liquefaction Assessment of Marine Soil in Western Yemen Region Based on Laboratory and Field Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monalisha%20Nayak">Monalisha Nayak</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20G.%20Sitharam"> T. G. Sitharam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquefaction is a major threat for sites consists of or on sandy soil. But this present study concentrates on the behavior of fine soil under cyclic loading. This paper presents the study of liquefaction susceptibility of marine silty clay to clayey silt for an offshore site near western Yemen. The submerged and loose sediment condition of marine soil of an offshore site can favour liquefaction during earthquakes. In this regard, the liquefaction susceptibility of the site was carried out based on both field test results and laboratory test results. From field test results of seismic cone penetration test (SCPT), liquefaction susceptibility was assessed considering normalized cone tip resistance, and normalized friction ratio and results give an idea regarding both cyclic mobility and flow liquefaction. Laboratory cyclic triaxial tests were also conducted on saturated undisturbed and remoulded sample to study the effect of cyclic loading on strength and strain characteristics. Liquefaction susceptibility of the marine soft soil was also carried out based on index properties like grain size distribution, natural moisture content and liquid limit of soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=index%20properties" title="index properties">index properties</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20soil" title=" marine soil"> marine soil</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20cone%20penetration%20test%20%28SCPT%29" title=" seismic cone penetration test (SCPT)"> seismic cone penetration test (SCPT)</a> </p> <a href="https://publications.waset.org/abstracts/74336/liquefaction-assessment-of-marine-soil-in-western-yemen-region-based-on-laboratory-and-field-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12302</span> The Study on Life of Valves Evaluation Based on Tests Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Binjuan%20Xu">Binjuan Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qian%20Zhao"> Qian Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping%20Jiang"> Ping Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Guo"> Bo Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhijun%20Cheng"> Zhijun Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoyue%20Wu"> Xiaoyue Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Astronautical valves are key units in engine systems of astronautical products; their reliability will influence results of rocket or missile launching, even lead to damage to staff and devices on the ground. Besides failure in engine system may influence the hitting accuracy and flight shot of missiles. Therefore high reliability is quite essential to astronautical products. There are quite a few literature doing research based on few failure test data to estimate valves’ reliability, thus this paper proposed a new method to estimate valves’ reliability, according to the corresponding tests of different failure modes, this paper takes advantage of tests data which acquired from temperature, vibration, and action tests to estimate reliability in every failure modes, then this paper has regarded these three kinds of tests as three stages in products’ process to integrate these results to acquire valves’ reliability. Through the comparison of results achieving from tests data and simulated data, the results have illustrated how to obtain valves’ reliability based on the few failure data with failure modes and prove that the results are effective and rational. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=censored%20data" title="censored data">censored data</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20tests" title=" temperature tests"> temperature tests</a>, <a href="https://publications.waset.org/abstracts/search?q=valves" title=" valves"> valves</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20tests" title=" vibration tests"> vibration tests</a> </p> <a href="https://publications.waset.org/abstracts/84900/the-study-on-life-of-valves-evaluation-based-on-tests-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20tests&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20tests&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20tests&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20tests&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20tests&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20tests&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20tests&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20tests&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20tests&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20tests&amp;page=411">411</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20tests&amp;page=412">412</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20tests&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10