CINXE.COM
Search results for: chemical analysis
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: chemical analysis</title> <meta name="description" content="Search results for: chemical analysis"> <meta name="keywords" content="chemical analysis"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="chemical analysis" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="chemical analysis"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 30949</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: chemical analysis</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30919</span> Multi-Temporal Analysis of Vegetation Change within High Contaminated Watersheds by Superfund Sites in Wisconsin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Punwath%20Prum">Punwath Prum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Superfund site is recognized publicly to be a severe environmental problem to surrounding communities and biodiversity due to its hazardous chemical waste from industrial activities. It contaminates the soil and water but also is a leading potential point-source pollution affecting ecosystem in watershed areas from chemical substances. The risks of Superfund site on watershed can be effectively measured by utilizing publicly available data and geospatial analysis by free and open source application. This study analyzed the vegetation change within high risked contaminated watersheds in Wisconsin. The high risk watersheds were measured by which watershed contained high number Superfund sites. The study identified two potential risk watersheds in Lafayette and analyzed the temporal changes of vegetation within the areas based on Normalized difference vegetation index (NDVI) analysis. The raster statistic was used to compare the change of NDVI value over the period. The analysis results showed that the NDVI value within the Superfund sites’ boundary has a significant lower value than nearby surrounding and provides an analogy for environmental hazard affect by the chemical contamination in Superfund site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20contamination" title="soil contamination">soil contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20analysis" title=" spatial analysis"> spatial analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed" title=" watershed"> watershed</a> </p> <a href="https://publications.waset.org/abstracts/119900/multi-temporal-analysis-of-vegetation-change-within-high-contaminated-watersheds-by-superfund-sites-in-wisconsin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30918</span> Design of Dry Chemical Fire Extinguisher Inspection Equipment in Order to Reduce Ergonomic Risks for Fire Extinguisher Inspectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sitrapee%20Changmuenwai">Sitrapee Changmuenwai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudaratana%20Wongweragiat"> Sudaratana Wongweragiat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is important that a dry chemical fire extinguisher must be inspected for its readiness. For each inspection, the inspectors need to turn the fire extinguisher tank upside down to let the chemical inside the tank move and prevent solidification, which would make the tank not ready for usage when needed. Each tank weighs approximately 16 kg. The inspectors have to turn each tank upside down twice (2 minutes/round). They need to put the tanks over their shoulder close to their ear in order to hear the chemical flow inside the tank or use their hands to feel it. The survey and questionnaire 'The Questionnaire Know Body', which includes neck, left shoulder, upper and lower right arms suggest that all 12 security staffs have the same fatigues. The current dry chemical fire extinguisher inspection affects various ergonomic health problems. Rapid Entire Body Assessment (REBA) is used for evaluation of posture risks so that the working postures may be redesigned or corrected. The dry chemical fire extinguisher inspection equipment has been developed to reduce ergonomic health risks for the inspectors. A REBA analysis has been performed again, and the risk score has been decreased from 13 to 3. In addition, feedbacks from the first trial of the developed equipment show that there are demands to increase the installation in order to reduce the ergonomic health risks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dry%20chemical%20fire%20extinguisher%20inspection%20equipment" title="dry chemical fire extinguisher inspection equipment">dry chemical fire extinguisher inspection equipment</a>, <a href="https://publications.waset.org/abstracts/search?q=ergonomic" title=" ergonomic"> ergonomic</a>, <a href="https://publications.waset.org/abstracts/search?q=REBA" title=" REBA"> REBA</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20entire%20body%20assessment" title=" rapid entire body assessment"> rapid entire body assessment</a> </p> <a href="https://publications.waset.org/abstracts/132486/design-of-dry-chemical-fire-extinguisher-inspection-equipment-in-order-to-reduce-ergonomic-risks-for-fire-extinguisher-inspectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30917</span> Effect of Fibres-Chemical Treatment on the Thermal Properties of Natural Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20S.%20S.%20Neto">J. S. S. Neto</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20A.%20Lima"> R. A. A. Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20K.%20K.%20Cavalcanti"> D. K. K. Cavalcanti</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20B.%20Souza"> J. P. B. Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20A.%20Aguiar"> R. A. A. Aguiar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20D.%20Banea"> M. D. Banea</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decade, investments in sustainable processes and products have gained space in several segments, such as in the civil, automobile, textile and other industries. In addition to increasing concern about the development of environmentally friendly materials that reduce, energy costs and reduces environmental impact in the production of these products, as well as reducing CO2 emissions. Natural fibers offer a great alternative to replace synthetic fibers, totally or partially, because of their low cost and their renewable source. The purpose of this research is to study the effect of surface chemical treatment on the thermal properties of hybrid fiber reinforced natural fibers (NFRC), jute + ramie, jute + sisal, jute + curauá, and jute fiber in polymer matrices. Two types of chemical treatment: alkalinization and silanization were employed, besides the condition without treatment. Differential scanning calorimetry (DSC), thermogravimetry (TG) and dynamic-mechanical analysis (DMA) were performed to explore the thermal stability and weight loss in the natural fiber reinforced composite as a function of chemical treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20treatment" title="chemical treatment">chemical treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20composite" title=" hybrid composite"> hybrid composite</a>, <a href="https://publications.waset.org/abstracts/search?q=jute" title=" jute"> jute</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal" title=" thermal"> thermal</a> </p> <a href="https://publications.waset.org/abstracts/83228/effect-of-fibres-chemical-treatment-on-the-thermal-properties-of-natural-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30916</span> Chemical Stability of Ceramic Crucibles to Molten Titanium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jong-Min%20Park">Jong-Min Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung-Ki%20Park"> Hyung-Ki Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Seok%20Hong%20Min"> Seok Hong Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Titanium is widely used due to its high specific strength, good biocompatibility, and excellent corrosion resistance. In order to produce titanium powders, it is necessary to melt titanium, and generally it is conducted by an induction heating method using Al₂O₃ ceramic crucible. However, since titanium reacts chemically with Al₂O₃, it is difficult to melt titanium by the induction heating method using Al₂O₃ crucible. To avoid this problem, we studied the chemical stability of the various crucibles such as Al₂O₃, MgO, ZrO₂, and Y₂O₃ crucibles to molten titanium. After titanium lumps (Grade 2, O(oxygen)<0.25wt%) were placed in each crucible, they were heated to 1800℃ with a heating rate of 5 ℃/min, held at 1800℃ for 30 min, and finally cooled to room temperature with a cooling rate of 5 ℃/min. All heat treatments were carried out in high purity Ar atmosphere. To evaluate the chemical stability, thermodynamic data such as Ellingham diagram were utilized, and also Vickers hardness test, microstructure analysis, and EPMA quantitative analysis were performed. As a result, Al₂O₃, MgO and ZrO₂ crucibles chemically reacted with molten titanium, but Y₂O₃ crucible rarely reacted with it. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium" title="titanium">titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=induction%20melting" title=" induction melting"> induction melting</a>, <a href="https://publications.waset.org/abstracts/search?q=crucible" title=" crucible"> crucible</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20stability" title=" chemical stability"> chemical stability</a> </p> <a href="https://publications.waset.org/abstracts/77805/chemical-stability-of-ceramic-crucibles-to-molten-titanium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30915</span> Physico-Chemical Analysis of the Reclaimed Land Area of Kasur</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shiza%20Zafar">Shiza Zafar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The tannery effluents contaminated about 400 acres land area in Kasur, Pakistan, has been reclaimed by removing polluted water after the long term effluent logging from the nearby tanneries. In an effort to describe the status of reclaimed soil for agricultural practices, the results of physicochemical analysis of the soil are reported in this article. The concentrations of the parameters such as pH, Electrical Conductivity (EC), Organic Matter (OM), Organic Carbon (OC), Available Phosphorus (P), Potassium (K), and Sodium (Na) were determined by standard methods of analysis and results were computed and compared with various international standards for agriculture recommended by international organizations, groups of experts and or individual researchers. The results revealed that pH, EC, OM, OC, K, and Na are in accordance with the prescribed limits but P in soil exceeds the satisfactory range of P in agricultural soil. Thus, the reclaimed soil in Kasur can be inferred fit for the purpose of agricultural activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20toxicity" title="soil toxicity">soil toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=reclaimed%20land" title=" reclaimed land"> reclaimed land</a>, <a href="https://publications.waset.org/abstracts/search?q=physico-chemical%20analysis" title=" physico-chemical analysis"> physico-chemical analysis</a> </p> <a href="https://publications.waset.org/abstracts/26238/physico-chemical-analysis-of-the-reclaimed-land-area-of-kasur" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30914</span> Mostar Type Indices and QSPR Analysis of Octane Isomers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Roopa%20Sri">B. Roopa Sri</a>, <a href="https://publications.waset.org/abstracts/search?q=Y%20Lakshmi%20Naidu"> Y Lakshmi Naidu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical Graph Theory (CGT) is the branch of mathematical chemistry in which molecules are modeled to study their physicochemical properties using molecular descriptors. Amongst these descriptors, topological indices play a vital role in predicting the properties by defining the graph topology of the molecule. Recently, the bond-additive topological index known as the Mostar index has been proposed. In this paper, we compute the Mostar-type indices of octane isomers and use the data obtained to perform QSPR analysis. Furthermore, we show the correlation between the Mostar type indices and the properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20graph%20theory" title="chemical graph theory">chemical graph theory</a>, <a href="https://publications.waset.org/abstracts/search?q=mostar%20type%20indices" title=" mostar type indices"> mostar type indices</a>, <a href="https://publications.waset.org/abstracts/search?q=octane%20isomers" title=" octane isomers"> octane isomers</a>, <a href="https://publications.waset.org/abstracts/search?q=qspr%20analysis" title=" qspr analysis"> qspr analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20index" title=" topological index"> topological index</a> </p> <a href="https://publications.waset.org/abstracts/153959/mostar-type-indices-and-qspr-analysis-of-octane-isomers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30913</span> Effect of Chemical Modifier on the Properties of Polypropylene (PP) / Coconut Fiber (CF) in Automotive Application </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Shahril">K. Shahril</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nizam"> A. Nizam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sabri"> M. Sabri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Siti%20Rohana"> A. Siti Rohana</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Salmah"> H. Salmah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical modifier (Acrylic Acid) is used as filler treatment to improve mechanical properties and swelling behavior of polypropylene/coconut fiber (PP/CF) composites by creating more adherent bonding between CF filler and PP Matrix. Treated (with chemical modifier) and untreated (without chemical modifier) composites were prepared in the formulation of 10 wt%, 20 wt%, 30 wt%, and 40 wt%. The mechanical testing indicates that composite with 10 wt% of untreated composite has the optimum value of tensile strength, and the composite with chemical modifier shows the tensile strength was increased. By increasing of filler loading, elastic modulus was increased while the elongation at brake was decreased. Meanwhile, the swelling test discerned that the increase of filler loading increased the water absorption of composites and the presence of chemical modifier reduced the equilibrium water absorption percentage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut%20fiber" title="coconut fiber">coconut fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20acrylic" title=" acid acrylic"> acid acrylic</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol" title=" ethanol"> ethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20modifier" title=" chemical modifier"> chemical modifier</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a> </p> <a href="https://publications.waset.org/abstracts/14842/effect-of-chemical-modifier-on-the-properties-of-polypropylene-pp-coconut-fiber-cf-in-automotive-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30912</span> The Analysis of a Reactive Hydromagnetic Internal Heat Generating Poiseuille Fluid Flow through a Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anthony%20R.%20Hassan">Anthony R. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacob%20A.%20Gbadeyan"> Jacob A. Gbadeyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the analysis of a reactive hydromagnetic Poiseuille fluid flow under each of sensitized, Arrhenius and bimolecular chemical kinetics through a channel in the presence of heat source is carried out. An exothermic reaction is assumed while the concentration of the material is neglected. Adomian Decomposition Method (ADM) together with Pade Approximation is used to obtain the solutions of the governing nonlinear non – dimensional differential equations. Effects of various physical parameters on the velocity and temperature fields of the fluid flow are investigated. The entropy generation analysis and the conditions for thermal criticality are also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20kinetics" title="chemical kinetics">chemical kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy%20generation" title=" entropy generation"> entropy generation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20criticality" title=" thermal criticality"> thermal criticality</a>, <a href="https://publications.waset.org/abstracts/search?q=adomian%20decomposition%20method%20%28ADM%29%20and%20pade%20approximation" title=" adomian decomposition method (ADM) and pade approximation "> adomian decomposition method (ADM) and pade approximation </a> </p> <a href="https://publications.waset.org/abstracts/35404/the-analysis-of-a-reactive-hydromagnetic-internal-heat-generating-poiseuille-fluid-flow-through-a-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30911</span> Mixed Treatment (Physical-Chemical and Biological) of Ouled Fayet Landfill Leachates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Balamane-Zizi">O. Balamane-Zizi</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20Rouidi"> L. M. Rouidi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Boukhrissa"> A. Boukhrissa</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Daas"> N. Daas</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ait-amar"> H. Ait-amar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to test the possibility of a mixed treatment (physical-chemical and biological) of Ouled Fayet leachates which date of 10 years and has a large fraction of hard COD that can be reduced by coagulation-flocculation. Previous batch tests showed the possibility of applying the physical-chemical and biological treatments separately; the removal efficiencies obtained in this case were not interesting. We propose, therefore, to test the possibility of a combined treatment, in order to improve the quality of the leachates. Estimation of the treatment’s effectiveness was done by analysis of some pollution parameters such as COD, suspended solids, and heavy metals (particularly iron and nickel). The main results obtained after the combination of treatments, show reduction rate of about 63% for COD, 73% for suspended solids and 80% for iron and nickel. We also noted an improvement in the turbidity of treated leachates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landfill%20leachates" title="landfill leachates">landfill leachates</a>, <a href="https://publications.waset.org/abstracts/search?q=COD" title=" COD"> COD</a>, <a href="https://publications.waset.org/abstracts/search?q=physical-chemical%20treatment" title=" physical-chemical treatment"> physical-chemical treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20treatment" title=" biological treatment"> biological treatment</a> </p> <a href="https://publications.waset.org/abstracts/32364/mixed-treatment-physical-chemical-and-biological-of-ouled-fayet-landfill-leachates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30910</span> Obtaining High Purity Hydroxyapatite from Bovine Bone: Effect of Chemical and Thermal Treatments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hernandez%20Pardo%20Diego%20F.">Hernandez Pardo Diego F.</a>, <a href="https://publications.waset.org/abstracts/search?q=Guiza%20Arguello%20Viviana%20R."> Guiza Arguello Viviana R.</a>, <a href="https://publications.waset.org/abstracts/search?q=Coy%20Echeverria%20Ana"> Coy Echeverria Ana</a>, <a href="https://publications.waset.org/abstracts/search?q=Viejo%20Abrante%20Fernando"> Viejo Abrante Fernando</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The biological hydroxyapatite obtained from bovine bone arouses great interest in its application as a material for bone regeneration due to its better bioactive behavior in comparison with synthetic hydroxyapatite. For this reason, the objective of the present investigation was to determine the effect of chemical and thermal treatments in obtaining biological bovine hydroxyapatite of high purity and crystallinity. Two different chemical reagents were evaluated (NaOH and HCl) with the aim to remove the organic matrix of the bovine cortical bone. On the other hand, for analyzing the effect of thermal treatment temperature was ranged between 500 and 1000°C for a holding time of 4 hours. To accomplish the above, the materials before and after the chemical and thermal treatments were characterized by elemental compositional analysis (CHN), infrared spectroscopy by Fourier transform (FTIR), RAMAN spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and X-ray diffraction (XRD) and energy dispersion X-ray spectroscopy (EDS). The results allowed to establish that NaOH is more effective in the removal of the organic matrix of the bone when compared to HCl, whereas a thermal treatment at 700ºC for 4 hours was enough to obtain biological hydroxyapatite of high purity and crystallinity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bovine%20bone" title="bovine bone">bovine bone</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title=" biomaterials"> biomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20treatment" title=" thermal treatment"> thermal treatment</a> </p> <a href="https://publications.waset.org/abstracts/104826/obtaining-high-purity-hydroxyapatite-from-bovine-bone-effect-of-chemical-and-thermal-treatments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104826.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30909</span> Adoption of Big Data by Global Chemical Industries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashiff%20Khan">Ashiff Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Seetharaman"> A. Seetharaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhijit%20Dasgupta"> Abhijit Dasgupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The new era of big data (BD) is influencing chemical industries tremendously, providing several opportunities to reshape the way they operate and help them shift towards intelligent manufacturing. Given the availability of free software and the large amount of real-time data generated and stored in process plants, chemical industries are still in the early stages of big data adoption. The industry is just starting to realize the importance of the large amount of data it owns to make the right decisions and support its strategies. This article explores the importance of professional competencies and data science that influence BD in chemical industries to help it move towards intelligent manufacturing fast and reliable. This article utilizes a literature review and identifies potential applications in the chemical industry to move from conventional methods to a data-driven approach. The scope of this document is limited to the adoption of BD in chemical industries and the variables identified in this article. To achieve this objective, government, academia, and industry must work together to overcome all present and future challenges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20engineering" title="chemical engineering">chemical engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20data%20analytics" title=" big data analytics"> big data analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20revolution" title=" industrial revolution"> industrial revolution</a>, <a href="https://publications.waset.org/abstracts/search?q=professional%20competence" title=" professional competence"> professional competence</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20science" title=" data science"> data science</a> </p> <a href="https://publications.waset.org/abstracts/151938/adoption-of-big-data-by-global-chemical-industries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30908</span> Chemical Study of Volatile Organic Compounds (VOCS) from Xylopia aromatica (LAM.) Mart (Annonaceae)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vanessa%20G.%20P.%20Severino">Vanessa G. P. Severino</a>, <a href="https://publications.waset.org/abstracts/search?q=JO%C3%83O%20Gabriel%20M.%20Junqueira"> JOÃO Gabriel M. Junqueira</a>, <a href="https://publications.waset.org/abstracts/search?q=Michelle%20N.%20G.%20do%20Nascimento"> Michelle N. G. do Nascimento</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20W.%20B.%20Aquino"> Francisco W. B. Aquino</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20B.%20Fernandes"> João B. Fernandes</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20P.%20Terezan"> Ana P. Terezan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The scientific interest in analyzing VOCs represents a significant modern research field as a result of importance in most branches of the present life and industry. Therefore it is extremely important to investigate, identify and isolate volatile substances, since they can be used in different areas, such as food, medicine, cosmetics, perfumery, aromatherapy, pesticides, repellents and other household products through methods for extracting volatile constituents, such as solid phase microextraction (SPME), hydrodistillation (HD), solvent extraction (SE), Soxhlet extraction, supercritical fluid extraction (SFE), stream distillation (SD) and vacuum distillation (VD). The Chemometrics is an area of chemistry that uses statistical and mathematical tools for the planning and optimization of the experimental conditions, and to extract relevant chemical information multivariate chemical data. In this context, the focus of this work was the study of the chemical VOCs by SPME of the specie X. aromatica, in search of constituents that can be used in the industrial sector as well as in food, cosmetics and perfumery, since these areas industrial has a considerable role. In addition, by chemometric analysis, we sought to maximize the answers of this research, in order to search for the largest number of compounds. The investigation of flowers from X. aromatica in vitro and in alive mode proved consistent, but certain factors supposed influence the composition of metabolites, and the chemometric analysis strengthened the analysis. Thus, the study of the chemical composition of X. aromatica contributed to the VOCs knowledge of the species and a possible application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemometrics" title="chemometrics">chemometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=flowers" title=" flowers"> flowers</a>, <a href="https://publications.waset.org/abstracts/search?q=HS-SPME" title=" HS-SPME"> HS-SPME</a>, <a href="https://publications.waset.org/abstracts/search?q=Xylopia%20aromatica" title=" Xylopia aromatica"> Xylopia aromatica</a> </p> <a href="https://publications.waset.org/abstracts/29441/chemical-study-of-volatile-organic-compounds-vocs-from-xylopia-aromatica-lam-mart-annonaceae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30907</span> Carbon Nanofilms on Diamond for All-Carbon Chemical Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vivek%20Kumar">Vivek Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20M.%20Zaitsev"> Alexander M. Zaitsev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study on chemical sensing properties of carbon nanofilms on diamond for developing all-carbon chemical sensors is presented. The films were obtained by high temperature graphitization of diamond followed by successive plasma etchings. Characterization of the films was done by Raman spectroscopy, atomic force microscopy, and electrical measurements. Fast and selective response to common organic vapors as seen as sensitivity of electrical conductance was observed. The phenomenological description of the chemical sensitivity is proposed as a function of the surface and bulk material properties of the films. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20sensor" title="chemical sensor">chemical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanofilm" title=" carbon nanofilm"> carbon nanofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=graphitization%20of%20diamond" title=" graphitization of diamond"> graphitization of diamond</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20etching" title=" plasma etching"> plasma etching</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20spectroscopy" title=" Raman spectroscopy"> Raman spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20force%20microscopy" title=" atomic force microscopy"> atomic force microscopy</a> </p> <a href="https://publications.waset.org/abstracts/20783/carbon-nanofilms-on-diamond-for-all-carbon-chemical-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30906</span> Agriculture Water Quality Evaluation in Minig Basin </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ben%20Salah%20Nahla">Ben Salah Nahla </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of water in Tunisia affects the quality and quantity. Tunisia is in a situation of water shortage. It was estimated that 4.6 Mm3/an. Moreover, the quality of water in Tunisia is also mediocre. In fact, 50% of the water has a high salinity (> 1.5g/l). There are several parameters which affect water quality such as sodium, fluoride. An excess of this parameter may induce some human health. Furthermore, the mining basin area has a problem of industrial waste. This problem may affect the water quality of the groundwater. Therefore, the purpose of this work is to assess the water quality in Basin Mining and the impact of fluorine. For this research, some water samples were done in the field and specific water analysis was implemented in the laboratory. Sampling is carried out on eight drilling in the area of the mining region. In the following, we will look at water view composition, physical and chemical quality. A physical-chemical analysis of water from a survey of the Mining area of Tunisia was performed and showed an excess for the following items: fluorine, sodium, sulfate. So many chemicals may be present in water. However, only a small number of them immediately concern in terms of health in all circumstances. Fluorine (F) is one particular chemical that is considered both necessary for the human body, but an excess of the rate of this chemical causes serious diseases. Sodium fluoride and sodium silicofluoride are more soluble and may spread in animals and plants where their toxicity largest organizations. The more complex particles such as cryolite and fluorite, almost insoluble, are more stable and less toxic. Thereafter, we will study the problem of excess fluorine in the water. The latter intended for human consumption must always comply with the limits for microbiological quality parameters and physical-chemical parameters defined by European standards (1.5 mg/l) and Tunisian (2 mg/l). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water" title="water">water</a>, <a href="https://publications.waset.org/abstracts/search?q=minier%20basin" title=" minier basin"> minier basin</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorine" title=" fluorine"> fluorine</a>, <a href="https://publications.waset.org/abstracts/search?q=silicofluoride" title=" silicofluoride"> silicofluoride</a> </p> <a href="https://publications.waset.org/abstracts/19833/agriculture-water-quality-evaluation-in-minig-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">582</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30905</span> Theoretical Analysis and Numerical Evaluation of the Flow inside the Supersonic Nozzle for Chemical Lasers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammedi%20Ferhate">Mohammedi Ferhate</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakim%20Chadli"> Hakim Chadli</a>, <a href="https://publications.waset.org/abstracts/search?q=Laggoun%20Chaouki"> Laggoun Chaouki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objectives of work in this area are, first, obtaining the high laser energies in short time durations needed for the feasibility studies of laser induced thermodynamically exothermic chemical reactions , second, investigating the physical principles that can be used to make laser sources capable of delivering high average powers. We note that, in order to reach both objectives, one has to convert electrical or chemical energy into laser energy, using dense gaseous media.. We present results from the early development of an F atom source appropriate for HF and DF chemical laser research. We next explain the very important difficulties encountered in working with dense gases for that purpose, and we shall describe how, especially at Evaluation of downstream-mixing scheme –levels transitions (001) → (100) and (001) → (020) gas dynamic laser The physical phenomena that control the operation of presently existing laser devices are now sufficiently well understood, so that it is possible to predict that new generations of lasers could be designed in the future. The proposed model of excitation and relaxation levels was finally proved by the computational numerical code of Matlab toolboxes of different parameters of nozzle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title="hydrogen">hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=combust" title=" combust"> combust</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20laser" title=" chemical laser"> chemical laser</a>, <a href="https://publications.waset.org/abstracts/search?q=halogen%20atom" title=" halogen atom"> halogen atom</a> </p> <a href="https://publications.waset.org/abstracts/161569/theoretical-analysis-and-numerical-evaluation-of-the-flow-inside-the-supersonic-nozzle-for-chemical-lasers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30904</span> Analyzing Antimicrobial Power of Cotula cinerea Essential Oil: Case of Western Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Abdenbi">A. Abdenbi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Dennai"> B. Dennai</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Touati"> B. Touati</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouaaza"> M. Bouaaza</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Saad"> A. Saad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The essential oils of many plants have become popular in recent years and their bioactive principles have recently won several industry sectors, however their use as antibacterial and anti fungal agents has been reported. This study focuses on the physico chemical and phyto chemical with a study of the antimicrobial activity of essential oils of aromatic and medicinal plant of southwest Algeria, this essential oil was obtained by hydro-distillation of aerial parts of Cotula cinerea, belonging to the Asteraceae family, it is very extensive in the spring season in a region called Kenadza road, located 12km from Bechar. Variable anti fungal activity of the essential oil of Cotula cinerea (yield 2%) were revealed about four fungal strains, the minimum inhibitory concentrations of essential oils were determined by the method of dilution in agar. Significant fungal sensitivity of Penicillium sp with an inhibition of 32.3 mm area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cotula%20cinerea" title="Cotula cinerea">Cotula cinerea</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=physico-%20chemical%20analysis%20and%20phyto-%20chemical" title=" physico- chemical analysis and phyto- chemical"> physico- chemical analysis and phyto- chemical</a>, <a href="https://publications.waset.org/abstracts/search?q=anti%20fungal%20power" title=" anti fungal power"> anti fungal power</a> </p> <a href="https://publications.waset.org/abstracts/19795/analyzing-antimicrobial-power-of-cotula-cinerea-essential-oil-case-of-western-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30903</span> Undercooling of Refractory High-Entropy Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liang%20Hu">Liang Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The innovation of refractory high-entropy alloy (RHEA) formed from refractory metals W, Ta, Mo, Nb, Hf, V, and Zr was firstly implemented in 2010 to obtain better strength at high temperature than conventional HEAs based on Al, Co, Cr, Cu, Fe and Ni. Due to the refractory characteristic and high chemical activity at elevated temperature, electrostatic levitation technique has been utilized to fulfill the rapid solidification of RHEA. Several RHEAs consisting W, Ta, Mo, Nb, Zr have been selected to perform the undercooling and rapid solidification by ESL. They are substantially undercooled by up to 0.2TL. The evolution of as-solidified microstructure and component redistribution with undercooling have been investigated by SEM, EBSD, and EPMA analysis. According to the EPMA results of composing elements at different undercooling levels, the chemical distribution relevant to undercooling was also analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20distribution" title="chemical distribution">chemical distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=high-entropy%20alloy" title=" high-entropy alloy"> high-entropy alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20solidification" title=" rapid solidification"> rapid solidification</a>, <a href="https://publications.waset.org/abstracts/search?q=undercooling" title=" undercooling"> undercooling</a> </p> <a href="https://publications.waset.org/abstracts/127404/undercooling-of-refractory-high-entropy-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30902</span> Study of the Adsorption of Metal Ions Ag+ Mg2+, Ni2+ by the Chemical and Electrochemical Polydibenzoether Crown</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dalila%20Chouder">Dalila Chouder</a>, <a href="https://publications.waset.org/abstracts/search?q=Djaafer%20Benachour"> Djaafer Benachour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work concerns the study of the adsorption of metal ions Ag +, Mg +, and Ni2+ in aqueous medium by polydibenzoether-ROWN based on three factors: Temperature, time and concentration. The polydibenzoether crown was synthesized by two means: Chemical and electrochemical. The behavior of the two polymers has been different, and turns out very interesting for chemical polydibenzoether crown has identified conditions. Chemical and électronique polydibenzoether crown have different extraction screw vi property of adsoption of ions fifférents, this study also shows that plyméres doped may have an advantageous electrical conductivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymerization" title="polymerization">polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title=" electrochemical"> electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=conductivity" title=" conductivity"> conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=complexing%20metal%20ions" title=" complexing metal ions"> complexing metal ions</a> </p> <a href="https://publications.waset.org/abstracts/26255/study-of-the-adsorption-of-metal-ions-ag-mg2-ni2-by-the-chemical-and-electrochemical-polydibenzoether-crown" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30901</span> Trace Element Compositions of Placer Gold Samples: Implication for Gold Exploration in Northern Cameroon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanick%20Blaise%20Ketchaya">Yanick Blaise Ketchaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Taofa%20Zhou"> Taofa Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The type of primary source of gold deposit can be explored by using the study of trace element analysis of placer gold which is a valuable exploration tool. Au-bearing deposits are investigated through the placer gold, which is an important indicator mineral. The hydrothermal fluid interacting with diverse geological settings exerts an important function on the chemical composition of gold. Consequently, alluvial gold particles from the placer deposits within the Gamba district in northern Cameroon were examined by an electron probe microanalyzer (EPMA) to show discriminant chemical signatures. The gold grains from a different locality show the same trace element composition, which appears to be in a solid solution in Au. These trace element compositions, contained in gold grains, indicate a homogeneous source. The placer gold particles have significant chemical characteristics (low Ag content), consistent with a mesothermal source. The gold particle signatures in the Gamba district, with high Te and Bi contents, reflect the chemical characteristics of the felsic host rock superimposed on the chemical signature of the hydrothermal fluid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hypogene%20source" title="hypogene source">hypogene source</a>, <a href="https://publications.waset.org/abstracts/search?q=Northern%20Cameroon" title=" Northern Cameroon"> Northern Cameroon</a>, <a href="https://publications.waset.org/abstracts/search?q=placer%20gold" title=" placer gold"> placer gold</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20element" title=" trace element"> trace element</a> </p> <a href="https://publications.waset.org/abstracts/157313/trace-element-compositions-of-placer-gold-samples-implication-for-gold-exploration-in-northern-cameroon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30900</span> Chemical Composition and Antimicrobial Activity of the Essential Oil of Mentha piperita Endemic in Khorasan-Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Hakimzadeh">V. Hakimzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Noori"> M. Noori</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20maleki"> M. maleki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to determine the composition and antimicrobial effect of Mentha piperita essential oil in "in-vitro" condition. The chemical composition of the essential oil obtained by hydro-distillation was examined by GC/MS and the antimicrobial effect was studied on the growth of seven microbial species including Bacillus cereus, Pseudomonas aeruginosa and Proteus vulgaris using micro-dilution method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. Chemical composition analysis identified a total of 28 compounds in which the main components were menthol (32%), mentone (13.4), menthyl acetate (12%), 1,8-cineole (8.2%) and neomenthol (4%) representing 69.6 % of the total oil. Other separated components accounted for less than 30.4% of the oil. Results of antimicrobial analysis showed that the MIC values for Bacillus cereus, Pseudomonas aeruginosa and Proteus vulgaris was respectively 50, 200 and 100 µg/ml and the MBC was determined at 200, 400 and 200 µg/ml respectively. The results of the present study indicated that Mentha piperita essential oil had significant antimicrobial activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title="antimicrobial activity">antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil%20composition" title=" essential oil composition"> essential oil composition</a>, <a href="https://publications.waset.org/abstracts/search?q=Mentha%20piperita" title=" Mentha piperita"> Mentha piperita</a> </p> <a href="https://publications.waset.org/abstracts/11605/chemical-composition-and-antimicrobial-activity-of-the-essential-oil-of-mentha-piperita-endemic-in-khorasan-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30899</span> Chemical Modification of PVC and Its Surface Analysis by Means of XPS and Contact Angle Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Akrmi">Ali Akrmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Beji"> Mohamed Beji</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Baklouti"> Ahmed Baklouti</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Djouani"> Fatma Djouani</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Lang"> Philippe Lang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20M.%20Chehimi"> Mohamed M. Chehimi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Poly(vinyl chloride) (PVC) is a highly versatile polymer with excellent balance of properties and numerous applications such as water pipes, packaging and polymer materials of importance in the biomedical sector. However, depending on the applications, it is necessary to modify PVC by mixing with a plasticizer; surface modification using plasma, surface grafting or flame treatment; or bulk chemical modification which affects the entire PVC chains at an extent that can be tuned by the polymer chemist. The targeted applications are improvement of chemical resistance, avoiding or limitation of migration of toxic plasticizers, improvement of antibacterial properties, or control of blood compatibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poly%28vinyl%20chloride%29" title="poly(vinyl chloride)">poly(vinyl chloride)</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleophilic%20substitution" title=" nucleophilic substitution"> nucleophilic substitution</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfonylcarbamates" title=" sulfonylcarbamates"> sulfonylcarbamates</a>, <a href="https://publications.waset.org/abstracts/search?q=XPS" title=" XPS"> XPS</a> </p> <a href="https://publications.waset.org/abstracts/13663/chemical-modification-of-pvc-and-its-surface-analysis-by-means-of-xps-and-contact-angle-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">705</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30898</span> Material Analysis for Temple Painting Conservation in Taiwan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chen-Fu%20Wang">Chen-Fu Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin-Ya%20Kung"> Lin-Ya Kung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For traditional painting materials, the artisan used to combine the pigments with different binders to create colors. As time goes by, the materials used for painting evolved from natural to chemical materials. The vast variety of ingredients used in chemical materials has complicated restoration work; it makes conservation work more difficult. Conservation work also becomes harder when the materials cannot be easily identified; therefore, it is essential that we take a more scientific approach to assist in conservation work. Paintings materials are high molecular weight polymer, and their analysis is very complicated as well other contamination such as smoke and dirt can also interfere with the analysis of the material. The current methods of composition analysis of painting materials include Fourier transform infrared spectroscopy (FT-IR), mass spectrometer, Raman spectroscopy, X-ray diffraction spectroscopy (XRD), each of which has its own limitation. In this study, FT-IR was used to analyze the components of the paint coating. We have taken the most commonly seen materials as samples and deteriorated it. The aged information was then used for the database to exam the temple painting materials. By observing the FT-IR changes over time, we can tell all of the painting materials will be deteriorated by the UV light, but only the speed of its degradation had some difference. From the deterioration experiment, the acrylic resin resists better than the others. After collecting the painting materials aging information on FT-IR, we performed some test on the paintings on the temples. It was found that most of the artisan used tune-oil for painting materials, and some other paintings used chemical materials. This method is now working successfully on identifying the painting materials. However, the method is destructive and high cost. In the future, we will work on the how to know the painting materials more efficiently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=temple%20painting" title="temple painting">temple painting</a>, <a href="https://publications.waset.org/abstracts/search?q=painting%20material" title=" painting material"> painting material</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=FT-IR" title=" FT-IR"> FT-IR</a> </p> <a href="https://publications.waset.org/abstracts/61781/material-analysis-for-temple-painting-conservation-in-taiwan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30897</span> Analytical Derivative: Importance on Environment and Water Analysis/Cycle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adesoji%20Sodeinde">Adesoji Sodeinde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analytical derivatives has recently undergone an explosive growth in areas of separation techniques, likewise in detectability of certain compound/concentrated ions. The gloomy and depressing scenario which charaterized the application of analytical derivatives in areas of water analysis, water cycle and the environment should not be allowed to continue unabated. Due to technological advancement in various chemical/biochemical analysis separation techniques is widely used in areas of medical, forensic and to measure and assesses environment and social-economic impact of alternative control strategies. This technological improvement was dully established in the area of comparison between certain separation/detection techniques to bring about vital result in forensic[as Gas liquid chromatography reveals the evidence given in court of law during prosecution of drunk drivers]. The water quality analysis,pH and water temperature analysis can be performed in the field, the concentration of dissolved free amino-acid [DFAA] can also be detected through separation techniques. Some important derivatives/ions used in separation technique. Water analysis : Total water hardness [EDTA to determine ca and mg ions]. Gas liquid chromatography : innovative gas such as helium [He] or nitrogen [N] Water cycle : Animal bone charcoal,activated carbon and ultraviolet light [U.V light]. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20derivative" title="analytical derivative">analytical derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20analysis" title=" water analysis"> water analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%2Fbiochemical%20analysis" title=" chemical/biochemical analysis "> chemical/biochemical analysis </a> </p> <a href="https://publications.waset.org/abstracts/30863/analytical-derivative-importance-on-environment-and-water-analysiscycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30896</span> Evaluating the Prominence of Chemical Phenomena in Chemistry Courses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vanessa%20R.%20Ralph">Vanessa R. Ralph</a>, <a href="https://publications.waset.org/abstracts/search?q=Leah%20J.%20Scharlott"> Leah J. Scharlott</a>, <a href="https://publications.waset.org/abstracts/search?q=Megan%20Y.%20Deshaye"> Megan Y. Deshaye</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryan%20L.%20Stowe"> Ryan L. Stowe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Given the traditions of chemistry teaching, one may not question whether chemical phenomena play a prominent role. Yet, the role of chemical phenomena in an introductory chemistry course may define the extent to which the course is introductory, chemistry, and equitable. Picture, for example, the classic Ideal Gas Law problem. If one envisions a prompt wherein students are tasked with calculating a missing variable, then one envisions a prompt that relies on chemical phenomena as a context rather than as a model to understand the natural world. Consider a prompt wherein students are tasked with applying molecular models of gases to explain why the vapor pressure of a gaseous solution of water differs from that of carbon dioxide. Here, the chemical phenomenon is not only the context but also the subject of the prompt. Deliveries of general and organic chemistry were identified as ranging wildly in the integration of chemical phenomena. The more incorporated the phenomena, the more equitable the assessment task was for students of varying access to pre-college math and science preparation. How chemical phenomena are integrated may very well define whether courses are chemistry, are introductory, and are equitable. Educators of chemistry are invited colleagues to discuss the role of chemical phenomena in their courses and consider the long-lasting impacts of replicating tradition for tradition’s sake. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equitable%20educational%20practices" title="equitable educational practices">equitable educational practices</a>, <a href="https://publications.waset.org/abstracts/search?q=chemistry%20curriculum" title=" chemistry curriculum"> chemistry curriculum</a>, <a href="https://publications.waset.org/abstracts/search?q=content%20organization" title=" content organization"> content organization</a>, <a href="https://publications.waset.org/abstracts/search?q=assessment%20design" title=" assessment design"> assessment design</a> </p> <a href="https://publications.waset.org/abstracts/137218/evaluating-the-prominence-of-chemical-phenomena-in-chemistry-courses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30895</span> Comparison of Risk Analysis Methodologies Through the Consequences Identification in Chemical Accidents Associated with Dangerous Flammable Goods Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Alfonso%20Res%C3%A9ndiz-Garc%C3%ADa">Daniel Alfonso Reséndiz-García</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20Antonio%20Garc%C3%ADa-Villanueva"> Luis Antonio García-Villanueva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a result of the high industrial activity, which arises from the search to satisfy the needs of products and services for society, several chemical accidents have occurred, causing serious damage to different sectors: human, economic, infrastructure and environmental losses. Historically, with the study of this chemical accidents, it has been determined that the causes are mainly due to human errors (inexperienced personnel, negligence, lack of maintenance and deficient risk analysis). The industries have the aim to increase production and reduce costs. However, it should be kept in mind that the costs involved in risk studies, implementation of barriers and safety systems is much cheaper than paying for the possible damages that could occur in the event of an accident, without forgetting that there are things that cannot be replaced, such as human lives.Therefore, it is of utmost importance to implement risk studies in all industries, which provide information for prevention and planning. The aim of this study is to compare risk methodologies by identifying the consequences of accidents related to the storage of flammable, dangerous goods for decision making and emergency response.The methodologies considered in this study are qualitative and quantitative risk analysis and consequence analysis. The latter, by means of modeling software, which provides radius of affectation and the possible scope and magnitude of damages.By using risk analysis, possible scenarios of occurrence of chemical accidents in the storage of flammable substances are identified. Once the possible risk scenarios have been identified, the characteristics of the substances, their storage and atmospheric conditions are entered into the software.The results provide information that allows the implementation of prevention, detection, control, and combat elements for emergency response, thus having the necessary tools to avoid the occurrence of accidents and, if they do occur, to significantly reduce the magnitude of the damage.This study highlights the importance of risk studies applying tools that best suited to each case study. It also proves the importance of knowing the risk exposure of industrial activities for a better prevention, planning and emergency response. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20accidents" title="chemical accidents">chemical accidents</a>, <a href="https://publications.waset.org/abstracts/search?q=emergency%20response" title=" emergency response"> emergency response</a>, <a href="https://publications.waset.org/abstracts/search?q=flammable%20substances" title=" flammable substances"> flammable substances</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20analysis" title=" risk analysis"> risk analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a> </p> <a href="https://publications.waset.org/abstracts/172937/comparison-of-risk-analysis-methodologies-through-the-consequences-identification-in-chemical-accidents-associated-with-dangerous-flammable-goods-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30894</span> Reduction of Chemical Fertilizer in Rice-Rice Cropping Pattern Using Different Vermicompost</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azizul%20Haque">Azizul Haque</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamrun%20Nahar"> Kamrun Nahar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Field experiments were conducted to reduce the chemical fertilizers with the integrated use of straight and phospho- vermicompost with chemical fertilizers in T. aman-Boro rice cropping pattern at the BINA farm, Mymensingh during 2019-20. Six treatments were used in the experiment for both the crops. The treatments used for T. aman rice (Binadhan 17) with straight vermicompost were as follows: T1: Native soil fertility, T2: 100% N from Chemical Fertilizer (CF), T3:70%N from CF, T4: 30% N from vermicompost-3 + 70% N from CF and T5:30% N from vermicompost-4 + 70% N from CF and T6: 100% PKS only. The treatments of Boro rice (var. Binadhan -10) with phospho-vermicompost were: T1: Native soil fertility, T2: 100% NPKS from chemical fertilizer (CF), T3:75% NKS from CF (Non IPNS) with 1 t ha-1 Phospho-vermicompost (P-Vermicom), T4: 100% NKS (IPNS) with 2 t ha-1 P-Vermicom, T5: 100% NKS from CF (Non IPNS) with 2 t ha-1 P-Vermicom and T6: 100% NKS. The experiments were conducted in a Randomized Complete Block Design with three replications. The treatment T5 (5.5 t ha-1) gave maximum grain yield of T.aman rice followed by the treatment T4 (5.4 t ha-1). But the treatmentsT5, T4, and T2 gave identical grain yields of T. aman rice. Similar results were observed in case of straw yields of T. Aman rice. The result indicated that 70% N from CF with 30% N from either straight vermicompost-3 or straight vermicompost-4 gave comparable yield to the sole application of 100% N from CF alone. Therefore, 30% chemical fertilizers (N, P, K and S) could be saved with the integrated (IPNS) use of vermicompost-3 or vermicompost-4 in the cultivation of T. aman rice. Application of Phospho-vermicompost significantly influenced the yield and yield contributing characters of Boro rice (Binadhan-10). The treatment T4 (7.23.0 t ha-1) gave maximum grain yield of Boro rice followed by the treatments T2 and T5. But the treatments T2 and T5 produced statistically similar grain yields. The results from the treatment T4 (100% NKS (IPNS) with 2.0 t ha-1P-Vermicom) indicated that full demand of P could be met up from 2 t ha-1 Phospho-vermicompost with IPNS chemical fertilizers (NKS) which was sufficient for attaining the highest grain yield of Boro rice than that of the treatment T2 (100% NPKS from CF) and the treatmentT5 (100% NKS from CF (Non IPNS) + 2 t ha-1 Phospho-vermicompost). The results revealed that 100% P and substantial amount of N (21%), K (44.6%) and S (53.7%) fertilizers could be saved with the integrated use of Phospho-vermicompost in the cultivation of Boro rice. In case of Boro rice partial cost benefit analysis showed that the application of Phospho-vermicompost (@2 tha--1) with IPNS chemical fertilizes (NKS) gave higher return of Tk. 18,213 / - than that of only 100% chemical fertilizer. Therefore, use of Phospho-vermicompost was beneficial for the cultivation of Boro rice in combination with suitable dose of chemical fertilizers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phosphovermicompost" title="phosphovermicompost">phosphovermicompost</a>, <a href="https://publications.waset.org/abstracts/search?q=cropping%20pattern" title=" cropping pattern"> cropping pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20yield" title=" rice yield"> rice yield</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20fertilizer" title=" chemical fertilizer"> chemical fertilizer</a> </p> <a href="https://publications.waset.org/abstracts/153965/reduction-of-chemical-fertilizer-in-rice-rice-cropping-pattern-using-different-vermicompost" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30893</span> The Effectiveness of Pretreatment Methods on COD and Ammonia Removal from Landfill Leachate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Poveda">M. Poveda</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Lozecznik"> S. Lozecznik</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Oleszkiewicz"> J. Oleszkiewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Q.%20Yuan"> Q. Yuan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this experiment is to evaluate the effectiveness of different leachate pre-treatment options in terms of COD and ammonia removal. This research focused on the evaluation of physical-chemical methods for pre-treatment of leachate that would be effective and rapid in order to satisfy the requirements of the sewer discharge by-laws. The four pre-treatment options evaluated were: air stripping, chemical coagulation, electro-coagulation and advanced oxidation with sodium ferrate. Chemical coagulation reported the best COD removal rate at 43%, compared to 18 % for both air stripping and electro-coagulation, and 20 % for oxidation with sodium ferrate. On the other hand, air stripping was far superior to the other treatment options in terms of ammonia removal with 86 %. Oxidation with sodium ferrate reached only 16 %, while chemical coagulation and electro-coagulation removed less than 10 %. When combined, air stripping and chemical coagulation removed up to 50 % COD and 85 % ammonia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leachate%20pretreatment" title="leachate pretreatment">leachate pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20stripping" title=" air stripping"> air stripping</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20coagulation" title=" chemical coagulation"> chemical coagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=electro-coagulation" title=" electro-coagulation"> electro-coagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a> </p> <a href="https://publications.waset.org/abstracts/28457/the-effectiveness-of-pretreatment-methods-on-cod-and-ammonia-removal-from-landfill-leachate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">843</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30892</span> Essential Oil Analysis of the Aerial Parts of Sideritis incana and Calamitha hispidula </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Smain%20Amiraa">Smain Amiraa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hocine%20Laouerb"> Hocine Laouerb</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Benchikh-Amiraa"> Fatima Benchikh-Amiraa</a>, <a href="https://publications.waset.org/abstracts/search?q=Guido%20Flaminic"> Guido Flaminic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aerial parts of Sideritis incana and Calamintha hispidula at the flowering stage were submitted to hydrodistillation in a Clevenger–type apparatus for 3 hours and the chemical composition of the essential oil was analyzed by GC coupled to GC-MS. The essential oil contained a total of 99 constituents for S. incana and 31 for C. hispidula representing 95.7% and 99.6 of the total oils, rerspectively. The mains components of S. incana oil were linalool (25.2), cedrol (13.7%), geraniol (7%) and α-terpineol (5.4%). The chemical constituents of the oil from C. hispidula were predominated by pulegone (43.2%), isomenthone (36%), piperitone (3.2%), limonene (2.6%) and 4-terpineol (2.5%). The results revealed that the oil of the plants is characterized by the presence of many important components which could be applied in food, pharmaceutical and perfume industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title="essential oils">essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=Calamintha%20hispidula" title=" Calamintha hispidula"> Calamintha hispidula</a>, <a href="https://publications.waset.org/abstracts/search?q=Sideritis%20incana" title=" Sideritis incana"> Sideritis incana</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20and%20molecular%20engineering" title=" chemical and molecular engineering"> chemical and molecular engineering</a> </p> <a href="https://publications.waset.org/abstracts/14255/essential-oil-analysis-of-the-aerial-parts-of-sideritis-incana-and-calamitha-hispidula" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30891</span> Chemical and Sensorial Evaluation of a Newly Developed Bean Jam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raquel%20P.%20F.%20Guin%C3%A9">Raquel P. F. Guiné</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20R.%20B.%20Figueiredo"> Ana R. B. Figueiredo</a>, <a href="https://publications.waset.org/abstracts/search?q=Paula%20M.%20R.%20Correia"> Paula M. R. Correia</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20J.%20Gon%C3%A7alves"> Fernando J. Gonçalves</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the present work was to develop an innovative food product with nutritional properties as well as appealing organoleptic qualities. The product, a jam, was prepared with the beans’ cooking water combined with fresh apple or carrot, without the addition of any conservatives. Three different jams were produced: bean and carrot, bean and apple and bean, apple and cinnamon. The developed products underwent a sensorial analysis that revealed that the bean, apple and cinnamon jam was globally better accepted. However, with this study, the consumers determined that the bean and carrot jam had the most attractive color and the bean and apple jam the better consistency. Additionally, it was possible to analyze the jams for their chemical components, namely fat, fiber, protein, sugars and antioxidant activity. The obtained results showed that the bean and carrot jam had the highest lipid content, while the bean, apple and cinnamon jam had the highest fiber content, when compared to the other two jams. Regarding the sugar content, both jams with apple revealed similar sugar values, which were higher than the sugar content of the bean and carrot jam. The antioxidant activity was on average 10 mg TE/g. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bean%20jam" title="Bean jam">Bean jam</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20composition" title=" chemical composition"> chemical composition</a>, <a href="https://publications.waset.org/abstracts/search?q=sensorial%20analysis" title=" sensorial analysis"> sensorial analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20acceptability" title=" product acceptability"> product acceptability</a> </p> <a href="https://publications.waset.org/abstracts/21969/chemical-and-sensorial-evaluation-of-a-newly-developed-bean-jam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30890</span> Entropy Generation of Unsteady Reactive Hydromagnetic Generalized Couette Fluid Flow of a Two-Step Exothermic Chemical Reaction Through a Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rasaq%20Kareem">Rasaq Kareem</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacob%20Gbadeyan"> Jacob Gbadeyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, analysis of the entropy generation of an unsteady reactive hydromagnetic generalized couette fluid flow of a two-step exothermic chemical reaction through a channel with isothermal wall temperature under the influence of different chemical kinetics namely: Sensitized, Arrhenius and Bimolecular kinetics was investigated. The modelled nonlinear dimensionless equations governing the fluid flow were simplified and solved using the combined Laplace Differential Transform Method (LDTM). The effects of fluid parameters associated with the problem on the fluid temperature, entropy generation rate and Bejan number were discussed and presented through graphs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=couette" title="couette">couette</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=exothermic" title=" exothermic"> exothermic</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady" title=" unsteady"> unsteady</a> </p> <a href="https://publications.waset.org/abstracts/26394/entropy-generation-of-unsteady-reactive-hydromagnetic-generalized-couette-fluid-flow-of-a-two-step-exothermic-chemical-reaction-through-a-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemical%20analysis&page=1" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemical%20analysis&page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemical%20analysis&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemical%20analysis&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemical%20analysis&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemical%20analysis&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemical%20analysis&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemical%20analysis&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemical%20analysis&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemical%20analysis&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemical%20analysis&page=1031">1031</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemical%20analysis&page=1032">1032</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=chemical%20analysis&page=3" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>