CINXE.COM
Search results for: amorphous metal
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: amorphous metal</title> <meta name="description" content="Search results for: amorphous metal"> <meta name="keywords" content="amorphous metal"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="amorphous metal" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="amorphous metal"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2690</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: amorphous metal</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2690</span> LAMOS - Layered Amorphous Metal Oxide Gas Sensors: New Interfaces for Gas Sensing Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Paolucci">Valentina Paolucci</a>, <a href="https://publications.waset.org/abstracts/search?q=Jessica%20De%20Santis"> Jessica De Santis</a>, <a href="https://publications.waset.org/abstracts/search?q=Vittorio%20Ricci"> Vittorio Ricci</a>, <a href="https://publications.waset.org/abstracts/search?q=Giacomo%20Giorgi"> Giacomo Giorgi</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlo%20Cantalini"> Carlo Cantalini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite their potential in gas sensing applications, the major drawback of 2D exfoliated metal dichalcogenides (MDs) is that they suffer from spontaneous oxidation in air, showing poor chemical stability under dry/wet conditions even at room temperature, limiting their practical exploitation. The aim of this work is to validate a synthesis strategy allowing microstructural and electrical stabilization of the oxides that inevitably form on the surface of 2D dichalcogenides. Taking advantage of spontaneous oxidation of MDs in air, we report on liquid phase exfoliated 2D-SnSe2 flakes annealed in static air at a temperature below the crystallization temperature of the native a-SnO2 oxide. This process yields a new class of 2D Layered Amorphous Metal Oxides Sensors (LAMOS), specifically few-layered amorphous a-SnO2, showing excellent gas sensing properties. Sensing tests were carried out at low operating temperature (i.e. 100°C) by exposing a-SnO2 to both oxidizing and reducing gases (i.e. NO2, H2S and H2) and different relative humidities ranging from 40% to 80% RH. The formation of stable nanosheets of amorphous a-SnO2 guarantees excellent reproducibility and stability of the response over one year. These results pave the way to new interesting research perspectives out considering the opportunity to synthesize homogeneous amorphous textures with no grain boundaries, no grains, no crystalline planes with different orientations, etc., following gas sensing mechanisms that likely differ from that of traditional crystalline metal oxide sensors. Moreover, the controlled annealing process could likely be extended to a large variety of Transition Metal Dichalcogenides (TMDs) and Metal Chalcogenides (MCs), where sulfur, selenium, or tellurium atoms can be easily displaced by O2 atoms (ΔG < 0), enabling the synthesis of a new family of amorphous interfaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=layered%202D%20materials" title="layered 2D materials">layered 2D materials</a>, <a href="https://publications.waset.org/abstracts/search?q=exfoliation" title=" exfoliation"> exfoliation</a>, <a href="https://publications.waset.org/abstracts/search?q=lamos" title=" lamos"> lamos</a>, <a href="https://publications.waset.org/abstracts/search?q=amorphous%20metal%20oxide%20sensors" title=" amorphous metal oxide sensors"> amorphous metal oxide sensors</a> </p> <a href="https://publications.waset.org/abstracts/156610/lamos-layered-amorphous-metal-oxide-gas-sensors-new-interfaces-for-gas-sensing-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2689</span> Preparation of Porous Metal Membrane by Thermal Annealing for Thin Film Encapsulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaibir%20Sharma">Jaibir Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20JaeWung"> Lee JaeWung</a>, <a href="https://publications.waset.org/abstracts/search?q=Merugu%20Srinivas"> Merugu Srinivas</a>, <a href="https://publications.waset.org/abstracts/search?q=Navab%20Singh"> Navab Singh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents thermal annealing dewetting technique for the preparation of porous metal membrane for thin film encapsulation application. Thermal annealing dewetting experimental results reveal that pore size in porous metal membrane depend upon i.e. 1. The substrate on which metal is deposited for formation of porous metal cap membrane, 2. Melting point of metal used for porous metal cap layer membrane formation, 3. Thickness of metal used for cap layer, 4. Temperature used for porous metal membrane formation. Silver (Ag) was used as a metal for preparation of porous metal membrane by annealing the film at different temperature. Pores in porous silver film were analyzed using Scanning Electron Microscope (SEM). In order to check the usefulness of porous metal film for thin film encapsulation application, the porous silver film prepared on amorphous silicon (a-Si) was release using XeF2. Finally, guide line and structures are suggested to use this porous membrane for thin film encapsulation (TFE) application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dewetting" title="dewetting">dewetting</a>, <a href="https://publications.waset.org/abstracts/search?q=themal%20annealing" title=" themal annealing"> themal annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=metal" title=" metal"> metal</a>, <a href="https://publications.waset.org/abstracts/search?q=melting%20point" title=" melting point"> melting point</a>, <a href="https://publications.waset.org/abstracts/search?q=porous" title=" porous"> porous</a> </p> <a href="https://publications.waset.org/abstracts/31602/preparation-of-porous-metal-membrane-by-thermal-annealing-for-thin-film-encapsulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">658</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2688</span> One Pot Synthesis of Ultrasmall NiMo Catalysts Supported on Amorphous Alumina with Enhanced type 2 Sites for Hydrodesulfurization Reaction: A Combined Experimental and Theoretical Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shalini%20Arora">Shalini Arora</a>, <a href="https://publications.waset.org/abstracts/search?q=Sri%20Sivakumar"> Sri Sivakumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The deep removal of high molecular weight sulphur compounds (e.g., 4,6, dimethyl dibenzothiophene) is challenging due to their steric hindrance. Hydrogenation desulfurization (HYD) pathway is the main pathway to remove these sulfur compounds, and it is mainly governed by the number of type 2 sites. The formation of type 2 sites can be enhanced by modulating the pore structure and the interaction between the active metal and support. To this end, we report the enhanced HDS catalytic activity of ultrasmall NiMo supported on amorphous alumina (A-Al₂O₃) catalysts by one pot colloidal synthesis method followed by calcination and sulfidation. The amorphous alumina (A-Al₂O₃) was chosen as the support due to its lower surface energy, better physicochemical properties, and enhanced acidic sites (due to the dominance of tetra and penta coordinated [Al] sites) than crystalline alumina phase. At 20% metal oxide composition, NiMo supported on A-Al₂O₃ catalyst showed 1.4 and 1.2 times more reaction rate constant and turn over frequency (TOF) respectively than the conventional catalyst (wet impregnated NiMo catalysts) for HDS reaction of dibenzothiophene reactant molecule. A-Al₂O₃ supported catalysts represented enhanced type 2 sites formation (because this catalystpossesses higher sulfidation degree (80%) and NiMoS sites (19.3 x 10¹⁷ sites/mg) with desired optimum stacking degree (2.5) than wet impregnated catalyst at same metal oxide composition 20%) along with higher active metal dispersion, Mo edge site fraction. The experimental observations were also supported by DFT simulations. Lower heat of adsorption (< 4.2 ev for MoS2 interaction and < 3.15 ev for Ni doped MoS2 interaction) values for A-Al₂O₃ confirmed the presence of weaker metal-support interaction in A-Al₂O₃ in contrast to crystalline ℽ-Al₂O3. The weak metal-support interaction for prepared catalysts clearly suggests the higher formation of type 2 sites which leads to higher catalytic activity for HDS reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amorphous%20alumina" title="amorphous alumina">amorphous alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=colloidal" title=" colloidal"> colloidal</a>, <a href="https://publications.waset.org/abstracts/search?q=desulfurization" title=" desulfurization"> desulfurization</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-support%20interaction" title=" metal-support interaction"> metal-support interaction</a> </p> <a href="https://publications.waset.org/abstracts/151214/one-pot-synthesis-of-ultrasmall-nimo-catalysts-supported-on-amorphous-alumina-with-enhanced-type-2-sites-for-hydrodesulfurization-reaction-a-combined-experimental-and-theoretical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2687</span> Producing of Amorphous-Nanocrystalline Composite Powders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Tomolya">K. Tomolya</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Janovszky"> D. Janovszky</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sycheva"> A. Sycheva</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sveda"> M. Sveda</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Roosz"> A. Roosz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CuZrAl amorphous alloys have attracted high interest due to unique physical and mechanical properties, which can be enhanced by adding of Ni and Ti elements. It is known that this properties can be enhanced by crystallization of amorphous alloys creating nanocrystallines in the matrix. The present work intends to produce nanosized crystalline parti-cle reinforced amorphous matrix composite powders by crystallization of amorphous powders. As the first step the amorphous powders were synthe-tized by ball-milling of crystalline powders. (Cu49Zr45Al6) 80Ni10Ti10 and (Cu49Zr44Al7) 80Ni10Ti10 (at%) alloys were ball-milled for 12 hours in order to reach the fully amorphous structure. The impact en-ergy of the balls during milling causes the change of the structure in the powders. Scanning electron microscopical (SEM) images shows that the phases mixed first and then changed into a fully amorphous matrix. Furthermore, nanosized particles in the amorphous matrix were crystallized by heat treatment of the amorphous powders that was confirmed by TEM measurement. It was of importance to define the tem-perature when the amorphous phase starts to crystal-lize. Amorphous alloys have a special heating curve and characteristic temperatures, which can be meas-ured by differential scanning calorimetry (DSC). A typical DSC curve of an amorphous alloy exhibits an endothermic event characteristic of the equilibrium glass transition (Tg) and a distinct undercooled liquid region, followed by one or two exothermic events corresponding to crystallization processes (Tp). After measuring the DSC traces of the amorphous powders, the annealing temperatures should be determined between Tx and Tp. In our experiments several temperatures from the annealing temperature range were selected and de-pendency of crystallized nanoparticles fraction on their hardness was investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amorphous%20structure" title="amorphous structure">amorphous structure</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20milling" title=" mechanical milling"> mechanical milling</a>, <a href="https://publications.waset.org/abstracts/search?q=powder" title=" powder"> powder</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscopy%20%28SEM%29" title=" scanning electron microscopy (SEM)"> scanning electron microscopy (SEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20scanning%20calorimetry%20%28DSC%29" title=" differential scanning calorimetry (DSC)"> differential scanning calorimetry (DSC)</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20electronmocroscopy%20%28TEM%29" title=" transmission electronmocroscopy (TEM)"> transmission electronmocroscopy (TEM)</a> </p> <a href="https://publications.waset.org/abstracts/28664/producing-of-amorphous-nanocrystalline-composite-powders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2686</span> Surface Induced Alteration of Nanosized Amorphous Alumina</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Katsman">A. Katsman</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Bloch"> L. Bloch</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Etinger"> Y. Etinger</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Kauffmann"> Y. Kauffmann</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Pokroy"> B. Pokroy </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various nanosized amorphous alumina thin films in the range of (2.4 - 63.1) nm were deposited onto amorphous carbon and amorphous Si3N4 membrane grids. Transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), X-ray photoelectron spectroscopy (XPS) and differential scanning calorimetry (DSC) techniques were used to probe the size effect on the short range order and the amorphous to crystalline phase transition temperature. It was found that the short-range order changes as a function of size: the fraction of tetrahedral Al sites is greater in thinner amorphous films. This result correlates with the change of amorphous alumina density with the film thickness demonstrated by the reflectivity experiments: the thinner amorphous films have the less density. These effects are discussed in terms of surface reconstruction of the amorphous alumina films. The average atomic binding energy in the thin film layer decreases with decease of the thickness, while the average O-Al interatomic distance increases. The reconstruction of amorphous alumina is induced by the surface reconstruction, and the short range order changes being dependent on the density. Decrease of the surface energy during reconstruction is the driving force of the alumina reconstruction (density change) followed by relaxation process (short range order change). The amorphous to crystalline phase transition temperature measured by DSC rises with the decrease in thickness from 997.6°C for 13.9 nm to 1020.4 °C for 2.7 nm thick. This effect was attributed to the different film densities: formation of nanovoids preceding and accompanying crystallization process influences the crystallization rate, and by these means, the temperature of crystallization peak. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amorphous%20alumina" title="amorphous alumina">amorphous alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=density" title=" density"> density</a>, <a href="https://publications.waset.org/abstracts/search?q=short%20range%20order" title=" short range order"> short range order</a>, <a href="https://publications.waset.org/abstracts/search?q=size%20effect" title=" size effect"> size effect</a> </p> <a href="https://publications.waset.org/abstracts/23605/surface-induced-alteration-of-nanosized-amorphous-alumina" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2685</span> Processing and Characterization of Aluminum Matrix Composite Reinforced with Amorphous Zr₃₇.₅Cu₁₈.₆₇Al₄₃.₉₈ Phase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Abachi">P. Abachi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Karami"> S. Karami</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Purazrang"> K. Purazrang </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The amorphous reinforcements (metallic glasses) can be considered as promising options for reinforcing light-weight aluminum and its alloys. By using the proper type of reinforcement, one can overcome to drawbacks such as interfacial de-cohesion and undesirable reactions which can be created at ceramic particle and metallic matrix interface. In this work, the Zr-based amorphous phase was produced via mechanical milling of elemental powders. Based on Miedema semi-empirical Model and diagrams for formation enthalpies and/or Gibbs free energies of Zr-Cu amorphous phase in comparison with the crystalline phase, the glass formability range was predicted. The composite was produced using the powder mixture of the aluminum and metallic glass and spark plasma sintering (SPS) at the temperature slightly above the glass transition Tg of the metallic glass particles. The selected temperature and rapid sintering route were suitable for consolidation of an aluminum matrix without crystallization of amorphous phase. To characterize amorphous phase formation, X-ray diffraction (XRD) phase analyses were performed on powder mixture after specified intervals of milling. The microstructure of the composite was studied by optical and scanning electron microscope (SEM). Uniaxial compression tests were carried out on composite specimens with the dimension of 4 mm long and a cross-section of 2 ˟ 2mm2. The micrographs indicated an appropriate reinforcement distribution in the metallic matrix. The comparison of stress–strain curves of the consolidated composite and the non-reinforced Al matrix alloy in compression showed that the enhancement of yield strength and mechanical strength are combined with an appreciable plastic strain at fracture. It can be concluded that metallic glasses (amorphous phases) are alternative reinforcement material for lightweight metal matrix composites capable of producing high strength and adequate ductility. However, this is in the expense of minor density increase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20matrix%20composite" title="aluminum matrix composite">aluminum matrix composite</a>, <a href="https://publications.waset.org/abstracts/search?q=amorphous%20phase" title=" amorphous phase"> amorphous phase</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying" title=" mechanical alloying"> mechanical alloying</a>, <a href="https://publications.waset.org/abstracts/search?q=spark%20plasma%20sintering" title=" spark plasma sintering"> spark plasma sintering</a> </p> <a href="https://publications.waset.org/abstracts/64307/processing-and-characterization-of-aluminum-matrix-composite-reinforced-with-amorphous-zr375cu1867al4398-phase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2684</span> Investigation of Amorphous Silicon A-Si Thin Films Deposited on Silicon Substrate by Raman Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirouche%20Hammouda">Amirouche Hammouda</a>, <a href="https://publications.waset.org/abstracts/search?q=Nacer%20Boucherou"> Nacer Boucherou</a>, <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Ziouche"> Aicha Ziouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayet%20Boudjellal"> Hayet Boudjellal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silicon has excellent physical and electrical properties for optoelectronics industry. It is a promising material with many advantages. On Raman characterization of thin films deposited on crystalline silicon substrate, the signal Raman of amorphous silicon is often disturbed by the Raman signal of the crystalline silicon substrate. In this paper, we propose to characterize thin layers of amorphous silicon deposited on crystalline silicon substrates. The results obtained have shown the possibility to bring out the Raman spectrum of deposited layers by optimizing experimental parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=raman%20scattering" title="raman scattering">raman scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=amorphous%20silicon" title=" amorphous silicon"> amorphous silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=crystalline%20silicon" title=" crystalline silicon"> crystalline silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a> </p> <a href="https://publications.waset.org/abstracts/175813/investigation-of-amorphous-silicon-a-si-thin-films-deposited-on-silicon-substrate-by-raman-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2683</span> Amorphous Aluminophosphates: An Insight to the Changes in Structural Properties and Catalytic Activity by the Incorporation of Transition Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Hamza">A. Hamza</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Kathyayini"> H. Kathyayini</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Nagaraju"> N. Nagaraju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aluminophosphates, both amorphous and crystalline materials find applications as adsorbents, ceramics, and pigments and as catalysts/catalyst supports in organic fine chemical synthesis. Most of the applications are varied depending on the type of metal incorporated, particle size, surface area, porosity and morphology of aluminophosphate. The porous and surface properties of these materials are normally fine-tuned by adopting various preparation methodologies. Numerous crystalline microporous and mesoporous aluminophosphates and metal-aluminophosphates have been reported in literature, in which the synthesis has been carried out by using structure directing organic molecules/surfactants. In present work, amorphous aluminophosphate (AlP) and metal-aluminophosphates MAlP (M = Cu, Zn, Cr, Fe, Ce and Zr) and their mixed forms M-1M2AlP are prepared under a typical precipitation condition, i.e. at low temperature in order to keep the Von-Weirmann relative super saturation of the precipitating medium and obtain small size precipitate particles. These materials are prepared without using any surfactants. All materials are thoroughly characterised for surface and bulk properties by N2 adsorption-desorption technique, XRD, FT-IR, TG and SEM. The materials are also analysed for the amount and the strength of their surface acid sites, by NH3-TPD and CO2-TPD techniques respectively. All the materials prepared in the work are investigated for their catalytic activity in following applications in the synthesis of industrially important Jasminaldehyde via, aldol condensation of n-heptanal and benzaldehyde, in the synthesis of biologically important chalcones by Claisen-shmidth condensation of benzaldehyde and substituted chalcones. The effect of the amount of the catalysts, duration of the reaction, temperature of the reaction, molar ratio of the reactants has been studied. The porosity of pure aluminophosphate is found to be changed significantly by the incorporation of transition metals during preparation of aluminophosphate. The pore size increased from microporous to mesoporous and finally to macroporous by following order of metals Cu = Zn < Cr < Ce < Fe = Zr. The change in surface area and porosity of double metal-aluminophosphates depended on the concentration of both the metals. The acidity of aluminophosphate is either increased or decreased which depended on the type and valence of metals loaded. A good number of basic sites are created in metal-aluminophosphates irrespective of the metals used. A maximum catalytic activity for synthesis of both jasminaldehyde and chalcone is obtained by FeAlP as catalysts; these materials are characterized by decreased strength and concentration of acidic sites with optimum level basic sites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amorphous%20metal-aluminophosphates" title="amorphous metal-aluminophosphates">amorphous metal-aluminophosphates</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20properties" title=" surface properties"> surface properties</a>, <a href="https://publications.waset.org/abstracts/search?q=acidic-basic%20properties" title=" acidic-basic properties"> acidic-basic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Aldol" title=" Aldol"> Aldol</a>, <a href="https://publications.waset.org/abstracts/search?q=Claisen-Shmidth%20condensation" title=" Claisen-Shmidth condensation"> Claisen-Shmidth condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=jasminaldehyde" title=" jasminaldehyde"> jasminaldehyde</a>, <a href="https://publications.waset.org/abstracts/search?q=chalcone" title=" chalcone"> chalcone</a> </p> <a href="https://publications.waset.org/abstracts/25433/amorphous-aluminophosphates-an-insight-to-the-changes-in-structural-properties-and-catalytic-activity-by-the-incorporation-of-transition-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2682</span> Enhanced Properties of Plasma-Induced Two-Dimensional Ga₂O₃/GaS Heterostructures on Liquid Alloy Substrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Zhuiykov">S. Zhuiykov</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Karbalaei%20Akbari"> M. Karbalaei Akbari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultra-low-level incorporation of trace impurities and dopants into two-dimensional (2D) semiconductors is a challenging step towards the development of functional electronic instruments based on 2D materials. Herein, the incorporation of sulphur atoms into 2D Ga2O3 surface oxide film of eutectic gallium-indium alloy (EGaIn) is achieved through plasma-enhanced metal-catalyst dissociation of H2S gas on EGaIn substrate. This process led to the growth of GaS crystalline nanodomains inside amorphous 2D Ga2O3 sublayer films. Consequently, 2D lateral heterophase was developed between the amorphous Ga2O3 and crystalline GaS nanodomains. The materials characterization revealed the alteration of photoluminescence (PL) characteristics and change of valence band maximum (VBM) of functionalized 2D films. The comprehensive studies by conductive atomic force microscopy (c-AFM) showed considerable enhancement of conductivity of 2D Ga2O3/GaS materials (300 times improvement) compared with that of 2D Ga2O3 film. This technique has a great potential for the fabrication of 2D metal oxide devices with tuneable electronic characteristics similar to nano junction memristors and transistors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2D%20semiconductors" title="2D semiconductors">2D semiconductors</a>, <a href="https://publications.waset.org/abstracts/search?q=Ga%E2%82%82O%E2%82%83" title=" Ga₂O₃"> Ga₂O₃</a>, <a href="https://publications.waset.org/abstracts/search?q=GaS" title=" GaS"> GaS</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma-induced%20functionalization" title=" plasma-induced functionalization"> plasma-induced functionalization</a> </p> <a href="https://publications.waset.org/abstracts/151056/enhanced-properties-of-plasma-induced-two-dimensional-ga2o3gas-heterostructures-on-liquid-alloy-substrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2681</span> The Effects of Orientation on Energy and Plasticity of Metallic Crystalline-Amorphous Interface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Alishahi">Ehsan Alishahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chuang%20Deng"> Chuang Deng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Commercial applications of bulk metallic glasses (BMGs) were restricted due to the sudden brittle failure mode which was the main drawback in these new class of materials. Therefore, crystalline-amorphous (C-A) composites were introduced as a toughening strategy in BMGs. In spite of numerous researches in the area of metallic C-A composites, the fundamental structure-property relation in these composites that are not exactly known yet. In this study, it is aimed to investigate the fundamental properties of crystalline-amorphous interface in a model system of Cu/CuZr by using molecular dynamics simulations. Several parameters including interface energy and mechanical properties were investigated by means of atomic models and employing Embedded Atom Method (EAM) potential function. It is found that the crystalline-amorphous interfacial energy weakly depends on the orientation of the crystalline layer, which is in stark contrast to that in a regular crystalline grain boundary. Additionally, the results showed that the interface controls the yielding of the crystalline-amorphous composites during uniaxial tension either by serving as sources for dislocation nucleation in the crystalline layer or triggering local shear transformation zones in amorphous layer. The critical resolved shear stress required to nucleate the first dislocation is also found to strongly depend on the crystalline orientation. Furthermore, it is found that the interaction between dislocations and shear localization at the crystalline-amorphous interface oriented in different directions can lead to a change in the deformation mode. For instance, while the dislocation and shear banding are aligned to each other in {0 0 1} interface plane, the misorientation angle between these failure mechanisms causing more homogeneous deformation in {1 1 0} and {1 1 1} crystalline-amorphous interfaces. These results should help clarify the failure mechanism of crystalline-amorphous composites under various loading conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crystalline-amorphous" title="crystalline-amorphous">crystalline-amorphous</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=orientation" title=" orientation"> orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a> </p> <a href="https://publications.waset.org/abstracts/79850/the-effects-of-orientation-on-energy-and-plasticity-of-metallic-crystalline-amorphous-interface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2680</span> Mechanical Investigation Approach to Optimize the High-Velocity Oxygen Fuel Fe-Based Amorphous Coatings Reinforced by B4C Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behrooz%20Movahedi">Behrooz Movahedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fe-based amorphous feedstock powders are used as the matrix into which various ratios of hard B4C nanoparticles (0, 5, 10, 15, 20 vol.%) as reinforcing agents were prepared using a planetary high-energy mechanical milling. The ball-milled nanocomposite feedstock powders were also sprayed by means of high-velocity oxygen fuel (HVOF) technique. The characteristics of the powder particles and the prepared coating depending on their microstructures and nanohardness were examined in detail using nanoindentation tester. The results showed that the formation of the Fe-based amorphous phase was noticed over the course of high-energy ball milling. It is interesting to note that the nanocomposite coating is divided into two regions, namely, a full amorphous phase region and homogeneous dispersion of B4C nanoparticles with a scale of 10–50 nm in a residual amorphous matrix. As the B4C content increases, the nanohardness of the composite coatings increases, but the fracture toughness begins to decrease at the B4C content higher than 20 vol.%. The optimal mechanical properties are obtained with 15 vol.% B4C due to the suitable content and uniform distribution of nanoparticles. Consequently, the changes in mechanical properties of the coatings were attributed to the changes in the brittle to ductile transition by adding B4C nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fe-based%20amorphous" title="Fe-based amorphous">Fe-based amorphous</a>, <a href="https://publications.waset.org/abstracts/search?q=B%E2%82%84C%20nanoparticles" title=" B₄C nanoparticles"> B₄C nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite%20coating" title=" nanocomposite coating"> nanocomposite coating</a>, <a href="https://publications.waset.org/abstracts/search?q=HVOF" title=" HVOF"> HVOF</a> </p> <a href="https://publications.waset.org/abstracts/96966/mechanical-investigation-approach-to-optimize-the-high-velocity-oxygen-fuel-fe-based-amorphous-coatings-reinforced-by-b4c-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2679</span> Properties of Epoxy Composite Reinforced with Amorphous and Crystalline Silica from Rice Husk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norul%20Hisham%20Hamid">Norul Hisham Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Affan"> Amir Affan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ummi%20Hani%20Abdullah"> Ummi Hani Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Paridah%20Md.%20Tahir"> Paridah Md. Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Khairul%20Akmal%20Azhar"> Khairul Akmal Azhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahmat%20Nawai"> Rahmat Nawai</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20B.%20H.%20Wan%20Sulwani%20Izzati"> W. B. H. Wan Sulwani Izzati </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dimensional stability and static bending properties of epoxy composite reinforced with amorphous and crystalline silica were investigated. The amorphous and crystalline silica was obtained by the precipitation method from carbonisation process of the rice husk at a temperature of 600 °C and 1000 °C for 7 hours respectively. The epoxy resin was mixed with 5%, 10% and 15% concentrations of amorphous and crystalline silica. The mixture was stirred for 10 minutes and cured at 28 °C for 72 hours and oven dried at 80 °C for 72 hours. The scanning electron microscope image showed the silica sized of 10-30nm was obtained. The water absorption and thickness swelling of epoxy/amorphous silica composite was not significantly different with silica concentration ranged from 0.08% to 0.09% and 0.17% to 0.20% respectively. The maximum modulus of rupture (85 MPa) and modulus of elasticity (3284 MPa) were achieved for 10% silica concentration. For epoxy/crystalline silica composite; the water absorption and thickness swelling were also not significantly different with silica concentration, ranged from 0.08% to 0.11% and 0.16% to 0.18% respectively. The maximum modulus of rupture (47.9 MPa) and modulus of elasticity (2760 MPa) were achieved for 10% silica concentration. Overall, the water absorption and thickness swelling were almost identical for epoxy composite made from either amorphous or crystalline silica. The epoxy composite made from amorphous silica was stronger than crystalline silica. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy" title="epoxy">epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensional%20stability" title=" dimensional stability"> dimensional stability</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20bending" title=" static bending"> static bending</a>, <a href="https://publications.waset.org/abstracts/search?q=silica" title=" silica"> silica</a> </p> <a href="https://publications.waset.org/abstracts/84173/properties-of-epoxy-composite-reinforced-with-amorphous-and-crystalline-silica-from-rice-husk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2678</span> Coordination Polymer Hydrogels Based on Coinage Metals and Nucleobase Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lamia%20L.%20G.%20Al-Mahamad">Lamia L. G. Al-Mahamad</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20R.%20Horrocks"> Benjamin R. Horrocks</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Houlton"> Andrew Houlton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogels based on metal coordination polymers of nucleosides and a range of metal ions (Au, Ag, Cu) have been prepared and characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy, and powder X-ray diffraction. AFM images of the xerogels revealed the formation of extremely long polymer molecules (> 10 micrometers, the maximum scan range). This result is also consistent with TEM images which show a fibrous morphology. Oxidative doping of the Au-nucleoside fibres produces an electrically conductive nanowire. No sharp Bragg peaks were found at the at the X-ray diffraction pattern for metal ions hydrogels indicating that the samples were amorphous, but instead the data showed broad peaks in the range 20 < Q < 40 and correspond to distances d=2μ/Q. The data was analysed using a simplified Rietveld method by fitting a regression model to obtain the distance between atoms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title="hydrogel">hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20ions" title=" metal ions"> metal ions</a>, <a href="https://publications.waset.org/abstracts/search?q=nanowire" title=" nanowire"> nanowire</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleoside" title=" nucleoside"> nucleoside</a> </p> <a href="https://publications.waset.org/abstracts/63323/coordination-polymer-hydrogels-based-on-coinage-metals-and-nucleobase-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2677</span> Preparation of Amorphous silica from Algerian Diatomite and Its Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Medeghri">S. Medeghri</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hamzaoui"> S. Hamzaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zerdali"> M. Zerdali</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Masatomo"> S. Masatomo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work there is a facile method to produce pure amorphous silica from Algerian diatomite with an economic and ecological method. The sodium silicate is commonly used as precursor in silica gel diatomite preparation. In this study, the preparation of sodium silicate is preceded by acid washing of raw diatomite; the acid is then slowly added to precipitate silica at different pH values to obtain silica gel. The silica gel is characterized by EDX, ICP-MS and XRD. The EDX revels that the purity of silica from diatom is 98% after purification compared to raw diatom. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diatomite" title="diatomite">diatomite</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20cleaning" title=" acid cleaning"> acid cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolution" title=" dissolution"> dissolution</a>, <a href="https://publications.waset.org/abstracts/search?q=amorphous%20silica" title=" amorphous silica"> amorphous silica</a>, <a href="https://publications.waset.org/abstracts/search?q=purity" title=" purity"> purity</a> </p> <a href="https://publications.waset.org/abstracts/27238/preparation-of-amorphous-silica-from-algerian-diatomite-and-its-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">576</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2676</span> Electrical Performance Analysis of Single Junction Amorphous Silicon Solar (a-Si:H) Modules Using IV Tracer (PVPM)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gilbert%20Omorodion%20Osayemwenre">Gilbert Omorodion Osayemwenre</a>, <a href="https://publications.waset.org/abstracts/search?q=Edson%20Meyer"> Edson Meyer</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20T.%20Taziwa"> R. T. Taziwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electrical analysis of single junction amorphous silicon solar modules is carried out using outdoor monitoring technique. Like crystalline silicon PV modules, the electrical characterisation and performance of single junction amorphous silicon modules are best described by its current-voltage (IV) characteristic. However, IV curve has a direct dependence on the type of PV technology and material properties used. The analysis reveals discrepancies in the modules performance parameter even though they are of similar technology. The aim of this work is to compare the electrical performance output of each module, using electrical parameters with the aid of PVPM 100040C IV tracer. These results demonstrated the relevance of standardising the performance parameter for effective degradation analysis of a-Si:H. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PVPM%20100040C%20IV%20tracer" title="PVPM 100040C IV tracer">PVPM 100040C IV tracer</a>, <a href="https://publications.waset.org/abstracts/search?q=SolarWatt%20part" title=" SolarWatt part"> SolarWatt part</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20junction%20amorphous%20silicon%20module%20%28a-Si%3AH%29" title=" single junction amorphous silicon module (a-Si:H)"> single junction amorphous silicon module (a-Si:H)</a>, <a href="https://publications.waset.org/abstracts/search?q=Staebler-Wronski%20%28S-W%29%20degradation%20effect" title=" Staebler-Wronski (S-W) degradation effect"> Staebler-Wronski (S-W) degradation effect</a> </p> <a href="https://publications.waset.org/abstracts/68132/electrical-performance-analysis-of-single-junction-amorphous-silicon-solar-a-sih-modules-using-iv-tracer-pvpm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2675</span> Production of Amorphous Boron Powder via Chemical Vapor Deposition (CVD)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meltem%20Bolluk">Meltem Bolluk</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Duman"> Ismail Duman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Boron exhibits the properties of high melting temperature (2273K to 2573 K), high hardness (Mohs: 9,5), low density (2,340 g/cm3), high chemical resistance, high strength, and semiconductivity (band gap:1,6-2,1 eV). These superior properties enable to use it in several high-tech areas from electronics to nuclear industry and especially in high temperature metallurgy. Amorphous boron and crystalline boron have different application areas. Amorphous boron powder (directly amorphous and/or α-rhombohedral) is preferred in rocket firing, airbag inflating and in fabrication of superconducting MgB2 wires. The conventional ways to produce elemental boron with a purity of 85 pct to 95 prc are metallothermic reduction, fused salt electrolysis and mechanochemical synthesis; but the only way to produce high-purity boron powders is Chemical Vapour Deposition (Hot Surface CVD). In this study; amorphous boron powders with a minimum purity of 99,9 prc were synthesized in quartz tubes using BCl3-H2 gas mixture by CVD. Process conditions based on temperature and gas flow rate were determined. Thermodynamical interpretation of BCl3-H2 system for different temperatures and molar rates were performed using Fact Sage software. The characterization of powders was examined by using Xray diffraction (XRD), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM), Stereo Microscope (SM), Helium gas pycnometer analysis. The purities of final products were determined by titration after lime fusion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amorphous%20boron" title="amorphous boron">amorphous boron</a>, <a href="https://publications.waset.org/abstracts/search?q=CVD" title=" CVD"> CVD</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20production" title=" powder production"> powder production</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20characterization" title=" powder characterization"> powder characterization</a> </p> <a href="https://publications.waset.org/abstracts/57325/production-of-amorphous-boron-powder-via-chemical-vapor-deposition-cvd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2674</span> Synthesis and Electromagnetic Wave Absorbing Property of Amorphous Carbon Nanotube Networks on a 3D Graphene Aerogel/BaFe₁₂O₁₉ Nanorod Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tingkai%20Zhao">Tingkai Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingtian%20Hu"> Jingtian Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiarong%20Peng"> Xiarong Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenbo%20Yang"> Wenbo Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tiehu%20Li"> Tiehu Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Homogeneous amorphous carbon nanotube (ACNT) networks have been synthesized using floating catalyst chemical vapor deposition method on a three-dimensional (3D) graphene aerogel (GA)/BaFe₁₂O₁₉ nanorod (BNR) composite which prepared by a self-propagating combustion process. The as-synthesized ACNT/GA/BNR composite which has 3D network structures could be directly used as a good absorber in the electromagnetic wave absorbent materials. The experimental results indicated that the maximum absorbing peak of ACNT/GA/BNR composite with a thickness of 2 mm was -18.35 dB at 10.64 GHz in the frequency range of 2-18 GHz. The bandwidth of the reflectivity below -10 dB is 3.32 GHz. The 3D graphene aerogel structures which composed of dense interlined tubes and amorphous structure of ACNTs bearing quantities of dihedral angles could consume the incident waves through multiple reflection and scattering inside the 3D web structures. The interlinked ACNTs have both the virtues of amorphous CNTs (multiple reflections inside the wall) and crystalline CNTs (high conductivity), consuming the electromagnetic wave as resistance heat. ACNT/GA/BNR composite has a good electromagnetic wave absorbing performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amorphous%20carbon%20nanotubes" title="amorphous carbon nanotubes">amorphous carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20aerogel" title=" graphene aerogel"> graphene aerogel</a>, <a href="https://publications.waset.org/abstracts/search?q=barium%20ferrite%20nanorod" title=" barium ferrite nanorod"> barium ferrite nanorod</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20wave%20absorption" title=" electromagnetic wave absorption"> electromagnetic wave absorption</a> </p> <a href="https://publications.waset.org/abstracts/83830/synthesis-and-electromagnetic-wave-absorbing-property-of-amorphous-carbon-nanotube-networks-on-a-3d-graphene-aerogelbafe12o19-nanorod-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2673</span> Microstructure Study of Melt Spun Mg₆₅Cu₂₅Y₁₀</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Regev">Michael Regev</a>, <a href="https://publications.waset.org/abstracts/search?q=Shai%20Essel"> Shai Essel</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Katz-Demyanetz"> Alexander Katz-Demyanetz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnesium alloys are characterized by good physical properties: They exhibit high strength, are lightweight and have good damping absorption and good thermal and electrical conductivity. Amorphous magnesium alloys, moreover, exhibit higher strength, hardness and a large elastic domain in addition to having excellent corrosion resistance. These above-mentioned advantages make magnesium based metallic glasses attractive for industrial use. Among the various existing magnesium alloys, Mg₆₅Cu₂₅Y₁₀ alloy is known to be one of the best glass formers. In the current study, Mg₆₅Cu₂₅Y₁₀ ribbons were produced by melt spinning, their microstructure was investigated in its as-cast condition, after pressing under 0.5 GPa for 5 minutes under different temperatures - RT, 500C, 1000C, 1500C and 2000C - and after five minute exposure to the above temperatures without pressing. The microstructure was characterized by means of X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), High Resolution Scanning Electron Microscope (HRSEM) and High Resolution Transmission Electron Microscopy (HRTEM). XRD and DSC studies showed that the as-cast material had an amorphous character and that the material crystallized during exposure to temperature with or without applying stress. HRTEM revealed that the as-cast Mg65Cu25Y10, although known to be one of the best glass formers, is nano-crystalline rather than amorphous. The current study casts light on the question what an amorphous alloy is and whether there is any clear borderline between amorphous and nano-crystalline alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metallic%20glass" title="metallic glass">metallic glass</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium" title=" magnesium"> magnesium</a>, <a href="https://publications.waset.org/abstracts/search?q=melt%20spinning" title=" melt spinning"> melt spinning</a>, <a href="https://publications.waset.org/abstracts/search?q=amorphous%20alloys" title=" amorphous alloys"> amorphous alloys</a> </p> <a href="https://publications.waset.org/abstracts/55640/microstructure-study-of-melt-spun-mg65cu25y10" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2672</span> Facile Synthesis of Metal Nanoparticles on Graphene via Galvanic Displacement Reaction for Sensing Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juree%20Hong">Juree Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanggeun%20Lee"> Sanggeun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jungmok%20Seo"> Jungmok Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Taeyoon%20Lee"> Taeyoon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report a facile synthesis of metal nano particles (NPs) on graphene layer via galvanic displacement reaction between graphene-buffered copper (Cu) and metal ion-containing salts. Diverse metal NPs can be formed on graphene surface and their morphologies can be tailored by controlling the concentration of metal ion-containing salt and immersion time. The obtained metal NP-decorated single-layer graphene (SLG) has been used as hydrogen gas (H2) sensing material and exhibited highly sensitive response upon exposure to 2% of H2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20nanoparticle" title="metal nanoparticle">metal nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=galvanic%20displacement%20reaction" title=" galvanic displacement reaction"> galvanic displacement reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20sensor" title=" hydrogen sensor"> hydrogen sensor</a> </p> <a href="https://publications.waset.org/abstracts/18400/facile-synthesis-of-metal-nanoparticles-on-graphene-via-galvanic-displacement-reaction-for-sensing-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2671</span> Synthesis of Amorphous Nanosilica Anode Material from Philippine Waste Rice Hull for Lithium Battery Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emie%20A.%20Salamangkit-Mirasol">Emie A. Salamangkit-Mirasol</a>, <a href="https://publications.waset.org/abstracts/search?q=Rinlee%20Butch%20M.%20Cervera"> Rinlee Butch M. Cervera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice hull or rice husk (RH) is an agricultural waste obtained from milling rice grains. Since RH has no commercial value and is difficult to use in agriculture, its volume is often reduced through open field burning which is an environmental hazard. In this study, amorphous nanosilica from Philippine waste RH was prepared via acid precipitation method. The synthesized samples were fully characterized for its microstructural properties. X-ray diffraction pattern reveals that the structure of the prepared sample is amorphous in nature while Fourier transform infrared spectrum showed the different vibration bands of the synthesized sample. Scanning electron microscopy (SEM) and particle size analysis (PSA) confirmed the presence of agglomerated silica particles. On the other hand, transmission electron microscopy (TEM) revealed an amorphous sample with grain sizes of about 5 to 20 nanometer range and has about 95 % purity according to EDS analyses. The elemental mapping also suggests that leaching of rice hull ash effectively removed the metallic impurity such as potassium element in the material. Hence, amorphous nanosilica was successfully prepared via a low-cost acid precipitation method from Philippine waste rice hull. In addition, initial electrode performance of the synthesized samples as an anode material in Lithium Battery have been investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20waste" title="agricultural waste">agricultural waste</a>, <a href="https://publications.waset.org/abstracts/search?q=anode%20material" title=" anode material"> anode material</a>, <a href="https://publications.waset.org/abstracts/search?q=nanosilica" title=" nanosilica"> nanosilica</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20hull" title=" rice hull"> rice hull</a> </p> <a href="https://publications.waset.org/abstracts/50151/synthesis-of-amorphous-nanosilica-anode-material-from-philippine-waste-rice-hull-for-lithium-battery-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2670</span> An Investigation into the Crystallization Tendency/Kinetics of Amorphous Active Pharmaceutical Ingredients: A Case Study with Dipyridamole and Cinnarizine </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shrawan%20Baghel">Shrawan Baghel</a>, <a href="https://publications.waset.org/abstracts/search?q=Helen%20Cathcart"> Helen Cathcart</a>, <a href="https://publications.waset.org/abstracts/search?q=Biall%20J.%20O%27Reilly"> Biall J. O'Reilly </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amorphous drug formulations have great potential to enhance solubility and thus bioavailability of BCS class II drugs. However, the higher free energy and molecular mobility of the amorphous form lowers the activation energy barrier for crystallization and thermodynamically drives it towards the crystalline state which makes them unstable. Accurate determination of the crystallization tendency/kinetics is the key to the successful design and development of such systems. In this study, dipyridamole (DPM) and cinnarizine (CNZ) has been selected as model compounds. Thermodynamic fragility (m_T) is measured from the heat capacity change at the glass transition temperature (Tg) whereas dynamic fragility (m_D) is evaluated using methods based on extrapolation of configurational entropy to zero 〖(m〗_(D_CE )), and heating rate dependence of Tg 〖(m〗_(D_Tg)). The mean relaxation time of amorphous drugs was calculated from Vogel-Tammann-Fulcher (VTF) equation. Furthermore, the correlation between fragility and glass forming ability (GFA) of model drugs has been established and the relevance of these parameters to crystallization of amorphous drugs is also assessed. Moreover, the crystallization kinetics of model drugs under isothermal conditions has been studied using Johnson-Mehl-Avrami (JMA) approach to determine the Avrami constant ‘n’ which provides an insight into the mechanism of crystallization. To further probe into the crystallization mechanism, the non-isothermal crystallization kinetics of model systems was also analysed by statistically fitting the crystallization data to 15 different kinetic models and the relevance of model-free kinetic approach has been established. In addition, the crystallization mechanism for DPM and CNZ at each extent of transformation has been predicted. The calculated fragility, glass forming ability (GFA) and crystallization kinetics is found to be in good correlation with the stability prediction of amorphous solid dispersions. Thus, this research work involves a multidisciplinary approach to establish fragility, GFA and crystallization kinetics as stability predictors for amorphous drug formulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amorphous" title="amorphous">amorphous</a>, <a href="https://publications.waset.org/abstracts/search?q=fragility" title=" fragility"> fragility</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20forming%20ability" title=" glass forming ability"> glass forming ability</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20mobility" title=" molecular mobility"> molecular mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20relaxation%20time" title=" mean relaxation time"> mean relaxation time</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallization%20kinetics" title=" crystallization kinetics"> crystallization kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/41262/an-investigation-into-the-crystallization-tendencykinetics-of-amorphous-active-pharmaceutical-ingredients-a-case-study-with-dipyridamole-and-cinnarizine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2669</span> Propane Dehydrogenation with Better Stability by a Modified Pt-Based Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Napat%20Hataivichian">Napat Hataivichian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of transition metal doping on Pt/Al2O3 catalyst used in propane dehydrogenation reaction at 500˚C was studied. The preparation methods investigated were sequential impregnation (Pt followed by the 2nd metal or the 2nd metal followed by Pt) and co-impregnation. The metal contents of these catalysts were fixed as the weight ratio of Pt per the 2nd metal of around 0.075. These catalysts were characterized by N2-physisorption, TPR, CO-chemisorption and NH3-TPD. It was found that the impregnated 2nd metal had an effect upon reducibility of Pt due to its interaction with transition metal-containing structure. This was in agreement with the CO-chemisorption result that the presence of Pt metal, which is a result from Pt species reduction, was decreased. The total acidity of bimetallic catalysts is decreased but the strong acidity is slightly increased. It was found that the stability of bimetallic catalysts prepared by co-impregnation and sequential impregnation where the 2nd metal was impregnated before Pt were better than that of monometallic catalyst (undoped Pt one) due to the forming of Pt sites located on the transition metal-oxide modified surface. Among all preparation methods, the sequential impregnation method- having Pt impregnated before the 2nd metal gave the worst stability because this catalyst lacked the modified Pt sites and some fraction of Pt sites was covered by the 2nd metal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alumina" title="alumina">alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=dehydrogenation" title=" dehydrogenation"> dehydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=platinum" title=" platinum"> platinum</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20metal" title=" transition metal"> transition metal</a> </p> <a href="https://publications.waset.org/abstracts/25499/propane-dehydrogenation-with-better-stability-by-a-modified-pt-based-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2668</span> Mechanical and Tribological Performances of (Nb: H-D: a-C) Thin Films for Biomedical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Khamseh">Sara Khamseh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kambiz%20Javanruee"> Kambiz Javanruee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Khorsand"> Hamid Khorsand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plenty of metallic materials are used for biomedical applications like hip joints and screws. Besides, it is reported that metal platforms such as stainless steel show significant deterioration because of wear and friction. The surface of metal substrates has been coated with a variety of multicomponent coatings to prevail these problems. The carbon-based multicomponent coatings such as metal-added amorphous carbon and diamond coatings are crucially important because of their remarkable tribological performance and chemical stability. In the current study, H-D contained Nb: (a-C) multicomponent coatings (H-D: hexagonal diamond, a-C: amorphous carbon) coated on A 304 steel substrates using an unbalanced magnetron (UBM) sputtering system. The effects of Nb and H-D content and ID/IG ratio on microstructure, mechanical and tribological characteristics of (Nb: H-D: a-C) composite coatings were investigated. The results of Raman spectroscopy represented that a-C phase with a Graphite-like structure (GLC with high value of sp2 carbon bonding) is formed, and its domain size increased with increasing Nb content of the coatings. Moreover, the Nb played a catalyst for the formation of the H-D phase. The nanoindentation hardness value of the coatings ranged between ~17 to ~35 GPa and (Nb: H-D: a-C) composite coatings with more H-D content represented higher hardness and plasticity index. It seems that the existence of extra-hard H-D particles straightly increased hardness. The tribological performance of the coatings was evaluated using the pin-on-disc method under the wet environment of SBF (Simulated Body Fluid). The COF value of the (Nb: H-D: a-C) coatings decreased with an increasing ID/IG ratio. The lower coefficient of friction is a result of the lamelliform array of graphitic domains. Also, the wear rate of the coatings decreased with increasing H-D content of the coatings. Based on the literature, a-C coatings with high hardness and H3/E2 ratio represent lower wear rates and better tribological performance. According to the nanoindentation analysis, hardness and H3/E2 ratio of (Nb: H-D: a-C) multicomponent coatings increased with increasing H-D content, which in turn decreased the wear rate of the coatings. The mechanical and tribological potency of (Nb: H-D: a-C) composite coatings on A 304 steel substrates paved the way for the development of innovative advanced coatings to ameliorate the performance of A 304 steel for biomedical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COF" title="COF">COF</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=%28Nb%3A%20H-D%3A%20a-C%29%20coatings" title=" (Nb: H-D: a-C) coatings"> (Nb: H-D: a-C) coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20rate" title=" wear rate"> wear rate</a> </p> <a href="https://publications.waset.org/abstracts/163287/mechanical-and-tribological-performances-of-nb-h-d-a-c-thin-films-for-biomedical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2667</span> The Adsorption of Zinc Metal in Waste Water Using ZnCl2 Activated Pomegranate Peel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Turkmen">S. N. Turkmen</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Kipcak"> A. S. Kipcak</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Tugrul"> N. Tugrul</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20M.%20Derun"> E. M. Derun</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Piskin"> S. Piskin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Activated carbon is an amorphous carbon chain which has extremely extended surface area. High surface area of activated carbon is due to the porous structure. Activated carbon, using a variety of materials such as coal and cellulosic materials; can be obtained by both physical and chemical methods. The prepared activated carbon can be used for decolorize, deodorize and also can be used for removal of organic and non-organic pollution. In this study, pomegranate peel was subjected to 800W microwave power for 1 to 4 minutes. Also fresh pomegranate peel was used for the reference material. Then ZnCl2 was used for the chemical activation purpose. After the activation process, activated pomegranate peels were used for the adsorption of Zn metal (40 ppm) in the waste water. As a result of the adsorption experiments, removal of heavy metals ranged from 89% to 85%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20activation" title=" chemical activation"> chemical activation</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=pomegranate%20peel" title=" pomegranate peel"> pomegranate peel</a> </p> <a href="https://publications.waset.org/abstracts/26792/the-adsorption-of-zinc-metal-in-waste-water-using-zncl2-activated-pomegranate-peel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">547</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2666</span> Heavy Metal Concentration in Orchard Area, Amphawa District, Samut Songkram Province, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sisuwan%20Kaseamsawat">Sisuwan Kaseamsawat</a>, <a href="https://publications.waset.org/abstracts/search?q=Sivapan%20Choo-In"> Sivapan Choo-In</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study was conducted in May to July 2013 with the aim of determination of heavy metal concentration in orchard area. 60 samples were collected and analyzed for Cadmium (Cd), Copper (Cu), Lead (Pb), and Zinc (Zn) by Atomic Absorption Spectrophotometer (AAS). The heavy metal concentrations in sediment of orchards, that use chemical for Cd (1.13 ± 0.26 mg/l), Cu (8.00 ± 1.05 mg/l), Pb (13.16 ± 2.01) and Zn (37.41 ± 3.20 mg/l). The heavy metal concentrations in sediment of the orchards, that do not use chemical for Cd (1.28 ± 0.50 mg/l), Cu (7.60 ± 1.20 mg/l), Pb (29.87 ± 4.88) and Zn (21.79 ± 2.98 mg/l). Statistical analysis between heavy metal in sediment from the orchard, that use chemical and the orchard, that not use chemical were difference statistic significant of 0.5 level of significant for Cd and Pb while no statistically difference for Cu and Zn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title="heavy metal">heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=orchard" title=" orchard"> orchard</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20and%20monitoring" title=" pollution and monitoring"> pollution and monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a> </p> <a href="https://publications.waset.org/abstracts/8591/heavy-metal-concentration-in-orchard-area-amphawa-district-samut-songkram-province-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2665</span> Use of Microbial Fuel Cell for Metal Recovery from Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surajbhan%20Sevda">Surajbhan Sevda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal containing wastewater is generated in large quintiles due to rapid industrialization. Generally, the metal present in wastewater is not biodegradable and can be accumulated in living animals, humans and plant tissue, causing disorder and diseases. The conventional metal recovery methods include chemical, physical and biological methods, but these are chemical and energy intensive. The recent development in microbial fuel cell (MFC) technology provides a new approach for metal recovery; this technology offers a flexible platform for both reduction and oxidation reaction oriented process. The use of MFCs will be a new platform for more efficient and low energy approach for metal recovery from the wastewater. So far metal recover was extensively studied using chemical, physical and biological methods. The MFCs present a new and efficient approach for removing and recovering metals from different wastewater, suggesting the use of different electrode for metal recovery can be a new efficient and effective approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20recovery" title="metal recovery">metal recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title=" microbial fuel cell"> microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=bioelectricity" title=" bioelectricity"> bioelectricity</a> </p> <a href="https://publications.waset.org/abstracts/78731/use-of-microbial-fuel-cell-for-metal-recovery-from-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2664</span> Effect of Incineration Temperatures to Time on the Rice Husk Ash (RHA) Silica Structure: A Comparative Study to the Literature with Experimental Work</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Binyamien%20Ibrahim%20Rasoul">Binyamien Ibrahim Rasoul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Controlled burning of rice husk can produce amorphous rice husk ash (RHA) with high silica content which can significantly enhance the properties of concrete. This study has been undertaken to investigate the relationship between the incineration temperatures and time to produce RHA with ultimate reactivity. The rice husk samples were incinerated in an electrical muffle furnace at 350°C, 400°C, 425°C 450°C, 475°C, and 500°C for 60 and 90 minutes, respectively. The silica structure in the Rice Husk Ash (RHA) was determined using X-Ray diffraction analysis, while chemical properties obtained using X-Ray Fluorescence. The results show that RHA appeared to be the totally amorphous when the husk incineration up to 425°C for 60 and even at 90 minutes. However, with increased temperature to 450°C, 475°C and 500°C, traces of crystalline silica (quartz) were detected. However, cannot be taken into account as it does not affect on the ash structure. In conclusion, the result gives an idea of the temperature and the time required to produce ash from rice husk with totally amorphous form. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice%20husk%20ash" title="rice husk ash">rice husk ash</a>, <a href="https://publications.waset.org/abstracts/search?q=silica" title=" silica"> silica</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=X-Ray%20diffraction" title=" X-Ray diffraction"> X-Ray diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=X-R%20florescence" title=" X-R florescence"> X-R florescence</a>, <a href="https://publications.waset.org/abstracts/search?q=pozzolanic%20activity" title=" pozzolanic activity"> pozzolanic activity</a> </p> <a href="https://publications.waset.org/abstracts/146345/effect-of-incineration-temperatures-to-time-on-the-rice-husk-ash-rha-silica-structure-a-comparative-study-to-the-literature-with-experimental-work" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2663</span> Microstructure and Mechanical Properties of Nb: Si: (a-C) Thin Films Prepared Using Balanced Magnetron Sputtering System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Khamseh">Sara Khamseh</a>, <a href="https://publications.waset.org/abstracts/search?q=Elahe%20Sharifi"> Elahe Sharifi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 321 alloy steel is austenitic stainless steel with high oxidation resistance and is commonly used to fabricate heat exchangers and steam generators. However, the low hardness and weak tribological performance can cause dangerous failures during industrial operations. The well-designed protective coatings on 321 alloy steel surfaces with high hardness and good tribological performance can guarantee their safe applications. The surface protection of metal substrates using protective coatings showed high efficiency in prevailing these problems. Carbon-based multicomponent coatings, such as metal-added amorphous carbon coatings, are crucially necessary because of their remarkable mechanical and tribological performances. In the current study, (Nb: Si: a-C) multicomponent coatings (a-C: amorphous carbon) were coated on 321 alloys using a balanced magnetron (BM) sputtering system at room temperature. The effects of the Si/Nb ratio on microstructure, mechanical and tribological characteristics of (Nb: Si: a-C) composite coatings were investigated. The XRD and Raman analysis results showed that the coatings formed a composite structure of cubic diamond (C-D), NbC, and graphite-like carbon (GLC). The NbC phase's abundance decreased when the C-D phase's affluence increased with an increasing Si/Nb ratio. The coatings' indentation hardness and plasticity index (H³/E² ratio) increased with an increasing Si/Nb ratio. The better mechanical properties of the coatings with higher Si content can be attributed to the higher cubic diamond (C-D) content. The cubic diamond (C-D) is a challenging phase and can positively affect the mechanical performance of the coatings. It is well documented that in hard protective coatings, Si encourages amorphization. In addition, THE studies showed that Nb and Mo can act as a catalyst for nucleation and growth of hard cubic (C-D) and hexagonal (H-D) diamond phases in a-C coatings. In the current study, it seems that fully arranged nanocomposite coatings contain hard C-D and NbC phases that embedded in the amorphous carbon (GLC) phase is formed. This unique structure decreased grain boundary density and defects and resulted in high hardness and H³/E² ratio. Moreover, the COF and wear rate of the coatings decreased with increasing Si/Nb ratio. This can be attributed to the good mechanical properties of the coatings and the formation of graphite-like carbon (GLC) structure with lamellae arrangement in the coatings. The complex and self-lubricant coatings are successfully formed on the surface of 321 alloys. The results of the present study clarified that Si addition to (Nb: a-C) coatings improve the mechanical and tribological performance of the coatings on 321 alloy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COF" title="COF">COF</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=%28Nb%3A%20Si%3A%20a-C%29%20coatings" title=" (Nb: Si: a-C) coatings"> (Nb: Si: a-C) coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=Wear%20rate" title=" Wear rate"> Wear rate</a> </p> <a href="https://publications.waset.org/abstracts/163283/microstructure-and-mechanical-properties-of-nb-si-a-c-thin-films-prepared-using-balanced-magnetron-sputtering-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2662</span> Development and Characterization of Cobalt Metal Loaded ZSM-5 and H-ZSM-5 Catalyst for Fischer -Tropsch Synthesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shashank%20Bahri">Shashank Bahri</a>, <a href="https://publications.waset.org/abstracts/search?q=Divyanshu%20Arya"> Divyanshu Arya</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajni%20Jain"> Rajni Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Sreedevi%20Upadhyayula"> Sreedevi Upadhyayula</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Petroleum products can be obtained from syngas catalytic conversion using Fischer Tropsch Reaction. The liquid fuels obtained from FTS are sulphur and nitrogen free and thus may easily meet the increasing stringent environment regulations. In the present work we have synthesized Meso porous ZSM-5 supported catalyst. Meso structure were created in H-ZSM-5 crystallites by demetalation via subsequent base and acid treatment. Desilication through base treatment provides H-ZSM-5 with pore size and volumes similar to amorphous SiO2 (Conventional Carrier). Modifying the zeolite texture and surface chemistry by Desilication and acid washing alters its accessibility and interactions with metal phase and consequently the CO adsorption behavior and hydrocarbon product distribution. Increasing the mesoporosity via desilication provides the micro porous zeolite with essential surface area to support optimally sized metal crystallites. This improves the metal dispersion and hence improve the activity of the catalyst. Transition metal (Co) was loaded using wet impregnation method. Synthesized catalysts were characterized by Infrared Spectroscopy, Powdered X-Ray Diffraction, Scanning Electron Microscopy (SEM), BET Method analytical techniques. Acidity of the catalyst which plays an important role in FTS reaction was measured by DRIFT setup pyridine adsorption instead of NH3 Temperature Programmed Desorption. The major difference is that, Pyridine Adsorption can distinguish between Lewis acidity and Bronsted Acidity, thus giving their relative strengths in the catalyst sample, whereas TPD gives total acidity including Lewis and Bronsted ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mesopourus" title="mesopourus">mesopourus</a>, <a href="https://publications.waset.org/abstracts/search?q=fischer%20tropsch%20reaction" title=" fischer tropsch reaction"> fischer tropsch reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=pyridine%20adsorrption" title=" pyridine adsorrption"> pyridine adsorrption</a>, <a href="https://publications.waset.org/abstracts/search?q=drift%20study" title=" drift study"> drift study</a> </p> <a href="https://publications.waset.org/abstracts/14761/development-and-characterization-of-cobalt-metal-loaded-zsm-5-and-h-zsm-5-catalyst-for-fischer-tropsch-synthesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2661</span> Centrifuge Testing to Determine the Effect of Temperature on the Adhesion Strength of Ice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zaid%20A.%20Janjua">Zaid A. Janjua</a>, <a href="https://publications.waset.org/abstracts/search?q=Barbara%20Turnbull"> Barbara Turnbull</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwing-So%20Choi"> Kwing-So Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adhesion of glaze ice on power infrastructure, ships and aerofoils cause monetary and structural damage. Here we investigate the influence of temperature as an important parameter affecting adhesion strength of ice. Two terms are defined to investigate this: 'freezing temperature', the temperature at which glaze ice forms; and 'ambient temperature', the temperature of the surrounding during the test. Using three metal surfaces, the adhesion strength of ice has been calculated as a value of shear stress at the point of detachment on a spinning centrifuge. Findings show that the ambient temperature has a greater influence than the freezing temperature on the adhesion strength of ice. This is because there exists an amorphous liquid-like layer at the ice-surface interface, whose bond with the surface increases in strength at lower ambient temperatures when the substrate conducts heat much faster than the ice and acts as a heat sink. The results will help us to measure the actual adhesion strength of ice to metal surfaces based on data from weather monitoring devices. Future tests envisaged focus on thermally non-conducting substrates and their influence on adhesion strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ice%20adhesion" title="ice adhesion">ice adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=centrifuge" title=" centrifuge"> centrifuge</a>, <a href="https://publications.waset.org/abstracts/search?q=glaze%20ice" title=" glaze ice"> glaze ice</a>, <a href="https://publications.waset.org/abstracts/search?q=freezing%20temperature" title=" freezing temperature"> freezing temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=ambient%20temperature" title=" ambient temperature"> ambient temperature</a> </p> <a href="https://publications.waset.org/abstracts/60459/centrifuge-testing-to-determine-the-effect-of-temperature-on-the-adhesion-strength-of-ice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amorphous%20metal&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amorphous%20metal&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amorphous%20metal&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amorphous%20metal&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amorphous%20metal&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amorphous%20metal&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amorphous%20metal&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amorphous%20metal&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amorphous%20metal&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amorphous%20metal&page=89">89</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amorphous%20metal&page=90">90</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amorphous%20metal&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>