CINXE.COM

Joko Waluyo | Universitas Gadjah Mada (Yogyakarta) - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Joko Waluyo | Universitas Gadjah Mada (Yogyakarta) - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="h8F9oirazYgxim-vjLzNUTpuugR1DbMpGBmI3CtBilC1dtUFfByDhCxNO24IwiS6R-hJYRiCKK1w8Zih9Pkl1A" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/single_work_page/figure_carousel-2004283e0948681916eefa74772df54f56cb5c7413d82b160212231c2f474bb3.css" media="all" /><script type="application/ld+json">{"@context":"https://schema.org","@type":"ProfilePage","mainEntity":{"@context":"https://schema.org","@type":"Person","name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo","image":"https://0.academia-photos.com/104932711/25303736/24061754/s200_joko.waluyo.jpg","sameAs":[]},"dateCreated":"2019-03-13T11:05:03-07:00","dateModified":"2022-03-10T20:33:07-08:00","name":"Joko Waluyo","description":"","image":"https://0.academia-photos.com/104932711/25303736/24061754/s200_joko.waluyo.jpg","thumbnailUrl":"https://0.academia-photos.com/104932711/25303736/24061754/s65_joko.waluyo.jpg","primaryImageOfPage":{"@type":"ImageObject","url":"https://0.academia-photos.com/104932711/25303736/24061754/s200_joko.waluyo.jpg","width":200},"sameAs":[],"relatedLink":"https://www.academia.edu/73175583/Prediction_of_the_performance_of_the_thermoacoustic_engine_CoATE_using_DeltaEC"}</script><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/button-8c9ae4b5c8a2531640c354d92a1f3579c8ff103277ef74913e34c8a76d4e6c00.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/single_work_page/figure_carousel-2004283e0948681916eefa74772df54f56cb5c7413d82b160212231c2f474bb3.css" media="all" /><style type="text/css">@media(max-width: 567px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 32px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 30px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 30px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 24px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 24px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 18px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 32px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 20px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 32px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 40px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 24px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 26px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 48px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 52px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 48px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 58px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 80px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 64px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 568px)and (max-width: 1279px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 104px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 1280px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 38px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 152px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}</style><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/common-57f9da13cef3fd4e2a8b655342c6488eded3e557e823fe67571f2ac77acd7b6f.css" media="all" /> <meta name="author" content="joko waluyo" /> <meta name="description" content="Joko Waluyo, Universitas Gadjah Mada (Yogyakarta): 7 Followers, 1 Following, 21 Research papers. Research interests: Petroleum Engineering and Industrial and…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'd2d20015d56b196dde1c1c43082dd3abf0ecb076'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":13886,"monthly_visitors":"31 million","monthly_visitor_count":31300000,"monthly_visitor_count_in_millions":31,"user_count":286628196,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1744152652000); window.Aedu.timeDifference = new Date().getTime() - 1744152652000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" media="all" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/academia-d43ce42295f6e9eee644b2bf4f7c938efedf73a791a7b96315b2735fd5bbc7d7.css" media="all" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" media="all" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-7fdb74ea7c97cb254ac2c4f31e80ad5a64c58e5ddd088d4fec81511810f0bd68.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-84fdd41845ff5754cd1cff7f1d30286e6e2b13003663bb3ee5235a6a53668f78.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://ugm.academia.edu/JokoWaluyo" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-5888e8cdcd0801926d9a9f3090e2416b8e78912036f8e63b1c6faa35593f3647.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo","photo":"https://0.academia-photos.com/104932711/25303736/24061754/s65_joko.waluyo.jpg","has_photo":true,"department":{"id":92390,"name":"Dept. Mechanical and Industrial Engineering","url":"https://ugm.academia.edu/Departments/Dept_Mechanical_and_Industrial_Engineering/Documents","university":{"id":1917,"name":"Universitas Gadjah Mada (Yogyakarta)","url":"https://ugm.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":1664516,"name":"Petroleum Engineering","url":"https://www.academia.edu/Documents/in/Petroleum_Engineering"},{"id":337544,"name":"Industrial and Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Industrial_and_Mechanical_Engineering"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://ugm.academia.edu/JokoWaluyo&quot;,&quot;location&quot;:&quot;/JokoWaluyo&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;ugm.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/JokoWaluyo&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-f354f2ce-aa97-4976-944a-68f37d2b0acd"></div> <div id="ProfileCheckPaperUpdate-react-component-f354f2ce-aa97-4976-944a-68f37d2b0acd"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Joko Waluyo" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/104932711/25303736/24061754/s200_joko.waluyo.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Joko Waluyo</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://ugm.academia.edu/">Universitas Gadjah Mada (Yogyakarta)</a>, <a class="u-tcGrayDarker" href="https://ugm.academia.edu/Departments/Dept_Mechanical_and_Industrial_Engineering/Documents">Dept. Mechanical and Industrial Engineering</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Joko" data-follow-user-id="104932711" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="104932711"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">7</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="suggested-academics-container"><div class="suggested-academics--header"><h3 class="ds2-5-heading-sans-serif-xs">Related Authors</h3></div><ul class="suggested-user-card-list" data-nosnippet="true"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://amirkabir.academia.edu/AhmadRezaRabbani"><img class="profile-avatar u-positionAbsolute" alt="Ahmad Reza Rabbani related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/419561/2894754/11471530/s200_ahmad_reza.rabbani.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://amirkabir.academia.edu/AhmadRezaRabbani">Ahmad Reza Rabbani</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">AmirKabir University Of Technology</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://presidencyuniversity.academia.edu/SumanPaul"><img class="profile-avatar u-positionAbsolute" alt="Suman Paul related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/1046681/360302/10430755/s200_suman.paul.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://presidencyuniversity.academia.edu/SumanPaul">Suman Paul</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Presidency University, Bengaluru</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://ufu.academia.edu/RosemarSilva"><img class="profile-avatar u-positionAbsolute" alt="Rosemar Silva related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/8845714/3323640/3911047/s200_rosemar.silva.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ufu.academia.edu/RosemarSilva">Rosemar Silva</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Universidade Federal de Uberlândia</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://uobaghdad.academia.edu/%D8%AF%D8%A7%D9%84%D9%8A%D8%A7%D8%A7%D9%84%D8%B9%D8%A8%D9%8A%D8%AF%D9%8A"><img class="profile-avatar u-positionAbsolute" alt="Dahlia A . Al-Obaidi related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/11051365/3274954/116025167/s200_dahlia.alobaidi.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uobaghdad.academia.edu/%D8%AF%D8%A7%D9%84%D9%8A%D8%A7%D8%A7%D9%84%D8%B9%D8%A8%D9%8A%D8%AF%D9%8A">Dahlia A . Al-Obaidi</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Baghdad</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://undip.academia.edu/sriutamihandayani"><img class="profile-avatar u-positionAbsolute" alt="sri utami handayani related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/12972489/3665650/4298030/s200_sri_utami.handayani.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://undip.academia.edu/sriutamihandayani">sri utami handayani</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Diponegoro University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://umutarapolytech.academia.edu/DrBinamaMaxime"><img class="profile-avatar u-positionAbsolute" alt="Dr. Binama Maxime related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/21478104/8344955/69311355/s200_dr._binama.maxime.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://umutarapolytech.academia.edu/DrBinamaMaxime">Dr. Binama Maxime</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University Of Rwanda</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://upnyk-id.academia.edu/vandiperdana"><img class="profile-avatar u-positionAbsolute" alt="Vandi Perdana related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/24404249/6583904/19918871/s200_vandi.perdana.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://upnyk-id.academia.edu/vandiperdana">Vandi Perdana</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Universitas Pembangunan Nasional &quot;Veteran&quot; Yogyakarta</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://covenantuniversity.academia.edu/RotimiOluwatosin"><img class="profile-avatar u-positionAbsolute" alt="Rotimi Oluwatosin related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/30039419/8799440/9825040/s200_rotimi.oluwatosin.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://covenantuniversity.academia.edu/RotimiOluwatosin">Rotimi Oluwatosin</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Covenant University Canaanland, Ota.</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://monash.academia.edu/ProfPGRanjith"><img class="profile-avatar u-positionAbsolute" alt="Pathegama G Ranjith related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/30482620/8852748/78854632/s200_pathegama.ranjith.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://monash.academia.edu/ProfPGRanjith">Pathegama G Ranjith</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Monash University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://neu.academia.edu/NaderJalili"><img class="profile-avatar u-positionAbsolute" alt="Nader Jalili related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://neu.academia.edu/NaderJalili">Nader Jalili</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Northeastern University</p></div></div></ul></div><style type="text/css">.suggested-academics--header h3{font-size:16px;font-weight:500;line-height:20px}</style><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="104932711" href="https://www.academia.edu/Documents/in/Petroleum_Engineering"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://ugm.academia.edu/JokoWaluyo&quot;,&quot;location&quot;:&quot;/JokoWaluyo&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;ugm.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/JokoWaluyo&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Petroleum Engineering&quot;]}" data-trace="false" data-dom-id="Pill-react-component-977d2106-41de-461a-a1dd-6b95fb45a5fa"></div> <div id="Pill-react-component-977d2106-41de-461a-a1dd-6b95fb45a5fa"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="104932711" href="https://www.academia.edu/Documents/in/Industrial_and_Mechanical_Engineering"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Industrial and Mechanical Engineering&quot;]}" data-trace="false" data-dom-id="Pill-react-component-d3f2ebad-b6e1-45bc-8e03-dce1e6d0fa3c"></div> <div id="Pill-react-component-d3f2ebad-b6e1-45bc-8e03-dce1e6d0fa3c"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Joko Waluyo</h3></div><div class="js-work-strip profile--work_container" data-work-id="73175583"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/73175583/Prediction_of_the_performance_of_the_thermoacoustic_engine_CoATE_using_DeltaEC"><img alt="Research paper thumbnail of Prediction of the performance of the thermoacoustic engine (CoATE) using DeltaEC" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Prediction of the performance of the thermoacoustic engine (CoATE) using DeltaEC</div><div class="wp-workCard_item"><span>THERMOFLUID X: 10th International Conference on Thermofluids 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175583"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175583"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175583; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175583]").text(description); $(".js-view-count[data-work-id=73175583]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175583; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175583']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73175583]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175583,"title":"Prediction of the performance of the thermoacoustic engine (CoATE) using DeltaEC","translated_title":"","metadata":{"publisher":"AIP Publishing","publication_name":"THERMOFLUID X: 10th International Conference on Thermofluids 2019"},"translated_abstract":null,"internal_url":"https://www.academia.edu/73175583/Prediction_of_the_performance_of_the_thermoacoustic_engine_CoATE_using_DeltaEC","translated_internal_url":"","created_at":"2022-03-06T04:40:25.345-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Prediction_of_the_performance_of_the_thermoacoustic_engine_CoATE_using_DeltaEC","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"}],"urls":[{"id":18292986,"url":"http://aip.scitation.org/doi/pdf/10.1063/5.0018922"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175583-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175582"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/73175582/Characteristics_of_gradual_discharging_process_on_a_thermosyphon_SWH_tank_containing_PCM"><img alt="Research paper thumbnail of Characteristics of gradual discharging process on a thermosyphon SWH tank containing PCM" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Characteristics of gradual discharging process on a thermosyphon SWH tank containing PCM</div><div class="wp-workCard_item"><span>2018 4th International Conference on Science and Technology (ICST)</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper aims to reveal the characteristics of thermal energy release in a solar water heater (...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper aims to reveal the characteristics of thermal energy release in a solar water heater (SWH) tank involving phase change materials (PCM) as thermal energy storage material. A bundle of cylindrical capsules was inserted in 31.37 liters of SWH tank. The capsule contains paraffin wax as latent type heat storage. K type thermocouples were mounted on the water side and the PCM side. Experiments was begun with the charging process using solar energy until water temperature exceeds the melting temperature of PCM. After that, a gradual discharging process is done to release the thermal energy from the tank. The SWH tank containing 17.3 liters of water can produce 60 liters of hot water with an average water temperature of 45.13 °. This condition is achieved when the average daily radiation intensity is 699.92 W/m2. The PCM has contributed in storing thermal energy during the discharging process.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175582"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175582"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175582; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175582]").text(description); $(".js-view-count[data-work-id=73175582]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175582; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175582']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73175582]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175582,"title":"Characteristics of gradual discharging process on a thermosyphon SWH tank containing PCM","translated_title":"","metadata":{"abstract":"This paper aims to reveal the characteristics of thermal energy release in a solar water heater (SWH) tank involving phase change materials (PCM) as thermal energy storage material. A bundle of cylindrical capsules was inserted in 31.37 liters of SWH tank. The capsule contains paraffin wax as latent type heat storage. K type thermocouples were mounted on the water side and the PCM side. Experiments was begun with the charging process using solar energy until water temperature exceeds the melting temperature of PCM. After that, a gradual discharging process is done to release the thermal energy from the tank. The SWH tank containing 17.3 liters of water can produce 60 liters of hot water with an average water temperature of 45.13 °. This condition is achieved when the average daily radiation intensity is 699.92 W/m2. The PCM has contributed in storing thermal energy during the discharging process.","publisher":"IEEE","publication_name":"2018 4th International Conference on Science and Technology (ICST)"},"translated_abstract":"This paper aims to reveal the characteristics of thermal energy release in a solar water heater (SWH) tank involving phase change materials (PCM) as thermal energy storage material. A bundle of cylindrical capsules was inserted in 31.37 liters of SWH tank. The capsule contains paraffin wax as latent type heat storage. K type thermocouples were mounted on the water side and the PCM side. Experiments was begun with the charging process using solar energy until water temperature exceeds the melting temperature of PCM. After that, a gradual discharging process is done to release the thermal energy from the tank. The SWH tank containing 17.3 liters of water can produce 60 liters of hot water with an average water temperature of 45.13 °. This condition is achieved when the average daily radiation intensity is 699.92 W/m2. The PCM has contributed in storing thermal energy during the discharging process.","internal_url":"https://www.academia.edu/73175582/Characteristics_of_gradual_discharging_process_on_a_thermosyphon_SWH_tank_containing_PCM","translated_internal_url":"","created_at":"2022-03-06T04:40:25.234-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Characteristics_of_gradual_discharging_process_on_a_thermosyphon_SWH_tank_containing_PCM","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"This paper aims to reveal the characteristics of thermal energy release in a solar water heater (SWH) tank involving phase change materials (PCM) as thermal energy storage material. A bundle of cylindrical capsules was inserted in 31.37 liters of SWH tank. The capsule contains paraffin wax as latent type heat storage. K type thermocouples were mounted on the water side and the PCM side. Experiments was begun with the charging process using solar energy until water temperature exceeds the melting temperature of PCM. After that, a gradual discharging process is done to release the thermal energy from the tank. The SWH tank containing 17.3 liters of water can produce 60 liters of hot water with an average water temperature of 45.13 °. This condition is achieved when the average daily radiation intensity is 699.92 W/m2. The PCM has contributed in storing thermal energy during the discharging process.","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[],"research_interests":[],"urls":[{"id":18292984,"url":"http://xplorestaging.ieee.org/ielx7/8510778/8528566/08528581.pdf?arnumber=8528581"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175582-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175580"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73175580/Pemilihan_provider_sand_consolidation_dengan_metode_analytical_hierarchy_process"><img alt="Research paper thumbnail of Pemilihan provider sand consolidation dengan metode analytical hierarchy process" class="work-thumbnail" src="https://attachments.academia-assets.com/81797788/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73175580/Pemilihan_provider_sand_consolidation_dengan_metode_analytical_hierarchy_process">Pemilihan provider sand consolidation dengan metode analytical hierarchy process</a></div><div class="wp-workCard_item"><span>Angkasa: Jurnal Ilmiah Bidang Teknologi</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">One of the sand control methods commonly used by oil and gas companies for well maintenance work ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">One of the sand control methods commonly used by oil and gas companies for well maintenance work is sand consolidation (SCON). The process of selecting providers has been carried out by auction. To select the provider to be more transparent, measurable, and accountable, it is necessary to design a standardized decision-making system that is compatible with existing problems. This study aimed to determine what parameters are the basis for consideration in choosing a provider and designing a decision-making system. The method used in this research is Analytical Hierarchy Process (AHP). The results indicate that the parameters taken into consideration are compatibility (0.349), safety &amp; environment (0.229), quality (0.219), cost (0.127), and finally service (0.075). ST-α2-HL with a weight of 0.282 is the chosen provider. AHP can be applied as an excellent method in the case of determining the best alternative for SCON providers. The comparison of the results between the decision-maker and the AHP method from the perspective of the best alternative only reaches 100%.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9f42752fc95a1d6e5cfe9050b8aa8813" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:81797788,&quot;asset_id&quot;:73175580,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/81797788/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175580"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175580"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175580; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175580]").text(description); $(".js-view-count[data-work-id=73175580]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175580; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175580']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9f42752fc95a1d6e5cfe9050b8aa8813" } } $('.js-work-strip[data-work-id=73175580]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175580,"title":"Pemilihan provider sand consolidation dengan metode analytical hierarchy process","translated_title":"","metadata":{"publisher":"SENATIK","grobid_abstract":"One of the sand control methods commonly used by oil and gas companies for well maintenance work is sand consolidation (SCON). The process of selecting providers has been carried out by auction. To select the provider to be more transparent, measurable, and accountable, it is necessary to design a standardized decision-making system that is compatible with existing problems. This study aimed to determine what parameters are the basis for consideration in choosing a provider and designing a decision-making system. The method used in this research is Analytical Hierarchy Process (AHP). The results indicate that the parameters taken into consideration are compatibility (0.349), safety \u0026 environment (0.229), quality (0.219), cost (0.127), and finally service (0.075). ST-α2-HL with a weight of 0.282 is the chosen provider. AHP can be applied as an excellent method in the case of determining the best alternative for SCON providers. The comparison of the results between the decision-maker and the AHP method from the perspective of the best alternative only reaches 100%.","publication_name":"Angkasa: Jurnal Ilmiah Bidang Teknologi","grobid_abstract_attachment_id":81797788},"translated_abstract":null,"internal_url":"https://www.academia.edu/73175580/Pemilihan_provider_sand_consolidation_dengan_metode_analytical_hierarchy_process","translated_internal_url":"","created_at":"2022-03-06T04:40:25.160-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81797788,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797788/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/81797788/download_file","bulk_download_file_name":"Pemilihan_provider_sand_consolidation_de.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797788/pdf-libre.pdf?1646571220=\u0026response-content-disposition=attachment%3B+filename%3DPemilihan_provider_sand_consolidation_de.pdf\u0026Expires=1744156252\u0026Signature=HwIxXg37uXjL3TbwquanymVjfSXxb6Bo9LA9oOeYI0tBTZIo5NmMjvhnekxjgeC83e6p3pPh62V8boav8RVLKpjVkTN7sBL4Ee2y6cyv81QC0goEYbP6zB0hP7A8kBOkiJqBUzL060gImGmGbSMacIF6dRr7KNOXbxYRFdXrpwTJ9ip~RPXwQX1PFGeE3vtq05k8x5ECq1BZnCOq~Pg5qtW1u53v24a2~gGisWY3WvyysKlDxigcxTb~itn1AdcX9BglTs1TwaK~tUY~69q7mknQASklq0cTv25Lbn5KQrO2RHLRrqnWe6bg80jRFd0-ROpja2z5WF1mvQvj~7sO9w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Pemilihan_provider_sand_consolidation_dengan_metode_analytical_hierarchy_process","translated_slug":"","page_count":13,"language":"id","content_type":"Work","summary":"One of the sand control methods commonly used by oil and gas companies for well maintenance work is sand consolidation (SCON). The process of selecting providers has been carried out by auction. To select the provider to be more transparent, measurable, and accountable, it is necessary to design a standardized decision-making system that is compatible with existing problems. This study aimed to determine what parameters are the basis for consideration in choosing a provider and designing a decision-making system. The method used in this research is Analytical Hierarchy Process (AHP). The results indicate that the parameters taken into consideration are compatibility (0.349), safety \u0026 environment (0.229), quality (0.219), cost (0.127), and finally service (0.075). ST-α2-HL with a weight of 0.282 is the chosen provider. AHP can be applied as an excellent method in the case of determining the best alternative for SCON providers. The comparison of the results between the decision-maker and the AHP method from the perspective of the best alternative only reaches 100%.","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[{"id":81797788,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797788/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/81797788/download_file","bulk_download_file_name":"Pemilihan_provider_sand_consolidation_de.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797788/pdf-libre.pdf?1646571220=\u0026response-content-disposition=attachment%3B+filename%3DPemilihan_provider_sand_consolidation_de.pdf\u0026Expires=1744156252\u0026Signature=HwIxXg37uXjL3TbwquanymVjfSXxb6Bo9LA9oOeYI0tBTZIo5NmMjvhnekxjgeC83e6p3pPh62V8boav8RVLKpjVkTN7sBL4Ee2y6cyv81QC0goEYbP6zB0hP7A8kBOkiJqBUzL060gImGmGbSMacIF6dRr7KNOXbxYRFdXrpwTJ9ip~RPXwQX1PFGeE3vtq05k8x5ECq1BZnCOq~Pg5qtW1u53v24a2~gGisWY3WvyysKlDxigcxTb~itn1AdcX9BglTs1TwaK~tUY~69q7mknQASklq0cTv25Lbn5KQrO2RHLRrqnWe6bg80jRFd0-ROpja2z5WF1mvQvj~7sO9w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175580-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175579"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73175579/Temperature_Profile_and_ThermoclineThickness_Evaluation_ofa_Stratified_Thermal_Energy_Storage_Tank"><img alt="Research paper thumbnail of Temperature Profile and ThermoclineThickness Evaluation ofa Stratified Thermal Energy Storage Tank" class="work-thumbnail" src="https://attachments.academia-assets.com/81797767/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73175579/Temperature_Profile_and_ThermoclineThickness_Evaluation_ofa_Stratified_Thermal_Energy_Storage_Tank">Temperature Profile and ThermoclineThickness Evaluation ofa Stratified Thermal Energy Storage Tank</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Determination of thermocline thickness requires a continuous profile of temperature distribution....</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Determination of thermocline thickness requires a continuous profile of temperature distribution. Difficulty in determining thermocline thickness arises for the case of discrete temperature data, since the profile formed could not be used to estimate the thermocline thickness. This paper discusses a practical method for formulation of thermocline thickness of stratified thermal energy storage. Curve fitting by iterative method was adopted to identify the functions which could represent the S-curve of temperature distribution. Based on the functions, thermocline thickness was formulated using functional relationship of temperature profile. Results identified two functions which could represent S-curve of temperature distribution, namely sigmoid dose response (SDR) and four parameter sigmoid (FPS) functions. Both functions were observed to well fit the temperature distributions having coefficient determination more than 0.99. Based on evaluations the formulations were capable to be ut...</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-73175579-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-73175579-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/37788687/figure-1-normally-water-temperature-distribution-in-the"><img alt="Normally water temperature distribution in the stratified TES tank consists of 3 regions with warm water at the top, cool water at the bottom and thermocline region in the middle. The water temperature forms S-Curve profile consisting of two asymptote curves as shown in Fig. 1. Average cool and warm water temperature is formed by the asymptote values of T, and 7T;. Position of the thermocline, C, defines the boundary line of cool and warm water in the tank. It also can be interpreted as the cool water depth occupied in the tank. Thermocline thickness, Wyrc, is determined as the region limited by the edges of asymptote curve. " class="figure-slide-image" src="https://figures.academia-assets.com/81797767/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/37788692/figure-2-temperature-data-of-the-tes-system-of-district"><img alt="Temperature data of the TES system of a district cooling plant were acquired for the study. The TES systemconsists of two 1,250 tons of refrigeration (RT) of steam absorption chillers (SACs) and four 325 RT electric chillers (ECs) and one 5,400 m° storage TES tank with designed capacity of 10,000 RTh. Inlet nozzle is made from 20” NPS located at elevation 3.4 m height, while outlet nozzle is elevation 12.3 m. Both nozzles are provided with 2” NPS at diffuser on its end-connection in the storage tank. Overflow line is connected at elevation of 14.025 m. The entire tank is extemally insulated. The tank is equipped with 14 temperature sensors, installed at approximately interval, to measure the water temperatures. temperature sensor is located at 0.51 m m vertical The lowest height. All temperatures are hourly recorded with acquisition data system. The schematic flow diagram of the systemis shown in Fig. 2. TES tank is charged by the ECs during off-peak hours. Normally, the charging is served by three or four of ECs. For the purpose of this study, hourly temperature records during charging period of gt September 2008 and 15&quot; April 2009 were used. The charging cycle was operated continuously from 18.00 hours to 02.00 hours of the following day. These two charging cycles were served by 3 and 4 units of ECs, and this is represented as case I and case II, respectively. The flow rates of the charging cycles for case I and case II were 393 m/hr and 524 m’/hr, respectively. " class="figure-slide-image" src="https://figures.academia-assets.com/81797767/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/37788700/figure-3-ye-temperature-distributions-for-case-and-case-ii"><img alt="ye Fig 3. Temperature distributions for (a) case I and (b) case II Data as depicted in Fig 3 (a) and (b) were used to fit some possible functions to represent the S-curve temperature profile. The functions consist of parameters T,, T,, C and S. Fitting was done by utilizing commercial software of Sigmaplot [10] using non linear regression by iterative method. Two functions were identified that could represent the S-curve: sigmoid dose response (SDR) and 4 parameters sigmoid (FPS) function. The first function was formed as a modification from the sigmoidal dose response (variable slope) function and the second function was obtained from the modification of 4 parameters sigmoid function. " class="figure-slide-image" src="https://figures.academia-assets.com/81797767/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/37788705/figure-4-temperature-profile-and-thermoclinethickness"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/81797767/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/37788712/figure-5-fitting-fps-function-for-case-and-case-ii"><img alt="Fig. 5. Fitting FPS function for (a) case I and (b) case II " class="figure-slide-image" src="https://figures.academia-assets.com/81797767/figure_005.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/37788719/table-1-thermocline-thickness-of-case-using-sdr-function"><img alt="THERMOCLINE THICKNESS OF CASE I USING SDR FUNCTION " class="figure-slide-image" src="https://figures.academia-assets.com/81797767/table_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/37788726/table-2-parameters-on-the-temperature-distribution-of-sdr"><img alt="PARAMETERS ON THE TEMPERATURE DISTRIBUTION OF SDR FUNCTION TABLEI. PARAMETERS ON THE TEMPERATURE DISTRIBUTION OF FPS FUNCTION " class="figure-slide-image" src="https://figures.academia-assets.com/81797767/table_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/37788734/table-3-temperature-profile-and-thermoclinethickness"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/81797767/table_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/37788745/table-4-thermocline-thickness-of-case-ii-using-sdr-function"><img alt="THERMOCLINE THICKNESS OF CASE II USING SDR FUNCTION " class="figure-slide-image" src="https://figures.academia-assets.com/81797767/table_004.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-73175579-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9ad9339993df2375b0d482dd7114d7bb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:81797767,&quot;asset_id&quot;:73175579,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/81797767/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175579"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175579"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175579; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175579]").text(description); $(".js-view-count[data-work-id=73175579]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175579; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175579']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9ad9339993df2375b0d482dd7114d7bb" } } $('.js-work-strip[data-work-id=73175579]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175579,"title":"Temperature Profile and ThermoclineThickness Evaluation ofa Stratified Thermal Energy Storage Tank","translated_title":"","metadata":{"abstract":"Determination of thermocline thickness requires a continuous profile of temperature distribution. Difficulty in determining thermocline thickness arises for the case of discrete temperature data, since the profile formed could not be used to estimate the thermocline thickness. This paper discusses a practical method for formulation of thermocline thickness of stratified thermal energy storage. Curve fitting by iterative method was adopted to identify the functions which could represent the S-curve of temperature distribution. Based on the functions, thermocline thickness was formulated using functional relationship of temperature profile. Results identified two functions which could represent S-curve of temperature distribution, namely sigmoid dose response (SDR) and four parameter sigmoid (FPS) functions. Both functions were observed to well fit the temperature distributions having coefficient determination more than 0.99. Based on evaluations the formulations were capable to be ut...","ai_title_tag":"Evaluating Thermocline Thickness in Energy Storage","publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":"Determination of thermocline thickness requires a continuous profile of temperature distribution. Difficulty in determining thermocline thickness arises for the case of discrete temperature data, since the profile formed could not be used to estimate the thermocline thickness. This paper discusses a practical method for formulation of thermocline thickness of stratified thermal energy storage. Curve fitting by iterative method was adopted to identify the functions which could represent the S-curve of temperature distribution. Based on the functions, thermocline thickness was formulated using functional relationship of temperature profile. Results identified two functions which could represent S-curve of temperature distribution, namely sigmoid dose response (SDR) and four parameter sigmoid (FPS) functions. Both functions were observed to well fit the temperature distributions having coefficient determination more than 0.99. Based on evaluations the formulations were capable to be ut...","internal_url":"https://www.academia.edu/73175579/Temperature_Profile_and_ThermoclineThickness_Evaluation_ofa_Stratified_Thermal_Energy_Storage_Tank","translated_internal_url":"","created_at":"2022-03-06T04:40:25.059-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81797767,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797767/thumbnails/1.jpg","file_name":"108601-2424_20IJMME-IJENS.pdf","download_url":"https://www.academia.edu/attachments/81797767/download_file","bulk_download_file_name":"Temperature_Profile_and_ThermoclineThick.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797767/108601-2424_20IJMME-IJENS-libre.pdf?1646570780=\u0026response-content-disposition=attachment%3B+filename%3DTemperature_Profile_and_ThermoclineThick.pdf\u0026Expires=1744156252\u0026Signature=CzLxC0yqtfoHycelOa6o6pd~ImZFox1sT-bDTLkjS9Z~H2svpRQEnCdcBMfzQrkqqkgfdcqOzuxubIT96oRHwamVVwcToL9yxUNgo9IIE~vgQa98YPTIVXVCbL-ob9hp25r3GZhDVxmTrSITfJKh6U2nq5DC7yGQXtbKYsQdK6FJvjFYqrd5v2I2nFc9O2Iv2eGK5k77L~pIHc16YG~~rmenH0DLQo2uPKJQFMB8S~o0CdUMcTCHJyUIzu6J7NRdqqLQy0GTbi67~aLOJqo96vV2wFTeXTILUu-kT0e4ym9HrLgnYiF-rN~YMkMRQLI8apfEokL-GCTvY2kgs0fYQw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Temperature_Profile_and_ThermoclineThickness_Evaluation_ofa_Stratified_Thermal_Energy_Storage_Tank","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"Determination of thermocline thickness requires a continuous profile of temperature distribution. Difficulty in determining thermocline thickness arises for the case of discrete temperature data, since the profile formed could not be used to estimate the thermocline thickness. This paper discusses a practical method for formulation of thermocline thickness of stratified thermal energy storage. Curve fitting by iterative method was adopted to identify the functions which could represent the S-curve of temperature distribution. Based on the functions, thermocline thickness was formulated using functional relationship of temperature profile. Results identified two functions which could represent S-curve of temperature distribution, namely sigmoid dose response (SDR) and four parameter sigmoid (FPS) functions. Both functions were observed to well fit the temperature distributions having coefficient determination more than 0.99. Based on evaluations the formulations were capable to be ut...","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[{"id":81797767,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797767/thumbnails/1.jpg","file_name":"108601-2424_20IJMME-IJENS.pdf","download_url":"https://www.academia.edu/attachments/81797767/download_file","bulk_download_file_name":"Temperature_Profile_and_ThermoclineThick.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797767/108601-2424_20IJMME-IJENS-libre.pdf?1646570780=\u0026response-content-disposition=attachment%3B+filename%3DTemperature_Profile_and_ThermoclineThick.pdf\u0026Expires=1744156252\u0026Signature=CzLxC0yqtfoHycelOa6o6pd~ImZFox1sT-bDTLkjS9Z~H2svpRQEnCdcBMfzQrkqqkgfdcqOzuxubIT96oRHwamVVwcToL9yxUNgo9IIE~vgQa98YPTIVXVCbL-ob9hp25r3GZhDVxmTrSITfJKh6U2nq5DC7yGQXtbKYsQdK6FJvjFYqrd5v2I2nFc9O2Iv2eGK5k77L~pIHc16YG~~rmenH0DLQo2uPKJQFMB8S~o0CdUMcTCHJyUIzu6J7NRdqqLQy0GTbi67~aLOJqo96vV2wFTeXTILUu-kT0e4ym9HrLgnYiF-rN~YMkMRQLI8apfEokL-GCTvY2kgs0fYQw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":81797768,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797768/thumbnails/1.jpg","file_name":"108601-2424_20IJMME-IJENS.pdf","download_url":"https://www.academia.edu/attachments/81797768/download_file","bulk_download_file_name":"Temperature_Profile_and_ThermoclineThick.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797768/108601-2424_20IJMME-IJENS-libre.pdf?1646570780=\u0026response-content-disposition=attachment%3B+filename%3DTemperature_Profile_and_ThermoclineThick.pdf\u0026Expires=1744156252\u0026Signature=VBUwJ9yw9EeqNCWEOZKA5pQVBKXPaIDbeWn14Yvg1G86f6q-Np9H84GgmOyKDUe7dzzbFGBshxRx~GkG7XVRPRarYsZAY8452pIdtjphV8RO8eB9sACRDdmaHaMpzhjOnMpbjHL3BhK-e0etqkycJzuFQ7YeG~Aa-EOkOc1HpzjIfwMLNcZ161gWjgY~kNz4ZB323PsoyPuzVayjuPtZI12CMAWqo~tEx3-qG1mvJyTEilu12-c9bS5MNbc4sd9ZZsrLLdVC158MESDrzBavoOmFw9Q7hT5h-2iOjKtPFlb5N174bhM7By3MPLxOXTu2lwnQsRxcUHhnYG9LsSSYQA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[{"id":18292982,"url":"http://www.ijens.org/108601-2424%20IJMME-IJENS.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-73175579-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175578"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/73175578/Unit_Commitment_Problem_Menggunakan_Algoritma_Binary_Particle_Swarm_Optimization_Studi_Kasus_Sistem_Kelistrikan_Kabupaten_Sumbawa"><img alt="Research paper thumbnail of Unit Commitment Problem Menggunakan Algoritma Binary Particle Swarm Optimization Studi Kasus: Sistem Kelistrikan Kabupaten Sumbawa" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Unit Commitment Problem Menggunakan Algoritma Binary Particle Swarm Optimization Studi Kasus: Sistem Kelistrikan Kabupaten Sumbawa</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstrak . Fokus penelitian  ini adalah penyelesaian permasalahan unit commitment untuk sistem kel...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstrak . Fokus penelitian  ini adalah penyelesaian permasalahan unit commitment untuk sistem kelistrikan di Kabupaten Sumbawa. Dalam prosesnya dikembangkan 2 model yaitu: model pertama seluruh sistem dilayani pembangkit diesel dan model kedua integrasi pembangkit diesel, pembangkit angin, panel surya dan baterai dengan penetrasi 5%. Algoritma binary particle swarm optimization digunakan sebagai metode penyelesaian. Tujuan dilakukanya penelitian ini untuk memperoleh model penjadwalan pembangkit guna meminmalkan biaya bahan bakar. Hasil unit commitment diperoleh, nilai konvergen untuk setiap model oleh algoritma binary particle swarm optimization masing-masing iterasi ke-5 untuk model pertama dan iterasi ke-2 untuk model kedua penetrasi 5%. Secara empiris faktanya, Integrasi pembangkit diesel, pembangkit angin, panel surya dan baterai mampu meminimalkan biaya bahan bakar  sebesar 6%  jika dibandingkan dengan sistem yang menggunakan pembangkit diesel saja.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175578"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175578"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175578; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175578]").text(description); $(".js-view-count[data-work-id=73175578]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175578; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175578']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73175578]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175578,"title":"Unit Commitment Problem Menggunakan Algoritma Binary Particle Swarm Optimization Studi Kasus: Sistem Kelistrikan Kabupaten Sumbawa","translated_title":"","metadata":{"abstract":"Abstrak . Fokus penelitian  ini adalah penyelesaian permasalahan unit commitment untuk sistem kelistrikan di Kabupaten Sumbawa. Dalam prosesnya dikembangkan 2 model yaitu: model pertama seluruh sistem dilayani pembangkit diesel dan model kedua integrasi pembangkit diesel, pembangkit angin, panel surya dan baterai dengan penetrasi 5%. Algoritma binary particle swarm optimization digunakan sebagai metode penyelesaian. Tujuan dilakukanya penelitian ini untuk memperoleh model penjadwalan pembangkit guna meminmalkan biaya bahan bakar. Hasil unit commitment diperoleh, nilai konvergen untuk setiap model oleh algoritma binary particle swarm optimization masing-masing iterasi ke-5 untuk model pertama dan iterasi ke-2 untuk model kedua penetrasi 5%. Secara empiris faktanya, Integrasi pembangkit diesel, pembangkit angin, panel surya dan baterai mampu meminimalkan biaya bahan bakar  sebesar 6%  jika dibandingkan dengan sistem yang menggunakan pembangkit diesel saja.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":"Abstrak . Fokus penelitian  ini adalah penyelesaian permasalahan unit commitment untuk sistem kelistrikan di Kabupaten Sumbawa. Dalam prosesnya dikembangkan 2 model yaitu: model pertama seluruh sistem dilayani pembangkit diesel dan model kedua integrasi pembangkit diesel, pembangkit angin, panel surya dan baterai dengan penetrasi 5%. Algoritma binary particle swarm optimization digunakan sebagai metode penyelesaian. Tujuan dilakukanya penelitian ini untuk memperoleh model penjadwalan pembangkit guna meminmalkan biaya bahan bakar. Hasil unit commitment diperoleh, nilai konvergen untuk setiap model oleh algoritma binary particle swarm optimization masing-masing iterasi ke-5 untuk model pertama dan iterasi ke-2 untuk model kedua penetrasi 5%. Secara empiris faktanya, Integrasi pembangkit diesel, pembangkit angin, panel surya dan baterai mampu meminimalkan biaya bahan bakar  sebesar 6%  jika dibandingkan dengan sistem yang menggunakan pembangkit diesel saja.","internal_url":"https://www.academia.edu/73175578/Unit_Commitment_Problem_Menggunakan_Algoritma_Binary_Particle_Swarm_Optimization_Studi_Kasus_Sistem_Kelistrikan_Kabupaten_Sumbawa","translated_internal_url":"","created_at":"2022-03-06T04:40:24.997-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Unit_Commitment_Problem_Menggunakan_Algoritma_Binary_Particle_Swarm_Optimization_Studi_Kasus_Sistem_Kelistrikan_Kabupaten_Sumbawa","translated_slug":"","page_count":null,"language":"id","content_type":"Work","summary":"Abstrak . Fokus penelitian  ini adalah penyelesaian permasalahan unit commitment untuk sistem kelistrikan di Kabupaten Sumbawa. Dalam prosesnya dikembangkan 2 model yaitu: model pertama seluruh sistem dilayani pembangkit diesel dan model kedua integrasi pembangkit diesel, pembangkit angin, panel surya dan baterai dengan penetrasi 5%. Algoritma binary particle swarm optimization digunakan sebagai metode penyelesaian. Tujuan dilakukanya penelitian ini untuk memperoleh model penjadwalan pembangkit guna meminmalkan biaya bahan bakar. Hasil unit commitment diperoleh, nilai konvergen untuk setiap model oleh algoritma binary particle swarm optimization masing-masing iterasi ke-5 untuk model pertama dan iterasi ke-2 untuk model kedua penetrasi 5%. Secara empiris faktanya, Integrasi pembangkit diesel, pembangkit angin, panel surya dan baterai mampu meminimalkan biaya bahan bakar  sebesar 6%  jika dibandingkan dengan sistem yang menggunakan pembangkit diesel saja.","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175578-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175576"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73175576/The_Experimental_Study_of_Bi_Directional_Impulse_Turbine_on_Standing_Wave_Thermoacoustic_Engine"><img alt="Research paper thumbnail of The Experimental Study of Bi-Directional Impulse Turbine on Standing Wave Thermoacoustic Engine" class="work-thumbnail" src="https://attachments.academia-assets.com/81797765/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73175576/The_Experimental_Study_of_Bi_Directional_Impulse_Turbine_on_Standing_Wave_Thermoacoustic_Engine">The Experimental Study of Bi-Directional Impulse Turbine on Standing Wave Thermoacoustic Engine</a></div><div class="wp-workCard_item"><span>International Journal of Renewable Energy Research</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Bi-directional air turbine has one of the primary functions, namely changing the linear movement ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Bi-directional air turbine has one of the primary functions, namely changing the linear movement of air into a rotating motion. This rotating motion is always in the same direction regardless of the direction of air movement. This bi-directional turbine impulse type moves by using thermoacoustic waves which result from the conversion of heat energy into acoustic energy. T he turbine using in this research has a diameter of 48 mm and 50 mm. Besides, the turbine also has a variety of blade numbers and variations of distance from the sound source. The impulse turbine research with 50o inlet angle obtained results that the maximum rotational motion in the turbine with a diameter of 50 mm and the number of blades 28. The optimal results were purchased at a distance of 20 0 m m from the sound source which was 361 rpm.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3e6aa42372246155843ae1d865494fa9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:81797765,&quot;asset_id&quot;:73175576,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/81797765/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175576"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175576"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175576; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175576]").text(description); $(".js-view-count[data-work-id=73175576]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175576; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175576']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3e6aa42372246155843ae1d865494fa9" } } $('.js-work-strip[data-work-id=73175576]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175576,"title":"The Experimental Study of Bi-Directional Impulse Turbine on Standing Wave Thermoacoustic Engine","translated_title":"","metadata":{"abstract":"Bi-directional air turbine has one of the primary functions, namely changing the linear movement of air into a rotating motion. This rotating motion is always in the same direction regardless of the direction of air movement. This bi-directional turbine impulse type moves by using thermoacoustic waves which result from the conversion of heat energy into acoustic energy. T he turbine using in this research has a diameter of 48 mm and 50 mm. Besides, the turbine also has a variety of blade numbers and variations of distance from the sound source. The impulse turbine research with 50o inlet angle obtained results that the maximum rotational motion in the turbine with a diameter of 50 mm and the number of blades 28. The optimal results were purchased at a distance of 20 0 m m from the sound source which was 361 rpm.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"International Journal of Renewable Energy Research"},"translated_abstract":"Bi-directional air turbine has one of the primary functions, namely changing the linear movement of air into a rotating motion. This rotating motion is always in the same direction regardless of the direction of air movement. This bi-directional turbine impulse type moves by using thermoacoustic waves which result from the conversion of heat energy into acoustic energy. T he turbine using in this research has a diameter of 48 mm and 50 mm. Besides, the turbine also has a variety of blade numbers and variations of distance from the sound source. The impulse turbine research with 50o inlet angle obtained results that the maximum rotational motion in the turbine with a diameter of 50 mm and the number of blades 28. The optimal results were purchased at a distance of 20 0 m m from the sound source which was 361 rpm.","internal_url":"https://www.academia.edu/73175576/The_Experimental_Study_of_Bi_Directional_Impulse_Turbine_on_Standing_Wave_Thermoacoustic_Engine","translated_internal_url":"","created_at":"2022-03-06T04:40:24.900-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81797765,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797765/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/81797765/download_file","bulk_download_file_name":"The_Experimental_Study_of_Bi_Directional.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797765/pdf-libre.pdf?1646570780=\u0026response-content-disposition=attachment%3B+filename%3DThe_Experimental_Study_of_Bi_Directional.pdf\u0026Expires=1744156252\u0026Signature=MpGsCacpPRBeynzugPsc2Vifv2zkRwN8wW4GPJu6cOoeFl8H~47TaCM0iX2P9KT~cTgH~1gKr4eh4NmCotgEpgrwMY76E5UdxBCzpAzF3fwqD1ji~b5TH7D55QOF0tXnUskpmK1pfsnjfKEvZE1EPNCcp3HSupGpu0R9FKBn3EhBpQwcMuSn0peLwCHMXXZsHcMx7~fnEOfuEnyEpWvbxKN7J-iPKT9nClyQxz6AVDayUm5-oszvWKMuKc~W0ZguUZg1WXagVO~-lTG4U2QTwfxB1XWgQxDHfsMWcRLjNs2VZ2Tv-8mwgziKk~LQRK4vFGvyl9ifysnW1QsSU4nBJQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Experimental_Study_of_Bi_Directional_Impulse_Turbine_on_Standing_Wave_Thermoacoustic_Engine","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"Bi-directional air turbine has one of the primary functions, namely changing the linear movement of air into a rotating motion. This rotating motion is always in the same direction regardless of the direction of air movement. This bi-directional turbine impulse type moves by using thermoacoustic waves which result from the conversion of heat energy into acoustic energy. T he turbine using in this research has a diameter of 48 mm and 50 mm. Besides, the turbine also has a variety of blade numbers and variations of distance from the sound source. The impulse turbine research with 50o inlet angle obtained results that the maximum rotational motion in the turbine with a diameter of 50 mm and the number of blades 28. The optimal results were purchased at a distance of 20 0 m m from the sound source which was 361 rpm.","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[{"id":81797765,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797765/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/81797765/download_file","bulk_download_file_name":"The_Experimental_Study_of_Bi_Directional.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797765/pdf-libre.pdf?1646570780=\u0026response-content-disposition=attachment%3B+filename%3DThe_Experimental_Study_of_Bi_Directional.pdf\u0026Expires=1744156252\u0026Signature=MpGsCacpPRBeynzugPsc2Vifv2zkRwN8wW4GPJu6cOoeFl8H~47TaCM0iX2P9KT~cTgH~1gKr4eh4NmCotgEpgrwMY76E5UdxBCzpAzF3fwqD1ji~b5TH7D55QOF0tXnUskpmK1pfsnjfKEvZE1EPNCcp3HSupGpu0R9FKBn3EhBpQwcMuSn0peLwCHMXXZsHcMx7~fnEOfuEnyEpWvbxKN7J-iPKT9nClyQxz6AVDayUm5-oszvWKMuKc~W0ZguUZg1WXagVO~-lTG4U2QTwfxB1XWgQxDHfsMWcRLjNs2VZ2Tv-8mwgziKk~LQRK4vFGvyl9ifysnW1QsSU4nBJQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":81797766,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797766/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/81797766/download_file","bulk_download_file_name":"The_Experimental_Study_of_Bi_Directional.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797766/pdf-libre.pdf?1646570781=\u0026response-content-disposition=attachment%3B+filename%3DThe_Experimental_Study_of_Bi_Directional.pdf\u0026Expires=1744156252\u0026Signature=LIHMEwOlQFc1WG5D3F3s3ZO9boGFbhbhu3jSaAcOn2AfQ012DwPMFsf5zztll6Sxo~eQZrlpkQAbjnc7aAqcFhWzCa2cy527hVf1NkzpP2UDrmZod4c7r0mTxQX4KJh8uTqucDHTEneplfmNgbVhIDTx3Q5C9XhJ67xxtU8BPt1hsvi9EHboKwLPpV9CCut9jZCg4NqYaAG5V6TGW2xiUpQqsAphB8a0alAqu~FE66oYECnOVYxWdSIzUBe0ZPTnTdlXTjebsdQjEB4hljv7PjQ3elD4ObJH~0X0co~ghEzcc0gNbozWklVKq4CiTJ8spYlUrSmIbk-7OjMvtfkwWw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":2738,"name":"Renewable Energy","url":"https://www.academia.edu/Documents/in/Renewable_Energy"}],"urls":[{"id":18292981,"url":"https://www.ijrer.com/index.php/ijrer/article/download/9544/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175576-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175575"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73175575/Performance_comparison_of_centrifugal_pump_in_variation_of_impeller_blade_number_through_numerical_simulation"><img alt="Research paper thumbnail of Performance comparison of centrifugal pump in variation of impeller blade number through numerical simulation" class="work-thumbnail" src="https://attachments.academia-assets.com/81797761/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73175575/Performance_comparison_of_centrifugal_pump_in_variation_of_impeller_blade_number_through_numerical_simulation">Performance comparison of centrifugal pump in variation of impeller blade number through numerical simulation</a></div><div class="wp-workCard_item"><span>THERMOFLUID XI: Proceedings of the 11th International Conference on Thermofluids 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Centrifugal pump is indispensable equipment for various industrial applications which mainly used...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Centrifugal pump is indispensable equipment for various industrial applications which mainly used to move fluid by supplying head at specified flow rate. Pump performance is influenced by occurrence of losses which consist of volumetric, hydraulic and mechanical losses which further quantified by corresponding efficiency. In its application, real operating pump performance is quite difficult to predict without referring to manufacture data report which measure pump performance directly during operation of the pump This research is aimed to investigate numerically the pump performance variation with respect to the number of blades. A specified pump has operating condition of head 12.08 m, flowrate of 0.0015 m3/s, rating rotation of 2800 rpm with 7 blades is investigated. The performance analysis is performed through numerical simulation using ANSYS. Performance comparison is carried in varied blade number of 5,7 and 9. The performance of centrifugal pump is determined in terms of head (H) and flow rate (Q), as well as pump hydrodynamic efficiency (h). It is found that the higher head occured in the case of 9 blades up to a certain limit. On the other hand, hydrodynamic efficiency in the case of 7 blade is higher than the other two cases for simulated flow rate range. From the head and flow rate relationship, it is noted that the pattern produced by plotting head and efficiency against flow rate indicate that there is an optimum number of impeller blade for centrifugal pump.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a3f6975632e828557f304a9b64b56d98" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:81797761,&quot;asset_id&quot;:73175575,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/81797761/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175575"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175575"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175575; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175575]").text(description); $(".js-view-count[data-work-id=73175575]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175575; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175575']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a3f6975632e828557f304a9b64b56d98" } } $('.js-work-strip[data-work-id=73175575]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175575,"title":"Performance comparison of centrifugal pump in variation of impeller blade number through numerical simulation","translated_title":"","metadata":{"publisher":"AIP Publishing","ai_title_tag":"Centrifugal Pump Performance Based on Impeller Blade Count","grobid_abstract":"Centrifugal pump is indispensable equipment for various industrial applications which mainly used to move fluid by supplying head at specified flow rate. Pump performance is influenced by occurrence of losses which consist of volumetric, hydraulic and mechanical losses which further quantified by corresponding efficiency. In its application, real operating pump performance is quite difficult to predict without referring to manufacture data report which measure pump performance directly during operation of the pump This research is aimed to investigate numerically the pump performance variation with respect to the number of blades. A specified pump has operating condition of head 12.08 m, flowrate of 0.0015 m3/s, rating rotation of 2800 rpm with 7 blades is investigated. The performance analysis is performed through numerical simulation using ANSYS. Performance comparison is carried in varied blade number of 5,7 and 9. The performance of centrifugal pump is determined in terms of head (H) and flow rate (Q), as well as pump hydrodynamic efficiency (h). It is found that the higher head occured in the case of 9 blades up to a certain limit. On the other hand, hydrodynamic efficiency in the case of 7 blade is higher than the other two cases for simulated flow rate range. From the head and flow rate relationship, it is noted that the pattern produced by plotting head and efficiency against flow rate indicate that there is an optimum number of impeller blade for centrifugal pump.","publication_name":"THERMOFLUID XI: Proceedings of the 11th International Conference on Thermofluids 2020","grobid_abstract_attachment_id":81797761},"translated_abstract":null,"internal_url":"https://www.academia.edu/73175575/Performance_comparison_of_centrifugal_pump_in_variation_of_impeller_blade_number_through_numerical_simulation","translated_internal_url":"","created_at":"2022-03-06T04:40:24.785-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81797761,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797761/thumbnails/1.jpg","file_name":"5.pdf","download_url":"https://www.academia.edu/attachments/81797761/download_file","bulk_download_file_name":"Performance_comparison_of_centrifugal_pu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797761/5-libre.pdf?1646570779=\u0026response-content-disposition=attachment%3B+filename%3DPerformance_comparison_of_centrifugal_pu.pdf\u0026Expires=1744156252\u0026Signature=WMJwo~JGsUs-D3aoYhqPdWoEGnhDqrErIag-MS9OtoPS2ZEysjoMphgPC4BG92fTD4VTC3Xs7AKSccgpK-y5JqZgCUhgLcbbNgCpGuHJCJQ97L~kdZqoEuLrebtTY2ez-FnKfsD4PTDJnx6URExLEUEk3gQqXdrs9oMoMGAoHuMpe95lz44Pk44z8JyKsI~wS~1D1UMwOD1ssKHrWNLQ31F-JuJf8mj3WSNL-WFa6z3HaMeDcGUDN1ZTXKDaN3M0C4ngr2GLULNyWILBgZSx4FM1947m4PFZOzflg~FZdWQzNSV6RkxBDZV29V4NxXKmQfnOD62u2NQDVVL~TSfA0w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Performance_comparison_of_centrifugal_pump_in_variation_of_impeller_blade_number_through_numerical_simulation","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"Centrifugal pump is indispensable equipment for various industrial applications which mainly used to move fluid by supplying head at specified flow rate. Pump performance is influenced by occurrence of losses which consist of volumetric, hydraulic and mechanical losses which further quantified by corresponding efficiency. In its application, real operating pump performance is quite difficult to predict without referring to manufacture data report which measure pump performance directly during operation of the pump This research is aimed to investigate numerically the pump performance variation with respect to the number of blades. A specified pump has operating condition of head 12.08 m, flowrate of 0.0015 m3/s, rating rotation of 2800 rpm with 7 blades is investigated. The performance analysis is performed through numerical simulation using ANSYS. Performance comparison is carried in varied blade number of 5,7 and 9. The performance of centrifugal pump is determined in terms of head (H) and flow rate (Q), as well as pump hydrodynamic efficiency (h). It is found that the higher head occured in the case of 9 blades up to a certain limit. On the other hand, hydrodynamic efficiency in the case of 7 blade is higher than the other two cases for simulated flow rate range. From the head and flow rate relationship, it is noted that the pattern produced by plotting head and efficiency against flow rate indicate that there is an optimum number of impeller blade for centrifugal pump.","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[{"id":81797761,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797761/thumbnails/1.jpg","file_name":"5.pdf","download_url":"https://www.academia.edu/attachments/81797761/download_file","bulk_download_file_name":"Performance_comparison_of_centrifugal_pu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797761/5-libre.pdf?1646570779=\u0026response-content-disposition=attachment%3B+filename%3DPerformance_comparison_of_centrifugal_pu.pdf\u0026Expires=1744156252\u0026Signature=WMJwo~JGsUs-D3aoYhqPdWoEGnhDqrErIag-MS9OtoPS2ZEysjoMphgPC4BG92fTD4VTC3Xs7AKSccgpK-y5JqZgCUhgLcbbNgCpGuHJCJQ97L~kdZqoEuLrebtTY2ez-FnKfsD4PTDJnx6URExLEUEk3gQqXdrs9oMoMGAoHuMpe95lz44Pk44z8JyKsI~wS~1D1UMwOD1ssKHrWNLQ31F-JuJf8mj3WSNL-WFa6z3HaMeDcGUDN1ZTXKDaN3M0C4ngr2GLULNyWILBgZSx4FM1947m4PFZOzflg~FZdWQzNSV6RkxBDZV29V4NxXKmQfnOD62u2NQDVVL~TSfA0w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":81797762,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797762/thumbnails/1.jpg","file_name":"5.pdf","download_url":"https://www.academia.edu/attachments/81797762/download_file","bulk_download_file_name":"Performance_comparison_of_centrifugal_pu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797762/5-libre.pdf?1646570781=\u0026response-content-disposition=attachment%3B+filename%3DPerformance_comparison_of_centrifugal_pu.pdf\u0026Expires=1744156252\u0026Signature=I~~NEb6edFgH6DCfNhN7uHlfObjAa2imOqwEqI6gfpA0RTbnCsLf5-Quwfpy4UEqcDPeRSi9wfrODHeOSOgq7p~UKDVUipNsTVeDjhUYk3OfnyCnUwmfB4wqkrzo9sOnqiIHtqO9G~Ck8G5KqFXL6GNIyKpAMsS8R2iK6xF~~-GVnU~6nK88VIECCIDo9kQFo9jUQMCf5rSn-iySCXT8Nixv6NjkL4vowTDFlV~~o38VJpLegUSXnBsXkvyQvEug7ZEe5E-SiFtgDVu68IcJL0595-tIFYvkKUjELT20RxOb0i7mbYd1iC89cT6PXpneXOorXFygjeY~5R2wxePiwQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":18292980,"url":"http://aip.scitation.org/doi/pdf/10.1063/5.0074344"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175575-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175573"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/73175573/Analysis_of_Temperature_Distribution_of_Chilled_Water_Thermal_Storage_Tank"><img alt="Research paper thumbnail of Analysis of Temperature Distribution of Chilled-Water Thermal Storage Tank" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Analysis of Temperature Distribution of Chilled-Water Thermal Storage Tank</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Temperature of water reflects cooling capacity stored in the stratified sensible chilled water st...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Temperature of water reflects cooling capacity stored in the stratified sensible chilled water storage tank. The temperature of the water is different on each slab inside the storage tank reflecting temperature distribution. This study focuses on the analysis of temperature distribution of chilled water storage tank of sensible stratified type using one dimensional flow heat conduction and convection model. Model was solved using explicit finite difference method. Two factors considered in this model were conduction across the transition of warm-cool water area and mixing effect during charging and discharging. Validation of the model used the operating data of chilled-water storage tank. The result revealed that temperature distribution generated from the model show similar profiles to that of the operating data. Using t statistical test, these values was accepted in a good agreement at confidence level 95%. Higher value of charging flow rate and lower water inlet temperature tend ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175573"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175573"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175573; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175573]").text(description); $(".js-view-count[data-work-id=73175573]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175573; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175573']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73175573]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175573,"title":"Analysis of Temperature Distribution of Chilled-Water Thermal Storage Tank","translated_title":"","metadata":{"abstract":"Temperature of water reflects cooling capacity stored in the stratified sensible chilled water storage tank. The temperature of the water is different on each slab inside the storage tank reflecting temperature distribution. This study focuses on the analysis of temperature distribution of chilled water storage tank of sensible stratified type using one dimensional flow heat conduction and convection model. Model was solved using explicit finite difference method. Two factors considered in this model were conduction across the transition of warm-cool water area and mixing effect during charging and discharging. Validation of the model used the operating data of chilled-water storage tank. The result revealed that temperature distribution generated from the model show similar profiles to that of the operating data. Using t statistical test, these values was accepted in a good agreement at confidence level 95%. Higher value of charging flow rate and lower water inlet temperature tend ...","publication_date":{"day":null,"month":null,"year":2009,"errors":{}}},"translated_abstract":"Temperature of water reflects cooling capacity stored in the stratified sensible chilled water storage tank. The temperature of the water is different on each slab inside the storage tank reflecting temperature distribution. This study focuses on the analysis of temperature distribution of chilled water storage tank of sensible stratified type using one dimensional flow heat conduction and convection model. Model was solved using explicit finite difference method. Two factors considered in this model were conduction across the transition of warm-cool water area and mixing effect during charging and discharging. Validation of the model used the operating data of chilled-water storage tank. The result revealed that temperature distribution generated from the model show similar profiles to that of the operating data. Using t statistical test, these values was accepted in a good agreement at confidence level 95%. Higher value of charging flow rate and lower water inlet temperature tend ...","internal_url":"https://www.academia.edu/73175573/Analysis_of_Temperature_Distribution_of_Chilled_Water_Thermal_Storage_Tank","translated_internal_url":"","created_at":"2022-03-06T04:40:24.721-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Analysis_of_Temperature_Distribution_of_Chilled_Water_Thermal_Storage_Tank","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Temperature of water reflects cooling capacity stored in the stratified sensible chilled water storage tank. The temperature of the water is different on each slab inside the storage tank reflecting temperature distribution. This study focuses on the analysis of temperature distribution of chilled water storage tank of sensible stratified type using one dimensional flow heat conduction and convection model. Model was solved using explicit finite difference method. Two factors considered in this model were conduction across the transition of warm-cool water area and mixing effect during charging and discharging. Validation of the model used the operating data of chilled-water storage tank. The result revealed that temperature distribution generated from the model show similar profiles to that of the operating data. Using t statistical test, these values was accepted in a good agreement at confidence level 95%. Higher value of charging flow rate and lower water inlet temperature tend ...","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175573-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175572"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/73175572/Pengembangan_Model_Simulasi_Untuk_Pengisian_Tangki_Penyimpan_Termal_Stratifikasi"><img alt="Research paper thumbnail of Pengembangan Model Simulasi Untuk Pengisian Tangki Penyimpan Termal Stratifikasi" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Pengembangan Model Simulasi Untuk Pengisian Tangki Penyimpan Termal Stratifikasi</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Stratified Thermal Energy Storage (TES) tank has been used widely related to cogeneration plant b...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Stratified Thermal Energy Storage (TES) tank has been used widely related to cogeneration plant by utilizing waste heat energy from gas turbine. The TES tank is useful for energy shifting, by charging the TES tank al off peak demand and discharging it during on-peak demand This research is aimed to develop a new simulation model enable for prediction of charging TES tank. The model is developed based on a mathematical formulation for representing distribution temperature in the TES tank. Validation of the model was carried out using experiment data of charging TES tank. The research uses 3 steps namely development of simulation model, data processing and validation of the model. Results yielded that simulation model has been developed based on temperature distribution analysis using Sigmoid Dose Response (SDR) equation. Further, SDR function can be explored for mathematical formulations of the important parameters of the TES tank. The parameters are limit points and thermocline thic...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175572"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175572"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175572; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175572]").text(description); $(".js-view-count[data-work-id=73175572]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175572; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175572']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73175572]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175572,"title":"Pengembangan Model Simulasi Untuk Pengisian Tangki Penyimpan Termal Stratifikasi","translated_title":"","metadata":{"abstract":"Stratified Thermal Energy Storage (TES) tank has been used widely related to cogeneration plant by utilizing waste heat energy from gas turbine. The TES tank is useful for energy shifting, by charging the TES tank al off peak demand and discharging it during on-peak demand This research is aimed to develop a new simulation model enable for prediction of charging TES tank. The model is developed based on a mathematical formulation for representing distribution temperature in the TES tank. Validation of the model was carried out using experiment data of charging TES tank. The research uses 3 steps namely development of simulation model, data processing and validation of the model. Results yielded that simulation model has been developed based on temperature distribution analysis using Sigmoid Dose Response (SDR) equation. Further, SDR function can be explored for mathematical formulations of the important parameters of the TES tank. The parameters are limit points and thermocline thic...","publication_date":{"day":null,"month":null,"year":2015,"errors":{}}},"translated_abstract":"Stratified Thermal Energy Storage (TES) tank has been used widely related to cogeneration plant by utilizing waste heat energy from gas turbine. The TES tank is useful for energy shifting, by charging the TES tank al off peak demand and discharging it during on-peak demand This research is aimed to develop a new simulation model enable for prediction of charging TES tank. The model is developed based on a mathematical formulation for representing distribution temperature in the TES tank. Validation of the model was carried out using experiment data of charging TES tank. The research uses 3 steps namely development of simulation model, data processing and validation of the model. Results yielded that simulation model has been developed based on temperature distribution analysis using Sigmoid Dose Response (SDR) equation. Further, SDR function can be explored for mathematical formulations of the important parameters of the TES tank. The parameters are limit points and thermocline thic...","internal_url":"https://www.academia.edu/73175572/Pengembangan_Model_Simulasi_Untuk_Pengisian_Tangki_Penyimpan_Termal_Stratifikasi","translated_internal_url":"","created_at":"2022-03-06T04:40:24.658-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Pengembangan_Model_Simulasi_Untuk_Pengisian_Tangki_Penyimpan_Termal_Stratifikasi","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Stratified Thermal Energy Storage (TES) tank has been used widely related to cogeneration plant by utilizing waste heat energy from gas turbine. The TES tank is useful for energy shifting, by charging the TES tank al off peak demand and discharging it during on-peak demand This research is aimed to develop a new simulation model enable for prediction of charging TES tank. The model is developed based on a mathematical formulation for representing distribution temperature in the TES tank. Validation of the model was carried out using experiment data of charging TES tank. The research uses 3 steps namely development of simulation model, data processing and validation of the model. Results yielded that simulation model has been developed based on temperature distribution analysis using Sigmoid Dose Response (SDR) equation. Further, SDR function can be explored for mathematical formulations of the important parameters of the TES tank. The parameters are limit points and thermocline thic...","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175572-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175571"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/73175571/Simulation_of_Close_Open_Standing_Wave_Thermoacoustic_Engine_Toward_Variation_of_Resonator_Diameter"><img alt="Research paper thumbnail of Simulation of Close-Open Standing Wave Thermoacoustic Engine Toward Variation of Resonator Diameter" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Simulation of Close-Open Standing Wave Thermoacoustic Engine Toward Variation of Resonator Diameter</div><div class="wp-workCard_item"><span>2018 4th International Conference on Science and Technology (ICST)</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Thermoacoustic engine is a promising device for converting heat to electrical power. Obtaining a ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Thermoacoustic engine is a promising device for converting heat to electrical power. Obtaining a higher performance of thermo acoustic engine remains a challenging effort before applying widely in industrial implementation. This study aims to investigate the performance of thermo acoustic engine in variation of resonator diameter. The study consist of three main subjects, namely establishing of the simulation model, validation and then used for predicting of the performance on variation of resonator diameter. The model simulation was established using DeltaEC freeware. For validation purposes, the simulation was conducted on similar geometrical configuration with that on the experimental set up. The resonator diameter was straight, tubular shape with inside diameter of 52 mm. The simulation is then enhanced to predict the thermo acoustic performance on varied resonator diameter of 27 mm, 41 mm, 78 mm and 90 mm. Results revealed that the simulation of thermo acoustic engine with 52 m...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175571"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175571"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175571; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175571]").text(description); $(".js-view-count[data-work-id=73175571]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175571; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175571']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73175571]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175571,"title":"Simulation of Close-Open Standing Wave Thermoacoustic Engine Toward Variation of Resonator Diameter","translated_title":"","metadata":{"abstract":"Thermoacoustic engine is a promising device for converting heat to electrical power. Obtaining a higher performance of thermo acoustic engine remains a challenging effort before applying widely in industrial implementation. This study aims to investigate the performance of thermo acoustic engine in variation of resonator diameter. The study consist of three main subjects, namely establishing of the simulation model, validation and then used for predicting of the performance on variation of resonator diameter. The model simulation was established using DeltaEC freeware. For validation purposes, the simulation was conducted on similar geometrical configuration with that on the experimental set up. The resonator diameter was straight, tubular shape with inside diameter of 52 mm. The simulation is then enhanced to predict the thermo acoustic performance on varied resonator diameter of 27 mm, 41 mm, 78 mm and 90 mm. Results revealed that the simulation of thermo acoustic engine with 52 m...","publisher":"2018 4th International Conference on Science and Technology (ICST)","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"2018 4th International Conference on Science and Technology (ICST)"},"translated_abstract":"Thermoacoustic engine is a promising device for converting heat to electrical power. Obtaining a higher performance of thermo acoustic engine remains a challenging effort before applying widely in industrial implementation. This study aims to investigate the performance of thermo acoustic engine in variation of resonator diameter. The study consist of three main subjects, namely establishing of the simulation model, validation and then used for predicting of the performance on variation of resonator diameter. The model simulation was established using DeltaEC freeware. For validation purposes, the simulation was conducted on similar geometrical configuration with that on the experimental set up. The resonator diameter was straight, tubular shape with inside diameter of 52 mm. The simulation is then enhanced to predict the thermo acoustic performance on varied resonator diameter of 27 mm, 41 mm, 78 mm and 90 mm. Results revealed that the simulation of thermo acoustic engine with 52 m...","internal_url":"https://www.academia.edu/73175571/Simulation_of_Close_Open_Standing_Wave_Thermoacoustic_Engine_Toward_Variation_of_Resonator_Diameter","translated_internal_url":"","created_at":"2022-03-06T04:40:24.584-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Simulation_of_Close_Open_Standing_Wave_Thermoacoustic_Engine_Toward_Variation_of_Resonator_Diameter","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Thermoacoustic engine is a promising device for converting heat to electrical power. Obtaining a higher performance of thermo acoustic engine remains a challenging effort before applying widely in industrial implementation. This study aims to investigate the performance of thermo acoustic engine in variation of resonator diameter. The study consist of three main subjects, namely establishing of the simulation model, validation and then used for predicting of the performance on variation of resonator diameter. The model simulation was established using DeltaEC freeware. For validation purposes, the simulation was conducted on similar geometrical configuration with that on the experimental set up. The resonator diameter was straight, tubular shape with inside diameter of 52 mm. The simulation is then enhanced to predict the thermo acoustic performance on varied resonator diameter of 27 mm, 41 mm, 78 mm and 90 mm. Results revealed that the simulation of thermo acoustic engine with 52 m...","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175571-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175569"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73175569/Development_Simulation_Model_for_Charging_of_Stratified_Thermal_Energy_Storage_Tank_in_Cogeneration_Plant"><img alt="Research paper thumbnail of Development Simulation Model for Charging of Stratified Thermal Energy Storage Tank in Cogeneration Plant" class="work-thumbnail" src="https://attachments.academia-assets.com/81797760/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73175569/Development_Simulation_Model_for_Charging_of_Stratified_Thermal_Energy_Storage_Tank_in_Cogeneration_Plant">Development Simulation Model for Charging of Stratified Thermal Energy Storage Tank in Cogeneration Plant</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Currently, cogeneration plants technology have been used widely in the world since its advantageo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Currently, cogeneration plants technology have been used widely in the world since its advantageous prospect in generating the extra thermal energy from waste heat of gas turbine chimneys. Stratified thermal energy storage tank is used incorporated to cogeneration plant for shifting energy by charging the thermal energy during off-peak and discharging during the on-peak demand. The other advantage utilization tank stratified thermal energy tank is reducing the size of thermal equipment on the cogeneration plant. However, performance of stratified thermal energy storage tank is still carried out using an estimation method that has drawback of its inaccurate result and has difficulties on the measurement. One method used to overcome the drawbacks is formulation based on temperature distribution that gives beneficial in having characterization precisely and capable to be solved analytically. This research is aimed to develop a simulation model based on formulation method on the chargin...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d220cf0dce352a07edf32155b040e715" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:81797760,&quot;asset_id&quot;:73175569,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/81797760/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175569"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175569"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175569; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175569]").text(description); $(".js-view-count[data-work-id=73175569]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175569; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175569']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d220cf0dce352a07edf32155b040e715" } } $('.js-work-strip[data-work-id=73175569]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175569,"title":"Development Simulation Model for Charging of Stratified Thermal Energy Storage Tank in Cogeneration Plant","translated_title":"","metadata":{"abstract":"Currently, cogeneration plants technology have been used widely in the world since its advantageous prospect in generating the extra thermal energy from waste heat of gas turbine chimneys. Stratified thermal energy storage tank is used incorporated to cogeneration plant for shifting energy by charging the thermal energy during off-peak and discharging during the on-peak demand. The other advantage utilization tank stratified thermal energy tank is reducing the size of thermal equipment on the cogeneration plant. However, performance of stratified thermal energy storage tank is still carried out using an estimation method that has drawback of its inaccurate result and has difficulties on the measurement. One method used to overcome the drawbacks is formulation based on temperature distribution that gives beneficial in having characterization precisely and capable to be solved analytically. This research is aimed to develop a simulation model based on formulation method on the chargin...","publication_date":{"day":null,"month":null,"year":2014,"errors":{}}},"translated_abstract":"Currently, cogeneration plants technology have been used widely in the world since its advantageous prospect in generating the extra thermal energy from waste heat of gas turbine chimneys. Stratified thermal energy storage tank is used incorporated to cogeneration plant for shifting energy by charging the thermal energy during off-peak and discharging during the on-peak demand. The other advantage utilization tank stratified thermal energy tank is reducing the size of thermal equipment on the cogeneration plant. However, performance of stratified thermal energy storage tank is still carried out using an estimation method that has drawback of its inaccurate result and has difficulties on the measurement. One method used to overcome the drawbacks is formulation based on temperature distribution that gives beneficial in having characterization precisely and capable to be solved analytically. This research is aimed to develop a simulation model based on formulation method on the chargin...","internal_url":"https://www.academia.edu/73175569/Development_Simulation_Model_for_Charging_of_Stratified_Thermal_Energy_Storage_Tank_in_Cogeneration_Plant","translated_internal_url":"","created_at":"2022-03-06T04:40:24.454-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81797760,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797760/thumbnails/1.jpg","file_name":"JSME239.pdf","download_url":"https://www.academia.edu/attachments/81797760/download_file","bulk_download_file_name":"Development_Simulation_Model_for_Chargin.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797760/JSME239-libre.pdf?1646570781=\u0026response-content-disposition=attachment%3B+filename%3DDevelopment_Simulation_Model_for_Chargin.pdf\u0026Expires=1744156252\u0026Signature=I9ku6SNLBjZr9nrppYLyhrIn35jVIlGOqIURfvvggFutAuZfceNQo0OV0l5v6NbdJzrGLMk4JAJxVpOJ-WccBjM23VhYPgnhoXEZhydUfrOadBQ9M2m8dpuUvSus1yUDQ878MVRDUMit1l2TjkTBNvYhI80tGbs9C3JIm1GohgOmA~KHn10EfFJEpfNr9db1ay9cG9UDc~iIC-6sLgjOqzNx9LZvO-e~bsdO58dAyC0ZrCa1-DkFgydmiVsaTzgDglaNjy~z7-W8llatfYnfL1ZiFwqLO8IinQz1g92-JnEmK3R8dfhgq7yOu~eCNqAVd2Lpz0SFz656kS7yUxMTIw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Development_Simulation_Model_for_Charging_of_Stratified_Thermal_Energy_Storage_Tank_in_Cogeneration_Plant","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"Currently, cogeneration plants technology have been used widely in the world since its advantageous prospect in generating the extra thermal energy from waste heat of gas turbine chimneys. Stratified thermal energy storage tank is used incorporated to cogeneration plant for shifting energy by charging the thermal energy during off-peak and discharging during the on-peak demand. The other advantage utilization tank stratified thermal energy tank is reducing the size of thermal equipment on the cogeneration plant. However, performance of stratified thermal energy storage tank is still carried out using an estimation method that has drawback of its inaccurate result and has difficulties on the measurement. One method used to overcome the drawbacks is formulation based on temperature distribution that gives beneficial in having characterization precisely and capable to be solved analytically. This research is aimed to develop a simulation model based on formulation method on the chargin...","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[{"id":81797760,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797760/thumbnails/1.jpg","file_name":"JSME239.pdf","download_url":"https://www.academia.edu/attachments/81797760/download_file","bulk_download_file_name":"Development_Simulation_Model_for_Chargin.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797760/JSME239-libre.pdf?1646570781=\u0026response-content-disposition=attachment%3B+filename%3DDevelopment_Simulation_Model_for_Chargin.pdf\u0026Expires=1744156252\u0026Signature=I9ku6SNLBjZr9nrppYLyhrIn35jVIlGOqIURfvvggFutAuZfceNQo0OV0l5v6NbdJzrGLMk4JAJxVpOJ-WccBjM23VhYPgnhoXEZhydUfrOadBQ9M2m8dpuUvSus1yUDQ878MVRDUMit1l2TjkTBNvYhI80tGbs9C3JIm1GohgOmA~KHn10EfFJEpfNr9db1ay9cG9UDc~iIC-6sLgjOqzNx9LZvO-e~bsdO58dAyC0ZrCa1-DkFgydmiVsaTzgDglaNjy~z7-W8llatfYnfL1ZiFwqLO8IinQz1g92-JnEmK3R8dfhgq7yOu~eCNqAVd2Lpz0SFz656kS7yUxMTIw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":81797759,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797759/thumbnails/1.jpg","file_name":"JSME239.pdf","download_url":"https://www.academia.edu/attachments/81797759/download_file","bulk_download_file_name":"Development_Simulation_Model_for_Chargin.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797759/JSME239-libre.pdf?1646570781=\u0026response-content-disposition=attachment%3B+filename%3DDevelopment_Simulation_Model_for_Chargin.pdf\u0026Expires=1744156252\u0026Signature=FKQCE~ueAL9B-rD9gtjZmVNWa1xeJuCcLRxZ946d~3nEqYcPqyzFD4YN5prJj6BFinNso5o8TfHEgQzsLEBbMVNY6xh4qZbrEOZWXMZOdtgwJKAkwCrZvH0osLRTqxgMr2mJ8uqNcUQYDHZbPml-xmgfwBXjOMfLhB-Cep-F1Sgf~lHewKTnRpd6Dc0xW5wTayH1Ctv2OcuOZyDjd~8Wn0ac31QnQfZDA7mYI5dwnC82MYbYP89v7zbzfNf7WLF1KbLImpU2BxdsAZvKbYqvphNO61bkqPy1JceG67ommWajaAbfAOtJ472~ZefS9OY8mZseS6OIwZE1f2MRkkAmNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":18292977,"url":"http://prosiding.bkstm.org/prosiding/2013/JSME239.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175569-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175568"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/73175568/Experimental_study_on_performance_of_standing_wave_thermoacoustic_engine_at_different_tilted_angles_and_resonator_length"><img alt="Research paper thumbnail of Experimental study on performance of standing-wave thermoacoustic engine at different tilted angles and resonator length" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Experimental study on performance of standing-wave thermoacoustic engine at different tilted angles and resonator length</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175568"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175568"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175568; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175568]").text(description); $(".js-view-count[data-work-id=73175568]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175568; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175568']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73175568]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175568,"title":"Experimental study on performance of standing-wave thermoacoustic engine at different tilted angles and resonator length","translated_title":"","metadata":{"publisher":"Author(s)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/73175568/Experimental_study_on_performance_of_standing_wave_thermoacoustic_engine_at_different_tilted_angles_and_resonator_length","translated_internal_url":"","created_at":"2022-03-06T04:40:24.346-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Experimental_study_on_performance_of_standing_wave_thermoacoustic_engine_at_different_tilted_angles_and_resonator_length","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"}],"urls":[{"id":18292975,"url":"http://aip.scitation.org/doi/pdf/10.1063/1.5050013"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175568-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175566"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73175566/Resonator_Influence_Simulation_of_Designed_Close_Open_Standing_Wave_Thermoacoustic_Engine"><img alt="Research paper thumbnail of Resonator Influence Simulation of Designed Close-Open Standing Wave Thermoacoustic Engine" class="work-thumbnail" src="https://attachments.academia-assets.com/81797757/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73175566/Resonator_Influence_Simulation_of_Designed_Close_Open_Standing_Wave_Thermoacoustic_Engine">Resonator Influence Simulation of Designed Close-Open Standing Wave Thermoacoustic Engine</a></div><div class="wp-workCard_item"><span>Advances in Science, Technology and Engineering Systems Journal</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Thermo-acoustic technology is very potential to be applied to convert heat into another energy so...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Thermo-acoustic technology is very potential to be applied to convert heat into another energy source. The complete thermoacoustic engine construction requires a resonator connected to a core where there is a heat exchanger. The thermoacoustic core has a function as an acoustic power generator while the resonator functions as a storage of acoustic power which will shift the amplitude or phase of oscillating pressure or volume flow rate. Experimental testing was carried out to obtain the performance of a quarter wave length of standing wave thermoacoustic engine (SWTE). The resonator is made of a 2 inch Sch 40 stainless steel pipe with a length of 390 mm. The results of this experiment showed that the measured pressure amplitude was 4800 kPa with a working frequency of 138 HZ and produced an acoustic power of 22.85 watts. The parameters of this experimental test are used for the simulation program. The acoustic power generated from the simulation is 20.13 watts, 18.67 watts and 17.82 watts respectively for the length of the resonator 390 mm, 780 mm and 1170 mm.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7d0a49be88c3788727957bf589e755c6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:81797757,&quot;asset_id&quot;:73175566,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/81797757/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175566"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175566"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175566; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175566]").text(description); $(".js-view-count[data-work-id=73175566]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175566; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175566']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7d0a49be88c3788727957bf589e755c6" } } $('.js-work-strip[data-work-id=73175566]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175566,"title":"Resonator Influence Simulation of Designed Close-Open Standing Wave Thermoacoustic Engine","translated_title":"","metadata":{"publisher":"ASTES Journal","grobid_abstract":"Thermo-acoustic technology is very potential to be applied to convert heat into another energy source. The complete thermoacoustic engine construction requires a resonator connected to a core where there is a heat exchanger. The thermoacoustic core has a function as an acoustic power generator while the resonator functions as a storage of acoustic power which will shift the amplitude or phase of oscillating pressure or volume flow rate. Experimental testing was carried out to obtain the performance of a quarter wave length of standing wave thermoacoustic engine (SWTE). The resonator is made of a 2 inch Sch 40 stainless steel pipe with a length of 390 mm. The results of this experiment showed that the measured pressure amplitude was 4800 kPa with a working frequency of 138 HZ and produced an acoustic power of 22.85 watts. The parameters of this experimental test are used for the simulation program. The acoustic power generated from the simulation is 20.13 watts, 18.67 watts and 17.82 watts respectively for the length of the resonator 390 mm, 780 mm and 1170 mm.","publication_name":"Advances in Science, Technology and Engineering Systems Journal","grobid_abstract_attachment_id":81797757},"translated_abstract":null,"internal_url":"https://www.academia.edu/73175566/Resonator_Influence_Simulation_of_Designed_Close_Open_Standing_Wave_Thermoacoustic_Engine","translated_internal_url":"","created_at":"2022-03-06T04:40:24.227-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81797757,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797757/thumbnails/1.jpg","file_name":"ASTESJ_040538.pdf","download_url":"https://www.academia.edu/attachments/81797757/download_file","bulk_download_file_name":"Resonator_Influence_Simulation_of_Design.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797757/ASTESJ_040538-libre.pdf?1646570781=\u0026response-content-disposition=attachment%3B+filename%3DResonator_Influence_Simulation_of_Design.pdf\u0026Expires=1744156252\u0026Signature=Y-NCCOHoLjosgeN5RL0Uj20vvV4RT0lwqEnWurh-or35bxVFYjoJfBdKm-SqM8Y6kJkm-0qj51I-EkauoAMjsmsaZ~bMKi-WgHTPmJH~he-ZB1yhxW9hKgwJreU1lTo~QwniFAMOceMzymby3eTkNoEjxgj-ivChTSf9B0nKzY~5ss-0q3EYEMdBJKaSnrI~oBA9Wx4V923w3A-FzsdNH6jACxCGjWcJgpoZuW3pPqAEprUiwAK7ogErl5LkB3eA2IyX0XbYYbvLeZRk6BdbV50eniyCDZWdsDRmEZ-~fXpn~~5yI9z2c6xz3rvtwRftDQNbD6Gis33cc3dYTakuzA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Resonator_Influence_Simulation_of_Designed_Close_Open_Standing_Wave_Thermoacoustic_Engine","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"Thermo-acoustic technology is very potential to be applied to convert heat into another energy source. The complete thermoacoustic engine construction requires a resonator connected to a core where there is a heat exchanger. The thermoacoustic core has a function as an acoustic power generator while the resonator functions as a storage of acoustic power which will shift the amplitude or phase of oscillating pressure or volume flow rate. Experimental testing was carried out to obtain the performance of a quarter wave length of standing wave thermoacoustic engine (SWTE). The resonator is made of a 2 inch Sch 40 stainless steel pipe with a length of 390 mm. The results of this experiment showed that the measured pressure amplitude was 4800 kPa with a working frequency of 138 HZ and produced an acoustic power of 22.85 watts. The parameters of this experimental test are used for the simulation program. The acoustic power generated from the simulation is 20.13 watts, 18.67 watts and 17.82 watts respectively for the length of the resonator 390 mm, 780 mm and 1170 mm.","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[{"id":81797757,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797757/thumbnails/1.jpg","file_name":"ASTESJ_040538.pdf","download_url":"https://www.academia.edu/attachments/81797757/download_file","bulk_download_file_name":"Resonator_Influence_Simulation_of_Design.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797757/ASTESJ_040538-libre.pdf?1646570781=\u0026response-content-disposition=attachment%3B+filename%3DResonator_Influence_Simulation_of_Design.pdf\u0026Expires=1744156252\u0026Signature=Y-NCCOHoLjosgeN5RL0Uj20vvV4RT0lwqEnWurh-or35bxVFYjoJfBdKm-SqM8Y6kJkm-0qj51I-EkauoAMjsmsaZ~bMKi-WgHTPmJH~he-ZB1yhxW9hKgwJreU1lTo~QwniFAMOceMzymby3eTkNoEjxgj-ivChTSf9B0nKzY~5ss-0q3EYEMdBJKaSnrI~oBA9Wx4V923w3A-FzsdNH6jACxCGjWcJgpoZuW3pPqAEprUiwAK7ogErl5LkB3eA2IyX0XbYYbvLeZRk6BdbV50eniyCDZWdsDRmEZ-~fXpn~~5yI9z2c6xz3rvtwRftDQNbD6Gis33cc3dYTakuzA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":81797758,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797758/thumbnails/1.jpg","file_name":"ASTESJ_040538.pdf","download_url":"https://www.academia.edu/attachments/81797758/download_file","bulk_download_file_name":"Resonator_Influence_Simulation_of_Design.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797758/ASTESJ_040538-libre.pdf?1646570781=\u0026response-content-disposition=attachment%3B+filename%3DResonator_Influence_Simulation_of_Design.pdf\u0026Expires=1744156252\u0026Signature=b55~hYx2-eJL6U8v3GQyHtGP4F8oc4ze0LBa4-BLYz6VCu126hX3fc1Y-nCk-XLNoDHFJjqPPHGQMGCm1Sm-vEZNEYaOa0ahLucoUWRXlzgRU2THYv8wEOB2OmStIUwrwFpMHJVS82uYuh8ofvfBPhdisP7kiqRqZ9YWFS9VV-PF~Mr15fBQgF831rTWyxpJZyHEsER6eVXySbTQpCkR~5g-vPu2SzOLS4JJmx26aFpJVZYJf~V0inhXks47aTsrkORLPyFTIWMoGqvkllhyeTBc9Es1fGiGJwZ-T0JX31m1L1EuFkfg2DlBir1gcp288LmAORz6ZXQ5P9uKWuQTjg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"}],"urls":[{"id":18292974,"url":"https://www.astesj.com/publications/ASTESJ_040538.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175566-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175565"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/73175565/Determination_of_performance_parameters_of_hot_stratified_thermal_energy_storage_tank"><img alt="Research paper thumbnail of Determination of performance parameters of hot stratified thermal energy storage tank" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Determination of performance parameters of hot stratified thermal energy storage tank</div><div class="wp-workCard_item"><span>2016 6th International Annual Engineering Seminar (InAES)</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Performance of stratified thermal energy storage tank is strongly influenced by separation layer ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Performance of stratified thermal energy storage tank is strongly influenced by separation layer between the hot and cool water stored in the tank. This separation layer is evaluated from water temperature inside of the tank. However, difficulty in converting the temperature distribution into performance parameters has been found. In this research, determination of performance parameters from the temperature distribution is investigated. The temperature distributions are obtained from experimental data simulating charging cycle in hot stratified thermal energy storage tank with varies charging flow rates. Determination of the performance parameters are carried out based on temperature distribution utilizing Sigmoid Dose Response formulation. The results show that significant parameter namely thermocline thickness, cumulative cooling capacity and half-cycle Figure of Merit are precisely determined during the charging cycle. Moreover, the parameters growth is also capable to be evaluated precisely in the charging step. The research results proved the ability of SDR formulation for determining the performance parameter in stratified thermal energy storage tank. It his highlighted that the SDR formulation offers advantage of determination performance parameter accurately.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175565"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175565"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175565; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175565]").text(description); $(".js-view-count[data-work-id=73175565]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175565; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175565']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73175565]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175565,"title":"Determination of performance parameters of hot stratified thermal energy storage tank","translated_title":"","metadata":{"abstract":"Performance of stratified thermal energy storage tank is strongly influenced by separation layer between the hot and cool water stored in the tank. This separation layer is evaluated from water temperature inside of the tank. However, difficulty in converting the temperature distribution into performance parameters has been found. In this research, determination of performance parameters from the temperature distribution is investigated. The temperature distributions are obtained from experimental data simulating charging cycle in hot stratified thermal energy storage tank with varies charging flow rates. Determination of the performance parameters are carried out based on temperature distribution utilizing Sigmoid Dose Response formulation. The results show that significant parameter namely thermocline thickness, cumulative cooling capacity and half-cycle Figure of Merit are precisely determined during the charging cycle. Moreover, the parameters growth is also capable to be evaluated precisely in the charging step. The research results proved the ability of SDR formulation for determining the performance parameter in stratified thermal energy storage tank. It his highlighted that the SDR formulation offers advantage of determination performance parameter accurately.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"2016 6th International Annual Engineering Seminar (InAES)"},"translated_abstract":"Performance of stratified thermal energy storage tank is strongly influenced by separation layer between the hot and cool water stored in the tank. This separation layer is evaluated from water temperature inside of the tank. However, difficulty in converting the temperature distribution into performance parameters has been found. In this research, determination of performance parameters from the temperature distribution is investigated. The temperature distributions are obtained from experimental data simulating charging cycle in hot stratified thermal energy storage tank with varies charging flow rates. Determination of the performance parameters are carried out based on temperature distribution utilizing Sigmoid Dose Response formulation. The results show that significant parameter namely thermocline thickness, cumulative cooling capacity and half-cycle Figure of Merit are precisely determined during the charging cycle. Moreover, the parameters growth is also capable to be evaluated precisely in the charging step. The research results proved the ability of SDR formulation for determining the performance parameter in stratified thermal energy storage tank. It his highlighted that the SDR formulation offers advantage of determination performance parameter accurately.","internal_url":"https://www.academia.edu/73175565/Determination_of_performance_parameters_of_hot_stratified_thermal_energy_storage_tank","translated_internal_url":"","created_at":"2022-03-06T04:40:24.154-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Determination_of_performance_parameters_of_hot_stratified_thermal_energy_storage_tank","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Performance of stratified thermal energy storage tank is strongly influenced by separation layer between the hot and cool water stored in the tank. This separation layer is evaluated from water temperature inside of the tank. However, difficulty in converting the temperature distribution into performance parameters has been found. In this research, determination of performance parameters from the temperature distribution is investigated. The temperature distributions are obtained from experimental data simulating charging cycle in hot stratified thermal energy storage tank with varies charging flow rates. Determination of the performance parameters are carried out based on temperature distribution utilizing Sigmoid Dose Response formulation. The results show that significant parameter namely thermocline thickness, cumulative cooling capacity and half-cycle Figure of Merit are precisely determined during the charging cycle. Moreover, the parameters growth is also capable to be evaluated precisely in the charging step. The research results proved the ability of SDR formulation for determining the performance parameter in stratified thermal energy storage tank. It his highlighted that the SDR formulation offers advantage of determination performance parameter accurately.","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175565-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175563"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/73175563/Perancangan_Bejana_Tekan_Vertikal_Dan_Analisis_Skala_Kegempaan_Studi_Kasus_Scrubber_Unit_Karaha_Pt_Pertamina_Geothermal_Energy_"><img alt="Research paper thumbnail of Perancangan Bejana Tekan Vertikal Dan Analisis Skala Kegempaan (Studi Kasus Scrubber Unit Karaha Pt. Pertamina Geothermal Energy)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Perancangan Bejana Tekan Vertikal Dan Analisis Skala Kegempaan (Studi Kasus Scrubber Unit Karaha Pt. Pertamina Geothermal Energy)</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175563"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175563"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175563; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175563]").text(description); $(".js-view-count[data-work-id=73175563]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175563; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175563']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73175563]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175563,"title":"Perancangan Bejana Tekan Vertikal Dan Analisis Skala Kegempaan (Studi Kasus Scrubber Unit Karaha Pt. Pertamina Geothermal Energy)","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2014,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/73175563/Perancangan_Bejana_Tekan_Vertikal_Dan_Analisis_Skala_Kegempaan_Studi_Kasus_Scrubber_Unit_Karaha_Pt_Pertamina_Geothermal_Energy_","translated_internal_url":"","created_at":"2022-03-06T04:40:24.055-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Perancangan_Bejana_Tekan_Vertikal_Dan_Analisis_Skala_Kegempaan_Studi_Kasus_Scrubber_Unit_Karaha_Pt_Pertamina_Geothermal_Energy_","translated_slug":"","page_count":null,"language":"id","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"}],"urls":[{"id":18292972,"url":"http://repository.ugm.ac.id/128949/"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175563-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175562"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/73175562/Simulation_Models_for_Single_and_Two_Stage_Chargingof_Stratified_Thermal_Energy_Storage"><img alt="Research paper thumbnail of Simulation Models for Single and Two-Stage Chargingof Stratified Thermal Energy Storage" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Simulation Models for Single and Two-Stage Chargingof Stratified Thermal Energy Storage</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The current practice of charging thermal energy storage (TES) tank is by using electric chillers....</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The current practice of charging thermal energy storage (TES) tank is by using electric chillers. One of the main reasons is that the temperature limitation of the absorption chillers which might lead to freezing the refrigerant. This was the reason the absorption chillers at co-generated district cooling plants are not being utilized to charge the TES tank. This research focuses on the development of models incorporating absorption chiller to complement electric chiller to charge a stratified TES tank of a co-generated district cooling plant. The models were developed using two approaches, namely temperature distribution analysis approach and heat transfer approach. For the case of temperature distribution analysis, a function was selected to represent its profile. Functional relationship of the temperature distribution was used to formulate thermocline thickness, thermocline limit points, temperature transition point and limit capacity criteria. Using temperature distribution function, simulation model was then developed based on an open charging system. For the heat transfer approach, the models were developed as a close system by integrating the TES tank and chiller equipments. For the TES tank, one-dimensional flow conductiveconvection analysis was used, while the chillers utilized energy balance analysis. For both approaches two types of models, namely single stage and two-stage models were developed. The single stage model is limited to using electric chiller to charge the TES tank. While the two-stage models incorporate both the absorption and electric chillers with the absorption and the electric chillers function in sequence to charge the TES tank. Validation was performed on the single stage charging for both approaches. Results show similarities of temperature distribution values of R2 greater than 0.98 and parameters deviation lower than 6%. From statistical test acceptance analysis for the single stage model, t-computed has highest value of 0.035, which is lower than critical value of 2.145 from the t-distribution table. This indicates that both models were statistically acceptable. Comparisons of the single and two-stage models between the two approaches were also performed using simulation case studies. Results imply that the models are capable of predicting charging characteristic, with deviations lower than 4% for the charging durations and below 2% for the cumulative cooling capacity. Findings from simulations of the two-stage models indicate that the absorption chillers could be used to charge the TES in combination with electric chillers.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175562"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175562"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175562; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175562]").text(description); $(".js-view-count[data-work-id=73175562]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175562; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175562']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73175562]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175562,"title":"Simulation Models for Single and Two-Stage Chargingof Stratified Thermal Energy Storage","translated_title":"","metadata":{"abstract":"The current practice of charging thermal energy storage (TES) tank is by using electric chillers. One of the main reasons is that the temperature limitation of the absorption chillers which might lead to freezing the refrigerant. This was the reason the absorption chillers at co-generated district cooling plants are not being utilized to charge the TES tank. This research focuses on the development of models incorporating absorption chiller to complement electric chiller to charge a stratified TES tank of a co-generated district cooling plant. The models were developed using two approaches, namely temperature distribution analysis approach and heat transfer approach. For the case of temperature distribution analysis, a function was selected to represent its profile. Functional relationship of the temperature distribution was used to formulate thermocline thickness, thermocline limit points, temperature transition point and limit capacity criteria. Using temperature distribution function, simulation model was then developed based on an open charging system. For the heat transfer approach, the models were developed as a close system by integrating the TES tank and chiller equipments. For the TES tank, one-dimensional flow conductiveconvection analysis was used, while the chillers utilized energy balance analysis. For both approaches two types of models, namely single stage and two-stage models were developed. The single stage model is limited to using electric chiller to charge the TES tank. While the two-stage models incorporate both the absorption and electric chillers with the absorption and the electric chillers function in sequence to charge the TES tank. Validation was performed on the single stage charging for both approaches. Results show similarities of temperature distribution values of R2 greater than 0.98 and parameters deviation lower than 6%. From statistical test acceptance analysis for the single stage model, t-computed has highest value of 0.035, which is lower than critical value of 2.145 from the t-distribution table. This indicates that both models were statistically acceptable. Comparisons of the single and two-stage models between the two approaches were also performed using simulation case studies. Results imply that the models are capable of predicting charging characteristic, with deviations lower than 4% for the charging durations and below 2% for the cumulative cooling capacity. Findings from simulations of the two-stage models indicate that the absorption chillers could be used to charge the TES in combination with electric chillers.","publication_date":{"day":1,"month":4,"year":2011,"errors":{}}},"translated_abstract":"The current practice of charging thermal energy storage (TES) tank is by using electric chillers. One of the main reasons is that the temperature limitation of the absorption chillers which might lead to freezing the refrigerant. This was the reason the absorption chillers at co-generated district cooling plants are not being utilized to charge the TES tank. This research focuses on the development of models incorporating absorption chiller to complement electric chiller to charge a stratified TES tank of a co-generated district cooling plant. The models were developed using two approaches, namely temperature distribution analysis approach and heat transfer approach. For the case of temperature distribution analysis, a function was selected to represent its profile. Functional relationship of the temperature distribution was used to formulate thermocline thickness, thermocline limit points, temperature transition point and limit capacity criteria. Using temperature distribution function, simulation model was then developed based on an open charging system. For the heat transfer approach, the models were developed as a close system by integrating the TES tank and chiller equipments. For the TES tank, one-dimensional flow conductiveconvection analysis was used, while the chillers utilized energy balance analysis. For both approaches two types of models, namely single stage and two-stage models were developed. The single stage model is limited to using electric chiller to charge the TES tank. While the two-stage models incorporate both the absorption and electric chillers with the absorption and the electric chillers function in sequence to charge the TES tank. Validation was performed on the single stage charging for both approaches. Results show similarities of temperature distribution values of R2 greater than 0.98 and parameters deviation lower than 6%. From statistical test acceptance analysis for the single stage model, t-computed has highest value of 0.035, which is lower than critical value of 2.145 from the t-distribution table. This indicates that both models were statistically acceptable. Comparisons of the single and two-stage models between the two approaches were also performed using simulation case studies. Results imply that the models are capable of predicting charging characteristic, with deviations lower than 4% for the charging durations and below 2% for the cumulative cooling capacity. Findings from simulations of the two-stage models indicate that the absorption chillers could be used to charge the TES in combination with electric chillers.","internal_url":"https://www.academia.edu/73175562/Simulation_Models_for_Single_and_Two_Stage_Chargingof_Stratified_Thermal_Energy_Storage","translated_internal_url":"","created_at":"2022-03-06T04:40:23.949-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Simulation_Models_for_Single_and_Two_Stage_Chargingof_Stratified_Thermal_Energy_Storage","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The current practice of charging thermal energy storage (TES) tank is by using electric chillers. One of the main reasons is that the temperature limitation of the absorption chillers which might lead to freezing the refrigerant. This was the reason the absorption chillers at co-generated district cooling plants are not being utilized to charge the TES tank. This research focuses on the development of models incorporating absorption chiller to complement electric chiller to charge a stratified TES tank of a co-generated district cooling plant. The models were developed using two approaches, namely temperature distribution analysis approach and heat transfer approach. For the case of temperature distribution analysis, a function was selected to represent its profile. Functional relationship of the temperature distribution was used to formulate thermocline thickness, thermocline limit points, temperature transition point and limit capacity criteria. Using temperature distribution function, simulation model was then developed based on an open charging system. For the heat transfer approach, the models were developed as a close system by integrating the TES tank and chiller equipments. For the TES tank, one-dimensional flow conductiveconvection analysis was used, while the chillers utilized energy balance analysis. For both approaches two types of models, namely single stage and two-stage models were developed. The single stage model is limited to using electric chiller to charge the TES tank. While the two-stage models incorporate both the absorption and electric chillers with the absorption and the electric chillers function in sequence to charge the TES tank. Validation was performed on the single stage charging for both approaches. Results show similarities of temperature distribution values of R2 greater than 0.98 and parameters deviation lower than 6%. From statistical test acceptance analysis for the single stage model, t-computed has highest value of 0.035, which is lower than critical value of 2.145 from the t-distribution table. This indicates that both models were statistically acceptable. Comparisons of the single and two-stage models between the two approaches were also performed using simulation case studies. Results imply that the models are capable of predicting charging characteristic, with deviations lower than 4% for the charging durations and below 2% for the cumulative cooling capacity. Findings from simulations of the two-stage models indicate that the absorption chillers could be used to charge the TES in combination with electric chillers.","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[],"research_interests":[],"urls":[{"id":18292970,"url":"http://utpedia.utp.edu.my/2865/"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175562-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175560"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73175560/Operation_and_Performance_of_a_Thermal_Energy_Storage_System_A_Case_Study_of_Campus_Cooling_using_Cogeneration_Plant"><img alt="Research paper thumbnail of Operation and Performance of a Thermal Energy Storage System: A Case Study of Campus Cooling using Cogeneration Plant" class="work-thumbnail" src="https://attachments.academia-assets.com/81797787/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73175560/Operation_and_Performance_of_a_Thermal_Energy_Storage_System_A_Case_Study_of_Campus_Cooling_using_Cogeneration_Plant">Operation and Performance of a Thermal Energy Storage System: A Case Study of Campus Cooling using Cogeneration Plant</a></div><div class="wp-workCard_item"><span>Energy Procedia</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The paper presents the study on operation and performance of thermal energy storage (TES) system....</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The paper presents the study on operation and performance of thermal energy storage (TES) system. The TES system is installed at a cogeneration plant for campus cooling. Operating data from 2006 until 2009 were anlaysed to evaluate the operating modes, half-cycle figure of merit (FOM) and thermocline performance of the TES system. The findings indicate that the TES system was operated based on partial mode strategy. The average half-cycle FOM evaluated for charging and discharging are 0.47 and 0.67 respectively. The thermocline thickness estimated is 1.5 m. The temperature distribution profiles indicate that the TES functioned as stratified TES.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2780039d81902589e6689e548ddca624" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:81797787,&quot;asset_id&quot;:73175560,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/81797787/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175560"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175560"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175560; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175560]").text(description); $(".js-view-count[data-work-id=73175560]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175560; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175560']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2780039d81902589e6689e548ddca624" } } $('.js-work-strip[data-work-id=73175560]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175560,"title":"Operation and Performance of a Thermal Energy Storage System: A Case Study of Campus Cooling using Cogeneration Plant","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"The paper presents the study on operation and performance of thermal energy storage (TES) system. The TES system is installed at a cogeneration plant for campus cooling. Operating data from 2006 until 2009 were anlaysed to evaluate the operating modes, half-cycle figure of merit (FOM) and thermocline performance of the TES system. The findings indicate that the TES system was operated based on partial mode strategy. The average half-cycle FOM evaluated for charging and discharging are 0.47 and 0.67 respectively. The thermocline thickness estimated is 1.5 m. The temperature distribution profiles indicate that the TES functioned as stratified TES.","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"Energy Procedia","grobid_abstract_attachment_id":81797787},"translated_abstract":null,"internal_url":"https://www.academia.edu/73175560/Operation_and_Performance_of_a_Thermal_Energy_Storage_System_A_Case_Study_of_Campus_Cooling_using_Cogeneration_Plant","translated_internal_url":"","created_at":"2022-03-06T04:40:23.876-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81797787,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797787/thumbnails/1.jpg","file_name":"aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMTg3NjYxMDIxMTA0NTA5Nw__.pdf","download_url":"https://www.academia.edu/attachments/81797787/download_file","bulk_download_file_name":"Operation_and_Performance_of_a_Thermal_E.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797787/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMTg3NjYxMDIxMTA0NTA5Nw__-libre.pdf?1646571219=\u0026response-content-disposition=attachment%3B+filename%3DOperation_and_Performance_of_a_Thermal_E.pdf\u0026Expires=1744156252\u0026Signature=fnu5J7mbCdlDkW0vS-Cuddjo2uadYwLlsTHMxJx9ItBEjnWgrJj96AyrvPCp~lxSUSkO9L82Fsa2WuMYE0pEv85FRXEkWuKZMT7YXq2jkZdzNRZmEXYe9L9TQ0TIkANWOiOkGI4ZEebdiC3wRrHKkNQoksZuDqxeQd5E4Wb~0NUDxLDvSp44k30yrssl27X1RB3~HYyMIu5Fak4KK3WMldpgit4QzXXhOEyHDEUemtVvVv2xMM2K-0IOjtecp2h8jLp5w-DEbFEYe1NZhsX9jE1KUgO0lrsvz9vJXbEF8M66V9dmFnG59NfWCQvUPe7J5ewR-0g5fz-N5jJmjASNpA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Operation_and_Performance_of_a_Thermal_Energy_Storage_System_A_Case_Study_of_Campus_Cooling_using_Cogeneration_Plant","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"The paper presents the study on operation and performance of thermal energy storage (TES) system. The TES system is installed at a cogeneration plant for campus cooling. Operating data from 2006 until 2009 were anlaysed to evaluate the operating modes, half-cycle figure of merit (FOM) and thermocline performance of the TES system. The findings indicate that the TES system was operated based on partial mode strategy. The average half-cycle FOM evaluated for charging and discharging are 0.47 and 0.67 respectively. The thermocline thickness estimated is 1.5 m. The temperature distribution profiles indicate that the TES functioned as stratified TES.","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[{"id":81797787,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797787/thumbnails/1.jpg","file_name":"aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMTg3NjYxMDIxMTA0NTA5Nw__.pdf","download_url":"https://www.academia.edu/attachments/81797787/download_file","bulk_download_file_name":"Operation_and_Performance_of_a_Thermal_E.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797787/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMTg3NjYxMDIxMTA0NTA5Nw__-libre.pdf?1646571219=\u0026response-content-disposition=attachment%3B+filename%3DOperation_and_Performance_of_a_Thermal_E.pdf\u0026Expires=1744156252\u0026Signature=fnu5J7mbCdlDkW0vS-Cuddjo2uadYwLlsTHMxJx9ItBEjnWgrJj96AyrvPCp~lxSUSkO9L82Fsa2WuMYE0pEv85FRXEkWuKZMT7YXq2jkZdzNRZmEXYe9L9TQ0TIkANWOiOkGI4ZEebdiC3wRrHKkNQoksZuDqxeQd5E4Wb~0NUDxLDvSp44k30yrssl27X1RB3~HYyMIu5Fak4KK3WMldpgit4QzXXhOEyHDEUemtVvVv2xMM2K-0IOjtecp2h8jLp5w-DEbFEYe1NZhsX9jE1KUgO0lrsvz9vJXbEF8M66V9dmFnG59NfWCQvUPe7J5ewR-0g5fz-N5jJmjASNpA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":281300,"name":"Thermal Energy Storage","url":"https://www.academia.edu/Documents/in/Thermal_Energy_Storage"},{"id":307886,"name":"Thermocline","url":"https://www.academia.edu/Documents/in/Thermocline"},{"id":1308377,"name":"Figure of Merit","url":"https://www.academia.edu/Documents/in/Figure_of_Merit"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175560-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175559"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73175559/Operation_and_Performance_of_a_Thermal_Energy_Storage_System_A_Case_Study_of_Campus_Cooling_using_Cogeneration_Plant"><img alt="Research paper thumbnail of Operation and Performance of a Thermal Energy Storage System: A Case Study of Campus Cooling using Cogeneration Plant" class="work-thumbnail" src="https://attachments.academia-assets.com/81797790/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73175559/Operation_and_Performance_of_a_Thermal_Energy_Storage_System_A_Case_Study_of_Campus_Cooling_using_Cogeneration_Plant">Operation and Performance of a Thermal Energy Storage System: A Case Study of Campus Cooling using Cogeneration Plant</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The paper presents the study on operation and performance of thermal energy storage (TES) system....</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The paper presents the study on operation and performance of thermal energy storage (TES) system. The TES system is installed at a cogeneration plant for campus cooling. Operating data from 2006 until 2009 were anlaysed to evaluate the operating modes, half-cycle figure of merit (FOM) and thermocline performance of the TES system. The findings indicate that the TES system was operated based on partial mode strategy. The average half-cycle FOM evaluated for charging and discharging are 0.47 and 0.67 respectively. The thermocline thickness estimated is 1.5 m. The temperature distribution profiles indicate that the TES functioned as stratified TES.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6c5c1f0937ed6f8d4932c6f6d778c539" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:81797790,&quot;asset_id&quot;:73175559,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/81797790/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175559"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175559"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175559; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175559]").text(description); $(".js-view-count[data-work-id=73175559]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175559; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175559']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6c5c1f0937ed6f8d4932c6f6d778c539" } } $('.js-work-strip[data-work-id=73175559]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175559,"title":"Operation and Performance of a Thermal Energy Storage System: A Case Study of Campus Cooling using Cogeneration Plant","translated_title":"","metadata":{"publisher":"eprints.utp.edu.my","ai_title_tag":"Thermal Energy Storage System Performance Study","grobid_abstract":"The paper presents the study on operation and performance of thermal energy storage (TES) system. The TES system is installed at a cogeneration plant for campus cooling. Operating data from 2006 until 2009 were anlaysed to evaluate the operating modes, half-cycle figure of merit (FOM) and thermocline performance of the TES system. The findings indicate that the TES system was operated based on partial mode strategy. The average half-cycle FOM evaluated for charging and discharging are 0.47 and 0.67 respectively. The thermocline thickness estimated is 1.5 m. The temperature distribution profiles indicate that the TES functioned as stratified TES.","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"grobid_abstract_attachment_id":81797790},"translated_abstract":null,"internal_url":"https://www.academia.edu/73175559/Operation_and_Performance_of_a_Thermal_Energy_Storage_System_A_Case_Study_of_Campus_Cooling_using_Cogeneration_Plant","translated_internal_url":"","created_at":"2022-03-06T04:40:23.809-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81797790,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797790/thumbnails/1.jpg","file_name":"aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMTg3NjYxMDIxMTA0NTA5Nw__.pdf","download_url":"https://www.academia.edu/attachments/81797790/download_file","bulk_download_file_name":"Operation_and_Performance_of_a_Thermal_E.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797790/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMTg3NjYxMDIxMTA0NTA5Nw__-libre.pdf?1646571218=\u0026response-content-disposition=attachment%3B+filename%3DOperation_and_Performance_of_a_Thermal_E.pdf\u0026Expires=1744156252\u0026Signature=SoJdkXmGOF3L91nAhlwAWF~T1-4XVlt2~mGZfSl9RMctPKos~nPGqC6iAqFkbE~~bE34i7wOZ0nlIPiJKuwYTDciNkPtgRnTMX0qNljs1BD4Xay-N1uKIPgLClOpwe-vXMkN0a2sLG964X8xP1R-5FML0FJJhFi-N339074nOUVpX2Cbl4fIvQZHsi8W-LRM~iQ-tu9~4HvKtbVU2m5ucz2xJf7~dWGWtQExscibooJ3Q3jR7LZSP6KcvAf59ItAxnV~Q6pJC4m1HalFywoEhzWwZ4j28rMwVd8JD~KLtryj0OJ6CGOi3Ng~HGePbcerP4yXO5seRyoTQ8E58t3tGg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Operation_and_Performance_of_a_Thermal_Energy_Storage_System_A_Case_Study_of_Campus_Cooling_using_Cogeneration_Plant","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"The paper presents the study on operation and performance of thermal energy storage (TES) system. The TES system is installed at a cogeneration plant for campus cooling. Operating data from 2006 until 2009 were anlaysed to evaluate the operating modes, half-cycle figure of merit (FOM) and thermocline performance of the TES system. The findings indicate that the TES system was operated based on partial mode strategy. The average half-cycle FOM evaluated for charging and discharging are 0.47 and 0.67 respectively. The thermocline thickness estimated is 1.5 m. The temperature distribution profiles indicate that the TES functioned as stratified TES.","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[{"id":81797790,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797790/thumbnails/1.jpg","file_name":"aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMTg3NjYxMDIxMTA0NTA5Nw__.pdf","download_url":"https://www.academia.edu/attachments/81797790/download_file","bulk_download_file_name":"Operation_and_Performance_of_a_Thermal_E.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797790/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMTg3NjYxMDIxMTA0NTA5Nw__-libre.pdf?1646571218=\u0026response-content-disposition=attachment%3B+filename%3DOperation_and_Performance_of_a_Thermal_E.pdf\u0026Expires=1744156252\u0026Signature=SoJdkXmGOF3L91nAhlwAWF~T1-4XVlt2~mGZfSl9RMctPKos~nPGqC6iAqFkbE~~bE34i7wOZ0nlIPiJKuwYTDciNkPtgRnTMX0qNljs1BD4Xay-N1uKIPgLClOpwe-vXMkN0a2sLG964X8xP1R-5FML0FJJhFi-N339074nOUVpX2Cbl4fIvQZHsi8W-LRM~iQ-tu9~4HvKtbVU2m5ucz2xJf7~dWGWtQExscibooJ3Q3jR7LZSP6KcvAf59ItAxnV~Q6pJC4m1HalFywoEhzWwZ4j28rMwVd8JD~KLtryj0OJ6CGOi3Ng~HGePbcerP4yXO5seRyoTQ8E58t3tGg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":281300,"name":"Thermal Energy Storage","url":"https://www.academia.edu/Documents/in/Thermal_Energy_Storage"},{"id":307886,"name":"Thermocline","url":"https://www.academia.edu/Documents/in/Thermocline"},{"id":1308377,"name":"Figure of Merit","url":"https://www.academia.edu/Documents/in/Figure_of_Merit"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175559-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175557"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73175557/Performance_Evaluation_of_Stratified_TES_using_Sigmoid_Dose_Response_Function"><img alt="Research paper thumbnail of Performance Evaluation of Stratified TES using Sigmoid Dose Response Function" class="work-thumbnail" src="https://attachments.academia-assets.com/81797785/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73175557/Performance_Evaluation_of_Stratified_TES_using_Sigmoid_Dose_Response_Function">Performance Evaluation of Stratified TES using Sigmoid Dose Response Function</a></div><div class="wp-workCard_item"><span>Journal of Applied Sciences</span><span>, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0a4e6a3420ef659a8ceae40dc3e12929" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:81797785,&quot;asset_id&quot;:73175557,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/81797785/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175557"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175557"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175557; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175557]").text(description); $(".js-view-count[data-work-id=73175557]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175557; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175557']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0a4e6a3420ef659a8ceae40dc3e12929" } } $('.js-work-strip[data-work-id=73175557]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175557,"title":"Performance Evaluation of Stratified TES using Sigmoid Dose Response Function","translated_title":"","metadata":{"publisher":"Science Alert","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Journal of Applied Sciences"},"translated_abstract":null,"internal_url":"https://www.academia.edu/73175557/Performance_Evaluation_of_Stratified_TES_using_Sigmoid_Dose_Response_Function","translated_internal_url":"","created_at":"2022-03-06T04:40:23.726-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81797785,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797785/thumbnails/1.jpg","file_name":"qredirect.pdf","download_url":"https://www.academia.edu/attachments/81797785/download_file","bulk_download_file_name":"Performance_Evaluation_of_Stratified_TES.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797785/qredirect-libre.pdf?1646571218=\u0026response-content-disposition=attachment%3B+filename%3DPerformance_Evaluation_of_Stratified_TES.pdf\u0026Expires=1744156252\u0026Signature=cxrrzRCN48ObG5yVPLyztklb3F~gBOoCbt-9mhbTcmt0SULU85nxnxyP-6IsdoTnLTa-nmx~fdyEXqBQxFw5f~4qNkIEfT83eN7VT03djgVF1AsTzIC2LcfrtlgUqF5b9IcW~WkZ5jdVNiQ6ICeiPjQcoKR03nNq-BvGEPIPdXuKLsbGp5GeqDzDRyGAUv2uKHRvLxfw6voTs5ZG0rrePqdTHQzhE9js3hxvfM1K0jje45A2AAUIJrxzVNdpxP4lHHdqJmHDcdM8NfqEOaMtl92jp3ZD66oX3sGhnV37DXcphFEbpLEv0asZjxqiZM6swAJ7WgTrqivw55gOUJ4Jrg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Performance_Evaluation_of_Stratified_TES_using_Sigmoid_Dose_Response_Function","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[{"id":81797785,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797785/thumbnails/1.jpg","file_name":"qredirect.pdf","download_url":"https://www.academia.edu/attachments/81797785/download_file","bulk_download_file_name":"Performance_Evaluation_of_Stratified_TES.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797785/qredirect-libre.pdf?1646571218=\u0026response-content-disposition=attachment%3B+filename%3DPerformance_Evaluation_of_Stratified_TES.pdf\u0026Expires=1744156252\u0026Signature=cxrrzRCN48ObG5yVPLyztklb3F~gBOoCbt-9mhbTcmt0SULU85nxnxyP-6IsdoTnLTa-nmx~fdyEXqBQxFw5f~4qNkIEfT83eN7VT03djgVF1AsTzIC2LcfrtlgUqF5b9IcW~WkZ5jdVNiQ6ICeiPjQcoKR03nNq-BvGEPIPdXuKLsbGp5GeqDzDRyGAUv2uKHRvLxfw6voTs5ZG0rrePqdTHQzhE9js3hxvfM1K0jje45A2AAUIJrxzVNdpxP4lHHdqJmHDcdM8NfqEOaMtl92jp3ZD66oX3sGhnV37DXcphFEbpLEv0asZjxqiZM6swAJ7WgTrqivw55gOUJ4Jrg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":55641,"name":"Performance Evaluation","url":"https://www.academia.edu/Documents/in/Performance_Evaluation"},{"id":159232,"name":"Applied Sciences","url":"https://www.academia.edu/Documents/in/Applied_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175557-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175556"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73175556/Performance_Evaluation_of_Stratified_TES_using_Sigmoid_Dose_Response_Function"><img alt="Research paper thumbnail of Performance Evaluation of Stratified TES using Sigmoid Dose Response Function" class="work-thumbnail" src="https://attachments.academia-assets.com/81797791/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73175556/Performance_Evaluation_of_Stratified_TES_using_Sigmoid_Dose_Response_Function">Performance Evaluation of Stratified TES using Sigmoid Dose Response Function</a></div><div class="wp-workCard_item"><span>Journal of Applied Sciences</span><span>, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Temperature distribution on the operating stratified thermal energy storage (TES) is commonly ava...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Temperature distribution on the operating stratified thermal energy storage (TES) is commonly available as discrete data. Due to this, it is difficult to conduct performance evaluation based on thermocline profile, because limit points could not be determined ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="09ad184f0b7b593d0da06e3b2adbc2f6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:81797791,&quot;asset_id&quot;:73175556,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/81797791/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175556"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175556"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175556; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175556]").text(description); $(".js-view-count[data-work-id=73175556]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175556; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175556']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "09ad184f0b7b593d0da06e3b2adbc2f6" } } $('.js-work-strip[data-work-id=73175556]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175556,"title":"Performance Evaluation of Stratified TES using Sigmoid Dose Response Function","translated_title":"","metadata":{"abstract":"Temperature distribution on the operating stratified thermal energy storage (TES) is commonly available as discrete data. Due to this, it is difficult to conduct performance evaluation based on thermocline profile, because limit points could not be determined ...","publisher":"Science Alert","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Journal of Applied Sciences"},"translated_abstract":"Temperature distribution on the operating stratified thermal energy storage (TES) is commonly available as discrete data. Due to this, it is difficult to conduct performance evaluation based on thermocline profile, because limit points could not be determined ...","internal_url":"https://www.academia.edu/73175556/Performance_Evaluation_of_Stratified_TES_using_Sigmoid_Dose_Response_Function","translated_internal_url":"","created_at":"2022-03-06T04:40:23.606-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81797791,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797791/thumbnails/1.jpg","file_name":"qredirect.pdf","download_url":"https://www.academia.edu/attachments/81797791/download_file","bulk_download_file_name":"Performance_Evaluation_of_Stratified_TES.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797791/qredirect-libre.pdf?1646571217=\u0026response-content-disposition=attachment%3B+filename%3DPerformance_Evaluation_of_Stratified_TES.pdf\u0026Expires=1744156252\u0026Signature=e8KHDTqXtfDMzLfCES8xiRERvbqws80JIUekb0PYJkLLnpD4ClTD~iZbU-ovQg8kA3ENOruwMXSKCZOOfzNQaVcO4JdcNfQ1XO3LM0hL1hXWpsf9C9R0~Cma-exmr73qWlUYHVbW5qYNzXG7jxTJAldudT8wS1G-G1YmGSdjqkBY9bUOYsEAtd10nfmJKKN2x2jWi6ZkQsxpxKxFAD2ruoTokXoq9szq7pGi8JrQHn6aTAGqYZLGN0yf0oFrlj317chibm7c4nLStaN-wjrnvNxx0uCbqPKMc9j98rNc5ATf9USK2IC0M2~9eEacYfqCp5xdYP1jPjfh2m7MNIX6Cw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Performance_Evaluation_of_Stratified_TES_using_Sigmoid_Dose_Response_Function","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"Temperature distribution on the operating stratified thermal energy storage (TES) is commonly available as discrete data. Due to this, it is difficult to conduct performance evaluation based on thermocline profile, because limit points could not be determined ...","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[{"id":81797791,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797791/thumbnails/1.jpg","file_name":"qredirect.pdf","download_url":"https://www.academia.edu/attachments/81797791/download_file","bulk_download_file_name":"Performance_Evaluation_of_Stratified_TES.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797791/qredirect-libre.pdf?1646571217=\u0026response-content-disposition=attachment%3B+filename%3DPerformance_Evaluation_of_Stratified_TES.pdf\u0026Expires=1744156252\u0026Signature=e8KHDTqXtfDMzLfCES8xiRERvbqws80JIUekb0PYJkLLnpD4ClTD~iZbU-ovQg8kA3ENOruwMXSKCZOOfzNQaVcO4JdcNfQ1XO3LM0hL1hXWpsf9C9R0~Cma-exmr73qWlUYHVbW5qYNzXG7jxTJAldudT8wS1G-G1YmGSdjqkBY9bUOYsEAtd10nfmJKKN2x2jWi6ZkQsxpxKxFAD2ruoTokXoq9szq7pGi8JrQHn6aTAGqYZLGN0yf0oFrlj317chibm7c4nLStaN-wjrnvNxx0uCbqPKMc9j98rNc5ATf9USK2IC0M2~9eEacYfqCp5xdYP1jPjfh2m7MNIX6Cw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":55641,"name":"Performance Evaluation","url":"https://www.academia.edu/Documents/in/Performance_Evaluation"},{"id":159232,"name":"Applied Sciences","url":"https://www.academia.edu/Documents/in/Applied_Sciences"}],"urls":[{"id":18292968,"url":"http://adsabs.harvard.edu/abs/2011JApSc..11.1642W"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175556-figures'); } }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="14211772" id="papers"><div class="js-work-strip profile--work_container" data-work-id="73175583"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/73175583/Prediction_of_the_performance_of_the_thermoacoustic_engine_CoATE_using_DeltaEC"><img alt="Research paper thumbnail of Prediction of the performance of the thermoacoustic engine (CoATE) using DeltaEC" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Prediction of the performance of the thermoacoustic engine (CoATE) using DeltaEC</div><div class="wp-workCard_item"><span>THERMOFLUID X: 10th International Conference on Thermofluids 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175583"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175583"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175583; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175583]").text(description); $(".js-view-count[data-work-id=73175583]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175583; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175583']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73175583]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175583,"title":"Prediction of the performance of the thermoacoustic engine (CoATE) using DeltaEC","translated_title":"","metadata":{"publisher":"AIP Publishing","publication_name":"THERMOFLUID X: 10th International Conference on Thermofluids 2019"},"translated_abstract":null,"internal_url":"https://www.academia.edu/73175583/Prediction_of_the_performance_of_the_thermoacoustic_engine_CoATE_using_DeltaEC","translated_internal_url":"","created_at":"2022-03-06T04:40:25.345-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Prediction_of_the_performance_of_the_thermoacoustic_engine_CoATE_using_DeltaEC","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"}],"urls":[{"id":18292986,"url":"http://aip.scitation.org/doi/pdf/10.1063/5.0018922"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175583-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175582"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/73175582/Characteristics_of_gradual_discharging_process_on_a_thermosyphon_SWH_tank_containing_PCM"><img alt="Research paper thumbnail of Characteristics of gradual discharging process on a thermosyphon SWH tank containing PCM" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Characteristics of gradual discharging process on a thermosyphon SWH tank containing PCM</div><div class="wp-workCard_item"><span>2018 4th International Conference on Science and Technology (ICST)</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper aims to reveal the characteristics of thermal energy release in a solar water heater (...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper aims to reveal the characteristics of thermal energy release in a solar water heater (SWH) tank involving phase change materials (PCM) as thermal energy storage material. A bundle of cylindrical capsules was inserted in 31.37 liters of SWH tank. The capsule contains paraffin wax as latent type heat storage. K type thermocouples were mounted on the water side and the PCM side. Experiments was begun with the charging process using solar energy until water temperature exceeds the melting temperature of PCM. After that, a gradual discharging process is done to release the thermal energy from the tank. The SWH tank containing 17.3 liters of water can produce 60 liters of hot water with an average water temperature of 45.13 °. This condition is achieved when the average daily radiation intensity is 699.92 W/m2. The PCM has contributed in storing thermal energy during the discharging process.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175582"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175582"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175582; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175582]").text(description); $(".js-view-count[data-work-id=73175582]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175582; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175582']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73175582]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175582,"title":"Characteristics of gradual discharging process on a thermosyphon SWH tank containing PCM","translated_title":"","metadata":{"abstract":"This paper aims to reveal the characteristics of thermal energy release in a solar water heater (SWH) tank involving phase change materials (PCM) as thermal energy storage material. A bundle of cylindrical capsules was inserted in 31.37 liters of SWH tank. The capsule contains paraffin wax as latent type heat storage. K type thermocouples were mounted on the water side and the PCM side. Experiments was begun with the charging process using solar energy until water temperature exceeds the melting temperature of PCM. After that, a gradual discharging process is done to release the thermal energy from the tank. The SWH tank containing 17.3 liters of water can produce 60 liters of hot water with an average water temperature of 45.13 °. This condition is achieved when the average daily radiation intensity is 699.92 W/m2. The PCM has contributed in storing thermal energy during the discharging process.","publisher":"IEEE","publication_name":"2018 4th International Conference on Science and Technology (ICST)"},"translated_abstract":"This paper aims to reveal the characteristics of thermal energy release in a solar water heater (SWH) tank involving phase change materials (PCM) as thermal energy storage material. A bundle of cylindrical capsules was inserted in 31.37 liters of SWH tank. The capsule contains paraffin wax as latent type heat storage. K type thermocouples were mounted on the water side and the PCM side. Experiments was begun with the charging process using solar energy until water temperature exceeds the melting temperature of PCM. After that, a gradual discharging process is done to release the thermal energy from the tank. The SWH tank containing 17.3 liters of water can produce 60 liters of hot water with an average water temperature of 45.13 °. This condition is achieved when the average daily radiation intensity is 699.92 W/m2. The PCM has contributed in storing thermal energy during the discharging process.","internal_url":"https://www.academia.edu/73175582/Characteristics_of_gradual_discharging_process_on_a_thermosyphon_SWH_tank_containing_PCM","translated_internal_url":"","created_at":"2022-03-06T04:40:25.234-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Characteristics_of_gradual_discharging_process_on_a_thermosyphon_SWH_tank_containing_PCM","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"This paper aims to reveal the characteristics of thermal energy release in a solar water heater (SWH) tank involving phase change materials (PCM) as thermal energy storage material. A bundle of cylindrical capsules was inserted in 31.37 liters of SWH tank. The capsule contains paraffin wax as latent type heat storage. K type thermocouples were mounted on the water side and the PCM side. Experiments was begun with the charging process using solar energy until water temperature exceeds the melting temperature of PCM. After that, a gradual discharging process is done to release the thermal energy from the tank. The SWH tank containing 17.3 liters of water can produce 60 liters of hot water with an average water temperature of 45.13 °. This condition is achieved when the average daily radiation intensity is 699.92 W/m2. The PCM has contributed in storing thermal energy during the discharging process.","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[],"research_interests":[],"urls":[{"id":18292984,"url":"http://xplorestaging.ieee.org/ielx7/8510778/8528566/08528581.pdf?arnumber=8528581"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175582-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175580"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73175580/Pemilihan_provider_sand_consolidation_dengan_metode_analytical_hierarchy_process"><img alt="Research paper thumbnail of Pemilihan provider sand consolidation dengan metode analytical hierarchy process" class="work-thumbnail" src="https://attachments.academia-assets.com/81797788/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73175580/Pemilihan_provider_sand_consolidation_dengan_metode_analytical_hierarchy_process">Pemilihan provider sand consolidation dengan metode analytical hierarchy process</a></div><div class="wp-workCard_item"><span>Angkasa: Jurnal Ilmiah Bidang Teknologi</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">One of the sand control methods commonly used by oil and gas companies for well maintenance work ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">One of the sand control methods commonly used by oil and gas companies for well maintenance work is sand consolidation (SCON). The process of selecting providers has been carried out by auction. To select the provider to be more transparent, measurable, and accountable, it is necessary to design a standardized decision-making system that is compatible with existing problems. This study aimed to determine what parameters are the basis for consideration in choosing a provider and designing a decision-making system. The method used in this research is Analytical Hierarchy Process (AHP). The results indicate that the parameters taken into consideration are compatibility (0.349), safety &amp; environment (0.229), quality (0.219), cost (0.127), and finally service (0.075). ST-α2-HL with a weight of 0.282 is the chosen provider. AHP can be applied as an excellent method in the case of determining the best alternative for SCON providers. The comparison of the results between the decision-maker and the AHP method from the perspective of the best alternative only reaches 100%.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9f42752fc95a1d6e5cfe9050b8aa8813" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:81797788,&quot;asset_id&quot;:73175580,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/81797788/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175580"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175580"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175580; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175580]").text(description); $(".js-view-count[data-work-id=73175580]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175580; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175580']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9f42752fc95a1d6e5cfe9050b8aa8813" } } $('.js-work-strip[data-work-id=73175580]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175580,"title":"Pemilihan provider sand consolidation dengan metode analytical hierarchy process","translated_title":"","metadata":{"publisher":"SENATIK","grobid_abstract":"One of the sand control methods commonly used by oil and gas companies for well maintenance work is sand consolidation (SCON). The process of selecting providers has been carried out by auction. To select the provider to be more transparent, measurable, and accountable, it is necessary to design a standardized decision-making system that is compatible with existing problems. This study aimed to determine what parameters are the basis for consideration in choosing a provider and designing a decision-making system. The method used in this research is Analytical Hierarchy Process (AHP). The results indicate that the parameters taken into consideration are compatibility (0.349), safety \u0026 environment (0.229), quality (0.219), cost (0.127), and finally service (0.075). ST-α2-HL with a weight of 0.282 is the chosen provider. AHP can be applied as an excellent method in the case of determining the best alternative for SCON providers. The comparison of the results between the decision-maker and the AHP method from the perspective of the best alternative only reaches 100%.","publication_name":"Angkasa: Jurnal Ilmiah Bidang Teknologi","grobid_abstract_attachment_id":81797788},"translated_abstract":null,"internal_url":"https://www.academia.edu/73175580/Pemilihan_provider_sand_consolidation_dengan_metode_analytical_hierarchy_process","translated_internal_url":"","created_at":"2022-03-06T04:40:25.160-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81797788,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797788/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/81797788/download_file","bulk_download_file_name":"Pemilihan_provider_sand_consolidation_de.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797788/pdf-libre.pdf?1646571220=\u0026response-content-disposition=attachment%3B+filename%3DPemilihan_provider_sand_consolidation_de.pdf\u0026Expires=1744156252\u0026Signature=HwIxXg37uXjL3TbwquanymVjfSXxb6Bo9LA9oOeYI0tBTZIo5NmMjvhnekxjgeC83e6p3pPh62V8boav8RVLKpjVkTN7sBL4Ee2y6cyv81QC0goEYbP6zB0hP7A8kBOkiJqBUzL060gImGmGbSMacIF6dRr7KNOXbxYRFdXrpwTJ9ip~RPXwQX1PFGeE3vtq05k8x5ECq1BZnCOq~Pg5qtW1u53v24a2~gGisWY3WvyysKlDxigcxTb~itn1AdcX9BglTs1TwaK~tUY~69q7mknQASklq0cTv25Lbn5KQrO2RHLRrqnWe6bg80jRFd0-ROpja2z5WF1mvQvj~7sO9w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Pemilihan_provider_sand_consolidation_dengan_metode_analytical_hierarchy_process","translated_slug":"","page_count":13,"language":"id","content_type":"Work","summary":"One of the sand control methods commonly used by oil and gas companies for well maintenance work is sand consolidation (SCON). The process of selecting providers has been carried out by auction. To select the provider to be more transparent, measurable, and accountable, it is necessary to design a standardized decision-making system that is compatible with existing problems. This study aimed to determine what parameters are the basis for consideration in choosing a provider and designing a decision-making system. The method used in this research is Analytical Hierarchy Process (AHP). The results indicate that the parameters taken into consideration are compatibility (0.349), safety \u0026 environment (0.229), quality (0.219), cost (0.127), and finally service (0.075). ST-α2-HL with a weight of 0.282 is the chosen provider. AHP can be applied as an excellent method in the case of determining the best alternative for SCON providers. The comparison of the results between the decision-maker and the AHP method from the perspective of the best alternative only reaches 100%.","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[{"id":81797788,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797788/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/81797788/download_file","bulk_download_file_name":"Pemilihan_provider_sand_consolidation_de.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797788/pdf-libre.pdf?1646571220=\u0026response-content-disposition=attachment%3B+filename%3DPemilihan_provider_sand_consolidation_de.pdf\u0026Expires=1744156252\u0026Signature=HwIxXg37uXjL3TbwquanymVjfSXxb6Bo9LA9oOeYI0tBTZIo5NmMjvhnekxjgeC83e6p3pPh62V8boav8RVLKpjVkTN7sBL4Ee2y6cyv81QC0goEYbP6zB0hP7A8kBOkiJqBUzL060gImGmGbSMacIF6dRr7KNOXbxYRFdXrpwTJ9ip~RPXwQX1PFGeE3vtq05k8x5ECq1BZnCOq~Pg5qtW1u53v24a2~gGisWY3WvyysKlDxigcxTb~itn1AdcX9BglTs1TwaK~tUY~69q7mknQASklq0cTv25Lbn5KQrO2RHLRrqnWe6bg80jRFd0-ROpja2z5WF1mvQvj~7sO9w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175580-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175579"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73175579/Temperature_Profile_and_ThermoclineThickness_Evaluation_ofa_Stratified_Thermal_Energy_Storage_Tank"><img alt="Research paper thumbnail of Temperature Profile and ThermoclineThickness Evaluation ofa Stratified Thermal Energy Storage Tank" class="work-thumbnail" src="https://attachments.academia-assets.com/81797767/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73175579/Temperature_Profile_and_ThermoclineThickness_Evaluation_ofa_Stratified_Thermal_Energy_Storage_Tank">Temperature Profile and ThermoclineThickness Evaluation ofa Stratified Thermal Energy Storage Tank</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Determination of thermocline thickness requires a continuous profile of temperature distribution....</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Determination of thermocline thickness requires a continuous profile of temperature distribution. Difficulty in determining thermocline thickness arises for the case of discrete temperature data, since the profile formed could not be used to estimate the thermocline thickness. This paper discusses a practical method for formulation of thermocline thickness of stratified thermal energy storage. Curve fitting by iterative method was adopted to identify the functions which could represent the S-curve of temperature distribution. Based on the functions, thermocline thickness was formulated using functional relationship of temperature profile. Results identified two functions which could represent S-curve of temperature distribution, namely sigmoid dose response (SDR) and four parameter sigmoid (FPS) functions. Both functions were observed to well fit the temperature distributions having coefficient determination more than 0.99. Based on evaluations the formulations were capable to be ut...</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-73175579-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-73175579-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/37788687/figure-1-normally-water-temperature-distribution-in-the"><img alt="Normally water temperature distribution in the stratified TES tank consists of 3 regions with warm water at the top, cool water at the bottom and thermocline region in the middle. The water temperature forms S-Curve profile consisting of two asymptote curves as shown in Fig. 1. Average cool and warm water temperature is formed by the asymptote values of T, and 7T;. Position of the thermocline, C, defines the boundary line of cool and warm water in the tank. It also can be interpreted as the cool water depth occupied in the tank. Thermocline thickness, Wyrc, is determined as the region limited by the edges of asymptote curve. " class="figure-slide-image" src="https://figures.academia-assets.com/81797767/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/37788692/figure-2-temperature-data-of-the-tes-system-of-district"><img alt="Temperature data of the TES system of a district cooling plant were acquired for the study. The TES systemconsists of two 1,250 tons of refrigeration (RT) of steam absorption chillers (SACs) and four 325 RT electric chillers (ECs) and one 5,400 m° storage TES tank with designed capacity of 10,000 RTh. Inlet nozzle is made from 20” NPS located at elevation 3.4 m height, while outlet nozzle is elevation 12.3 m. Both nozzles are provided with 2” NPS at diffuser on its end-connection in the storage tank. Overflow line is connected at elevation of 14.025 m. The entire tank is extemally insulated. The tank is equipped with 14 temperature sensors, installed at approximately interval, to measure the water temperatures. temperature sensor is located at 0.51 m m vertical The lowest height. All temperatures are hourly recorded with acquisition data system. The schematic flow diagram of the systemis shown in Fig. 2. TES tank is charged by the ECs during off-peak hours. Normally, the charging is served by three or four of ECs. For the purpose of this study, hourly temperature records during charging period of gt September 2008 and 15&quot; April 2009 were used. The charging cycle was operated continuously from 18.00 hours to 02.00 hours of the following day. These two charging cycles were served by 3 and 4 units of ECs, and this is represented as case I and case II, respectively. The flow rates of the charging cycles for case I and case II were 393 m/hr and 524 m’/hr, respectively. " class="figure-slide-image" src="https://figures.academia-assets.com/81797767/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/37788700/figure-3-ye-temperature-distributions-for-case-and-case-ii"><img alt="ye Fig 3. Temperature distributions for (a) case I and (b) case II Data as depicted in Fig 3 (a) and (b) were used to fit some possible functions to represent the S-curve temperature profile. The functions consist of parameters T,, T,, C and S. Fitting was done by utilizing commercial software of Sigmaplot [10] using non linear regression by iterative method. Two functions were identified that could represent the S-curve: sigmoid dose response (SDR) and 4 parameters sigmoid (FPS) function. The first function was formed as a modification from the sigmoidal dose response (variable slope) function and the second function was obtained from the modification of 4 parameters sigmoid function. " class="figure-slide-image" src="https://figures.academia-assets.com/81797767/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/37788705/figure-4-temperature-profile-and-thermoclinethickness"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/81797767/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/37788712/figure-5-fitting-fps-function-for-case-and-case-ii"><img alt="Fig. 5. Fitting FPS function for (a) case I and (b) case II " class="figure-slide-image" src="https://figures.academia-assets.com/81797767/figure_005.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/37788719/table-1-thermocline-thickness-of-case-using-sdr-function"><img alt="THERMOCLINE THICKNESS OF CASE I USING SDR FUNCTION " class="figure-slide-image" src="https://figures.academia-assets.com/81797767/table_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/37788726/table-2-parameters-on-the-temperature-distribution-of-sdr"><img alt="PARAMETERS ON THE TEMPERATURE DISTRIBUTION OF SDR FUNCTION TABLEI. PARAMETERS ON THE TEMPERATURE DISTRIBUTION OF FPS FUNCTION " class="figure-slide-image" src="https://figures.academia-assets.com/81797767/table_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/37788734/table-3-temperature-profile-and-thermoclinethickness"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/81797767/table_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/37788745/table-4-thermocline-thickness-of-case-ii-using-sdr-function"><img alt="THERMOCLINE THICKNESS OF CASE II USING SDR FUNCTION " class="figure-slide-image" src="https://figures.academia-assets.com/81797767/table_004.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-73175579-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9ad9339993df2375b0d482dd7114d7bb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:81797767,&quot;asset_id&quot;:73175579,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/81797767/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175579"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175579"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175579; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175579]").text(description); $(".js-view-count[data-work-id=73175579]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175579; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175579']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9ad9339993df2375b0d482dd7114d7bb" } } $('.js-work-strip[data-work-id=73175579]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175579,"title":"Temperature Profile and ThermoclineThickness Evaluation ofa Stratified Thermal Energy Storage Tank","translated_title":"","metadata":{"abstract":"Determination of thermocline thickness requires a continuous profile of temperature distribution. Difficulty in determining thermocline thickness arises for the case of discrete temperature data, since the profile formed could not be used to estimate the thermocline thickness. This paper discusses a practical method for formulation of thermocline thickness of stratified thermal energy storage. Curve fitting by iterative method was adopted to identify the functions which could represent the S-curve of temperature distribution. Based on the functions, thermocline thickness was formulated using functional relationship of temperature profile. Results identified two functions which could represent S-curve of temperature distribution, namely sigmoid dose response (SDR) and four parameter sigmoid (FPS) functions. Both functions were observed to well fit the temperature distributions having coefficient determination more than 0.99. Based on evaluations the formulations were capable to be ut...","ai_title_tag":"Evaluating Thermocline Thickness in Energy Storage","publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":"Determination of thermocline thickness requires a continuous profile of temperature distribution. Difficulty in determining thermocline thickness arises for the case of discrete temperature data, since the profile formed could not be used to estimate the thermocline thickness. This paper discusses a practical method for formulation of thermocline thickness of stratified thermal energy storage. Curve fitting by iterative method was adopted to identify the functions which could represent the S-curve of temperature distribution. Based on the functions, thermocline thickness was formulated using functional relationship of temperature profile. Results identified two functions which could represent S-curve of temperature distribution, namely sigmoid dose response (SDR) and four parameter sigmoid (FPS) functions. Both functions were observed to well fit the temperature distributions having coefficient determination more than 0.99. Based on evaluations the formulations were capable to be ut...","internal_url":"https://www.academia.edu/73175579/Temperature_Profile_and_ThermoclineThickness_Evaluation_ofa_Stratified_Thermal_Energy_Storage_Tank","translated_internal_url":"","created_at":"2022-03-06T04:40:25.059-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81797767,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797767/thumbnails/1.jpg","file_name":"108601-2424_20IJMME-IJENS.pdf","download_url":"https://www.academia.edu/attachments/81797767/download_file","bulk_download_file_name":"Temperature_Profile_and_ThermoclineThick.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797767/108601-2424_20IJMME-IJENS-libre.pdf?1646570780=\u0026response-content-disposition=attachment%3B+filename%3DTemperature_Profile_and_ThermoclineThick.pdf\u0026Expires=1744156252\u0026Signature=CzLxC0yqtfoHycelOa6o6pd~ImZFox1sT-bDTLkjS9Z~H2svpRQEnCdcBMfzQrkqqkgfdcqOzuxubIT96oRHwamVVwcToL9yxUNgo9IIE~vgQa98YPTIVXVCbL-ob9hp25r3GZhDVxmTrSITfJKh6U2nq5DC7yGQXtbKYsQdK6FJvjFYqrd5v2I2nFc9O2Iv2eGK5k77L~pIHc16YG~~rmenH0DLQo2uPKJQFMB8S~o0CdUMcTCHJyUIzu6J7NRdqqLQy0GTbi67~aLOJqo96vV2wFTeXTILUu-kT0e4ym9HrLgnYiF-rN~YMkMRQLI8apfEokL-GCTvY2kgs0fYQw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Temperature_Profile_and_ThermoclineThickness_Evaluation_ofa_Stratified_Thermal_Energy_Storage_Tank","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"Determination of thermocline thickness requires a continuous profile of temperature distribution. Difficulty in determining thermocline thickness arises for the case of discrete temperature data, since the profile formed could not be used to estimate the thermocline thickness. This paper discusses a practical method for formulation of thermocline thickness of stratified thermal energy storage. Curve fitting by iterative method was adopted to identify the functions which could represent the S-curve of temperature distribution. Based on the functions, thermocline thickness was formulated using functional relationship of temperature profile. Results identified two functions which could represent S-curve of temperature distribution, namely sigmoid dose response (SDR) and four parameter sigmoid (FPS) functions. Both functions were observed to well fit the temperature distributions having coefficient determination more than 0.99. Based on evaluations the formulations were capable to be ut...","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[{"id":81797767,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797767/thumbnails/1.jpg","file_name":"108601-2424_20IJMME-IJENS.pdf","download_url":"https://www.academia.edu/attachments/81797767/download_file","bulk_download_file_name":"Temperature_Profile_and_ThermoclineThick.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797767/108601-2424_20IJMME-IJENS-libre.pdf?1646570780=\u0026response-content-disposition=attachment%3B+filename%3DTemperature_Profile_and_ThermoclineThick.pdf\u0026Expires=1744156252\u0026Signature=CzLxC0yqtfoHycelOa6o6pd~ImZFox1sT-bDTLkjS9Z~H2svpRQEnCdcBMfzQrkqqkgfdcqOzuxubIT96oRHwamVVwcToL9yxUNgo9IIE~vgQa98YPTIVXVCbL-ob9hp25r3GZhDVxmTrSITfJKh6U2nq5DC7yGQXtbKYsQdK6FJvjFYqrd5v2I2nFc9O2Iv2eGK5k77L~pIHc16YG~~rmenH0DLQo2uPKJQFMB8S~o0CdUMcTCHJyUIzu6J7NRdqqLQy0GTbi67~aLOJqo96vV2wFTeXTILUu-kT0e4ym9HrLgnYiF-rN~YMkMRQLI8apfEokL-GCTvY2kgs0fYQw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":81797768,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797768/thumbnails/1.jpg","file_name":"108601-2424_20IJMME-IJENS.pdf","download_url":"https://www.academia.edu/attachments/81797768/download_file","bulk_download_file_name":"Temperature_Profile_and_ThermoclineThick.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797768/108601-2424_20IJMME-IJENS-libre.pdf?1646570780=\u0026response-content-disposition=attachment%3B+filename%3DTemperature_Profile_and_ThermoclineThick.pdf\u0026Expires=1744156252\u0026Signature=VBUwJ9yw9EeqNCWEOZKA5pQVBKXPaIDbeWn14Yvg1G86f6q-Np9H84GgmOyKDUe7dzzbFGBshxRx~GkG7XVRPRarYsZAY8452pIdtjphV8RO8eB9sACRDdmaHaMpzhjOnMpbjHL3BhK-e0etqkycJzuFQ7YeG~Aa-EOkOc1HpzjIfwMLNcZ161gWjgY~kNz4ZB323PsoyPuzVayjuPtZI12CMAWqo~tEx3-qG1mvJyTEilu12-c9bS5MNbc4sd9ZZsrLLdVC158MESDrzBavoOmFw9Q7hT5h-2iOjKtPFlb5N174bhM7By3MPLxOXTu2lwnQsRxcUHhnYG9LsSSYQA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[{"id":18292982,"url":"http://www.ijens.org/108601-2424%20IJMME-IJENS.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-73175579-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175578"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/73175578/Unit_Commitment_Problem_Menggunakan_Algoritma_Binary_Particle_Swarm_Optimization_Studi_Kasus_Sistem_Kelistrikan_Kabupaten_Sumbawa"><img alt="Research paper thumbnail of Unit Commitment Problem Menggunakan Algoritma Binary Particle Swarm Optimization Studi Kasus: Sistem Kelistrikan Kabupaten Sumbawa" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Unit Commitment Problem Menggunakan Algoritma Binary Particle Swarm Optimization Studi Kasus: Sistem Kelistrikan Kabupaten Sumbawa</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstrak . Fokus penelitian  ini adalah penyelesaian permasalahan unit commitment untuk sistem kel...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstrak . Fokus penelitian  ini adalah penyelesaian permasalahan unit commitment untuk sistem kelistrikan di Kabupaten Sumbawa. Dalam prosesnya dikembangkan 2 model yaitu: model pertama seluruh sistem dilayani pembangkit diesel dan model kedua integrasi pembangkit diesel, pembangkit angin, panel surya dan baterai dengan penetrasi 5%. Algoritma binary particle swarm optimization digunakan sebagai metode penyelesaian. Tujuan dilakukanya penelitian ini untuk memperoleh model penjadwalan pembangkit guna meminmalkan biaya bahan bakar. Hasil unit commitment diperoleh, nilai konvergen untuk setiap model oleh algoritma binary particle swarm optimization masing-masing iterasi ke-5 untuk model pertama dan iterasi ke-2 untuk model kedua penetrasi 5%. Secara empiris faktanya, Integrasi pembangkit diesel, pembangkit angin, panel surya dan baterai mampu meminimalkan biaya bahan bakar  sebesar 6%  jika dibandingkan dengan sistem yang menggunakan pembangkit diesel saja.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175578"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175578"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175578; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175578]").text(description); $(".js-view-count[data-work-id=73175578]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175578; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175578']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73175578]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175578,"title":"Unit Commitment Problem Menggunakan Algoritma Binary Particle Swarm Optimization Studi Kasus: Sistem Kelistrikan Kabupaten Sumbawa","translated_title":"","metadata":{"abstract":"Abstrak . Fokus penelitian  ini adalah penyelesaian permasalahan unit commitment untuk sistem kelistrikan di Kabupaten Sumbawa. Dalam prosesnya dikembangkan 2 model yaitu: model pertama seluruh sistem dilayani pembangkit diesel dan model kedua integrasi pembangkit diesel, pembangkit angin, panel surya dan baterai dengan penetrasi 5%. Algoritma binary particle swarm optimization digunakan sebagai metode penyelesaian. Tujuan dilakukanya penelitian ini untuk memperoleh model penjadwalan pembangkit guna meminmalkan biaya bahan bakar. Hasil unit commitment diperoleh, nilai konvergen untuk setiap model oleh algoritma binary particle swarm optimization masing-masing iterasi ke-5 untuk model pertama dan iterasi ke-2 untuk model kedua penetrasi 5%. Secara empiris faktanya, Integrasi pembangkit diesel, pembangkit angin, panel surya dan baterai mampu meminimalkan biaya bahan bakar  sebesar 6%  jika dibandingkan dengan sistem yang menggunakan pembangkit diesel saja.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":"Abstrak . Fokus penelitian  ini adalah penyelesaian permasalahan unit commitment untuk sistem kelistrikan di Kabupaten Sumbawa. Dalam prosesnya dikembangkan 2 model yaitu: model pertama seluruh sistem dilayani pembangkit diesel dan model kedua integrasi pembangkit diesel, pembangkit angin, panel surya dan baterai dengan penetrasi 5%. Algoritma binary particle swarm optimization digunakan sebagai metode penyelesaian. Tujuan dilakukanya penelitian ini untuk memperoleh model penjadwalan pembangkit guna meminmalkan biaya bahan bakar. Hasil unit commitment diperoleh, nilai konvergen untuk setiap model oleh algoritma binary particle swarm optimization masing-masing iterasi ke-5 untuk model pertama dan iterasi ke-2 untuk model kedua penetrasi 5%. Secara empiris faktanya, Integrasi pembangkit diesel, pembangkit angin, panel surya dan baterai mampu meminimalkan biaya bahan bakar  sebesar 6%  jika dibandingkan dengan sistem yang menggunakan pembangkit diesel saja.","internal_url":"https://www.academia.edu/73175578/Unit_Commitment_Problem_Menggunakan_Algoritma_Binary_Particle_Swarm_Optimization_Studi_Kasus_Sistem_Kelistrikan_Kabupaten_Sumbawa","translated_internal_url":"","created_at":"2022-03-06T04:40:24.997-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Unit_Commitment_Problem_Menggunakan_Algoritma_Binary_Particle_Swarm_Optimization_Studi_Kasus_Sistem_Kelistrikan_Kabupaten_Sumbawa","translated_slug":"","page_count":null,"language":"id","content_type":"Work","summary":"Abstrak . Fokus penelitian  ini adalah penyelesaian permasalahan unit commitment untuk sistem kelistrikan di Kabupaten Sumbawa. Dalam prosesnya dikembangkan 2 model yaitu: model pertama seluruh sistem dilayani pembangkit diesel dan model kedua integrasi pembangkit diesel, pembangkit angin, panel surya dan baterai dengan penetrasi 5%. Algoritma binary particle swarm optimization digunakan sebagai metode penyelesaian. Tujuan dilakukanya penelitian ini untuk memperoleh model penjadwalan pembangkit guna meminmalkan biaya bahan bakar. Hasil unit commitment diperoleh, nilai konvergen untuk setiap model oleh algoritma binary particle swarm optimization masing-masing iterasi ke-5 untuk model pertama dan iterasi ke-2 untuk model kedua penetrasi 5%. Secara empiris faktanya, Integrasi pembangkit diesel, pembangkit angin, panel surya dan baterai mampu meminimalkan biaya bahan bakar  sebesar 6%  jika dibandingkan dengan sistem yang menggunakan pembangkit diesel saja.","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175578-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175576"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73175576/The_Experimental_Study_of_Bi_Directional_Impulse_Turbine_on_Standing_Wave_Thermoacoustic_Engine"><img alt="Research paper thumbnail of The Experimental Study of Bi-Directional Impulse Turbine on Standing Wave Thermoacoustic Engine" class="work-thumbnail" src="https://attachments.academia-assets.com/81797765/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73175576/The_Experimental_Study_of_Bi_Directional_Impulse_Turbine_on_Standing_Wave_Thermoacoustic_Engine">The Experimental Study of Bi-Directional Impulse Turbine on Standing Wave Thermoacoustic Engine</a></div><div class="wp-workCard_item"><span>International Journal of Renewable Energy Research</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Bi-directional air turbine has one of the primary functions, namely changing the linear movement ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Bi-directional air turbine has one of the primary functions, namely changing the linear movement of air into a rotating motion. This rotating motion is always in the same direction regardless of the direction of air movement. This bi-directional turbine impulse type moves by using thermoacoustic waves which result from the conversion of heat energy into acoustic energy. T he turbine using in this research has a diameter of 48 mm and 50 mm. Besides, the turbine also has a variety of blade numbers and variations of distance from the sound source. The impulse turbine research with 50o inlet angle obtained results that the maximum rotational motion in the turbine with a diameter of 50 mm and the number of blades 28. The optimal results were purchased at a distance of 20 0 m m from the sound source which was 361 rpm.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3e6aa42372246155843ae1d865494fa9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:81797765,&quot;asset_id&quot;:73175576,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/81797765/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175576"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175576"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175576; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175576]").text(description); $(".js-view-count[data-work-id=73175576]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175576; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175576']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3e6aa42372246155843ae1d865494fa9" } } $('.js-work-strip[data-work-id=73175576]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175576,"title":"The Experimental Study of Bi-Directional Impulse Turbine on Standing Wave Thermoacoustic Engine","translated_title":"","metadata":{"abstract":"Bi-directional air turbine has one of the primary functions, namely changing the linear movement of air into a rotating motion. This rotating motion is always in the same direction regardless of the direction of air movement. This bi-directional turbine impulse type moves by using thermoacoustic waves which result from the conversion of heat energy into acoustic energy. T he turbine using in this research has a diameter of 48 mm and 50 mm. Besides, the turbine also has a variety of blade numbers and variations of distance from the sound source. The impulse turbine research with 50o inlet angle obtained results that the maximum rotational motion in the turbine with a diameter of 50 mm and the number of blades 28. The optimal results were purchased at a distance of 20 0 m m from the sound source which was 361 rpm.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"International Journal of Renewable Energy Research"},"translated_abstract":"Bi-directional air turbine has one of the primary functions, namely changing the linear movement of air into a rotating motion. This rotating motion is always in the same direction regardless of the direction of air movement. This bi-directional turbine impulse type moves by using thermoacoustic waves which result from the conversion of heat energy into acoustic energy. T he turbine using in this research has a diameter of 48 mm and 50 mm. Besides, the turbine also has a variety of blade numbers and variations of distance from the sound source. The impulse turbine research with 50o inlet angle obtained results that the maximum rotational motion in the turbine with a diameter of 50 mm and the number of blades 28. The optimal results were purchased at a distance of 20 0 m m from the sound source which was 361 rpm.","internal_url":"https://www.academia.edu/73175576/The_Experimental_Study_of_Bi_Directional_Impulse_Turbine_on_Standing_Wave_Thermoacoustic_Engine","translated_internal_url":"","created_at":"2022-03-06T04:40:24.900-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81797765,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797765/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/81797765/download_file","bulk_download_file_name":"The_Experimental_Study_of_Bi_Directional.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797765/pdf-libre.pdf?1646570780=\u0026response-content-disposition=attachment%3B+filename%3DThe_Experimental_Study_of_Bi_Directional.pdf\u0026Expires=1744156252\u0026Signature=MpGsCacpPRBeynzugPsc2Vifv2zkRwN8wW4GPJu6cOoeFl8H~47TaCM0iX2P9KT~cTgH~1gKr4eh4NmCotgEpgrwMY76E5UdxBCzpAzF3fwqD1ji~b5TH7D55QOF0tXnUskpmK1pfsnjfKEvZE1EPNCcp3HSupGpu0R9FKBn3EhBpQwcMuSn0peLwCHMXXZsHcMx7~fnEOfuEnyEpWvbxKN7J-iPKT9nClyQxz6AVDayUm5-oszvWKMuKc~W0ZguUZg1WXagVO~-lTG4U2QTwfxB1XWgQxDHfsMWcRLjNs2VZ2Tv-8mwgziKk~LQRK4vFGvyl9ifysnW1QsSU4nBJQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Experimental_Study_of_Bi_Directional_Impulse_Turbine_on_Standing_Wave_Thermoacoustic_Engine","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"Bi-directional air turbine has one of the primary functions, namely changing the linear movement of air into a rotating motion. This rotating motion is always in the same direction regardless of the direction of air movement. This bi-directional turbine impulse type moves by using thermoacoustic waves which result from the conversion of heat energy into acoustic energy. T he turbine using in this research has a diameter of 48 mm and 50 mm. Besides, the turbine also has a variety of blade numbers and variations of distance from the sound source. The impulse turbine research with 50o inlet angle obtained results that the maximum rotational motion in the turbine with a diameter of 50 mm and the number of blades 28. The optimal results were purchased at a distance of 20 0 m m from the sound source which was 361 rpm.","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[{"id":81797765,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797765/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/81797765/download_file","bulk_download_file_name":"The_Experimental_Study_of_Bi_Directional.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797765/pdf-libre.pdf?1646570780=\u0026response-content-disposition=attachment%3B+filename%3DThe_Experimental_Study_of_Bi_Directional.pdf\u0026Expires=1744156252\u0026Signature=MpGsCacpPRBeynzugPsc2Vifv2zkRwN8wW4GPJu6cOoeFl8H~47TaCM0iX2P9KT~cTgH~1gKr4eh4NmCotgEpgrwMY76E5UdxBCzpAzF3fwqD1ji~b5TH7D55QOF0tXnUskpmK1pfsnjfKEvZE1EPNCcp3HSupGpu0R9FKBn3EhBpQwcMuSn0peLwCHMXXZsHcMx7~fnEOfuEnyEpWvbxKN7J-iPKT9nClyQxz6AVDayUm5-oszvWKMuKc~W0ZguUZg1WXagVO~-lTG4U2QTwfxB1XWgQxDHfsMWcRLjNs2VZ2Tv-8mwgziKk~LQRK4vFGvyl9ifysnW1QsSU4nBJQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":81797766,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797766/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/81797766/download_file","bulk_download_file_name":"The_Experimental_Study_of_Bi_Directional.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797766/pdf-libre.pdf?1646570781=\u0026response-content-disposition=attachment%3B+filename%3DThe_Experimental_Study_of_Bi_Directional.pdf\u0026Expires=1744156252\u0026Signature=LIHMEwOlQFc1WG5D3F3s3ZO9boGFbhbhu3jSaAcOn2AfQ012DwPMFsf5zztll6Sxo~eQZrlpkQAbjnc7aAqcFhWzCa2cy527hVf1NkzpP2UDrmZod4c7r0mTxQX4KJh8uTqucDHTEneplfmNgbVhIDTx3Q5C9XhJ67xxtU8BPt1hsvi9EHboKwLPpV9CCut9jZCg4NqYaAG5V6TGW2xiUpQqsAphB8a0alAqu~FE66oYECnOVYxWdSIzUBe0ZPTnTdlXTjebsdQjEB4hljv7PjQ3elD4ObJH~0X0co~ghEzcc0gNbozWklVKq4CiTJ8spYlUrSmIbk-7OjMvtfkwWw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":2738,"name":"Renewable Energy","url":"https://www.academia.edu/Documents/in/Renewable_Energy"}],"urls":[{"id":18292981,"url":"https://www.ijrer.com/index.php/ijrer/article/download/9544/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175576-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175575"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73175575/Performance_comparison_of_centrifugal_pump_in_variation_of_impeller_blade_number_through_numerical_simulation"><img alt="Research paper thumbnail of Performance comparison of centrifugal pump in variation of impeller blade number through numerical simulation" class="work-thumbnail" src="https://attachments.academia-assets.com/81797761/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73175575/Performance_comparison_of_centrifugal_pump_in_variation_of_impeller_blade_number_through_numerical_simulation">Performance comparison of centrifugal pump in variation of impeller blade number through numerical simulation</a></div><div class="wp-workCard_item"><span>THERMOFLUID XI: Proceedings of the 11th International Conference on Thermofluids 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Centrifugal pump is indispensable equipment for various industrial applications which mainly used...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Centrifugal pump is indispensable equipment for various industrial applications which mainly used to move fluid by supplying head at specified flow rate. Pump performance is influenced by occurrence of losses which consist of volumetric, hydraulic and mechanical losses which further quantified by corresponding efficiency. In its application, real operating pump performance is quite difficult to predict without referring to manufacture data report which measure pump performance directly during operation of the pump This research is aimed to investigate numerically the pump performance variation with respect to the number of blades. A specified pump has operating condition of head 12.08 m, flowrate of 0.0015 m3/s, rating rotation of 2800 rpm with 7 blades is investigated. The performance analysis is performed through numerical simulation using ANSYS. Performance comparison is carried in varied blade number of 5,7 and 9. The performance of centrifugal pump is determined in terms of head (H) and flow rate (Q), as well as pump hydrodynamic efficiency (h). It is found that the higher head occured in the case of 9 blades up to a certain limit. On the other hand, hydrodynamic efficiency in the case of 7 blade is higher than the other two cases for simulated flow rate range. From the head and flow rate relationship, it is noted that the pattern produced by plotting head and efficiency against flow rate indicate that there is an optimum number of impeller blade for centrifugal pump.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a3f6975632e828557f304a9b64b56d98" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:81797761,&quot;asset_id&quot;:73175575,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/81797761/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175575"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175575"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175575; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175575]").text(description); $(".js-view-count[data-work-id=73175575]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175575; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175575']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a3f6975632e828557f304a9b64b56d98" } } $('.js-work-strip[data-work-id=73175575]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175575,"title":"Performance comparison of centrifugal pump in variation of impeller blade number through numerical simulation","translated_title":"","metadata":{"publisher":"AIP Publishing","ai_title_tag":"Centrifugal Pump Performance Based on Impeller Blade Count","grobid_abstract":"Centrifugal pump is indispensable equipment for various industrial applications which mainly used to move fluid by supplying head at specified flow rate. Pump performance is influenced by occurrence of losses which consist of volumetric, hydraulic and mechanical losses which further quantified by corresponding efficiency. In its application, real operating pump performance is quite difficult to predict without referring to manufacture data report which measure pump performance directly during operation of the pump This research is aimed to investigate numerically the pump performance variation with respect to the number of blades. A specified pump has operating condition of head 12.08 m, flowrate of 0.0015 m3/s, rating rotation of 2800 rpm with 7 blades is investigated. The performance analysis is performed through numerical simulation using ANSYS. Performance comparison is carried in varied blade number of 5,7 and 9. The performance of centrifugal pump is determined in terms of head (H) and flow rate (Q), as well as pump hydrodynamic efficiency (h). It is found that the higher head occured in the case of 9 blades up to a certain limit. On the other hand, hydrodynamic efficiency in the case of 7 blade is higher than the other two cases for simulated flow rate range. From the head and flow rate relationship, it is noted that the pattern produced by plotting head and efficiency against flow rate indicate that there is an optimum number of impeller blade for centrifugal pump.","publication_name":"THERMOFLUID XI: Proceedings of the 11th International Conference on Thermofluids 2020","grobid_abstract_attachment_id":81797761},"translated_abstract":null,"internal_url":"https://www.academia.edu/73175575/Performance_comparison_of_centrifugal_pump_in_variation_of_impeller_blade_number_through_numerical_simulation","translated_internal_url":"","created_at":"2022-03-06T04:40:24.785-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81797761,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797761/thumbnails/1.jpg","file_name":"5.pdf","download_url":"https://www.academia.edu/attachments/81797761/download_file","bulk_download_file_name":"Performance_comparison_of_centrifugal_pu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797761/5-libre.pdf?1646570779=\u0026response-content-disposition=attachment%3B+filename%3DPerformance_comparison_of_centrifugal_pu.pdf\u0026Expires=1744156252\u0026Signature=WMJwo~JGsUs-D3aoYhqPdWoEGnhDqrErIag-MS9OtoPS2ZEysjoMphgPC4BG92fTD4VTC3Xs7AKSccgpK-y5JqZgCUhgLcbbNgCpGuHJCJQ97L~kdZqoEuLrebtTY2ez-FnKfsD4PTDJnx6URExLEUEk3gQqXdrs9oMoMGAoHuMpe95lz44Pk44z8JyKsI~wS~1D1UMwOD1ssKHrWNLQ31F-JuJf8mj3WSNL-WFa6z3HaMeDcGUDN1ZTXKDaN3M0C4ngr2GLULNyWILBgZSx4FM1947m4PFZOzflg~FZdWQzNSV6RkxBDZV29V4NxXKmQfnOD62u2NQDVVL~TSfA0w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Performance_comparison_of_centrifugal_pump_in_variation_of_impeller_blade_number_through_numerical_simulation","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"Centrifugal pump is indispensable equipment for various industrial applications which mainly used to move fluid by supplying head at specified flow rate. Pump performance is influenced by occurrence of losses which consist of volumetric, hydraulic and mechanical losses which further quantified by corresponding efficiency. In its application, real operating pump performance is quite difficult to predict without referring to manufacture data report which measure pump performance directly during operation of the pump This research is aimed to investigate numerically the pump performance variation with respect to the number of blades. A specified pump has operating condition of head 12.08 m, flowrate of 0.0015 m3/s, rating rotation of 2800 rpm with 7 blades is investigated. The performance analysis is performed through numerical simulation using ANSYS. Performance comparison is carried in varied blade number of 5,7 and 9. The performance of centrifugal pump is determined in terms of head (H) and flow rate (Q), as well as pump hydrodynamic efficiency (h). It is found that the higher head occured in the case of 9 blades up to a certain limit. On the other hand, hydrodynamic efficiency in the case of 7 blade is higher than the other two cases for simulated flow rate range. From the head and flow rate relationship, it is noted that the pattern produced by plotting head and efficiency against flow rate indicate that there is an optimum number of impeller blade for centrifugal pump.","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[{"id":81797761,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797761/thumbnails/1.jpg","file_name":"5.pdf","download_url":"https://www.academia.edu/attachments/81797761/download_file","bulk_download_file_name":"Performance_comparison_of_centrifugal_pu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797761/5-libre.pdf?1646570779=\u0026response-content-disposition=attachment%3B+filename%3DPerformance_comparison_of_centrifugal_pu.pdf\u0026Expires=1744156252\u0026Signature=WMJwo~JGsUs-D3aoYhqPdWoEGnhDqrErIag-MS9OtoPS2ZEysjoMphgPC4BG92fTD4VTC3Xs7AKSccgpK-y5JqZgCUhgLcbbNgCpGuHJCJQ97L~kdZqoEuLrebtTY2ez-FnKfsD4PTDJnx6URExLEUEk3gQqXdrs9oMoMGAoHuMpe95lz44Pk44z8JyKsI~wS~1D1UMwOD1ssKHrWNLQ31F-JuJf8mj3WSNL-WFa6z3HaMeDcGUDN1ZTXKDaN3M0C4ngr2GLULNyWILBgZSx4FM1947m4PFZOzflg~FZdWQzNSV6RkxBDZV29V4NxXKmQfnOD62u2NQDVVL~TSfA0w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":81797762,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797762/thumbnails/1.jpg","file_name":"5.pdf","download_url":"https://www.academia.edu/attachments/81797762/download_file","bulk_download_file_name":"Performance_comparison_of_centrifugal_pu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797762/5-libre.pdf?1646570781=\u0026response-content-disposition=attachment%3B+filename%3DPerformance_comparison_of_centrifugal_pu.pdf\u0026Expires=1744156252\u0026Signature=I~~NEb6edFgH6DCfNhN7uHlfObjAa2imOqwEqI6gfpA0RTbnCsLf5-Quwfpy4UEqcDPeRSi9wfrODHeOSOgq7p~UKDVUipNsTVeDjhUYk3OfnyCnUwmfB4wqkrzo9sOnqiIHtqO9G~Ck8G5KqFXL6GNIyKpAMsS8R2iK6xF~~-GVnU~6nK88VIECCIDo9kQFo9jUQMCf5rSn-iySCXT8Nixv6NjkL4vowTDFlV~~o38VJpLegUSXnBsXkvyQvEug7ZEe5E-SiFtgDVu68IcJL0595-tIFYvkKUjELT20RxOb0i7mbYd1iC89cT6PXpneXOorXFygjeY~5R2wxePiwQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":18292980,"url":"http://aip.scitation.org/doi/pdf/10.1063/5.0074344"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175575-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175573"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/73175573/Analysis_of_Temperature_Distribution_of_Chilled_Water_Thermal_Storage_Tank"><img alt="Research paper thumbnail of Analysis of Temperature Distribution of Chilled-Water Thermal Storage Tank" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Analysis of Temperature Distribution of Chilled-Water Thermal Storage Tank</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Temperature of water reflects cooling capacity stored in the stratified sensible chilled water st...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Temperature of water reflects cooling capacity stored in the stratified sensible chilled water storage tank. The temperature of the water is different on each slab inside the storage tank reflecting temperature distribution. This study focuses on the analysis of temperature distribution of chilled water storage tank of sensible stratified type using one dimensional flow heat conduction and convection model. Model was solved using explicit finite difference method. Two factors considered in this model were conduction across the transition of warm-cool water area and mixing effect during charging and discharging. Validation of the model used the operating data of chilled-water storage tank. The result revealed that temperature distribution generated from the model show similar profiles to that of the operating data. Using t statistical test, these values was accepted in a good agreement at confidence level 95%. Higher value of charging flow rate and lower water inlet temperature tend ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175573"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175573"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175573; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175573]").text(description); $(".js-view-count[data-work-id=73175573]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175573; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175573']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73175573]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175573,"title":"Analysis of Temperature Distribution of Chilled-Water Thermal Storage Tank","translated_title":"","metadata":{"abstract":"Temperature of water reflects cooling capacity stored in the stratified sensible chilled water storage tank. The temperature of the water is different on each slab inside the storage tank reflecting temperature distribution. This study focuses on the analysis of temperature distribution of chilled water storage tank of sensible stratified type using one dimensional flow heat conduction and convection model. Model was solved using explicit finite difference method. Two factors considered in this model were conduction across the transition of warm-cool water area and mixing effect during charging and discharging. Validation of the model used the operating data of chilled-water storage tank. The result revealed that temperature distribution generated from the model show similar profiles to that of the operating data. Using t statistical test, these values was accepted in a good agreement at confidence level 95%. Higher value of charging flow rate and lower water inlet temperature tend ...","publication_date":{"day":null,"month":null,"year":2009,"errors":{}}},"translated_abstract":"Temperature of water reflects cooling capacity stored in the stratified sensible chilled water storage tank. The temperature of the water is different on each slab inside the storage tank reflecting temperature distribution. This study focuses on the analysis of temperature distribution of chilled water storage tank of sensible stratified type using one dimensional flow heat conduction and convection model. Model was solved using explicit finite difference method. Two factors considered in this model were conduction across the transition of warm-cool water area and mixing effect during charging and discharging. Validation of the model used the operating data of chilled-water storage tank. The result revealed that temperature distribution generated from the model show similar profiles to that of the operating data. Using t statistical test, these values was accepted in a good agreement at confidence level 95%. Higher value of charging flow rate and lower water inlet temperature tend ...","internal_url":"https://www.academia.edu/73175573/Analysis_of_Temperature_Distribution_of_Chilled_Water_Thermal_Storage_Tank","translated_internal_url":"","created_at":"2022-03-06T04:40:24.721-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Analysis_of_Temperature_Distribution_of_Chilled_Water_Thermal_Storage_Tank","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Temperature of water reflects cooling capacity stored in the stratified sensible chilled water storage tank. The temperature of the water is different on each slab inside the storage tank reflecting temperature distribution. This study focuses on the analysis of temperature distribution of chilled water storage tank of sensible stratified type using one dimensional flow heat conduction and convection model. Model was solved using explicit finite difference method. Two factors considered in this model were conduction across the transition of warm-cool water area and mixing effect during charging and discharging. Validation of the model used the operating data of chilled-water storage tank. The result revealed that temperature distribution generated from the model show similar profiles to that of the operating data. Using t statistical test, these values was accepted in a good agreement at confidence level 95%. Higher value of charging flow rate and lower water inlet temperature tend ...","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175573-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175572"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/73175572/Pengembangan_Model_Simulasi_Untuk_Pengisian_Tangki_Penyimpan_Termal_Stratifikasi"><img alt="Research paper thumbnail of Pengembangan Model Simulasi Untuk Pengisian Tangki Penyimpan Termal Stratifikasi" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Pengembangan Model Simulasi Untuk Pengisian Tangki Penyimpan Termal Stratifikasi</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Stratified Thermal Energy Storage (TES) tank has been used widely related to cogeneration plant b...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Stratified Thermal Energy Storage (TES) tank has been used widely related to cogeneration plant by utilizing waste heat energy from gas turbine. The TES tank is useful for energy shifting, by charging the TES tank al off peak demand and discharging it during on-peak demand This research is aimed to develop a new simulation model enable for prediction of charging TES tank. The model is developed based on a mathematical formulation for representing distribution temperature in the TES tank. Validation of the model was carried out using experiment data of charging TES tank. The research uses 3 steps namely development of simulation model, data processing and validation of the model. Results yielded that simulation model has been developed based on temperature distribution analysis using Sigmoid Dose Response (SDR) equation. Further, SDR function can be explored for mathematical formulations of the important parameters of the TES tank. The parameters are limit points and thermocline thic...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175572"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175572"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175572; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175572]").text(description); $(".js-view-count[data-work-id=73175572]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175572; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175572']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73175572]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175572,"title":"Pengembangan Model Simulasi Untuk Pengisian Tangki Penyimpan Termal Stratifikasi","translated_title":"","metadata":{"abstract":"Stratified Thermal Energy Storage (TES) tank has been used widely related to cogeneration plant by utilizing waste heat energy from gas turbine. The TES tank is useful for energy shifting, by charging the TES tank al off peak demand and discharging it during on-peak demand This research is aimed to develop a new simulation model enable for prediction of charging TES tank. The model is developed based on a mathematical formulation for representing distribution temperature in the TES tank. Validation of the model was carried out using experiment data of charging TES tank. The research uses 3 steps namely development of simulation model, data processing and validation of the model. Results yielded that simulation model has been developed based on temperature distribution analysis using Sigmoid Dose Response (SDR) equation. Further, SDR function can be explored for mathematical formulations of the important parameters of the TES tank. The parameters are limit points and thermocline thic...","publication_date":{"day":null,"month":null,"year":2015,"errors":{}}},"translated_abstract":"Stratified Thermal Energy Storage (TES) tank has been used widely related to cogeneration plant by utilizing waste heat energy from gas turbine. The TES tank is useful for energy shifting, by charging the TES tank al off peak demand and discharging it during on-peak demand This research is aimed to develop a new simulation model enable for prediction of charging TES tank. The model is developed based on a mathematical formulation for representing distribution temperature in the TES tank. Validation of the model was carried out using experiment data of charging TES tank. The research uses 3 steps namely development of simulation model, data processing and validation of the model. Results yielded that simulation model has been developed based on temperature distribution analysis using Sigmoid Dose Response (SDR) equation. Further, SDR function can be explored for mathematical formulations of the important parameters of the TES tank. The parameters are limit points and thermocline thic...","internal_url":"https://www.academia.edu/73175572/Pengembangan_Model_Simulasi_Untuk_Pengisian_Tangki_Penyimpan_Termal_Stratifikasi","translated_internal_url":"","created_at":"2022-03-06T04:40:24.658-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Pengembangan_Model_Simulasi_Untuk_Pengisian_Tangki_Penyimpan_Termal_Stratifikasi","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Stratified Thermal Energy Storage (TES) tank has been used widely related to cogeneration plant by utilizing waste heat energy from gas turbine. The TES tank is useful for energy shifting, by charging the TES tank al off peak demand and discharging it during on-peak demand This research is aimed to develop a new simulation model enable for prediction of charging TES tank. The model is developed based on a mathematical formulation for representing distribution temperature in the TES tank. Validation of the model was carried out using experiment data of charging TES tank. The research uses 3 steps namely development of simulation model, data processing and validation of the model. Results yielded that simulation model has been developed based on temperature distribution analysis using Sigmoid Dose Response (SDR) equation. Further, SDR function can be explored for mathematical formulations of the important parameters of the TES tank. The parameters are limit points and thermocline thic...","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175572-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175571"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/73175571/Simulation_of_Close_Open_Standing_Wave_Thermoacoustic_Engine_Toward_Variation_of_Resonator_Diameter"><img alt="Research paper thumbnail of Simulation of Close-Open Standing Wave Thermoacoustic Engine Toward Variation of Resonator Diameter" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Simulation of Close-Open Standing Wave Thermoacoustic Engine Toward Variation of Resonator Diameter</div><div class="wp-workCard_item"><span>2018 4th International Conference on Science and Technology (ICST)</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Thermoacoustic engine is a promising device for converting heat to electrical power. Obtaining a ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Thermoacoustic engine is a promising device for converting heat to electrical power. Obtaining a higher performance of thermo acoustic engine remains a challenging effort before applying widely in industrial implementation. This study aims to investigate the performance of thermo acoustic engine in variation of resonator diameter. The study consist of three main subjects, namely establishing of the simulation model, validation and then used for predicting of the performance on variation of resonator diameter. The model simulation was established using DeltaEC freeware. For validation purposes, the simulation was conducted on similar geometrical configuration with that on the experimental set up. The resonator diameter was straight, tubular shape with inside diameter of 52 mm. The simulation is then enhanced to predict the thermo acoustic performance on varied resonator diameter of 27 mm, 41 mm, 78 mm and 90 mm. Results revealed that the simulation of thermo acoustic engine with 52 m...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175571"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175571"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175571; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175571]").text(description); $(".js-view-count[data-work-id=73175571]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175571; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175571']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73175571]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175571,"title":"Simulation of Close-Open Standing Wave Thermoacoustic Engine Toward Variation of Resonator Diameter","translated_title":"","metadata":{"abstract":"Thermoacoustic engine is a promising device for converting heat to electrical power. Obtaining a higher performance of thermo acoustic engine remains a challenging effort before applying widely in industrial implementation. This study aims to investigate the performance of thermo acoustic engine in variation of resonator diameter. The study consist of three main subjects, namely establishing of the simulation model, validation and then used for predicting of the performance on variation of resonator diameter. The model simulation was established using DeltaEC freeware. For validation purposes, the simulation was conducted on similar geometrical configuration with that on the experimental set up. The resonator diameter was straight, tubular shape with inside diameter of 52 mm. The simulation is then enhanced to predict the thermo acoustic performance on varied resonator diameter of 27 mm, 41 mm, 78 mm and 90 mm. Results revealed that the simulation of thermo acoustic engine with 52 m...","publisher":"2018 4th International Conference on Science and Technology (ICST)","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"2018 4th International Conference on Science and Technology (ICST)"},"translated_abstract":"Thermoacoustic engine is a promising device for converting heat to electrical power. Obtaining a higher performance of thermo acoustic engine remains a challenging effort before applying widely in industrial implementation. This study aims to investigate the performance of thermo acoustic engine in variation of resonator diameter. The study consist of three main subjects, namely establishing of the simulation model, validation and then used for predicting of the performance on variation of resonator diameter. The model simulation was established using DeltaEC freeware. For validation purposes, the simulation was conducted on similar geometrical configuration with that on the experimental set up. The resonator diameter was straight, tubular shape with inside diameter of 52 mm. The simulation is then enhanced to predict the thermo acoustic performance on varied resonator diameter of 27 mm, 41 mm, 78 mm and 90 mm. Results revealed that the simulation of thermo acoustic engine with 52 m...","internal_url":"https://www.academia.edu/73175571/Simulation_of_Close_Open_Standing_Wave_Thermoacoustic_Engine_Toward_Variation_of_Resonator_Diameter","translated_internal_url":"","created_at":"2022-03-06T04:40:24.584-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Simulation_of_Close_Open_Standing_Wave_Thermoacoustic_Engine_Toward_Variation_of_Resonator_Diameter","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Thermoacoustic engine is a promising device for converting heat to electrical power. Obtaining a higher performance of thermo acoustic engine remains a challenging effort before applying widely in industrial implementation. This study aims to investigate the performance of thermo acoustic engine in variation of resonator diameter. The study consist of three main subjects, namely establishing of the simulation model, validation and then used for predicting of the performance on variation of resonator diameter. The model simulation was established using DeltaEC freeware. For validation purposes, the simulation was conducted on similar geometrical configuration with that on the experimental set up. The resonator diameter was straight, tubular shape with inside diameter of 52 mm. The simulation is then enhanced to predict the thermo acoustic performance on varied resonator diameter of 27 mm, 41 mm, 78 mm and 90 mm. Results revealed that the simulation of thermo acoustic engine with 52 m...","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175571-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175569"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73175569/Development_Simulation_Model_for_Charging_of_Stratified_Thermal_Energy_Storage_Tank_in_Cogeneration_Plant"><img alt="Research paper thumbnail of Development Simulation Model for Charging of Stratified Thermal Energy Storage Tank in Cogeneration Plant" class="work-thumbnail" src="https://attachments.academia-assets.com/81797760/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73175569/Development_Simulation_Model_for_Charging_of_Stratified_Thermal_Energy_Storage_Tank_in_Cogeneration_Plant">Development Simulation Model for Charging of Stratified Thermal Energy Storage Tank in Cogeneration Plant</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Currently, cogeneration plants technology have been used widely in the world since its advantageo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Currently, cogeneration plants technology have been used widely in the world since its advantageous prospect in generating the extra thermal energy from waste heat of gas turbine chimneys. Stratified thermal energy storage tank is used incorporated to cogeneration plant for shifting energy by charging the thermal energy during off-peak and discharging during the on-peak demand. The other advantage utilization tank stratified thermal energy tank is reducing the size of thermal equipment on the cogeneration plant. However, performance of stratified thermal energy storage tank is still carried out using an estimation method that has drawback of its inaccurate result and has difficulties on the measurement. One method used to overcome the drawbacks is formulation based on temperature distribution that gives beneficial in having characterization precisely and capable to be solved analytically. This research is aimed to develop a simulation model based on formulation method on the chargin...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d220cf0dce352a07edf32155b040e715" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:81797760,&quot;asset_id&quot;:73175569,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/81797760/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175569"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175569"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175569; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175569]").text(description); $(".js-view-count[data-work-id=73175569]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175569; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175569']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d220cf0dce352a07edf32155b040e715" } } $('.js-work-strip[data-work-id=73175569]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175569,"title":"Development Simulation Model for Charging of Stratified Thermal Energy Storage Tank in Cogeneration Plant","translated_title":"","metadata":{"abstract":"Currently, cogeneration plants technology have been used widely in the world since its advantageous prospect in generating the extra thermal energy from waste heat of gas turbine chimneys. Stratified thermal energy storage tank is used incorporated to cogeneration plant for shifting energy by charging the thermal energy during off-peak and discharging during the on-peak demand. The other advantage utilization tank stratified thermal energy tank is reducing the size of thermal equipment on the cogeneration plant. However, performance of stratified thermal energy storage tank is still carried out using an estimation method that has drawback of its inaccurate result and has difficulties on the measurement. One method used to overcome the drawbacks is formulation based on temperature distribution that gives beneficial in having characterization precisely and capable to be solved analytically. This research is aimed to develop a simulation model based on formulation method on the chargin...","publication_date":{"day":null,"month":null,"year":2014,"errors":{}}},"translated_abstract":"Currently, cogeneration plants technology have been used widely in the world since its advantageous prospect in generating the extra thermal energy from waste heat of gas turbine chimneys. Stratified thermal energy storage tank is used incorporated to cogeneration plant for shifting energy by charging the thermal energy during off-peak and discharging during the on-peak demand. The other advantage utilization tank stratified thermal energy tank is reducing the size of thermal equipment on the cogeneration plant. However, performance of stratified thermal energy storage tank is still carried out using an estimation method that has drawback of its inaccurate result and has difficulties on the measurement. One method used to overcome the drawbacks is formulation based on temperature distribution that gives beneficial in having characterization precisely and capable to be solved analytically. This research is aimed to develop a simulation model based on formulation method on the chargin...","internal_url":"https://www.academia.edu/73175569/Development_Simulation_Model_for_Charging_of_Stratified_Thermal_Energy_Storage_Tank_in_Cogeneration_Plant","translated_internal_url":"","created_at":"2022-03-06T04:40:24.454-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81797760,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797760/thumbnails/1.jpg","file_name":"JSME239.pdf","download_url":"https://www.academia.edu/attachments/81797760/download_file","bulk_download_file_name":"Development_Simulation_Model_for_Chargin.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797760/JSME239-libre.pdf?1646570781=\u0026response-content-disposition=attachment%3B+filename%3DDevelopment_Simulation_Model_for_Chargin.pdf\u0026Expires=1744156252\u0026Signature=I9ku6SNLBjZr9nrppYLyhrIn35jVIlGOqIURfvvggFutAuZfceNQo0OV0l5v6NbdJzrGLMk4JAJxVpOJ-WccBjM23VhYPgnhoXEZhydUfrOadBQ9M2m8dpuUvSus1yUDQ878MVRDUMit1l2TjkTBNvYhI80tGbs9C3JIm1GohgOmA~KHn10EfFJEpfNr9db1ay9cG9UDc~iIC-6sLgjOqzNx9LZvO-e~bsdO58dAyC0ZrCa1-DkFgydmiVsaTzgDglaNjy~z7-W8llatfYnfL1ZiFwqLO8IinQz1g92-JnEmK3R8dfhgq7yOu~eCNqAVd2Lpz0SFz656kS7yUxMTIw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Development_Simulation_Model_for_Charging_of_Stratified_Thermal_Energy_Storage_Tank_in_Cogeneration_Plant","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"Currently, cogeneration plants technology have been used widely in the world since its advantageous prospect in generating the extra thermal energy from waste heat of gas turbine chimneys. Stratified thermal energy storage tank is used incorporated to cogeneration plant for shifting energy by charging the thermal energy during off-peak and discharging during the on-peak demand. The other advantage utilization tank stratified thermal energy tank is reducing the size of thermal equipment on the cogeneration plant. However, performance of stratified thermal energy storage tank is still carried out using an estimation method that has drawback of its inaccurate result and has difficulties on the measurement. One method used to overcome the drawbacks is formulation based on temperature distribution that gives beneficial in having characterization precisely and capable to be solved analytically. This research is aimed to develop a simulation model based on formulation method on the chargin...","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[{"id":81797760,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797760/thumbnails/1.jpg","file_name":"JSME239.pdf","download_url":"https://www.academia.edu/attachments/81797760/download_file","bulk_download_file_name":"Development_Simulation_Model_for_Chargin.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797760/JSME239-libre.pdf?1646570781=\u0026response-content-disposition=attachment%3B+filename%3DDevelopment_Simulation_Model_for_Chargin.pdf\u0026Expires=1744156252\u0026Signature=I9ku6SNLBjZr9nrppYLyhrIn35jVIlGOqIURfvvggFutAuZfceNQo0OV0l5v6NbdJzrGLMk4JAJxVpOJ-WccBjM23VhYPgnhoXEZhydUfrOadBQ9M2m8dpuUvSus1yUDQ878MVRDUMit1l2TjkTBNvYhI80tGbs9C3JIm1GohgOmA~KHn10EfFJEpfNr9db1ay9cG9UDc~iIC-6sLgjOqzNx9LZvO-e~bsdO58dAyC0ZrCa1-DkFgydmiVsaTzgDglaNjy~z7-W8llatfYnfL1ZiFwqLO8IinQz1g92-JnEmK3R8dfhgq7yOu~eCNqAVd2Lpz0SFz656kS7yUxMTIw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":81797759,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797759/thumbnails/1.jpg","file_name":"JSME239.pdf","download_url":"https://www.academia.edu/attachments/81797759/download_file","bulk_download_file_name":"Development_Simulation_Model_for_Chargin.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797759/JSME239-libre.pdf?1646570781=\u0026response-content-disposition=attachment%3B+filename%3DDevelopment_Simulation_Model_for_Chargin.pdf\u0026Expires=1744156252\u0026Signature=FKQCE~ueAL9B-rD9gtjZmVNWa1xeJuCcLRxZ946d~3nEqYcPqyzFD4YN5prJj6BFinNso5o8TfHEgQzsLEBbMVNY6xh4qZbrEOZWXMZOdtgwJKAkwCrZvH0osLRTqxgMr2mJ8uqNcUQYDHZbPml-xmgfwBXjOMfLhB-Cep-F1Sgf~lHewKTnRpd6Dc0xW5wTayH1Ctv2OcuOZyDjd~8Wn0ac31QnQfZDA7mYI5dwnC82MYbYP89v7zbzfNf7WLF1KbLImpU2BxdsAZvKbYqvphNO61bkqPy1JceG67ommWajaAbfAOtJ472~ZefS9OY8mZseS6OIwZE1f2MRkkAmNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":18292977,"url":"http://prosiding.bkstm.org/prosiding/2013/JSME239.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175569-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175568"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/73175568/Experimental_study_on_performance_of_standing_wave_thermoacoustic_engine_at_different_tilted_angles_and_resonator_length"><img alt="Research paper thumbnail of Experimental study on performance of standing-wave thermoacoustic engine at different tilted angles and resonator length" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Experimental study on performance of standing-wave thermoacoustic engine at different tilted angles and resonator length</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175568"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175568"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175568; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175568]").text(description); $(".js-view-count[data-work-id=73175568]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175568; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175568']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73175568]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175568,"title":"Experimental study on performance of standing-wave thermoacoustic engine at different tilted angles and resonator length","translated_title":"","metadata":{"publisher":"Author(s)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/73175568/Experimental_study_on_performance_of_standing_wave_thermoacoustic_engine_at_different_tilted_angles_and_resonator_length","translated_internal_url":"","created_at":"2022-03-06T04:40:24.346-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Experimental_study_on_performance_of_standing_wave_thermoacoustic_engine_at_different_tilted_angles_and_resonator_length","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"}],"urls":[{"id":18292975,"url":"http://aip.scitation.org/doi/pdf/10.1063/1.5050013"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175568-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175566"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73175566/Resonator_Influence_Simulation_of_Designed_Close_Open_Standing_Wave_Thermoacoustic_Engine"><img alt="Research paper thumbnail of Resonator Influence Simulation of Designed Close-Open Standing Wave Thermoacoustic Engine" class="work-thumbnail" src="https://attachments.academia-assets.com/81797757/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73175566/Resonator_Influence_Simulation_of_Designed_Close_Open_Standing_Wave_Thermoacoustic_Engine">Resonator Influence Simulation of Designed Close-Open Standing Wave Thermoacoustic Engine</a></div><div class="wp-workCard_item"><span>Advances in Science, Technology and Engineering Systems Journal</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Thermo-acoustic technology is very potential to be applied to convert heat into another energy so...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Thermo-acoustic technology is very potential to be applied to convert heat into another energy source. The complete thermoacoustic engine construction requires a resonator connected to a core where there is a heat exchanger. The thermoacoustic core has a function as an acoustic power generator while the resonator functions as a storage of acoustic power which will shift the amplitude or phase of oscillating pressure or volume flow rate. Experimental testing was carried out to obtain the performance of a quarter wave length of standing wave thermoacoustic engine (SWTE). The resonator is made of a 2 inch Sch 40 stainless steel pipe with a length of 390 mm. The results of this experiment showed that the measured pressure amplitude was 4800 kPa with a working frequency of 138 HZ and produced an acoustic power of 22.85 watts. The parameters of this experimental test are used for the simulation program. The acoustic power generated from the simulation is 20.13 watts, 18.67 watts and 17.82 watts respectively for the length of the resonator 390 mm, 780 mm and 1170 mm.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7d0a49be88c3788727957bf589e755c6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:81797757,&quot;asset_id&quot;:73175566,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/81797757/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175566"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175566"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175566; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175566]").text(description); $(".js-view-count[data-work-id=73175566]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175566; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175566']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7d0a49be88c3788727957bf589e755c6" } } $('.js-work-strip[data-work-id=73175566]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175566,"title":"Resonator Influence Simulation of Designed Close-Open Standing Wave Thermoacoustic Engine","translated_title":"","metadata":{"publisher":"ASTES Journal","grobid_abstract":"Thermo-acoustic technology is very potential to be applied to convert heat into another energy source. The complete thermoacoustic engine construction requires a resonator connected to a core where there is a heat exchanger. The thermoacoustic core has a function as an acoustic power generator while the resonator functions as a storage of acoustic power which will shift the amplitude or phase of oscillating pressure or volume flow rate. Experimental testing was carried out to obtain the performance of a quarter wave length of standing wave thermoacoustic engine (SWTE). The resonator is made of a 2 inch Sch 40 stainless steel pipe with a length of 390 mm. The results of this experiment showed that the measured pressure amplitude was 4800 kPa with a working frequency of 138 HZ and produced an acoustic power of 22.85 watts. The parameters of this experimental test are used for the simulation program. The acoustic power generated from the simulation is 20.13 watts, 18.67 watts and 17.82 watts respectively for the length of the resonator 390 mm, 780 mm and 1170 mm.","publication_name":"Advances in Science, Technology and Engineering Systems Journal","grobid_abstract_attachment_id":81797757},"translated_abstract":null,"internal_url":"https://www.academia.edu/73175566/Resonator_Influence_Simulation_of_Designed_Close_Open_Standing_Wave_Thermoacoustic_Engine","translated_internal_url":"","created_at":"2022-03-06T04:40:24.227-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81797757,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797757/thumbnails/1.jpg","file_name":"ASTESJ_040538.pdf","download_url":"https://www.academia.edu/attachments/81797757/download_file","bulk_download_file_name":"Resonator_Influence_Simulation_of_Design.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797757/ASTESJ_040538-libre.pdf?1646570781=\u0026response-content-disposition=attachment%3B+filename%3DResonator_Influence_Simulation_of_Design.pdf\u0026Expires=1744156252\u0026Signature=Y-NCCOHoLjosgeN5RL0Uj20vvV4RT0lwqEnWurh-or35bxVFYjoJfBdKm-SqM8Y6kJkm-0qj51I-EkauoAMjsmsaZ~bMKi-WgHTPmJH~he-ZB1yhxW9hKgwJreU1lTo~QwniFAMOceMzymby3eTkNoEjxgj-ivChTSf9B0nKzY~5ss-0q3EYEMdBJKaSnrI~oBA9Wx4V923w3A-FzsdNH6jACxCGjWcJgpoZuW3pPqAEprUiwAK7ogErl5LkB3eA2IyX0XbYYbvLeZRk6BdbV50eniyCDZWdsDRmEZ-~fXpn~~5yI9z2c6xz3rvtwRftDQNbD6Gis33cc3dYTakuzA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Resonator_Influence_Simulation_of_Designed_Close_Open_Standing_Wave_Thermoacoustic_Engine","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"Thermo-acoustic technology is very potential to be applied to convert heat into another energy source. The complete thermoacoustic engine construction requires a resonator connected to a core where there is a heat exchanger. The thermoacoustic core has a function as an acoustic power generator while the resonator functions as a storage of acoustic power which will shift the amplitude or phase of oscillating pressure or volume flow rate. Experimental testing was carried out to obtain the performance of a quarter wave length of standing wave thermoacoustic engine (SWTE). The resonator is made of a 2 inch Sch 40 stainless steel pipe with a length of 390 mm. The results of this experiment showed that the measured pressure amplitude was 4800 kPa with a working frequency of 138 HZ and produced an acoustic power of 22.85 watts. The parameters of this experimental test are used for the simulation program. The acoustic power generated from the simulation is 20.13 watts, 18.67 watts and 17.82 watts respectively for the length of the resonator 390 mm, 780 mm and 1170 mm.","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[{"id":81797757,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797757/thumbnails/1.jpg","file_name":"ASTESJ_040538.pdf","download_url":"https://www.academia.edu/attachments/81797757/download_file","bulk_download_file_name":"Resonator_Influence_Simulation_of_Design.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797757/ASTESJ_040538-libre.pdf?1646570781=\u0026response-content-disposition=attachment%3B+filename%3DResonator_Influence_Simulation_of_Design.pdf\u0026Expires=1744156252\u0026Signature=Y-NCCOHoLjosgeN5RL0Uj20vvV4RT0lwqEnWurh-or35bxVFYjoJfBdKm-SqM8Y6kJkm-0qj51I-EkauoAMjsmsaZ~bMKi-WgHTPmJH~he-ZB1yhxW9hKgwJreU1lTo~QwniFAMOceMzymby3eTkNoEjxgj-ivChTSf9B0nKzY~5ss-0q3EYEMdBJKaSnrI~oBA9Wx4V923w3A-FzsdNH6jACxCGjWcJgpoZuW3pPqAEprUiwAK7ogErl5LkB3eA2IyX0XbYYbvLeZRk6BdbV50eniyCDZWdsDRmEZ-~fXpn~~5yI9z2c6xz3rvtwRftDQNbD6Gis33cc3dYTakuzA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":81797758,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797758/thumbnails/1.jpg","file_name":"ASTESJ_040538.pdf","download_url":"https://www.academia.edu/attachments/81797758/download_file","bulk_download_file_name":"Resonator_Influence_Simulation_of_Design.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797758/ASTESJ_040538-libre.pdf?1646570781=\u0026response-content-disposition=attachment%3B+filename%3DResonator_Influence_Simulation_of_Design.pdf\u0026Expires=1744156252\u0026Signature=b55~hYx2-eJL6U8v3GQyHtGP4F8oc4ze0LBa4-BLYz6VCu126hX3fc1Y-nCk-XLNoDHFJjqPPHGQMGCm1Sm-vEZNEYaOa0ahLucoUWRXlzgRU2THYv8wEOB2OmStIUwrwFpMHJVS82uYuh8ofvfBPhdisP7kiqRqZ9YWFS9VV-PF~Mr15fBQgF831rTWyxpJZyHEsER6eVXySbTQpCkR~5g-vPu2SzOLS4JJmx26aFpJVZYJf~V0inhXks47aTsrkORLPyFTIWMoGqvkllhyeTBc9Es1fGiGJwZ-T0JX31m1L1EuFkfg2DlBir1gcp288LmAORz6ZXQ5P9uKWuQTjg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"}],"urls":[{"id":18292974,"url":"https://www.astesj.com/publications/ASTESJ_040538.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175566-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175565"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/73175565/Determination_of_performance_parameters_of_hot_stratified_thermal_energy_storage_tank"><img alt="Research paper thumbnail of Determination of performance parameters of hot stratified thermal energy storage tank" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Determination of performance parameters of hot stratified thermal energy storage tank</div><div class="wp-workCard_item"><span>2016 6th International Annual Engineering Seminar (InAES)</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Performance of stratified thermal energy storage tank is strongly influenced by separation layer ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Performance of stratified thermal energy storage tank is strongly influenced by separation layer between the hot and cool water stored in the tank. This separation layer is evaluated from water temperature inside of the tank. However, difficulty in converting the temperature distribution into performance parameters has been found. In this research, determination of performance parameters from the temperature distribution is investigated. The temperature distributions are obtained from experimental data simulating charging cycle in hot stratified thermal energy storage tank with varies charging flow rates. Determination of the performance parameters are carried out based on temperature distribution utilizing Sigmoid Dose Response formulation. The results show that significant parameter namely thermocline thickness, cumulative cooling capacity and half-cycle Figure of Merit are precisely determined during the charging cycle. Moreover, the parameters growth is also capable to be evaluated precisely in the charging step. The research results proved the ability of SDR formulation for determining the performance parameter in stratified thermal energy storage tank. It his highlighted that the SDR formulation offers advantage of determination performance parameter accurately.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175565"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175565"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175565; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175565]").text(description); $(".js-view-count[data-work-id=73175565]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175565; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175565']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73175565]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175565,"title":"Determination of performance parameters of hot stratified thermal energy storage tank","translated_title":"","metadata":{"abstract":"Performance of stratified thermal energy storage tank is strongly influenced by separation layer between the hot and cool water stored in the tank. This separation layer is evaluated from water temperature inside of the tank. However, difficulty in converting the temperature distribution into performance parameters has been found. In this research, determination of performance parameters from the temperature distribution is investigated. The temperature distributions are obtained from experimental data simulating charging cycle in hot stratified thermal energy storage tank with varies charging flow rates. Determination of the performance parameters are carried out based on temperature distribution utilizing Sigmoid Dose Response formulation. The results show that significant parameter namely thermocline thickness, cumulative cooling capacity and half-cycle Figure of Merit are precisely determined during the charging cycle. Moreover, the parameters growth is also capable to be evaluated precisely in the charging step. The research results proved the ability of SDR formulation for determining the performance parameter in stratified thermal energy storage tank. It his highlighted that the SDR formulation offers advantage of determination performance parameter accurately.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"2016 6th International Annual Engineering Seminar (InAES)"},"translated_abstract":"Performance of stratified thermal energy storage tank is strongly influenced by separation layer between the hot and cool water stored in the tank. This separation layer is evaluated from water temperature inside of the tank. However, difficulty in converting the temperature distribution into performance parameters has been found. In this research, determination of performance parameters from the temperature distribution is investigated. The temperature distributions are obtained from experimental data simulating charging cycle in hot stratified thermal energy storage tank with varies charging flow rates. Determination of the performance parameters are carried out based on temperature distribution utilizing Sigmoid Dose Response formulation. The results show that significant parameter namely thermocline thickness, cumulative cooling capacity and half-cycle Figure of Merit are precisely determined during the charging cycle. Moreover, the parameters growth is also capable to be evaluated precisely in the charging step. The research results proved the ability of SDR formulation for determining the performance parameter in stratified thermal energy storage tank. It his highlighted that the SDR formulation offers advantage of determination performance parameter accurately.","internal_url":"https://www.academia.edu/73175565/Determination_of_performance_parameters_of_hot_stratified_thermal_energy_storage_tank","translated_internal_url":"","created_at":"2022-03-06T04:40:24.154-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Determination_of_performance_parameters_of_hot_stratified_thermal_energy_storage_tank","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Performance of stratified thermal energy storage tank is strongly influenced by separation layer between the hot and cool water stored in the tank. This separation layer is evaluated from water temperature inside of the tank. However, difficulty in converting the temperature distribution into performance parameters has been found. In this research, determination of performance parameters from the temperature distribution is investigated. The temperature distributions are obtained from experimental data simulating charging cycle in hot stratified thermal energy storage tank with varies charging flow rates. Determination of the performance parameters are carried out based on temperature distribution utilizing Sigmoid Dose Response formulation. The results show that significant parameter namely thermocline thickness, cumulative cooling capacity and half-cycle Figure of Merit are precisely determined during the charging cycle. Moreover, the parameters growth is also capable to be evaluated precisely in the charging step. The research results proved the ability of SDR formulation for determining the performance parameter in stratified thermal energy storage tank. It his highlighted that the SDR formulation offers advantage of determination performance parameter accurately.","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175565-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175563"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/73175563/Perancangan_Bejana_Tekan_Vertikal_Dan_Analisis_Skala_Kegempaan_Studi_Kasus_Scrubber_Unit_Karaha_Pt_Pertamina_Geothermal_Energy_"><img alt="Research paper thumbnail of Perancangan Bejana Tekan Vertikal Dan Analisis Skala Kegempaan (Studi Kasus Scrubber Unit Karaha Pt. Pertamina Geothermal Energy)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Perancangan Bejana Tekan Vertikal Dan Analisis Skala Kegempaan (Studi Kasus Scrubber Unit Karaha Pt. Pertamina Geothermal Energy)</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175563"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175563"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175563; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175563]").text(description); $(".js-view-count[data-work-id=73175563]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175563; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175563']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73175563]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175563,"title":"Perancangan Bejana Tekan Vertikal Dan Analisis Skala Kegempaan (Studi Kasus Scrubber Unit Karaha Pt. Pertamina Geothermal Energy)","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2014,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/73175563/Perancangan_Bejana_Tekan_Vertikal_Dan_Analisis_Skala_Kegempaan_Studi_Kasus_Scrubber_Unit_Karaha_Pt_Pertamina_Geothermal_Energy_","translated_internal_url":"","created_at":"2022-03-06T04:40:24.055-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Perancangan_Bejana_Tekan_Vertikal_Dan_Analisis_Skala_Kegempaan_Studi_Kasus_Scrubber_Unit_Karaha_Pt_Pertamina_Geothermal_Energy_","translated_slug":"","page_count":null,"language":"id","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"}],"urls":[{"id":18292972,"url":"http://repository.ugm.ac.id/128949/"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175563-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175562"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/73175562/Simulation_Models_for_Single_and_Two_Stage_Chargingof_Stratified_Thermal_Energy_Storage"><img alt="Research paper thumbnail of Simulation Models for Single and Two-Stage Chargingof Stratified Thermal Energy Storage" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Simulation Models for Single and Two-Stage Chargingof Stratified Thermal Energy Storage</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The current practice of charging thermal energy storage (TES) tank is by using electric chillers....</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The current practice of charging thermal energy storage (TES) tank is by using electric chillers. One of the main reasons is that the temperature limitation of the absorption chillers which might lead to freezing the refrigerant. This was the reason the absorption chillers at co-generated district cooling plants are not being utilized to charge the TES tank. This research focuses on the development of models incorporating absorption chiller to complement electric chiller to charge a stratified TES tank of a co-generated district cooling plant. The models were developed using two approaches, namely temperature distribution analysis approach and heat transfer approach. For the case of temperature distribution analysis, a function was selected to represent its profile. Functional relationship of the temperature distribution was used to formulate thermocline thickness, thermocline limit points, temperature transition point and limit capacity criteria. Using temperature distribution function, simulation model was then developed based on an open charging system. For the heat transfer approach, the models were developed as a close system by integrating the TES tank and chiller equipments. For the TES tank, one-dimensional flow conductiveconvection analysis was used, while the chillers utilized energy balance analysis. For both approaches two types of models, namely single stage and two-stage models were developed. The single stage model is limited to using electric chiller to charge the TES tank. While the two-stage models incorporate both the absorption and electric chillers with the absorption and the electric chillers function in sequence to charge the TES tank. Validation was performed on the single stage charging for both approaches. Results show similarities of temperature distribution values of R2 greater than 0.98 and parameters deviation lower than 6%. From statistical test acceptance analysis for the single stage model, t-computed has highest value of 0.035, which is lower than critical value of 2.145 from the t-distribution table. This indicates that both models were statistically acceptable. Comparisons of the single and two-stage models between the two approaches were also performed using simulation case studies. Results imply that the models are capable of predicting charging characteristic, with deviations lower than 4% for the charging durations and below 2% for the cumulative cooling capacity. Findings from simulations of the two-stage models indicate that the absorption chillers could be used to charge the TES in combination with electric chillers.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175562"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175562"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175562; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175562]").text(description); $(".js-view-count[data-work-id=73175562]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175562; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175562']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73175562]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175562,"title":"Simulation Models for Single and Two-Stage Chargingof Stratified Thermal Energy Storage","translated_title":"","metadata":{"abstract":"The current practice of charging thermal energy storage (TES) tank is by using electric chillers. One of the main reasons is that the temperature limitation of the absorption chillers which might lead to freezing the refrigerant. This was the reason the absorption chillers at co-generated district cooling plants are not being utilized to charge the TES tank. This research focuses on the development of models incorporating absorption chiller to complement electric chiller to charge a stratified TES tank of a co-generated district cooling plant. The models were developed using two approaches, namely temperature distribution analysis approach and heat transfer approach. For the case of temperature distribution analysis, a function was selected to represent its profile. Functional relationship of the temperature distribution was used to formulate thermocline thickness, thermocline limit points, temperature transition point and limit capacity criteria. Using temperature distribution function, simulation model was then developed based on an open charging system. For the heat transfer approach, the models were developed as a close system by integrating the TES tank and chiller equipments. For the TES tank, one-dimensional flow conductiveconvection analysis was used, while the chillers utilized energy balance analysis. For both approaches two types of models, namely single stage and two-stage models were developed. The single stage model is limited to using electric chiller to charge the TES tank. While the two-stage models incorporate both the absorption and electric chillers with the absorption and the electric chillers function in sequence to charge the TES tank. Validation was performed on the single stage charging for both approaches. Results show similarities of temperature distribution values of R2 greater than 0.98 and parameters deviation lower than 6%. From statistical test acceptance analysis for the single stage model, t-computed has highest value of 0.035, which is lower than critical value of 2.145 from the t-distribution table. This indicates that both models were statistically acceptable. Comparisons of the single and two-stage models between the two approaches were also performed using simulation case studies. Results imply that the models are capable of predicting charging characteristic, with deviations lower than 4% for the charging durations and below 2% for the cumulative cooling capacity. Findings from simulations of the two-stage models indicate that the absorption chillers could be used to charge the TES in combination with electric chillers.","publication_date":{"day":1,"month":4,"year":2011,"errors":{}}},"translated_abstract":"The current practice of charging thermal energy storage (TES) tank is by using electric chillers. One of the main reasons is that the temperature limitation of the absorption chillers which might lead to freezing the refrigerant. This was the reason the absorption chillers at co-generated district cooling plants are not being utilized to charge the TES tank. This research focuses on the development of models incorporating absorption chiller to complement electric chiller to charge a stratified TES tank of a co-generated district cooling plant. The models were developed using two approaches, namely temperature distribution analysis approach and heat transfer approach. For the case of temperature distribution analysis, a function was selected to represent its profile. Functional relationship of the temperature distribution was used to formulate thermocline thickness, thermocline limit points, temperature transition point and limit capacity criteria. Using temperature distribution function, simulation model was then developed based on an open charging system. For the heat transfer approach, the models were developed as a close system by integrating the TES tank and chiller equipments. For the TES tank, one-dimensional flow conductiveconvection analysis was used, while the chillers utilized energy balance analysis. For both approaches two types of models, namely single stage and two-stage models were developed. The single stage model is limited to using electric chiller to charge the TES tank. While the two-stage models incorporate both the absorption and electric chillers with the absorption and the electric chillers function in sequence to charge the TES tank. Validation was performed on the single stage charging for both approaches. Results show similarities of temperature distribution values of R2 greater than 0.98 and parameters deviation lower than 6%. From statistical test acceptance analysis for the single stage model, t-computed has highest value of 0.035, which is lower than critical value of 2.145 from the t-distribution table. This indicates that both models were statistically acceptable. Comparisons of the single and two-stage models between the two approaches were also performed using simulation case studies. Results imply that the models are capable of predicting charging characteristic, with deviations lower than 4% for the charging durations and below 2% for the cumulative cooling capacity. Findings from simulations of the two-stage models indicate that the absorption chillers could be used to charge the TES in combination with electric chillers.","internal_url":"https://www.academia.edu/73175562/Simulation_Models_for_Single_and_Two_Stage_Chargingof_Stratified_Thermal_Energy_Storage","translated_internal_url":"","created_at":"2022-03-06T04:40:23.949-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Simulation_Models_for_Single_and_Two_Stage_Chargingof_Stratified_Thermal_Energy_Storage","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The current practice of charging thermal energy storage (TES) tank is by using electric chillers. One of the main reasons is that the temperature limitation of the absorption chillers which might lead to freezing the refrigerant. This was the reason the absorption chillers at co-generated district cooling plants are not being utilized to charge the TES tank. This research focuses on the development of models incorporating absorption chiller to complement electric chiller to charge a stratified TES tank of a co-generated district cooling plant. The models were developed using two approaches, namely temperature distribution analysis approach and heat transfer approach. For the case of temperature distribution analysis, a function was selected to represent its profile. Functional relationship of the temperature distribution was used to formulate thermocline thickness, thermocline limit points, temperature transition point and limit capacity criteria. Using temperature distribution function, simulation model was then developed based on an open charging system. For the heat transfer approach, the models were developed as a close system by integrating the TES tank and chiller equipments. For the TES tank, one-dimensional flow conductiveconvection analysis was used, while the chillers utilized energy balance analysis. For both approaches two types of models, namely single stage and two-stage models were developed. The single stage model is limited to using electric chiller to charge the TES tank. While the two-stage models incorporate both the absorption and electric chillers with the absorption and the electric chillers function in sequence to charge the TES tank. Validation was performed on the single stage charging for both approaches. Results show similarities of temperature distribution values of R2 greater than 0.98 and parameters deviation lower than 6%. From statistical test acceptance analysis for the single stage model, t-computed has highest value of 0.035, which is lower than critical value of 2.145 from the t-distribution table. This indicates that both models were statistically acceptable. Comparisons of the single and two-stage models between the two approaches were also performed using simulation case studies. Results imply that the models are capable of predicting charging characteristic, with deviations lower than 4% for the charging durations and below 2% for the cumulative cooling capacity. Findings from simulations of the two-stage models indicate that the absorption chillers could be used to charge the TES in combination with electric chillers.","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[],"research_interests":[],"urls":[{"id":18292970,"url":"http://utpedia.utp.edu.my/2865/"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175562-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175560"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73175560/Operation_and_Performance_of_a_Thermal_Energy_Storage_System_A_Case_Study_of_Campus_Cooling_using_Cogeneration_Plant"><img alt="Research paper thumbnail of Operation and Performance of a Thermal Energy Storage System: A Case Study of Campus Cooling using Cogeneration Plant" class="work-thumbnail" src="https://attachments.academia-assets.com/81797787/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73175560/Operation_and_Performance_of_a_Thermal_Energy_Storage_System_A_Case_Study_of_Campus_Cooling_using_Cogeneration_Plant">Operation and Performance of a Thermal Energy Storage System: A Case Study of Campus Cooling using Cogeneration Plant</a></div><div class="wp-workCard_item"><span>Energy Procedia</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The paper presents the study on operation and performance of thermal energy storage (TES) system....</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The paper presents the study on operation and performance of thermal energy storage (TES) system. The TES system is installed at a cogeneration plant for campus cooling. Operating data from 2006 until 2009 were anlaysed to evaluate the operating modes, half-cycle figure of merit (FOM) and thermocline performance of the TES system. The findings indicate that the TES system was operated based on partial mode strategy. The average half-cycle FOM evaluated for charging and discharging are 0.47 and 0.67 respectively. The thermocline thickness estimated is 1.5 m. The temperature distribution profiles indicate that the TES functioned as stratified TES.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2780039d81902589e6689e548ddca624" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:81797787,&quot;asset_id&quot;:73175560,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/81797787/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175560"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175560"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175560; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175560]").text(description); $(".js-view-count[data-work-id=73175560]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175560; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175560']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2780039d81902589e6689e548ddca624" } } $('.js-work-strip[data-work-id=73175560]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175560,"title":"Operation and Performance of a Thermal Energy Storage System: A Case Study of Campus Cooling using Cogeneration Plant","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"The paper presents the study on operation and performance of thermal energy storage (TES) system. The TES system is installed at a cogeneration plant for campus cooling. Operating data from 2006 until 2009 were anlaysed to evaluate the operating modes, half-cycle figure of merit (FOM) and thermocline performance of the TES system. The findings indicate that the TES system was operated based on partial mode strategy. The average half-cycle FOM evaluated for charging and discharging are 0.47 and 0.67 respectively. The thermocline thickness estimated is 1.5 m. The temperature distribution profiles indicate that the TES functioned as stratified TES.","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"Energy Procedia","grobid_abstract_attachment_id":81797787},"translated_abstract":null,"internal_url":"https://www.academia.edu/73175560/Operation_and_Performance_of_a_Thermal_Energy_Storage_System_A_Case_Study_of_Campus_Cooling_using_Cogeneration_Plant","translated_internal_url":"","created_at":"2022-03-06T04:40:23.876-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81797787,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797787/thumbnails/1.jpg","file_name":"aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMTg3NjYxMDIxMTA0NTA5Nw__.pdf","download_url":"https://www.academia.edu/attachments/81797787/download_file","bulk_download_file_name":"Operation_and_Performance_of_a_Thermal_E.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797787/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMTg3NjYxMDIxMTA0NTA5Nw__-libre.pdf?1646571219=\u0026response-content-disposition=attachment%3B+filename%3DOperation_and_Performance_of_a_Thermal_E.pdf\u0026Expires=1744156252\u0026Signature=fnu5J7mbCdlDkW0vS-Cuddjo2uadYwLlsTHMxJx9ItBEjnWgrJj96AyrvPCp~lxSUSkO9L82Fsa2WuMYE0pEv85FRXEkWuKZMT7YXq2jkZdzNRZmEXYe9L9TQ0TIkANWOiOkGI4ZEebdiC3wRrHKkNQoksZuDqxeQd5E4Wb~0NUDxLDvSp44k30yrssl27X1RB3~HYyMIu5Fak4KK3WMldpgit4QzXXhOEyHDEUemtVvVv2xMM2K-0IOjtecp2h8jLp5w-DEbFEYe1NZhsX9jE1KUgO0lrsvz9vJXbEF8M66V9dmFnG59NfWCQvUPe7J5ewR-0g5fz-N5jJmjASNpA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Operation_and_Performance_of_a_Thermal_Energy_Storage_System_A_Case_Study_of_Campus_Cooling_using_Cogeneration_Plant","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"The paper presents the study on operation and performance of thermal energy storage (TES) system. The TES system is installed at a cogeneration plant for campus cooling. Operating data from 2006 until 2009 were anlaysed to evaluate the operating modes, half-cycle figure of merit (FOM) and thermocline performance of the TES system. The findings indicate that the TES system was operated based on partial mode strategy. The average half-cycle FOM evaluated for charging and discharging are 0.47 and 0.67 respectively. The thermocline thickness estimated is 1.5 m. The temperature distribution profiles indicate that the TES functioned as stratified TES.","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[{"id":81797787,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797787/thumbnails/1.jpg","file_name":"aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMTg3NjYxMDIxMTA0NTA5Nw__.pdf","download_url":"https://www.academia.edu/attachments/81797787/download_file","bulk_download_file_name":"Operation_and_Performance_of_a_Thermal_E.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797787/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMTg3NjYxMDIxMTA0NTA5Nw__-libre.pdf?1646571219=\u0026response-content-disposition=attachment%3B+filename%3DOperation_and_Performance_of_a_Thermal_E.pdf\u0026Expires=1744156252\u0026Signature=fnu5J7mbCdlDkW0vS-Cuddjo2uadYwLlsTHMxJx9ItBEjnWgrJj96AyrvPCp~lxSUSkO9L82Fsa2WuMYE0pEv85FRXEkWuKZMT7YXq2jkZdzNRZmEXYe9L9TQ0TIkANWOiOkGI4ZEebdiC3wRrHKkNQoksZuDqxeQd5E4Wb~0NUDxLDvSp44k30yrssl27X1RB3~HYyMIu5Fak4KK3WMldpgit4QzXXhOEyHDEUemtVvVv2xMM2K-0IOjtecp2h8jLp5w-DEbFEYe1NZhsX9jE1KUgO0lrsvz9vJXbEF8M66V9dmFnG59NfWCQvUPe7J5ewR-0g5fz-N5jJmjASNpA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":281300,"name":"Thermal Energy Storage","url":"https://www.academia.edu/Documents/in/Thermal_Energy_Storage"},{"id":307886,"name":"Thermocline","url":"https://www.academia.edu/Documents/in/Thermocline"},{"id":1308377,"name":"Figure of Merit","url":"https://www.academia.edu/Documents/in/Figure_of_Merit"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175560-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175559"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73175559/Operation_and_Performance_of_a_Thermal_Energy_Storage_System_A_Case_Study_of_Campus_Cooling_using_Cogeneration_Plant"><img alt="Research paper thumbnail of Operation and Performance of a Thermal Energy Storage System: A Case Study of Campus Cooling using Cogeneration Plant" class="work-thumbnail" src="https://attachments.academia-assets.com/81797790/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73175559/Operation_and_Performance_of_a_Thermal_Energy_Storage_System_A_Case_Study_of_Campus_Cooling_using_Cogeneration_Plant">Operation and Performance of a Thermal Energy Storage System: A Case Study of Campus Cooling using Cogeneration Plant</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The paper presents the study on operation and performance of thermal energy storage (TES) system....</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The paper presents the study on operation and performance of thermal energy storage (TES) system. The TES system is installed at a cogeneration plant for campus cooling. Operating data from 2006 until 2009 were anlaysed to evaluate the operating modes, half-cycle figure of merit (FOM) and thermocline performance of the TES system. The findings indicate that the TES system was operated based on partial mode strategy. The average half-cycle FOM evaluated for charging and discharging are 0.47 and 0.67 respectively. The thermocline thickness estimated is 1.5 m. The temperature distribution profiles indicate that the TES functioned as stratified TES.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6c5c1f0937ed6f8d4932c6f6d778c539" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:81797790,&quot;asset_id&quot;:73175559,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/81797790/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175559"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175559"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175559; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175559]").text(description); $(".js-view-count[data-work-id=73175559]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175559; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175559']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6c5c1f0937ed6f8d4932c6f6d778c539" } } $('.js-work-strip[data-work-id=73175559]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175559,"title":"Operation and Performance of a Thermal Energy Storage System: A Case Study of Campus Cooling using Cogeneration Plant","translated_title":"","metadata":{"publisher":"eprints.utp.edu.my","ai_title_tag":"Thermal Energy Storage System Performance Study","grobid_abstract":"The paper presents the study on operation and performance of thermal energy storage (TES) system. The TES system is installed at a cogeneration plant for campus cooling. Operating data from 2006 until 2009 were anlaysed to evaluate the operating modes, half-cycle figure of merit (FOM) and thermocline performance of the TES system. The findings indicate that the TES system was operated based on partial mode strategy. The average half-cycle FOM evaluated for charging and discharging are 0.47 and 0.67 respectively. The thermocline thickness estimated is 1.5 m. The temperature distribution profiles indicate that the TES functioned as stratified TES.","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"grobid_abstract_attachment_id":81797790},"translated_abstract":null,"internal_url":"https://www.academia.edu/73175559/Operation_and_Performance_of_a_Thermal_Energy_Storage_System_A_Case_Study_of_Campus_Cooling_using_Cogeneration_Plant","translated_internal_url":"","created_at":"2022-03-06T04:40:23.809-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81797790,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797790/thumbnails/1.jpg","file_name":"aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMTg3NjYxMDIxMTA0NTA5Nw__.pdf","download_url":"https://www.academia.edu/attachments/81797790/download_file","bulk_download_file_name":"Operation_and_Performance_of_a_Thermal_E.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797790/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMTg3NjYxMDIxMTA0NTA5Nw__-libre.pdf?1646571218=\u0026response-content-disposition=attachment%3B+filename%3DOperation_and_Performance_of_a_Thermal_E.pdf\u0026Expires=1744156252\u0026Signature=SoJdkXmGOF3L91nAhlwAWF~T1-4XVlt2~mGZfSl9RMctPKos~nPGqC6iAqFkbE~~bE34i7wOZ0nlIPiJKuwYTDciNkPtgRnTMX0qNljs1BD4Xay-N1uKIPgLClOpwe-vXMkN0a2sLG964X8xP1R-5FML0FJJhFi-N339074nOUVpX2Cbl4fIvQZHsi8W-LRM~iQ-tu9~4HvKtbVU2m5ucz2xJf7~dWGWtQExscibooJ3Q3jR7LZSP6KcvAf59ItAxnV~Q6pJC4m1HalFywoEhzWwZ4j28rMwVd8JD~KLtryj0OJ6CGOi3Ng~HGePbcerP4yXO5seRyoTQ8E58t3tGg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Operation_and_Performance_of_a_Thermal_Energy_Storage_System_A_Case_Study_of_Campus_Cooling_using_Cogeneration_Plant","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"The paper presents the study on operation and performance of thermal energy storage (TES) system. The TES system is installed at a cogeneration plant for campus cooling. Operating data from 2006 until 2009 were anlaysed to evaluate the operating modes, half-cycle figure of merit (FOM) and thermocline performance of the TES system. The findings indicate that the TES system was operated based on partial mode strategy. The average half-cycle FOM evaluated for charging and discharging are 0.47 and 0.67 respectively. The thermocline thickness estimated is 1.5 m. The temperature distribution profiles indicate that the TES functioned as stratified TES.","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[{"id":81797790,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797790/thumbnails/1.jpg","file_name":"aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMTg3NjYxMDIxMTA0NTA5Nw__.pdf","download_url":"https://www.academia.edu/attachments/81797790/download_file","bulk_download_file_name":"Operation_and_Performance_of_a_Thermal_E.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797790/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMTg3NjYxMDIxMTA0NTA5Nw__-libre.pdf?1646571218=\u0026response-content-disposition=attachment%3B+filename%3DOperation_and_Performance_of_a_Thermal_E.pdf\u0026Expires=1744156252\u0026Signature=SoJdkXmGOF3L91nAhlwAWF~T1-4XVlt2~mGZfSl9RMctPKos~nPGqC6iAqFkbE~~bE34i7wOZ0nlIPiJKuwYTDciNkPtgRnTMX0qNljs1BD4Xay-N1uKIPgLClOpwe-vXMkN0a2sLG964X8xP1R-5FML0FJJhFi-N339074nOUVpX2Cbl4fIvQZHsi8W-LRM~iQ-tu9~4HvKtbVU2m5ucz2xJf7~dWGWtQExscibooJ3Q3jR7LZSP6KcvAf59ItAxnV~Q6pJC4m1HalFywoEhzWwZ4j28rMwVd8JD~KLtryj0OJ6CGOi3Ng~HGePbcerP4yXO5seRyoTQ8E58t3tGg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":281300,"name":"Thermal Energy Storage","url":"https://www.academia.edu/Documents/in/Thermal_Energy_Storage"},{"id":307886,"name":"Thermocline","url":"https://www.academia.edu/Documents/in/Thermocline"},{"id":1308377,"name":"Figure of Merit","url":"https://www.academia.edu/Documents/in/Figure_of_Merit"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175559-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175557"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73175557/Performance_Evaluation_of_Stratified_TES_using_Sigmoid_Dose_Response_Function"><img alt="Research paper thumbnail of Performance Evaluation of Stratified TES using Sigmoid Dose Response Function" class="work-thumbnail" src="https://attachments.academia-assets.com/81797785/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73175557/Performance_Evaluation_of_Stratified_TES_using_Sigmoid_Dose_Response_Function">Performance Evaluation of Stratified TES using Sigmoid Dose Response Function</a></div><div class="wp-workCard_item"><span>Journal of Applied Sciences</span><span>, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0a4e6a3420ef659a8ceae40dc3e12929" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:81797785,&quot;asset_id&quot;:73175557,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/81797785/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175557"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175557"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175557; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175557]").text(description); $(".js-view-count[data-work-id=73175557]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175557; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175557']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0a4e6a3420ef659a8ceae40dc3e12929" } } $('.js-work-strip[data-work-id=73175557]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175557,"title":"Performance Evaluation of Stratified TES using Sigmoid Dose Response Function","translated_title":"","metadata":{"publisher":"Science Alert","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Journal of Applied Sciences"},"translated_abstract":null,"internal_url":"https://www.academia.edu/73175557/Performance_Evaluation_of_Stratified_TES_using_Sigmoid_Dose_Response_Function","translated_internal_url":"","created_at":"2022-03-06T04:40:23.726-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81797785,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797785/thumbnails/1.jpg","file_name":"qredirect.pdf","download_url":"https://www.academia.edu/attachments/81797785/download_file","bulk_download_file_name":"Performance_Evaluation_of_Stratified_TES.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797785/qredirect-libre.pdf?1646571218=\u0026response-content-disposition=attachment%3B+filename%3DPerformance_Evaluation_of_Stratified_TES.pdf\u0026Expires=1744156252\u0026Signature=cxrrzRCN48ObG5yVPLyztklb3F~gBOoCbt-9mhbTcmt0SULU85nxnxyP-6IsdoTnLTa-nmx~fdyEXqBQxFw5f~4qNkIEfT83eN7VT03djgVF1AsTzIC2LcfrtlgUqF5b9IcW~WkZ5jdVNiQ6ICeiPjQcoKR03nNq-BvGEPIPdXuKLsbGp5GeqDzDRyGAUv2uKHRvLxfw6voTs5ZG0rrePqdTHQzhE9js3hxvfM1K0jje45A2AAUIJrxzVNdpxP4lHHdqJmHDcdM8NfqEOaMtl92jp3ZD66oX3sGhnV37DXcphFEbpLEv0asZjxqiZM6swAJ7WgTrqivw55gOUJ4Jrg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Performance_Evaluation_of_Stratified_TES_using_Sigmoid_Dose_Response_Function","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[{"id":81797785,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797785/thumbnails/1.jpg","file_name":"qredirect.pdf","download_url":"https://www.academia.edu/attachments/81797785/download_file","bulk_download_file_name":"Performance_Evaluation_of_Stratified_TES.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797785/qredirect-libre.pdf?1646571218=\u0026response-content-disposition=attachment%3B+filename%3DPerformance_Evaluation_of_Stratified_TES.pdf\u0026Expires=1744156252\u0026Signature=cxrrzRCN48ObG5yVPLyztklb3F~gBOoCbt-9mhbTcmt0SULU85nxnxyP-6IsdoTnLTa-nmx~fdyEXqBQxFw5f~4qNkIEfT83eN7VT03djgVF1AsTzIC2LcfrtlgUqF5b9IcW~WkZ5jdVNiQ6ICeiPjQcoKR03nNq-BvGEPIPdXuKLsbGp5GeqDzDRyGAUv2uKHRvLxfw6voTs5ZG0rrePqdTHQzhE9js3hxvfM1K0jje45A2AAUIJrxzVNdpxP4lHHdqJmHDcdM8NfqEOaMtl92jp3ZD66oX3sGhnV37DXcphFEbpLEv0asZjxqiZM6swAJ7WgTrqivw55gOUJ4Jrg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":55641,"name":"Performance Evaluation","url":"https://www.academia.edu/Documents/in/Performance_Evaluation"},{"id":159232,"name":"Applied Sciences","url":"https://www.academia.edu/Documents/in/Applied_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175557-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="73175556"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73175556/Performance_Evaluation_of_Stratified_TES_using_Sigmoid_Dose_Response_Function"><img alt="Research paper thumbnail of Performance Evaluation of Stratified TES using Sigmoid Dose Response Function" class="work-thumbnail" src="https://attachments.academia-assets.com/81797791/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73175556/Performance_Evaluation_of_Stratified_TES_using_Sigmoid_Dose_Response_Function">Performance Evaluation of Stratified TES using Sigmoid Dose Response Function</a></div><div class="wp-workCard_item"><span>Journal of Applied Sciences</span><span>, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Temperature distribution on the operating stratified thermal energy storage (TES) is commonly ava...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Temperature distribution on the operating stratified thermal energy storage (TES) is commonly available as discrete data. Due to this, it is difficult to conduct performance evaluation based on thermocline profile, because limit points could not be determined ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="09ad184f0b7b593d0da06e3b2adbc2f6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:81797791,&quot;asset_id&quot;:73175556,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/81797791/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73175556"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73175556"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73175556; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73175556]").text(description); $(".js-view-count[data-work-id=73175556]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73175556; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73175556']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "09ad184f0b7b593d0da06e3b2adbc2f6" } } $('.js-work-strip[data-work-id=73175556]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73175556,"title":"Performance Evaluation of Stratified TES using Sigmoid Dose Response Function","translated_title":"","metadata":{"abstract":"Temperature distribution on the operating stratified thermal energy storage (TES) is commonly available as discrete data. Due to this, it is difficult to conduct performance evaluation based on thermocline profile, because limit points could not be determined ...","publisher":"Science Alert","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Journal of Applied Sciences"},"translated_abstract":"Temperature distribution on the operating stratified thermal energy storage (TES) is commonly available as discrete data. Due to this, it is difficult to conduct performance evaluation based on thermocline profile, because limit points could not be determined ...","internal_url":"https://www.academia.edu/73175556/Performance_Evaluation_of_Stratified_TES_using_Sigmoid_Dose_Response_Function","translated_internal_url":"","created_at":"2022-03-06T04:40:23.606-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":104932711,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81797791,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797791/thumbnails/1.jpg","file_name":"qredirect.pdf","download_url":"https://www.academia.edu/attachments/81797791/download_file","bulk_download_file_name":"Performance_Evaluation_of_Stratified_TES.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797791/qredirect-libre.pdf?1646571217=\u0026response-content-disposition=attachment%3B+filename%3DPerformance_Evaluation_of_Stratified_TES.pdf\u0026Expires=1744156252\u0026Signature=e8KHDTqXtfDMzLfCES8xiRERvbqws80JIUekb0PYJkLLnpD4ClTD~iZbU-ovQg8kA3ENOruwMXSKCZOOfzNQaVcO4JdcNfQ1XO3LM0hL1hXWpsf9C9R0~Cma-exmr73qWlUYHVbW5qYNzXG7jxTJAldudT8wS1G-G1YmGSdjqkBY9bUOYsEAtd10nfmJKKN2x2jWi6ZkQsxpxKxFAD2ruoTokXoq9szq7pGi8JrQHn6aTAGqYZLGN0yf0oFrlj317chibm7c4nLStaN-wjrnvNxx0uCbqPKMc9j98rNc5ATf9USK2IC0M2~9eEacYfqCp5xdYP1jPjfh2m7MNIX6Cw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Performance_Evaluation_of_Stratified_TES_using_Sigmoid_Dose_Response_Function","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"Temperature distribution on the operating stratified thermal energy storage (TES) is commonly available as discrete data. Due to this, it is difficult to conduct performance evaluation based on thermocline profile, because limit points could not be determined ...","impression_tracking_id":null,"owner":{"id":104932711,"first_name":"Joko","middle_initials":null,"last_name":"Waluyo","page_name":"JokoWaluyo","domain_name":"ugm","created_at":"2019-03-13T11:05:03.801-07:00","display_name":"Joko Waluyo","url":"https://ugm.academia.edu/JokoWaluyo"},"attachments":[{"id":81797791,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81797791/thumbnails/1.jpg","file_name":"qredirect.pdf","download_url":"https://www.academia.edu/attachments/81797791/download_file","bulk_download_file_name":"Performance_Evaluation_of_Stratified_TES.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81797791/qredirect-libre.pdf?1646571217=\u0026response-content-disposition=attachment%3B+filename%3DPerformance_Evaluation_of_Stratified_TES.pdf\u0026Expires=1744156252\u0026Signature=e8KHDTqXtfDMzLfCES8xiRERvbqws80JIUekb0PYJkLLnpD4ClTD~iZbU-ovQg8kA3ENOruwMXSKCZOOfzNQaVcO4JdcNfQ1XO3LM0hL1hXWpsf9C9R0~Cma-exmr73qWlUYHVbW5qYNzXG7jxTJAldudT8wS1G-G1YmGSdjqkBY9bUOYsEAtd10nfmJKKN2x2jWi6ZkQsxpxKxFAD2ruoTokXoq9szq7pGi8JrQHn6aTAGqYZLGN0yf0oFrlj317chibm7c4nLStaN-wjrnvNxx0uCbqPKMc9j98rNc5ATf9USK2IC0M2~9eEacYfqCp5xdYP1jPjfh2m7MNIX6Cw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":55641,"name":"Performance Evaluation","url":"https://www.academia.edu/Documents/in/Performance_Evaluation"},{"id":159232,"name":"Applied Sciences","url":"https://www.academia.edu/Documents/in/Applied_Sciences"}],"urls":[{"id":18292968,"url":"http://adsabs.harvard.edu/abs/2011JApSc..11.1642W"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-73175556-figures'); } }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "3eed5ec2b203cae3e612c0af15c695657cbd16c983b410a79c547d21b83fa445", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="e532zMDRqKXWpwv6dzfPKPv4fCa-Full7QjyojrUl11JKl5rlhfmqctgXzvzSSbDhn6PQ9OZcuGF4OLf5Ww42Q" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://ugm.academia.edu/JokoWaluyo" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="i8ynSRzXrILfg07BPPwm3FmiSYHeQ6w1CnnQvxsnPYW5ew_uShHijsJEGgC4gs83JCS65LPMN7FikcDCxJ-SAQ" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li><a rel="nofollow" href="https://www.academia.edu/content_policy">Content Policy</a></li><li>Academia &copy;2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10