CINXE.COM

{"title":"Experimental Investigation of Proton Exchange Membrane Fuel Cells Operated with Nanofiber and Nanofiber\/Nanoparticle","authors":"Kevser Dincer, Basma Waisi, M. Ozan Ozdemir, Ugur Pasaogullari, Jeffrey McCutcheon","volume":108,"journal":"International Journal of Materials and Metallurgical Engineering","pagesStart":1484,"pagesEnd":1489,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/10003310","abstract":"Nanofibers are defined as fibers with diameters less\r\nthan 100 nanometers. In this study, behaviours of activated carbon\r\nnanofiber (ACNF), carbon nanofiber (CNF), polyacrylonitrile\/ carbon\r\nnanotube (PAN\/CNT), polyvinyl alcohol\/nanosilver (PVA\/Ag) in\r\nproton exchange membrane (PEM) fuel cells are investigated\r\nexperimentally. This material was used as gas diffusion layer (GDL)\r\nin PEM fuel cells. In this study, the electrical conductivities of\r\nnanofiber and nanofiber\/nanoparticles have been studied to\r\nunderstand their effects on PEM fuel cell performance. According to\r\nthe experimental results, the maximum electrical conductivity\r\nperformance of the fuel cell with nanofiber was found to be at\r\nPVA\/Ag (at UConn condition). The electrical conductivities of CNF,\r\nACNF, PAN\/CNT are lower for PEM. The resistance of cell with\r\nPVA\/Ag is lower than the resistance of cell with PAN\/CNT, ACNF,\r\nCNF.","references":"[1] Steven J. Hamrock and Michael A. Yandrasits, Proton Exchange\r\nMembranes for Fuel Cell Applications, Journal of Macromolecular\r\nSciencew, Part C: Polymer Reviews, 46: 219-244, 2006.\r\n[2] R. Bajon, S. Balaji, S. M. Guo, Electrospun Nafion Nanofiber for Proton\r\nExchange Membrane Fuel Cell Application, Journal of Fuel Cell\r\nScience and Technology, August 2009, Vol. 6 \/ 031004-1-6.\r\n[3] Li-Cheng Jheng, Steve Lien-Chung Hsu, Tzung-Yu Tsai, Wesley Jen-\r\nYang Chang, A novel asymmetric polybenzimidazole membrane for\r\nhigh temperature proton exchange membrane fuel cells, Journal of\r\nMaterials Chemistry A, 2014, 2, 4225-4233.\r\n[4] Libo Deng, Robert J. Young, Ian A. Kinloch, Amr M. Abdelkader,\r\nStuart M. Holmes, David A. De Haro-Del Rio, Stephen J. Eichhorn,\r\nSupercapacitance from Cellulose and Carbon Nanotube Nanocomposite\r\nFibers, Applied Materials Interfaces, 5, 9983-9990, 2013.\r\n[5] Kyung Jin Lee, Nanako Shiratori, Gang Ho Lee, Jin Miyawaki, Isao\r\nMochida, Seong-Ho Yoon, Jyongsik Jang, Activated carbon nanofiber\r\nproduced from electrospunpolyacrylonitrile nanofiber as a highly\r\nefficient formaldehyde adsorbent, Carbon, 48, 4248-4255, 2010.\r\n[6] Thandavamoorthy Subbiah, G. S. Bhat, R. W. Tock, S. Parameswaran,\r\nS. S. Ramkumar, Electrospinning of Nanofibers, Journal of Applied\r\nPolymer Science, Vol. 96, 557-569, 2005.\r\n[7] Zheng-Ming Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, a review\r\non polymer nanofibers by electrospinning and their applications in\r\nnanocomposites, Composites Science and Technology (63) 2223-2253,\r\n2003.\r\n[8] Mohd Faiz Muaz Ahmad Zamri, Sharif Hussein Sharif Zein, Ahmad\r\nZuhari Abdullah and Nor Irwin Basir, Improved Electrical Conductivity\r\nof Polyvinyl Alcohol\/ Multiwalled Carbon Nanotube Nanofibre\r\nComposite Films with MnO2 as Filler Synthesised using the\r\nElectrospinning Process, International Journal of Engineering &\r\nTechnology IJET-IJENS Vol: 11 No: 06.\r\n[9] https:\/\/www.ndeed.org\/EducationResources\/CommunityCollege\/Materia\r\nls\/Physical_ Chemical\/Electrical.htm.\r\n[10] Suman Mahendia, A.K. Tomar, Shyam Kumar, Electrical conductivity\r\nand dielectric spectroscopic studies of PVA-Ag nanocomposite films,\r\nJournal of Alloys and Compounds, 508 (2), 2010, 406-411.\r\n[11] The Florida Solar Energy Center_ Document Number WP0012WPQRS.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 108, 2015"}