CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–26 of 26 results for author: <span class="mathjax">Deschaintre, V</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&query=Deschaintre%2C+V">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Deschaintre, V"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Deschaintre%2C+V&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Deschaintre, V"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.07784">arXiv:2502.07784</a> <span> [<a href="https://arxiv.org/pdf/2502.07784">pdf</a>, <a href="https://arxiv.org/format/2502.07784">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> </div> </div> <p class="title is-5 mathjax"> MatSwap: Light-aware material transfers in images </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Lopes%2C+I">Ivan Lopes</a>, <a href="/search/cs?searchtype=author&query=Deschaintre%2C+V">Valentin Deschaintre</a>, <a href="/search/cs?searchtype=author&query=Hold-Geoffroy%2C+Y">Yannick Hold-Geoffroy</a>, <a href="/search/cs?searchtype=author&query=de+Charette%2C+R">Raoul de Charette</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.07784v1-abstract-short" style="display: inline;"> We present MatSwap, a method to transfer materials to designated surfaces in an image photorealistically. Such a task is non-trivial due to the large entanglement of material appearance, geometry, and lighting in a photograph. In the literature, material editing methods typically rely on either cumbersome text engineering or extensive manual annotations requiring artist knowledge and 3D scene prop… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07784v1-abstract-full').style.display = 'inline'; document.getElementById('2502.07784v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.07784v1-abstract-full" style="display: none;"> We present MatSwap, a method to transfer materials to designated surfaces in an image photorealistically. Such a task is non-trivial due to the large entanglement of material appearance, geometry, and lighting in a photograph. In the literature, material editing methods typically rely on either cumbersome text engineering or extensive manual annotations requiring artist knowledge and 3D scene properties that are impractical to obtain. In contrast, we propose to directly learn the relationship between the input material -- as observed on a flat surface -- and its appearance within the scene, without the need for explicit UV mapping. To achieve this, we rely on a custom light- and geometry-aware diffusion model. We fine-tune a large-scale pre-trained text-to-image model for material transfer using our synthetic dataset, preserving its strong priors to ensure effective generalization to real images. As a result, our method seamlessly integrates a desired material into the target location in the photograph while retaining the identity of the scene. We evaluate our method on synthetic and real images and show that it compares favorably to recent work both qualitatively and quantitatively. We will release our code and data upon publication. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07784v1-abstract-full').style.display = 'none'; document.getElementById('2502.07784v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.03225">arXiv:2412.03225</a> <span> [<a href="https://arxiv.org/pdf/2412.03225">pdf</a>, <a href="https://arxiv.org/format/2412.03225">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> MaterialPicker: Multi-Modal Material Generation with Diffusion Transformers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Ma%2C+X">Xiaohe Ma</a>, <a href="/search/cs?searchtype=author&query=Deschaintre%2C+V">Valentin Deschaintre</a>, <a href="/search/cs?searchtype=author&query=Ha%C5%A1an%2C+M">Milo拧 Ha拧an</a>, <a href="/search/cs?searchtype=author&query=Luan%2C+F">Fujun Luan</a>, <a href="/search/cs?searchtype=author&query=Zhou%2C+K">Kun Zhou</a>, <a href="/search/cs?searchtype=author&query=Wu%2C+H">Hongzhi Wu</a>, <a href="/search/cs?searchtype=author&query=Hu%2C+Y">Yiwei Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.03225v2-abstract-short" style="display: inline;"> High-quality material generation is key for virtual environment authoring and inverse rendering. We propose MaterialPicker, a multi-modal material generator leveraging a Diffusion Transformer (DiT) architecture, improving and simplifying the creation of high-quality materials from text prompts and/or photographs. Our method can generate a material based on an image crop of a material sample, even… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03225v2-abstract-full').style.display = 'inline'; document.getElementById('2412.03225v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.03225v2-abstract-full" style="display: none;"> High-quality material generation is key for virtual environment authoring and inverse rendering. We propose MaterialPicker, a multi-modal material generator leveraging a Diffusion Transformer (DiT) architecture, improving and simplifying the creation of high-quality materials from text prompts and/or photographs. Our method can generate a material based on an image crop of a material sample, even if the captured surface is distorted, viewed at an angle or partially occluded, as is often the case in photographs of natural scenes. We further allow the user to specify a text prompt to provide additional guidance for the generation. We finetune a pre-trained DiT-based video generator into a material generator, where each material map is treated as a frame in a video sequence. We evaluate our approach both quantitatively and qualitatively and show that it enables more diverse material generation and better distortion correction than previous work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03225v2-abstract-full').style.display = 'none'; document.getElementById('2412.03225v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19322">arXiv:2411.19322</a> <span> [<a href="https://arxiv.org/pdf/2411.19322">pdf</a>, <a href="https://arxiv.org/format/2411.19322">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> </div> </div> <p class="title is-5 mathjax"> SAMa: Material-aware 3D Selection and Segmentation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Fischer%2C+M">Michael Fischer</a>, <a href="/search/cs?searchtype=author&query=Georgiev%2C+I">Iliyan Georgiev</a>, <a href="/search/cs?searchtype=author&query=Groueix%2C+T">Thibault Groueix</a>, <a href="/search/cs?searchtype=author&query=Kim%2C+V+G">Vladimir G. Kim</a>, <a href="/search/cs?searchtype=author&query=Ritschel%2C+T">Tobias Ritschel</a>, <a href="/search/cs?searchtype=author&query=Deschaintre%2C+V">Valentin Deschaintre</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19322v1-abstract-short" style="display: inline;"> Decomposing 3D assets into material parts is a common task for artists and creators, yet remains a highly manual process. In this work, we introduce Select Any Material (SAMa), a material selection approach for various 3D representations. Building on the recently introduced SAM2 video selection model, we extend its capabilities to the material domain. We leverage the model's cross-view consistency… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19322v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19322v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19322v1-abstract-full" style="display: none;"> Decomposing 3D assets into material parts is a common task for artists and creators, yet remains a highly manual process. In this work, we introduce Select Any Material (SAMa), a material selection approach for various 3D representations. Building on the recently introduced SAM2 video selection model, we extend its capabilities to the material domain. We leverage the model's cross-view consistency to create a 3D-consistent intermediate material-similarity representation in the form of a point cloud from a sparse set of views. Nearest-neighbour lookups in this similarity cloud allow us to efficiently reconstruct accurate continuous selection masks over objects' surfaces that can be inspected from any view. Our method is multiview-consistent by design, alleviating the need for contrastive learning or feature-field pre-processing, and performs optimization-free selection in seconds. Our approach works on arbitrary 3D representations and outperforms several strong baselines in terms of selection accuracy and multiview consistency. It enables several compelling applications, such as replacing the diffuse-textured materials on a text-to-3D output, or selecting and editing materials on NeRFs and 3D-Gaussians. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19322v1-abstract-full').style.display = 'none'; document.getElementById('2411.19322v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Project Page: https://mfischer-ucl.github.io/sama</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17774">arXiv:2406.17774</a> <span> [<a href="https://arxiv.org/pdf/2406.17774">pdf</a>, <a href="https://arxiv.org/format/2406.17774">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> </div> </div> <p class="title is-5 mathjax"> Fast and Uncertainty-Aware SVBRDF Recovery from Multi-View Capture using Frequency Domain Analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Wiersma%2C+R">Ruben Wiersma</a>, <a href="/search/cs?searchtype=author&query=Philip%2C+J">Julien Philip</a>, <a href="/search/cs?searchtype=author&query=Ha%C5%A1an%2C+M">Milo拧 Ha拧an</a>, <a href="/search/cs?searchtype=author&query=Mullia%2C+K">Krishna Mullia</a>, <a href="/search/cs?searchtype=author&query=Luan%2C+F">Fujun Luan</a>, <a href="/search/cs?searchtype=author&query=Eisemann%2C+E">Elmar Eisemann</a>, <a href="/search/cs?searchtype=author&query=Deschaintre%2C+V">Valentin Deschaintre</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17774v1-abstract-short" style="display: inline;"> Relightable object acquisition is a key challenge in simplifying digital asset creation. Complete reconstruction of an object typically requires capturing hundreds to thousands of photographs under controlled illumination, with specialized equipment. The recent progress in differentiable rendering improved the quality and accessibility of inverse rendering optimization. Nevertheless, under uncontr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17774v1-abstract-full').style.display = 'inline'; document.getElementById('2406.17774v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17774v1-abstract-full" style="display: none;"> Relightable object acquisition is a key challenge in simplifying digital asset creation. Complete reconstruction of an object typically requires capturing hundreds to thousands of photographs under controlled illumination, with specialized equipment. The recent progress in differentiable rendering improved the quality and accessibility of inverse rendering optimization. Nevertheless, under uncontrolled illumination and unstructured viewpoints, there is no guarantee that the observations contain enough information to reconstruct the appearance properties of the captured object. We thus propose to consider the acquisition process from a signal-processing perspective. Given an object's geometry and a lighting environment, we estimate the properties of the materials on the object's surface in seconds. We do so by leveraging frequency domain analysis, considering the recovery of material properties as a deconvolution, enabling fast error estimation. We then quantify the uncertainty of the estimation, based on the available data, highlighting the areas for which priors or additional samples would be required for improved acquisition quality. We compare our approach to previous work and quantitatively evaluate our results, showing similar quality as previous work in a fraction of the time, and providing key information about the certainty of the results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17774v1-abstract-full').style.display = 'none'; document.getElementById('2406.17774v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Project page: https://brdf-uncertainty.github.io</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.00672">arXiv:2405.00672</a> <span> [<a href="https://arxiv.org/pdf/2405.00672">pdf</a>, <a href="https://arxiv.org/format/2405.00672">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3641519.3657444">10.1145/3641519.3657444 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> TexSliders: Diffusion-Based Texture Editing in CLIP Space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Guerrero-Viu%2C+J">Julia Guerrero-Viu</a>, <a href="/search/cs?searchtype=author&query=Hasan%2C+M">Milos Hasan</a>, <a href="/search/cs?searchtype=author&query=Roullier%2C+A">Arthur Roullier</a>, <a href="/search/cs?searchtype=author&query=Harikumar%2C+M">Midhun Harikumar</a>, <a href="/search/cs?searchtype=author&query=Hu%2C+Y">Yiwei Hu</a>, <a href="/search/cs?searchtype=author&query=Guerrero%2C+P">Paul Guerrero</a>, <a href="/search/cs?searchtype=author&query=Gutierrez%2C+D">Diego Gutierrez</a>, <a href="/search/cs?searchtype=author&query=Masia%2C+B">Belen Masia</a>, <a href="/search/cs?searchtype=author&query=Deschaintre%2C+V">Valentin Deschaintre</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.00672v1-abstract-short" style="display: inline;"> Generative models have enabled intuitive image creation and manipulation using natural language. In particular, diffusion models have recently shown remarkable results for natural image editing. In this work, we propose to apply diffusion techniques to edit textures, a specific class of images that are an essential part of 3D content creation pipelines. We analyze existing editing methods and show… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00672v1-abstract-full').style.display = 'inline'; document.getElementById('2405.00672v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.00672v1-abstract-full" style="display: none;"> Generative models have enabled intuitive image creation and manipulation using natural language. In particular, diffusion models have recently shown remarkable results for natural image editing. In this work, we propose to apply diffusion techniques to edit textures, a specific class of images that are an essential part of 3D content creation pipelines. We analyze existing editing methods and show that they are not directly applicable to textures, since their common underlying approach, manipulating attention maps, is unsuitable for the texture domain. To address this, we propose a novel approach that instead manipulates CLIP image embeddings to condition the diffusion generation. We define editing directions using simple text prompts (e.g., "aged wood" to "new wood") and map these to CLIP image embedding space using a texture prior, with a sampling-based approach that gives us identity-preserving directions in CLIP space. To further improve identity preservation, we project these directions to a CLIP subspace that minimizes identity variations resulting from entangled texture attributes. Our editing pipeline facilitates the creation of arbitrary sliders using natural language prompts only, with no ground-truth annotated data necessary. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00672v1-abstract-full').style.display = 'none'; document.getElementById('2405.00672v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">SIGGRAPH 2024 Conference Proceedings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.00666">arXiv:2405.00666</a> <span> [<a href="https://arxiv.org/pdf/2405.00666">pdf</a>, <a href="https://arxiv.org/format/2405.00666">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3641519.3657445">10.1145/3641519.3657445 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> RGB$\leftrightarrow$X: Image decomposition and synthesis using material- and lighting-aware diffusion models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Zeng%2C+Z">Zheng Zeng</a>, <a href="/search/cs?searchtype=author&query=Deschaintre%2C+V">Valentin Deschaintre</a>, <a href="/search/cs?searchtype=author&query=Georgiev%2C+I">Iliyan Georgiev</a>, <a href="/search/cs?searchtype=author&query=Hold-Geoffroy%2C+Y">Yannick Hold-Geoffroy</a>, <a href="/search/cs?searchtype=author&query=Hu%2C+Y">Yiwei Hu</a>, <a href="/search/cs?searchtype=author&query=Luan%2C+F">Fujun Luan</a>, <a href="/search/cs?searchtype=author&query=Yan%2C+L">Ling-Qi Yan</a>, <a href="/search/cs?searchtype=author&query=Ha%C5%A1an%2C+M">Milo拧 Ha拧an</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.00666v1-abstract-short" style="display: inline;"> The three areas of realistic forward rendering, per-pixel inverse rendering, and generative image synthesis may seem like separate and unrelated sub-fields of graphics and vision. However, recent work has demonstrated improved estimation of per-pixel intrinsic channels (albedo, roughness, metallicity) based on a diffusion architecture; we call this the RGB$\rightarrow$X problem. We further show th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00666v1-abstract-full').style.display = 'inline'; document.getElementById('2405.00666v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.00666v1-abstract-full" style="display: none;"> The three areas of realistic forward rendering, per-pixel inverse rendering, and generative image synthesis may seem like separate and unrelated sub-fields of graphics and vision. However, recent work has demonstrated improved estimation of per-pixel intrinsic channels (albedo, roughness, metallicity) based on a diffusion architecture; we call this the RGB$\rightarrow$X problem. We further show that the reverse problem of synthesizing realistic images given intrinsic channels, X$\rightarrow$RGB, can also be addressed in a diffusion framework. Focusing on the image domain of interior scenes, we introduce an improved diffusion model for RGB$\rightarrow$X, which also estimates lighting, as well as the first diffusion X$\rightarrow$RGB model capable of synthesizing realistic images from (full or partial) intrinsic channels. Our X$\rightarrow$RGB model explores a middle ground between traditional rendering and generative models: we can specify only certain appearance properties that should be followed, and give freedom to the model to hallucinate a plausible version of the rest. This flexibility makes it possible to use a mix of heterogeneous training datasets, which differ in the available channels. We use multiple existing datasets and extend them with our own synthetic and real data, resulting in a model capable of extracting scene properties better than previous work and of generating highly realistic images of interior scenes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00666v1-abstract-full').style.display = 'none'; document.getElementById('2405.00666v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SIGGRAPH Conference Papers '24, July 27-August 1, 2024, Denver, CO, USA </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.12385">arXiv:2404.12385</a> <span> [<a href="https://arxiv.org/pdf/2404.12385">pdf</a>, <a href="https://arxiv.org/format/2404.12385">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> </div> </div> <p class="title is-5 mathjax"> MeshLRM: Large Reconstruction Model for High-Quality Meshes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Wei%2C+X">Xinyue Wei</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+K">Kai Zhang</a>, <a href="/search/cs?searchtype=author&query=Bi%2C+S">Sai Bi</a>, <a href="/search/cs?searchtype=author&query=Tan%2C+H">Hao Tan</a>, <a href="/search/cs?searchtype=author&query=Luan%2C+F">Fujun Luan</a>, <a href="/search/cs?searchtype=author&query=Deschaintre%2C+V">Valentin Deschaintre</a>, <a href="/search/cs?searchtype=author&query=Sunkavalli%2C+K">Kalyan Sunkavalli</a>, <a href="/search/cs?searchtype=author&query=Su%2C+H">Hao Su</a>, <a href="/search/cs?searchtype=author&query=Xu%2C+Z">Zexiang Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.12385v2-abstract-short" style="display: inline;"> We propose MeshLRM, a novel LRM-based approach that can reconstruct a high-quality mesh from merely four input images in less than one second. Different from previous large reconstruction models (LRMs) that focus on NeRF-based reconstruction, MeshLRM incorporates differentiable mesh extraction and rendering within the LRM framework. This allows for end-to-end mesh reconstruction by fine-tuning a p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12385v2-abstract-full').style.display = 'inline'; document.getElementById('2404.12385v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.12385v2-abstract-full" style="display: none;"> We propose MeshLRM, a novel LRM-based approach that can reconstruct a high-quality mesh from merely four input images in less than one second. Different from previous large reconstruction models (LRMs) that focus on NeRF-based reconstruction, MeshLRM incorporates differentiable mesh extraction and rendering within the LRM framework. This allows for end-to-end mesh reconstruction by fine-tuning a pre-trained NeRF LRM with mesh rendering. Moreover, we improve the LRM architecture by simplifying several complex designs in previous LRMs. MeshLRM's NeRF initialization is sequentially trained with low- and high-resolution images; this new LRM training strategy enables significantly faster convergence and thereby leads to better quality with less compute. Our approach achieves state-of-the-art mesh reconstruction from sparse-view inputs and also allows for many downstream applications, including text-to-3D and single-image-to-3D generation. Project page: https://sarahweiii.github.io/meshlrm/ <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12385v2-abstract-full').style.display = 'none'; document.getElementById('2404.12385v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.02899">arXiv:2404.02899</a> <span> [<a href="https://arxiv.org/pdf/2404.02899">pdf</a>, <a href="https://arxiv.org/format/2404.02899">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> </div> </div> <p class="title is-5 mathjax"> MatAtlas: Text-driven Consistent Geometry Texturing and Material Assignment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Ceylan%2C+D">Duygu Ceylan</a>, <a href="/search/cs?searchtype=author&query=Deschaintre%2C+V">Valentin Deschaintre</a>, <a href="/search/cs?searchtype=author&query=Groueix%2C+T">Thibault Groueix</a>, <a href="/search/cs?searchtype=author&query=Martin%2C+R">Rosalie Martin</a>, <a href="/search/cs?searchtype=author&query=Huang%2C+C">Chun-Hao Huang</a>, <a href="/search/cs?searchtype=author&query=Rouffet%2C+R">Romain Rouffet</a>, <a href="/search/cs?searchtype=author&query=Kim%2C+V">Vladimir Kim</a>, <a href="/search/cs?searchtype=author&query=Lassagne%2C+G">Ga毛tan Lassagne</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.02899v2-abstract-short" style="display: inline;"> We present MatAtlas, a method for consistent text-guided 3D model texturing. Following recent progress we leverage a large scale text-to-image generation model (e.g., Stable Diffusion) as a prior to texture a 3D model. We carefully design an RGB texturing pipeline that leverages a grid pattern diffusion, driven by depth and edges. By proposing a multi-step texture refinement process, we significan… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02899v2-abstract-full').style.display = 'inline'; document.getElementById('2404.02899v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.02899v2-abstract-full" style="display: none;"> We present MatAtlas, a method for consistent text-guided 3D model texturing. Following recent progress we leverage a large scale text-to-image generation model (e.g., Stable Diffusion) as a prior to texture a 3D model. We carefully design an RGB texturing pipeline that leverages a grid pattern diffusion, driven by depth and edges. By proposing a multi-step texture refinement process, we significantly improve the quality and 3D consistency of the texturing output. To further address the problem of baked-in lighting, we move beyond RGB colors and pursue assigning parametric materials to the assets. Given the high-quality initial RGB texture, we propose a novel material retrieval method capitalized on Large Language Models (LLM), enabling editabiliy and relightability. We evaluate our method on a wide variety of geometries and show that our method significantly outperform prior arts. We also analyze the role of each component through a detailed ablation study. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02899v2-abstract-full').style.display = 'none'; document.getElementById('2404.02899v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.06056">arXiv:2401.06056</a> <span> [<a href="https://arxiv.org/pdf/2401.06056">pdf</a>, <a href="https://arxiv.org/format/2401.06056">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/CVPR52733.2024.02087">10.1109/CVPR52733.2024.02087 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MatSynth: A Modern PBR Materials Dataset </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Vecchio%2C+G">Giuseppe Vecchio</a>, <a href="/search/cs?searchtype=author&query=Deschaintre%2C+V">Valentin Deschaintre</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.06056v3-abstract-short" style="display: inline;"> We introduce MatSynth, a dataset of 4,000+ CC0 ultra-high resolution PBR materials. Materials are crucial components of virtual relightable assets, defining the interaction of light at the surface of geometries. Given their importance, significant research effort was dedicated to their representation, creation and acquisition. However, in the past 6 years, most research in material acquisiton or g… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06056v3-abstract-full').style.display = 'inline'; document.getElementById('2401.06056v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.06056v3-abstract-full" style="display: none;"> We introduce MatSynth, a dataset of 4,000+ CC0 ultra-high resolution PBR materials. Materials are crucial components of virtual relightable assets, defining the interaction of light at the surface of geometries. Given their importance, significant research effort was dedicated to their representation, creation and acquisition. However, in the past 6 years, most research in material acquisiton or generation relied either on the same unique dataset, or on company-owned huge library of procedural materials. With this dataset we propose a significantly larger, more diverse, and higher resolution set of materials than previously publicly available. We carefully discuss the data collection process and demonstrate the benefits of this dataset on material acquisition and generation applications. The complete data further contains metadata with each material's origin, license, category, tags, creation method and, when available, descriptions and physical size, as well as 3M+ renderings of the augmented materials, in 1K, under various environment lightings. The MatSynth dataset is released through the project page at: https://www.gvecchio.com/matsynth. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06056v3-abstract-full').style.display = 'none'; document.getElementById('2401.06056v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.01700">arXiv:2309.01700</a> <span> [<a href="https://arxiv.org/pdf/2309.01700">pdf</a>, <a href="https://arxiv.org/format/2309.01700">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3688830">10.1145/3688830 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> ControlMat: A Controlled Generative Approach to Material Capture </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Vecchio%2C+G">Giuseppe Vecchio</a>, <a href="/search/cs?searchtype=author&query=Martin%2C+R">Rosalie Martin</a>, <a href="/search/cs?searchtype=author&query=Roullier%2C+A">Arthur Roullier</a>, <a href="/search/cs?searchtype=author&query=Kaiser%2C+A">Adrien Kaiser</a>, <a href="/search/cs?searchtype=author&query=Rouffet%2C+R">Romain Rouffet</a>, <a href="/search/cs?searchtype=author&query=Deschaintre%2C+V">Valentin Deschaintre</a>, <a href="/search/cs?searchtype=author&query=Boubekeur%2C+T">Tamy Boubekeur</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.01700v3-abstract-short" style="display: inline;"> Material reconstruction from a photograph is a key component of 3D content creation democratization. We propose to formulate this ill-posed problem as a controlled synthesis one, leveraging the recent progress in generative deep networks. We present ControlMat, a method which, given a single photograph with uncontrolled illumination as input, conditions a diffusion model to generate plausible, til… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01700v3-abstract-full').style.display = 'inline'; document.getElementById('2309.01700v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.01700v3-abstract-full" style="display: none;"> Material reconstruction from a photograph is a key component of 3D content creation democratization. We propose to formulate this ill-posed problem as a controlled synthesis one, leveraging the recent progress in generative deep networks. We present ControlMat, a method which, given a single photograph with uncontrolled illumination as input, conditions a diffusion model to generate plausible, tileable, high-resolution physically-based digital materials. We carefully analyze the behavior of diffusion models for multi-channel outputs, adapt the sampling process to fuse multi-scale information and introduce rolled diffusion to enable both tileability and patched diffusion for high-resolution outputs. Our generative approach further permits exploration of a variety of materials which could correspond to the input image, mitigating the unknown lighting conditions. We show that our approach outperforms recent inference and latent-space-optimization methods, and carefully validate our diffusion process design choices. Supplemental materials and additional details are available at: https://gvecchio.com/controlmat/. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01700v3-abstract-full').style.display = 'none'; document.getElementById('2309.01700v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.13681">arXiv:2307.13681</a> <span> [<a href="https://arxiv.org/pdf/2307.13681">pdf</a>, <a href="https://arxiv.org/format/2307.13681">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> The Visual Language of Fabrics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Deschaintre%2C+V">Valentin Deschaintre</a>, <a href="/search/cs?searchtype=author&query=Guerrero-Viu%2C+J">Julia Guerrero-Viu</a>, <a href="/search/cs?searchtype=author&query=Gutierrez%2C+D">Diego Gutierrez</a>, <a href="/search/cs?searchtype=author&query=Boubekeur%2C+T">Tamy Boubekeur</a>, <a href="/search/cs?searchtype=author&query=Masia%2C+B">Belen Masia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.13681v1-abstract-short" style="display: inline;"> We introduce text2fabric, a novel dataset that links free-text descriptions to various fabric materials. The dataset comprises 15,000 natural language descriptions associated to 3,000 corresponding images of fabric materials. Traditionally, material descriptions come in the form of tags/keywords, which limits their expressivity, induces pre-existing knowledge of the appropriate vocabulary, and ult… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13681v1-abstract-full').style.display = 'inline'; document.getElementById('2307.13681v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.13681v1-abstract-full" style="display: none;"> We introduce text2fabric, a novel dataset that links free-text descriptions to various fabric materials. The dataset comprises 15,000 natural language descriptions associated to 3,000 corresponding images of fabric materials. Traditionally, material descriptions come in the form of tags/keywords, which limits their expressivity, induces pre-existing knowledge of the appropriate vocabulary, and ultimately leads to a chopped description system. Therefore, we study the use of free-text as a more appropriate way to describe material appearance, taking the use case of fabrics as a common item that non-experts may often deal with. Based on the analysis of the dataset, we identify a compact lexicon, set of attributes and key structure that emerge from the descriptions. This allows us to accurately understand how people describe fabrics and draw directions for generalization to other types of materials. We also show that our dataset enables specializing large vision-language models such as CLIP, creating a meaningful latent space for fabric appearance, and significantly improving applications such as fine-grained material retrieval and automatic captioning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13681v1-abstract-full').style.display = 'none'; document.getElementById('2307.13681v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACM Transactions on Graphics 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.03244">arXiv:2307.03244</a> <span> [<a href="https://arxiv.org/pdf/2307.03244">pdf</a>, <a href="https://arxiv.org/format/2307.03244">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> </div> </div> <p class="title is-5 mathjax"> PSDR-Room: Single Photo to Scene using Differentiable Rendering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Yan%2C+K">Kai Yan</a>, <a href="/search/cs?searchtype=author&query=Luan%2C+F">Fujun Luan</a>, <a href="/search/cs?searchtype=author&query=Ha%C5%A0An%2C+M">Milo艩 Ha艩An</a>, <a href="/search/cs?searchtype=author&query=Groueix%2C+T">Thibault Groueix</a>, <a href="/search/cs?searchtype=author&query=Deschaintre%2C+V">Valentin Deschaintre</a>, <a href="/search/cs?searchtype=author&query=Zhao%2C+S">Shuang Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.03244v1-abstract-short" style="display: inline;"> A 3D digital scene contains many components: lights, materials and geometries, interacting to reach the desired appearance. Staging such a scene is time-consuming and requires both artistic and technical skills. In this work, we propose PSDR-Room, a system allowing to optimize lighting as well as the pose and materials of individual objects to match a target image of a room scene, with minimal use… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03244v1-abstract-full').style.display = 'inline'; document.getElementById('2307.03244v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.03244v1-abstract-full" style="display: none;"> A 3D digital scene contains many components: lights, materials and geometries, interacting to reach the desired appearance. Staging such a scene is time-consuming and requires both artistic and technical skills. In this work, we propose PSDR-Room, a system allowing to optimize lighting as well as the pose and materials of individual objects to match a target image of a room scene, with minimal user input. To this end, we leverage a recent path-space differentiable rendering approach that provides unbiased gradients of the rendering with respect to geometry, lighting, and procedural materials, allowing us to optimize all of these components using gradient descent to visually match the input photo appearance. We use recent single-image scene understanding methods to initialize the optimization and search for appropriate 3D models and materials. We evaluate our method on real photographs of indoor scenes and demonstrate the editability of the resulting scene components. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03244v1-abstract-full').style.display = 'none'; document.getElementById('2307.03244v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.13291">arXiv:2305.13291</a> <span> [<a href="https://arxiv.org/pdf/2305.13291">pdf</a>, <a href="https://arxiv.org/format/2305.13291">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Materialistic: Selecting Similar Materials in Images </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Sharma%2C+P">Prafull Sharma</a>, <a href="/search/cs?searchtype=author&query=Philip%2C+J">Julien Philip</a>, <a href="/search/cs?searchtype=author&query=Gharbi%2C+M">Micha毛l Gharbi</a>, <a href="/search/cs?searchtype=author&query=Freeman%2C+W+T">William T. Freeman</a>, <a href="/search/cs?searchtype=author&query=Durand%2C+F">Fredo Durand</a>, <a href="/search/cs?searchtype=author&query=Deschaintre%2C+V">Valentin Deschaintre</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.13291v1-abstract-short" style="display: inline;"> Separating an image into meaningful underlying components is a crucial first step for both editing and understanding images. We present a method capable of selecting the regions of a photograph exhibiting the same material as an artist-chosen area. Our proposed approach is robust to shading, specular highlights, and cast shadows, enabling selection in real images. As we do not rely on semantic seg… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.13291v1-abstract-full').style.display = 'inline'; document.getElementById('2305.13291v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.13291v1-abstract-full" style="display: none;"> Separating an image into meaningful underlying components is a crucial first step for both editing and understanding images. We present a method capable of selecting the regions of a photograph exhibiting the same material as an artist-chosen area. Our proposed approach is robust to shading, specular highlights, and cast shadows, enabling selection in real images. As we do not rely on semantic segmentation (different woods or metal should not be selected together), we formulate the problem as a similarity-based grouping problem based on a user-provided image location. In particular, we propose to leverage the unsupervised DINO features coupled with a proposed Cross-Similarity module and an MLP head to extract material similarities in an image. We train our model on a new synthetic image dataset, that we release. We show that our method generalizes well to real-world images. We carefully analyze our model's behavior on varying material properties and lighting. Additionally, we evaluate it against a hand-annotated benchmark of 50 real photographs. We further demonstrate our model on a set of applications, including material editing, in-video selection, and retrieval of object photographs with similar materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.13291v1-abstract-full').style.display = 'none'; document.getElementById('2305.13291v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.12296">arXiv:2305.12296</a> <span> [<a href="https://arxiv.org/pdf/2305.12296">pdf</a>, <a href="https://arxiv.org/format/2305.12296">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3588432.3591535">10.1145/3588432.3591535 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> PhotoMat: A Material Generator Learned from Single Flash Photos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Zhou%2C+X">Xilong Zhou</a>, <a href="/search/cs?searchtype=author&query=Ha%C5%A1an%2C+M">Milo拧 Ha拧an</a>, <a href="/search/cs?searchtype=author&query=Deschaintre%2C+V">Valentin Deschaintre</a>, <a href="/search/cs?searchtype=author&query=Guerrero%2C+P">Paul Guerrero</a>, <a href="/search/cs?searchtype=author&query=Hold-Geoffroy%2C+Y">Yannick Hold-Geoffroy</a>, <a href="/search/cs?searchtype=author&query=Sunkavalli%2C+K">Kalyan Sunkavalli</a>, <a href="/search/cs?searchtype=author&query=Kalantari%2C+N+K">Nima Khademi Kalantari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.12296v2-abstract-short" style="display: inline;"> Authoring high-quality digital materials is key to realism in 3D rendering. Previous generative models for materials have been trained exclusively on synthetic data; such data is limited in availability and has a visual gap to real materials. We circumvent this limitation by proposing PhotoMat: the first material generator trained exclusively on real photos of material samples captured using a cel… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.12296v2-abstract-full').style.display = 'inline'; document.getElementById('2305.12296v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.12296v2-abstract-full" style="display: none;"> Authoring high-quality digital materials is key to realism in 3D rendering. Previous generative models for materials have been trained exclusively on synthetic data; such data is limited in availability and has a visual gap to real materials. We circumvent this limitation by proposing PhotoMat: the first material generator trained exclusively on real photos of material samples captured using a cell phone camera with flash. Supervision on individual material maps is not available in this setting. Instead, we train a generator for a neural material representation that is rendered with a learned relighting module to create arbitrarily lit RGB images; these are compared against real photos using a discriminator. We then train a material maps estimator to decode material reflectance properties from the neural material representation. We train PhotoMat with a new dataset of 12,000 material photos captured with handheld phone cameras under flash lighting. We demonstrate that our generated materials have better visual quality than previous material generators trained on synthetic data. Moreover, we can fit analytical material models to closely match these generated neural materials, thus allowing for further editing and use in 3D rendering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.12296v2-abstract-full').style.display = 'none'; document.getElementById('2305.12296v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Siggraph 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.02756">arXiv:2305.02756</a> <span> [<a href="https://arxiv.org/pdf/2305.02756">pdf</a>, <a href="https://arxiv.org/format/2305.02756">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> </div> </div> <p class="title is-5 mathjax"> Floaters No More: Radiance Field Gradient Scaling for Improved Near-Camera Training </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Philip%2C+J">Julien Philip</a>, <a href="/search/cs?searchtype=author&query=Deschaintre%2C+V">Valentin Deschaintre</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.02756v2-abstract-short" style="display: inline;"> NeRF acquisition typically requires careful choice of near planes for the different cameras or suffers from background collapse, creating floating artifacts on the edges of the captured scene. The key insight of this work is that background collapse is caused by a higher density of samples in regions near cameras. As a result of this sampling imbalance, near-camera volumes receive significantly mo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02756v2-abstract-full').style.display = 'inline'; document.getElementById('2305.02756v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.02756v2-abstract-full" style="display: none;"> NeRF acquisition typically requires careful choice of near planes for the different cameras or suffers from background collapse, creating floating artifacts on the edges of the captured scene. The key insight of this work is that background collapse is caused by a higher density of samples in regions near cameras. As a result of this sampling imbalance, near-camera volumes receive significantly more gradients, leading to incorrect density buildup. We propose a gradient scaling approach to counter-balance this sampling imbalance, removing the need for near planes, while preventing background collapse. Our method can be implemented in a few lines, does not induce any significant overhead, and is compatible with most NeRF implementations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02756v2-abstract-full').style.display = 'none'; document.getElementById('2305.02756v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">EGSR 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.13172">arXiv:2304.13172</a> <span> [<a href="https://arxiv.org/pdf/2304.13172">pdf</a>, <a href="https://arxiv.org/format/2304.13172">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3588432.3591520">10.1145/3588432.3591520 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generating Procedural Materials from Text or Image Prompts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Hu%2C+Y">Yiwei Hu</a>, <a href="/search/cs?searchtype=author&query=Guerrero%2C+P">Paul Guerrero</a>, <a href="/search/cs?searchtype=author&query=Ha%C5%A1an%2C+M">Milo拧 Ha拧an</a>, <a href="/search/cs?searchtype=author&query=Rushmeier%2C+H">Holly Rushmeier</a>, <a href="/search/cs?searchtype=author&query=Deschaintre%2C+V">Valentin Deschaintre</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.13172v1-abstract-short" style="display: inline;"> Node graph systems are used ubiquitously for material design in computer graphics. They allow the use of visual programming to achieve desired effects without writing code. As high-level design tools they provide convenience and flexibility, but mastering the creation of node graphs usually requires professional training. We propose an algorithm capable of generating multiple node graphs from diff… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13172v1-abstract-full').style.display = 'inline'; document.getElementById('2304.13172v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.13172v1-abstract-full" style="display: none;"> Node graph systems are used ubiquitously for material design in computer graphics. They allow the use of visual programming to achieve desired effects without writing code. As high-level design tools they provide convenience and flexibility, but mastering the creation of node graphs usually requires professional training. We propose an algorithm capable of generating multiple node graphs from different types of prompts, significantly lowering the bar for users to explore a specific design space. Previous work was limited to unconditional generation of random node graphs, making the generation of an envisioned material challenging. We propose a multi-modal node graph generation neural architecture for high-quality procedural material synthesis which can be conditioned on different inputs (text or image prompts), using a CLIP-based encoder. We also create a substantially augmented material graph dataset, key to improving the generation quality. Finally, we generate high-quality graph samples using a regularized sampling process and improve the matching quality by differentiable optimization for top-ranked samples. We compare our methods to CLIP-based database search baselines (which are themselves novel) and achieve superior or similar performance without requiring massive data storage. We further show that our model can produce a set of material graphs unconditionally, conditioned on images, text prompts or partial graphs, serving as a tool for automatic visual programming completion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13172v1-abstract-full').style.display = 'none'; document.getElementById('2304.13172v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SIGGRAPH 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.07684">arXiv:2207.07684</a> <span> [<a href="https://arxiv.org/pdf/2207.07684">pdf</a>, <a href="https://arxiv.org/format/2207.07684">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3528233.3530733">10.1145/3528233.3530733 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Node Graph Optimization Using Differentiable Proxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Hu%2C+Y">Yiwei Hu</a>, <a href="/search/cs?searchtype=author&query=Guerrero%2C+P">Paul Guerrero</a>, <a href="/search/cs?searchtype=author&query=Ha%C5%A1an%2C+M">Milo拧 Ha拧an</a>, <a href="/search/cs?searchtype=author&query=Rushmeier%2C+H">Holly Rushmeier</a>, <a href="/search/cs?searchtype=author&query=Deschaintre%2C+V">Valentin Deschaintre</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.07684v1-abstract-short" style="display: inline;"> Graph-based procedural materials are ubiquitous in content production industries. Procedural models allow the creation of photorealistic materials with parametric control for flexible editing of appearance. However, designing a specific material is a time-consuming process in terms of building a model and fine-tuning parameters. Previous work [Hu et al. 2022; Shi et al. 2020] introduced material g… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07684v1-abstract-full').style.display = 'inline'; document.getElementById('2207.07684v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.07684v1-abstract-full" style="display: none;"> Graph-based procedural materials are ubiquitous in content production industries. Procedural models allow the creation of photorealistic materials with parametric control for flexible editing of appearance. However, designing a specific material is a time-consuming process in terms of building a model and fine-tuning parameters. Previous work [Hu et al. 2022; Shi et al. 2020] introduced material graph optimization frameworks for matching target material samples. However, these previous methods were limited to optimizing differentiable functions in the graphs. In this paper, we propose a fully differentiable framework which enables end-to-end gradient based optimization of material graphs, even if some functions of the graph are non-differentiable. We leverage the Differentiable Proxy, a differentiable approximator of a non-differentiable black-box function. We use our framework to match structure and appearance of an output material to a target material, through a multi-stage differentiable optimization. Differentiable Proxies offer a more general optimization solution to material appearance matching than previous work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07684v1-abstract-full').style.display = 'none'; document.getElementById('2207.07684v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SIGGRAPH '22 Conference Proceedings, Vancouver, BC, Canada, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.14970">arXiv:2206.14970</a> <span> [<a href="https://arxiv.org/pdf/2206.14970">pdf</a>, <a href="https://arxiv.org/format/2206.14970">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> </div> </div> <p class="title is-5 mathjax"> Controlling Material Appearance by Examples </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Hu%2C+Y">Yiwei Hu</a>, <a href="/search/cs?searchtype=author&query=Ha%C5%A1an%2C+M">Milo拧 Ha拧an</a>, <a href="/search/cs?searchtype=author&query=Guerrero%2C+P">Paul Guerrero</a>, <a href="/search/cs?searchtype=author&query=Rushmeier%2C+H">Holly Rushmeier</a>, <a href="/search/cs?searchtype=author&query=Deschaintre%2C+V">Valentin Deschaintre</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.14970v1-abstract-short" style="display: inline;"> Despite the ubiquitousness of materials maps in modern rendering pipelines, their editing and control remains a challenge. In this paper, we present an example-based material control method to augment input material maps based on user-provided material photos. We train a tileable version of MaterialGAN and leverage its material prior to guide the appearance transfer, optimizing its latent space us… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14970v1-abstract-full').style.display = 'inline'; document.getElementById('2206.14970v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.14970v1-abstract-full" style="display: none;"> Despite the ubiquitousness of materials maps in modern rendering pipelines, their editing and control remains a challenge. In this paper, we present an example-based material control method to augment input material maps based on user-provided material photos. We train a tileable version of MaterialGAN and leverage its material prior to guide the appearance transfer, optimizing its latent space using differentiable rendering. Our method transfers the micro and meso-structure textures of user provided target(s) photographs, while preserving the structure of the input and quality of the input material. We show our methods can control existing material maps, increasing realism or generating new, visually appealing materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14970v1-abstract-full').style.display = 'none'; document.getElementById('2206.14970v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Computer Graphics Forum (Proc. of Eurographics Symposium on Rendering 2022), vol. 41, no. 4, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.05649">arXiv:2206.05649</a> <span> [<a href="https://arxiv.org/pdf/2206.05649">pdf</a>, <a href="https://arxiv.org/format/2206.05649">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> TileGen: Tileable, Controllable Material Generation and Capture </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Zhou%2C+X">Xilong Zhou</a>, <a href="/search/cs?searchtype=author&query=Ha%C5%A1an%2C+M">Milo拧 Ha拧an</a>, <a href="/search/cs?searchtype=author&query=Deschaintre%2C+V">Valentin Deschaintre</a>, <a href="/search/cs?searchtype=author&query=Guerrero%2C+P">Paul Guerrero</a>, <a href="/search/cs?searchtype=author&query=Sunkavalli%2C+K">Kalyan Sunkavalli</a>, <a href="/search/cs?searchtype=author&query=Kalantari%2C+N">Nima Kalantari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.05649v2-abstract-short" style="display: inline;"> Recent methods (e.g. MaterialGAN) have used unconditional GANs to generate per-pixel material maps, or as a prior to reconstruct materials from input photographs. These models can generate varied random material appearance, but do not have any mechanism to constrain the generated material to a specific category or to control the coarse structure of the generated material, such as the exact brick l… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.05649v2-abstract-full').style.display = 'inline'; document.getElementById('2206.05649v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.05649v2-abstract-full" style="display: none;"> Recent methods (e.g. MaterialGAN) have used unconditional GANs to generate per-pixel material maps, or as a prior to reconstruct materials from input photographs. These models can generate varied random material appearance, but do not have any mechanism to constrain the generated material to a specific category or to control the coarse structure of the generated material, such as the exact brick layout on a brick wall. Furthermore, materials reconstructed from a single input photo commonly have artifacts and are generally not tileable, which limits their use in practical content creation pipelines. We propose TileGen, a generative model for SVBRDFs that is specific to a material category, always tileable, and optionally conditional on a provided input structure pattern. TileGen is a variant of StyleGAN whose architecture is modified to always produce tileable (periodic) material maps. In addition to the standard "style" latent code, TileGen can optionally take a condition image, giving a user direct control over the dominant spatial (and optionally color) features of the material. For example, in brick materials, the user can specify a brick layout and the brick color, or in leather materials, the locations of wrinkles and folds. Our inverse rendering approach can find a material perceptually matching a single target photograph by optimization. This reconstruction can also be conditional on a user-provided pattern. The resulting materials are tileable, can be larger than the target image, and are editable by varying the condition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.05649v2-abstract-full').style.display = 'none'; document.getElementById('2206.05649v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 19 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.11703">arXiv:2202.11703</a> <span> [<a href="https://arxiv.org/pdf/2202.11703">pdf</a>, <a href="https://arxiv.org/format/2202.11703">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> Paying U-Attention to Textures: Multi-Stage Hourglass Vision Transformer for Universal Texture Synthesis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Guo%2C+S">Shouchang Guo</a>, <a href="/search/cs?searchtype=author&query=Deschaintre%2C+V">Valentin Deschaintre</a>, <a href="/search/cs?searchtype=author&query=Noll%2C+D">Douglas Noll</a>, <a href="/search/cs?searchtype=author&query=Roullier%2C+A">Arthur Roullier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.11703v3-abstract-short" style="display: inline;"> We present a novel U-Attention vision Transformer for universal texture synthesis. We exploit the natural long-range dependencies enabled by the attention mechanism to allow our approach to synthesize diverse textures while preserving their structures in a single inference. We propose a hierarchical hourglass backbone that attends to the global structure and performs patch mapping at varying scale… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.11703v3-abstract-full').style.display = 'inline'; document.getElementById('2202.11703v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.11703v3-abstract-full" style="display: none;"> We present a novel U-Attention vision Transformer for universal texture synthesis. We exploit the natural long-range dependencies enabled by the attention mechanism to allow our approach to synthesize diverse textures while preserving their structures in a single inference. We propose a hierarchical hourglass backbone that attends to the global structure and performs patch mapping at varying scales in a coarse-to-fine-to-coarse stream. Completed by skip connection and convolution designs that propagate and fuse information at different scales, our hierarchical U-Attention architecture unifies attention to features from macro structures to micro details, and progressively refines synthesis results at successive stages. Our method achieves stronger 2$\times$ synthesis than previous work on both stochastic and structured textures while generalizing to unseen textures without fine-tuning. Ablation studies demonstrate the effectiveness of each component of our architecture. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.11703v3-abstract-full').style.display = 'none'; document.getElementById('2202.11703v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.06395">arXiv:2109.06395</a> <span> [<a href="https://arxiv.org/pdf/2109.06395">pdf</a>, <a href="https://arxiv.org/format/2109.06395">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3502431">10.1145/3502431 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An Inverse Procedural Modeling Pipeline for SVBRDF Maps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Hu%2C+Y">Yiwei Hu</a>, <a href="/search/cs?searchtype=author&query=He%2C+C">Chengan He</a>, <a href="/search/cs?searchtype=author&query=Deschaintre%2C+V">Valentin Deschaintre</a>, <a href="/search/cs?searchtype=author&query=Dorsey%2C+J">Julie Dorsey</a>, <a href="/search/cs?searchtype=author&query=Rushmeier%2C+H">Holly Rushmeier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.06395v2-abstract-short" style="display: inline;"> Procedural modeling is now the de facto standard of material modeling in industry. Procedural models can be edited and are easily extended, unlike pixel-based representations of captured materials. In this paper, we present a semi-automatic pipeline for general material proceduralization. Given Spatially-Varying Bidirectional Reflectance Distribution Functions (SVBRDFs) represented as sets of pixe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06395v2-abstract-full').style.display = 'inline'; document.getElementById('2109.06395v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.06395v2-abstract-full" style="display: none;"> Procedural modeling is now the de facto standard of material modeling in industry. Procedural models can be edited and are easily extended, unlike pixel-based representations of captured materials. In this paper, we present a semi-automatic pipeline for general material proceduralization. Given Spatially-Varying Bidirectional Reflectance Distribution Functions (SVBRDFs) represented as sets of pixel maps, our pipeline decomposes them into a tree of sub-materials whose spatial distributions are encoded by their associated mask maps. This semi-automatic decomposition of material maps progresses hierarchically, driven by our new spectrum-aware material matting and instance-based decomposition methods. Each decomposed sub-material is proceduralized by a novel multi-layer noise model to capture local variations at different scales. Spatial distributions of these sub-materials are modeled either by a by-example inverse synthesis method recovering Point Process Texture Basis Functions (PPTBF) or via random sampling. To reconstruct procedural material maps, we propose a differentiable rendering-based optimization that recomposes all generated procedures together to maximize the similarity between our procedural models and the input material pixel maps. We evaluate our pipeline on a variety of synthetic and real materials. We demonstrate our method's capacity to process a wide range of material types, eliminating the need for artist designed material graphs required in previous work. As fully procedural models, our results expand to arbitrary resolution and enable high level user control of appearance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06395v2-abstract-full').style.display = 'none'; document.getElementById('2109.06395v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.3 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACM Transactions on Graphics (Presented at SIGGRAPH 2022), vol. 41, no. 2, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.02875">arXiv:2105.02875</a> <span> [<a href="https://arxiv.org/pdf/2105.02875">pdf</a>, <a href="https://arxiv.org/format/2105.02875">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Deep Polarization Imaging for 3D shape and SVBRDF Acquisition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Deschaintre%2C+V">Valentin Deschaintre</a>, <a href="/search/cs?searchtype=author&query=Lin%2C+Y">Yiming Lin</a>, <a href="/search/cs?searchtype=author&query=Ghosh%2C+A">Abhijeet Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.02875v1-abstract-short" style="display: inline;"> We present a novel method for efficient acquisition of shape and spatially varying reflectance of 3D objects using polarization cues. Unlike previous works that have exploited polarization to estimate material or object appearance under certain constraints (known shape or multiview acquisition), we lift such restrictions by coupling polarization imaging with deep learning to achieve high quality e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.02875v1-abstract-full').style.display = 'inline'; document.getElementById('2105.02875v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.02875v1-abstract-full" style="display: none;"> We present a novel method for efficient acquisition of shape and spatially varying reflectance of 3D objects using polarization cues. Unlike previous works that have exploited polarization to estimate material or object appearance under certain constraints (known shape or multiview acquisition), we lift such restrictions by coupling polarization imaging with deep learning to achieve high quality estimate of 3D object shape (surface normals and depth) and SVBRDF using single-view polarization imaging under frontal flash illumination. In addition to acquired polarization images, we provide our deep network with strong novel cues related to shape and reflectance, in the form of a normalized Stokes map and an estimate of diffuse color. We additionally describe modifications to network architecture and training loss which provide further qualitative improvements. We demonstrate our approach to achieve superior results compared to recent works employing deep learning in conjunction with flash illumination. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.02875v1-abstract-full').style.display = 'none'; document.getElementById('2105.02875v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">CVPR 2021 Oral paper</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.4; I.3 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.11861">arXiv:2102.11861</a> <span> [<a href="https://arxiv.org/pdf/2102.11861">pdf</a>, <a href="https://arxiv.org/format/2102.11861">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Generative Modelling of BRDF Textures from Flash Images </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Henzler%2C+P">Philipp Henzler</a>, <a href="/search/cs?searchtype=author&query=Deschaintre%2C+V">Valentin Deschaintre</a>, <a href="/search/cs?searchtype=author&query=Mitra%2C+N+J">Niloy J. Mitra</a>, <a href="/search/cs?searchtype=author&query=Ritschel%2C+T">Tobias Ritschel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.11861v2-abstract-short" style="display: inline;"> We learn a latent space for easy capture, consistent interpolation, and efficient reproduction of visual material appearance. When users provide a photo of a stationary natural material captured under flashlight illumination, first it is converted into a latent material code. Then, in the second step, conditioned on the material code, our method produces an infinite and diverse spatial field of BR… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.11861v2-abstract-full').style.display = 'inline'; document.getElementById('2102.11861v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.11861v2-abstract-full" style="display: none;"> We learn a latent space for easy capture, consistent interpolation, and efficient reproduction of visual material appearance. When users provide a photo of a stationary natural material captured under flashlight illumination, first it is converted into a latent material code. Then, in the second step, conditioned on the material code, our method produces an infinite and diverse spatial field of BRDF model parameters (diffuse albedo, normals, roughness, specular albedo) that subsequently allows rendering in complex scenes and illuminations, matching the appearance of the input photograph. Technically, we jointly embed all flash images into a latent space using a convolutional encoder, and -- conditioned on these latent codes -- convert random spatial fields into fields of BRDF parameters using a convolutional neural network (CNN). We condition these BRDF parameters to match the visual characteristics (statistics and spectra of visual features) of the input under matching light. A user study compares our approach favorably to previous work, even those with access to BRDF supervision. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.11861v2-abstract-full').style.display = 'none'; document.getElementById('2102.11861v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.03059">arXiv:2007.03059</a> <span> [<a href="https://arxiv.org/pdf/2007.03059">pdf</a>, <a href="https://arxiv.org/format/2007.03059">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1111/cgf.14056">10.1111/cgf.14056 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Guided Fine-Tuning for Large-Scale Material Transfer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Deschaintre%2C+V">Valentin Deschaintre</a>, <a href="/search/cs?searchtype=author&query=Drettakis%2C+G">George Drettakis</a>, <a href="/search/cs?searchtype=author&query=Bousseau%2C+A">Adrien Bousseau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.03059v2-abstract-short" style="display: inline;"> We present a method to transfer the appearance of one or a few exemplar SVBRDFs to a target image representing similar materials. Our solution is extremely simple: we fine-tune a deep appearance-capture network on the provided exemplars, such that it learns to extract similar SVBRDF values from the target image. We introduce two novel material capture and design workflows that demonstrate the stre… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.03059v2-abstract-full').style.display = 'inline'; document.getElementById('2007.03059v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.03059v2-abstract-full" style="display: none;"> We present a method to transfer the appearance of one or a few exemplar SVBRDFs to a target image representing similar materials. Our solution is extremely simple: we fine-tune a deep appearance-capture network on the provided exemplars, such that it learns to extract similar SVBRDF values from the target image. We introduce two novel material capture and design workflows that demonstrate the strength of this simple approach. Our first workflow allows to produce plausible SVBRDFs of large-scale objects from only a few pictures. Specifically, users only need take a single picture of a large surface and a few close-up flash pictures of some of its details. We use existing methods to extract SVBRDF parameters from the close-ups, and our method to transfer these parameters to the entire surface, enabling the lightweight capture of surfaces several meters wide such as murals, floors and furniture. In our second workflow, we provide a powerful way for users to create large SVBRDFs from internet pictures by transferring the appearance of existing, pre-designed SVBRDFs. By selecting different exemplars, users can control the materials assigned to the target image, greatly enhancing the creative possibilities offered by deep appearance capture. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.03059v2-abstract-full').style.display = 'none'; document.getElementById('2007.03059v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Computer Graphics Forum, 39(4); Proceedings of the Eurographics Symposium on Rendering 2020</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.11557">arXiv:1906.11557</a> <span> [<a href="https://arxiv.org/pdf/1906.11557">pdf</a>, <a href="https://arxiv.org/format/1906.11557">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> </div> </div> <p class="title is-5 mathjax"> Flexible SVBRDF Capture with a Multi-Image Deep Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Deschaintre%2C+V">Valentin Deschaintre</a>, <a href="/search/cs?searchtype=author&query=Aittala%2C+M">Miika Aittala</a>, <a href="/search/cs?searchtype=author&query=Durand%2C+F">Fredo Durand</a>, <a href="/search/cs?searchtype=author&query=Drettakis%2C+G">George Drettakis</a>, <a href="/search/cs?searchtype=author&query=Bousseau%2C+A">Adrien Bousseau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.11557v1-abstract-short" style="display: inline;"> Empowered by deep learning, recent methods for material capture can estimate a spatially-varying reflectance from a single photograph. Such lightweight capture is in stark contrast with the tens or hundreds of pictures required by traditional optimization-based approaches. However, a single image is often simply not enough to observe the rich appearance of real-world materials. We present a deep-l… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.11557v1-abstract-full').style.display = 'inline'; document.getElementById('1906.11557v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.11557v1-abstract-full" style="display: none;"> Empowered by deep learning, recent methods for material capture can estimate a spatially-varying reflectance from a single photograph. Such lightweight capture is in stark contrast with the tens or hundreds of pictures required by traditional optimization-based approaches. However, a single image is often simply not enough to observe the rich appearance of real-world materials. We present a deep-learning method capable of estimating material appearance from a variable number of uncalibrated and unordered pictures captured with a handheld camera and flash. Thanks to an order-independent fusing layer, this architecture extracts the most useful information from each picture, while benefiting from strong priors learned from data. The method can handle both view and light direction variation without calibration. We show how our method improves its prediction with the number of input pictures, and reaches high quality reconstructions with as little as 1 to 10 images -- a sweet spot between existing single-image and complex multi-image approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.11557v1-abstract-full').style.display = 'none'; document.getElementById('1906.11557v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to EGSR 2019 in the CGF track</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.3 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Computer Graphics Forum (EGSR Conference Proceedings), 38, 4(July 2019), 13 pages </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.09718">arXiv:1810.09718</a> <span> [<a href="https://arxiv.org/pdf/1810.09718">pdf</a>, <a href="https://arxiv.org/format/1810.09718">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3197517.3201378">10.1145/3197517.3201378 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single-Image SVBRDF Capture with a Rendering-Aware Deep Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Deschaintre%2C+V">Valentin Deschaintre</a>, <a href="/search/cs?searchtype=author&query=Aittala%2C+M">Miika Aittala</a>, <a href="/search/cs?searchtype=author&query=Durand%2C+F">Fredo Durand</a>, <a href="/search/cs?searchtype=author&query=Drettakis%2C+G">George Drettakis</a>, <a href="/search/cs?searchtype=author&query=Bousseau%2C+A">Adrien Bousseau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.09718v1-abstract-short" style="display: inline;"> Texture, highlights, and shading are some of many visual cues that allow humans to perceive material appearance in single pictures. Yet, recovering spatially-varying bi-directional reflectance distribution functions (SVBRDFs) from a single image based on such cues has challenged researchers in computer graphics for decades. We tackle lightweight appearance capture by training a deep neural network… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.09718v1-abstract-full').style.display = 'inline'; document.getElementById('1810.09718v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.09718v1-abstract-full" style="display: none;"> Texture, highlights, and shading are some of many visual cues that allow humans to perceive material appearance in single pictures. Yet, recovering spatially-varying bi-directional reflectance distribution functions (SVBRDFs) from a single image based on such cues has challenged researchers in computer graphics for decades. We tackle lightweight appearance capture by training a deep neural network to automatically extract and make sense of these visual cues. Once trained, our network is capable of recovering per-pixel normal, diffuse albedo, specular albedo and specular roughness from a single picture of a flat surface lit by a hand-held flash. We achieve this goal by introducing several innovations on training data acquisition and network design. For training, we leverage a large dataset of artist-created, procedural SVBRDFs which we sample and render under multiple lighting directions. We further amplify the data by material mixing to cover a wide diversity of shading effects, which allows our network to work across many material classes. Motivated by the observation that distant regions of a material sample often offer complementary visual cues, we design a network that combines an encoder-decoder convolutional track for local feature extraction with a fully-connected track for global feature extraction and propagation. Many important material effects are view-dependent, and as such ambiguous when observed in a single image. We tackle this challenge by defining the loss as a differentiable SVBRDF similarity metric that compares the renderings of the predicted maps against renderings of the ground truth from several lighting and viewing directions. Combined together, these novel ingredients bring clear improvement over state of the art methods for single-shot capture of spatially varying BRDFs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.09718v1-abstract-full').style.display = 'none'; document.getElementById('1810.09718v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, presented at Siggraph 2018</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.3 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACM Trans. Graph. 37, 4, Article 128 (August 2018), 15 pages </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>