CINXE.COM

Extraordinary neoteny of synaptic spines in the human prefrontal cortex - PMC

<!DOCTYPE html> <html lang="en" > <head > <meta charset="UTF-8" /> <meta http-equiv="X-UA-Compatible" content="IE=edge" /> <meta name="HandheldFriendly" content="True" /> <meta name="MobileOptimized" content="320" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <link rel="stylesheet" href="/static/assets/style-70b9163a.css" /> <script type="module" crossorigin="" src="/static/assets/base_style-ec2bc71e.js"></script> <link rel="stylesheet" href="/static/assets/style-ef962842.css" /> <link rel="stylesheet" href="/static/assets/style-3ade8b5c.css" /> <script type="module" crossorigin="" src="/static/assets/article_style-d757a0dd.js"></script> <style> @media screen and (min-width: 64em) { div.pmc-wm { background: repeat-y; background-image: url("data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' width='20' height='350' xmlns:xlink='http://www.w3.org/1999/xlink'%3E%3Cdefs%3E%3Cfilter x='-.02' y='0' width='1.05' height='1' id='c'%3E%3CfeFlood flood-color='%23FFF'/%3E%3CfeComposite in='SourceGraphic'/%3E%3C/filter%3E%3Ctext id='b' font-family='Helvetica' font-size='11pt' style='opacity:1;fill:%23005ea2;stroke:none;text-anchor:middle' x='175' y='14'%3E%3C/text%3E%3Cpath id='a' style='fill:%23005ea2' d='M0 8h350v3H0z'/%3E%3C/defs%3E%3Cuse xlink:href='%23a' transform='rotate(90 10 10)'/%3E%3Cuse xlink:href='%23b' transform='rotate(90 10 10)' filter='url(%23c)'/%3E%3C/svg%3E"); padding-left: 3rem; } } </style> <link rel="apple-touch-icon" sizes="180x180" href="/static/img/favicons/apple-touch-icon.png" /> <link rel="icon" type="image/png" sizes="48x48" href="/static/img/favicons/favicon-48x48.png" /> <link rel="icon" type="image/png" sizes="32x32" href="/static/img/favicons/favicon-32x32.png" /> <link rel="icon" type="image/png" sizes="16x16" href="/static/img/favicons/favicon-16x16.png" /> <link rel="manifest" href="/static/img/favicons/site.webmanifest" /> <link rel="mask-icon" href="/static/img/favicons/safari-pinned-tab.svg" color="#0071bc" /> <meta name="msapplication-config" content="/static/img/favicons/browserconfig.xml" /> <meta name="theme-color" content="#ffffff" /> <title> Extraordinary neoteny of synaptic spines in the human prefrontal cortex - PMC </title> <!-- Logging params: Pinger defaults --> <meta name="ncbi_app" content="cloudpmc-viewer" /> <meta name="ncbi_db" content="pmc" /> <meta name="ncbi_phid" content="76C131DF744F09B30531DF000315E4DC.m_1" /> <!-- Logging params: Pinger custom --> <meta name="ncbi_pdid" content="article" /> <link rel="preconnect" href="https://www.google-analytics.com" /> <link rel="dns-prefetch" href="https://cdn.ncbi.nlm.nih.gov" /> <link rel="preconnect" href="https://code.jquery.com" /> <meta name="ncbi_domain" content="pnas"> <meta name="ncbi_type" content="fulltext"> <meta name="ncbi_pcid" content="journal"> <meta name="ncbi_feature" content="associated_data"> <link rel="canonical" href="https://pmc.ncbi.nlm.nih.gov/articles/PMC3156171/"> <meta name="robots" content="INDEX,NOFOLLOW,NOARCHIVE"> <meta name="citation_journal_title" content="Proceedings of the National Academy of Sciences of the United States of America"> <meta name="citation_title" content="Extraordinary neoteny of synaptic spines in the human prefrontal cortex"> <meta name="citation_author" content="Zdravko Petanjek"> <meta name="citation_author_institution" content="Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10,000 Zagreb, Croatia;"> <meta name="citation_author" content="Miloš Judaš"> <meta name="citation_author_institution" content="Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10,000 Zagreb, Croatia;"> <meta name="citation_author" content="Goran Šimić"> <meta name="citation_author_institution" content="Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10,000 Zagreb, Croatia;"> <meta name="citation_author" content="Mladen Roko Rašin"> <meta name="citation_author_institution" content="Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10,000 Zagreb, Croatia;"> <meta name="citation_author_institution" content="Department of Neurobiology and"> <meta name="citation_author_institution" content="Kavli Institute for Neuroscience, Yale University, New Haven, CT 06520; and"> <meta name="citation_author" content="Harry B M Uylings"> <meta name="citation_author_institution" content="Department of Anatomy and Neuroscience, VU University Medical Center, 1007 MB, Amsterdam, The Netherlands"> <meta name="citation_author" content="Pasko Rakic"> <meta name="citation_author_institution" content="Department of Neurobiology and"> <meta name="citation_author_institution" content="Kavli Institute for Neuroscience, Yale University, New Haven, CT 06520; and"> <meta name="citation_author" content="Ivica Kostović"> <meta name="citation_author_institution" content="Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10,000 Zagreb, Croatia;"> <meta name="citation_publication_date" content="2011 Jul 25"> <meta name="citation_volume" content="108"> <meta name="citation_issue" content="32"> <meta name="citation_firstpage" content="13281"> <meta name="citation_doi" content="10.1073/pnas.1105108108"> <meta name="citation_pmid" content="21788513"> <meta name="citation_abstract_html_url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC3156171/"> <meta name="citation_fulltext_html_url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC3156171/"> <meta name="citation_pdf_url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC3156171/pdf/pnas.201105108.pdf"> <meta name="description" content="The major mechanism for generating diversity of neuronal connections beyond their genetic determination is the activity-dependent stabilization and selective elimination of the initially overproduced synapses [Changeux JP, Danchin A (1976) Nature ..."> <meta name="og:title" content="Extraordinary neoteny of synaptic spines in the human prefrontal cortex"> <meta name="og:type" content="article"> <meta name="og:site_name" content="PubMed Central (PMC)"> <meta name="og:description" content="The major mechanism for generating diversity of neuronal connections beyond their genetic determination is the activity-dependent stabilization and selective elimination of the initially overproduced synapses [Changeux JP, Danchin A (1976) Nature ..."> <meta name="og:url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC3156171/"> <meta name="og:image" content="https://cdn.ncbi.nlm.nih.gov/pmc/cms/images/pmc-card-share.jpg?_=0"> <meta name="twitter:card" content="summary_large_image"> <meta name="twitter:site" content="@ncbi"> </head> <body > <a class="usa-skipnav " href="#main-content"> Skip to main content </a> <section class="usa-banner " aria-label="Official website of the United States government" > <div class="usa-accordion"> <header class="usa-banner__header"> <div class="usa-banner__inner"> <div class="grid-col-auto"> <img aria-hidden="true" class="usa-banner__header-flag" src="/static/img/us_flag.svg" alt="" /> </div> <div class="grid-col-fill tablet:grid-col-auto" aria-hidden="true"> <p class="usa-banner__header-text"> An official website of the United States government </p> <span class="usa-banner__header-action">Here's how you know</span> </div> <button type="button" class="usa-accordion__button usa-banner__button " aria-expanded="false" aria-controls="gov-banner-default" data-testid="storybook-django-banner" > <span class="usa-banner__button-text">Here's how you know</span> </button> </div> </header> <div class="usa-banner__content usa-accordion__content" id="gov-banner-default" hidden> <div class="grid-row grid-gap-lg"> <div class="usa-banner__guidance tablet:grid-col-6"> <img class="usa-banner__icon usa-media-block__img" src="/static/img/icon-dot-gov.svg" alt="" aria-hidden="true" /> <div class="usa-media-block__body"> <p> <strong>Official websites use .gov</strong> <br /> A <strong>.gov</strong> website belongs to an official government organization in the United States. </p> </div> </div> <div class="usa-banner__guidance tablet:grid-col-6"> <img class="usa-banner__icon usa-media-block__img" src="/static/img/icon-https.svg" alt="" aria-hidden="true" /> <div class="usa-media-block__body"> <p> <strong>Secure .gov websites use HTTPS</strong> <br /> A <strong>lock</strong> ( <span class="icon-lock"> <svg xmlns="http://www.w3.org/2000/svg" width="52" height="64" viewBox="0 0 52 64" class="usa-banner__lock-image" role="graphics-symbol" aria-labelledby="banner-lock-description" focusable="false"> <title id="banner-lock-title">Lock</title> <desc id="banner-lock-description"> Locked padlock icon </desc> <path fill="#000000" fill-rule="evenodd" d="M26 0c10.493 0 19 8.507 19 19v9h3a4 4 0 0 1 4 4v28a4 4 0 0 1-4 4H4a4 4 0 0 1-4-4V32a4 4 0 0 1 4-4h3v-9C7 8.507 15.507 0 26 0zm0 8c-5.979 0-10.843 4.77-10.996 10.712L15 19v9h22v-9c0-6.075-4.925-11-11-11z" /> </svg> </span>) or <strong>https://</strong> means you've safely connected to the .gov website. Share sensitive information only on official, secure websites. </p> </div> </div> </div> </div> </div> </section> <div class="usa-overlay"> </div> <header class="usa-header usa-header--extended usa-header--wide" data-testid="header" data-header > <div class="ncbi-header"> <div class="ncbi-header__container"> <a class="ncbi-header__logo-container" href="/"> <img alt=" PMC home page " class="ncbi-header__logo-image" src="/static/img/ncbi-logos/nih-nlm-ncbi--white.svg" /> </a> <!-- Mobile menu hamburger button --> <button type="button" class="usa-menu-btn ncbi-header__hamburger-button " aria-label="Show menu" data-testid="navMenuButton" > <svg aria-hidden="true" class="ncbi-hamburger-icon" fill="none" focusable="false" height="21" viewBox="0 0 31 21" width="31" xmlns="http://www.w3.org/2000/svg"> <path clip-rule="evenodd" d="M0.125 20.75H30.875V17.3333H0.125V20.75ZM0.125 12.2083H30.875V8.79167H0.125V12.2083ZM0.125 0.25V3.66667H30.875V0.25H0.125Z" fill="#F1F1F1" fill-rule="evenodd" /> </svg> </button> <!-- Desktop buttons--> <div class="ncbi-header__desktop-buttons"> <!-- Desktop search button --> <button type="button" class="usa-button usa-button--unstyled ncbi-header__desktop-button " aria-expanded="false" aria-controls="search-field-desktop-navigation" aria-label="Show search overlay" data-testid="toggleSearchPanelButton" data-toggle-search-panel-button > <svg class="usa-icon " role="graphics-symbol" aria-hidden="true" > <use xlink:href="/static/img/sprite.svg#search" /> </svg> Search </button> <!-- Desktop login dropdown --> <div class="ncbi-header__login-dropdown"> <button type="button" class="usa-button usa-button--unstyled ncbi-header__desktop-button ncbi-header__login-dropdown-button " aria-expanded="false" aria-controls="login-dropdown-menu" aria-label="Show login menu" data-testid="toggleLoginMenuDropdown" data-desktop-login-button > <svg class="usa-icon " role="graphics-symbol" aria-hidden="true" > <use xlink:href="/static/img/sprite.svg#person" /> </svg> <span data-login-dropdown-text>Log in</span> <!-- Dropdown icon pointing up --> <svg class="usa-icon ncbi-header__login-dropdown-icon ncbi-header__login-dropdown-icon--expand-less ncbi-header__login-dropdown-icon--hidden" role="graphics-symbol" aria-hidden="true" data-login-dropdown-up-arrow> <use xlink:href="/static/img/sprite.svg#expand_less" /> </svg> <!-- Dropdown icon pointing down --> <svg class="usa-icon ncbi-header__login-dropdown-icon ncbi-header__login-dropdown-icon--expand-more ncbi-header__login-dropdown-icon--hidden" role="graphics-symbol" aria-hidden="true" data-login-dropdown-down-arrow> <use xlink:href="/static/img/sprite.svg#expand_more" /> </svg> </button> <!-- Login dropdown menu --> <ul class="usa-nav__submenu ncbi-header__login-dropdown-menu" id="login-dropdown-menu" data-desktop-login-menu-dropdown hidden> <li class="usa-nav__submenu-item"> <!-- Uses custom style overrides to render external and document links. --> <a href="https://www.ncbi.nlm.nih.gov/myncbi/" class="usa-link " > Dashboard </a> </li> <li class="usa-nav__submenu-item"> <!-- Uses custom style overrides to render external and document links. --> <a href="https://www.ncbi.nlm.nih.gov/myncbi/collections/bibliography/" class="usa-link " > Publications </a> </li> <li class="usa-nav__submenu-item"> <!-- Uses custom style overrides to render external and document links. --> <a href="https://www.ncbi.nlm.nih.gov/account/settings/" class="usa-link " > Account settings </a> </li> <li class="usa-nav__submenu-item"> <button type="button" class="usa-button usa-button--outline ncbi-header__login-dropdown-logout-button " data-testid="desktopLogoutButton" data-desktop-logout-button > Log out </button> </li> </ul> </div> </div> </div> </div> <!-- Search panel --> <div class="ncbi-search-panel ncbi--show-only-at-desktop" data-testid="searchPanel" data-header-search-panel hidden> <div class="ncbi-search-panel__container"> <form action="https://www.ncbi.nlm.nih.gov/search/all/" aria-describedby="search-field-desktop-navigation-help-text" autocomplete="off" class="usa-search usa-search--big ncbi-search-panel__form" data-testid="form" method="GET" role="search"> <label class="usa-sr-only" data-testid="label" for="search-field-desktop-navigation"> Search… </label> <input class="usa-input" data-testid="textInput" id="search-field-desktop-navigation" name="term" placeholder="Search NCBI" type="search" value="" /> <button type="submit" class="usa-button " data-testid="button" > <span class="usa-search__submit-text"> Search NCBI </span> </button> </form> </div> </div> <nav aria-label="Primary navigation" class="usa-nav"> <p class="usa-sr-only" id="primary-navigation-sr-only-title"> Primary site navigation </p> <!-- Mobile menu close button --> <button type="button" class="usa-nav__close ncbi-nav__close-button " aria-label="Close navigation menu" data-testid="navCloseButton" > <img src="/static/img/usa-icons/close.svg" alt="Close" /> </button> <!-- Mobile search component --> <form class="usa-search usa-search--small ncbi--hide-at-desktop margin-top-6" role="search"> <label class="usa-sr-only" for="search-field"> Search </label> <input class="usa-input" id="search-field-mobile-navigation" type="search" placeholder="Search NCBI" name="search" /> <button type="submit" class="usa-button " > <!-- This SVG should be kept inline and not replaced with a link to the icon as otherwise it will render in the wrong color --> <img src="" class="usa-search__submit-icon" alt="Search" /> </button> </form> <!-- Primary navigation menu items --> <!-- This usa-nav__inner wrapper is required to correctly style the navigation items on Desktop --> <div class="ncbi-nav__mobile-login-menu ncbi--hide-at-desktop" data-mobile-login-menu hidden> <p class="ncbi-nav__mobile-login-menu-status"> Logged in as: <strong class="ncbi-nav__mobile-login-menu-email" data-mobile-login-email-text></strong> </p> <ul class="usa-nav__primary usa-accordion"> <li class="usa-nav__primary-item"> <a href="https://www.ncbi.nlm.nih.gov/myncbi/" class="usa-link " > Dashboard </a> </li> <li class="usa-nav__primary-item"> <a href="https://www.ncbi.nlm.nih.gov/myncbi/collections/bibliography/" class="usa-link " > Publications </a> </li> <li class="usa-nav__primary-item"> <a href="https://www.ncbi.nlm.nih.gov/account/settings/" class="usa-link " > Account settings </a> </li> </ul> </div> <button type="button" class="usa-button ncbi-nav__mobile-login-button ncbi--hide-at-desktop " data-testid="mobileLoginButton" data-mobile-login-button > Log in </button> </nav> </header> <section class="pmc-header pmc-header--basic" aria-label="PMC Header with search box"> <div class="pmc-nav-container"> <div class="pmc-header__bar"> <div class="pmc-header__logo"> <a href="/" title="Home" aria-label="PMC Home"></a> </div> <button type="button" class="usa-button usa-button--unstyled pmc-header__search__button" aria-label="Open search" data-ga-category="search" data-ga-action="PMC" data-ga-label="pmc_search_panel_mobile" > <svg class="usa-icon width-4 height-4 pmc-icon__open" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#search"></use> </svg> <svg class="usa-icon width-4 height-4 pmc-icon__close" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#close"></use> </svg> </button> </div> <div class="pmc-header__search"> <form class="usa-search usa-search--extra usa-search--article-right-column pmc-header__search__form" autocomplete="off" role="search"> <label class="usa-sr-only" for="pmc-search">Search PMC Full-Text Archive</label> <span class="autoComplete_wrapper flex-1"> <input class="usa-input width-full maxw-none" required="required" placeholder="Search PMC Full-Text Archive" id="pmc-search" type="search" name="term" data-autocomplete-url="/search/autocomplete/"/> </span> <button class="usa-button" type="submit" formaction="https://www.ncbi.nlm.nih.gov/pmc/" data-ga-category="search" data-ga-action="PMC" data-ga-label="PMC_search_button" > <span class="usa-search__submit-text">Search in PMC</span> <img src="/static/img/usa-icons-bg/search--white.svg" class="usa-search__submit-icon" alt="Search" /> </button> </form> <ul class="pmc-header__search__menu"> <li> <a class="usa-link" href="https://www.ncbi.nlm.nih.gov/pmc/advanced/" data-ga-action="featured_link" data-ga-label="advanced_search"> Advanced Search </a> </li> <li> <a class="usa-link" href="/journals/" data-ga-action="featured_link" data-ga-label="journal list"> Journal List </a> </li> <li> <a class="usa-link" href="/about/userguide/" data-ga-action="featured_link" data-ga-label="user guide"> User Guide </a> </li> </ul> </div> </div> </section> <div class="usa-section padding-top-0 desktop:padding-top-6 pmc-article-section" data-article-db="pmc" data-article-id="3156171"> <div class="grid-container pmc-actions-bar" aria-label="Actions bar" role="complementary"> <div class="grid-row"> <div class="grid-col-fill display-flex"> <div class="display-flex"> <ul class="usa-list usa-list--unstyled usa-list--horizontal"> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex mob"> <button type="button" class="usa-button pmc-sidenav__container__open usa-button--unstyled width-auto display-flex" aria-label="Open resources" data-extra-class="is-visible-resources" data-ga-category="resources_accordion" data-ga-action="click" data-ga-label="mobile_icon" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#more_vert"></use> </svg> </button> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex mob"> <a href="https://doi.org/10.1073/pnas.1105108108" class="usa-link display-flex" role="button" target="_blank" rel="noreferrer noopener" aria-label="View on publisher site" data-ga-category="actions" data-ga-action="click" data-ga-label="publisher_link_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#launch"></use> </svg> </a> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex"> <a href="pdf/pnas.201105108.pdf" class="usa-link display-flex" role="button" aria-label="Download PDF" data-ga-category="actions" data-ga-action="click" data-ga-label="pdf_download_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#file_download"></use> </svg> </a> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex"> <button class="usa-button usa-button--unstyled collections-dialog-trigger collections-button display-flex collections-button-empty" aria-label="Save article in MyNCBI collections." data-ga-category="actions" data-ga-action="click" data-ga-label="collections_button_mobile" data-collections-open-dialog-enabled="false" data-collections-open-dialog-url="https://account.ncbi.nlm.nih.gov/?back_url=https%3A%2F%2Fpmc.ncbi.nlm.nih.gov%2Farticles%2FPMC3156171%2F%23open-collections-dialog" data-in-collections="false" > <svg class="usa-icon width-4 height-4 usa-icon--bookmark-full" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-full.svg#icon"></use> </svg> <svg class="usa-icon width-4 height-4 usa-icon--bookmark-empty" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-empty.svg#icon"></use> </svg> </button> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex"> <button role="button" class="usa-button usa-button--unstyled citation-dialog-trigger display-flex" aria-label="Open dialog with citation text in different styles" data-ga-category="actions" data-ga-action="open" data-ga-label="cite_mobile" data-all-citations-url="/resources/citations/3156171/" data-citation-style="nlm" data-download-format-link="/resources/citations/3156171/export/" > <svg class="usa-icon width-4 height-4 usa-icon--bookmark-empty" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#format_quote"></use> </svg> </button> </li> <li class="pmc-permalink display-flex"> <button type="button" class="usa-button usa-button--unstyled display-flex" aria-label="Show article permalink" aria-expanded="false" aria-haspopup="true" data-ga-category="actions" data-ga-action="open" data-ga-label="permalink_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#share"></use> </svg> </button> <div class="pmc-permalink__dropdown" hidden> <div class="pmc-permalink__dropdown__container"> <h2 class="usa-modal__heading margin-top-0 margin-bottom-2">PERMALINK</h2> <div class="pmc-permalink__dropdown__content"> <input type="text" class="usa-input" value="https://pmc.ncbi.nlm.nih.gov/articles/PMC3156171/" aria-label="Article permalink"> <button class="usa-button display-inline-flex pmc-permalink__dropdown__copy__btn margin-right-0" title="Copy article permalink" data-ga-category="save_share" data-ga-action="link" data-ga-label="copy_link"> <svg class="usa-icon" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#content_copy"></use> </svg> <span class="margin-left-1">Copy</span> </button> </div> </div> </div> </li> </ul> </div> <button type="button" class="usa-button pmc-sidenav__container__open usa-button--unstyled width-auto display-flex" aria-label="Open article navigation" data-extra-class="is-visible-in-page" data-ga-category="actions" data-ga-action="open" data-ga-label="article_nav_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#list"></use> </svg> </button> </div> </div> </div> <div class="grid-container desktop:padding-left-6"> <div id="article-container" class="grid-row grid-gap"> <div class="grid-col-12 desktop:grid-col-8 order-2 pmc-layout__content"> <div class="grid-container padding-left-0 padding-right-0"> <div class="grid-row desktop:margin-left-neg-6"> <div class="grid-col-12"> <div class="pmc-layout__disclaimer" role="complementary" aria-label="Disclaimer note"> As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.<br/> Learn more: <a class="usa-link" data-ga-category="Link click" data-ga-action="Disclaimer" data-ga-label="New disclaimer box" href="/about/disclaimer/">PMC Disclaimer</a> | <a class="usa-link" data-ga-category="Link click" data-ga-action="PMC Copyright Notice" data-ga-label="New disclaimer box" href="/about/copyright/"> PMC Copyright Notice </a> </div> </div> </div> <div class="grid-row pmc-wm desktop:margin-left-neg-6"> <!-- Main content --> <main id="main-content" class="usa-layout-docs__main usa-layout-docs grid-col-12 pmc-layout pmc-prose padding-0" > <section class="pmc-journal-banner text-center line-height-none" aria-label="Journal banner"><img src="https://cdn.ncbi.nlm.nih.gov/pmc/banners/logo-pnas.png" alt="Proceedings of the National Academy of Sciences of the United States of America logo" usemap="#pmc-banner-imagemap" width="500" height="75"><map name="pmc-banner-imagemap"><area alt="Link to Proceedings of the National Academy of Sciences of the United States of America" title="Link to Proceedings of the National Academy of Sciences of the United States of America" shape="default" href="https://doi.org/10.1073/pnas.1105108108" target="_blank" rel="noopener noreferrer"></map></section><article lang="en"><section aria-label="Article citation and metadata"><section class="pmc-layout__citation font-secondary font-xs"><div> <div class="display-inline-block"><button type="button" class="cursor-pointer text-no-underline bg-transparent border-0 padding-0 text-left margin-0 text-normal text-primary" aria-controls="journal_context_menu">Proc Natl Acad Sci U S A</button></div>. 2011 Jul 25;108(32):13281–13286. doi: <a href="https://doi.org/10.1073/pnas.1105108108" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">10.1073/pnas.1105108108</a> </div> <nav id="journal_context_menu" hidden="hidden"><ul class="menu-list font-family-ui" role="menu"> <li role="presentation"><a href="https://www.ncbi.nlm.nih.gov/pmc/?term=%22Proc%20Natl%20Acad%20Sci%20U%20S%20A%22%5Bjour%5D" class="usa-link" role="menuitem">Search in PMC</a></li> <li role="presentation"><a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Proc%20Natl%20Acad%20Sci%20U%20S%20A%22%5Bjour%5D" lang="en" class="usa-link" role="menuitem">Search in PubMed</a></li> <li role="presentation"><a href="https://www.ncbi.nlm.nih.gov/nlmcatalog?term=%22Proc%20Natl%20Acad%20Sci%20U%20S%20A%22%5BTitle%20Abbreviation%5D" class="usa-link" role="menuitem">View in NLM Catalog</a></li> <li role="presentation"><a href="?term=%22Proc%20Natl%20Acad%20Sci%20U%20S%20A%22%5Bjour%5D" class="usa-link" role="menuitem" data-add-to-search="true">Add to search</a></li> </ul></nav></section><section class="front-matter"><div class="ameta p font-secondary font-xs"> <hgroup><h1>Extraordinary neoteny of synaptic spines in the human prefrontal cortex</h1></hgroup><div class="cg p"> <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Petanjek%20Z%22%5BAuthor%5D" class="usa-link" aria-describedby="id1"><span class="name western">Zdravko Petanjek</span></a><div hidden="hidden" id="id1"> <h3><span class="name western">Zdravko Petanjek</span></h3> <div class="p"> <sup>a</sup>Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10,000 Zagreb, Croatia;</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Petanjek%20Z%22%5BAuthor%5D" class="usa-link"><span class="name western">Zdravko Petanjek</span></a> </div> </div> <sup>a</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Juda%C5%A1%20M%22%5BAuthor%5D" class="usa-link" aria-describedby="id2"><span class="name western">Miloš Judaš</span></a><div hidden="hidden" id="id2"> <h3><span class="name western">Miloš Judaš</span></h3> <div class="p"> <sup>a</sup>Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10,000 Zagreb, Croatia;</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Juda%C5%A1%20M%22%5BAuthor%5D" class="usa-link"><span class="name western">Miloš Judaš</span></a> </div> </div> <sup>a</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22%C5%A0imi%C4%87%20G%22%5BAuthor%5D" class="usa-link" aria-describedby="id3"><span class="name western">Goran Šimić</span></a><div hidden="hidden" id="id3"> <h3><span class="name western">Goran Šimić</span></h3> <div class="p"> <sup>a</sup>Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10,000 Zagreb, Croatia;</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22%C5%A0imi%C4%87%20G%22%5BAuthor%5D" class="usa-link"><span class="name western">Goran Šimić</span></a> </div> </div> <sup>a</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Ra%C5%A1in%20MR%22%5BAuthor%5D" class="usa-link" aria-describedby="id4"><span class="name western">Mladen Roko Rašin</span></a><div hidden="hidden" id="id4"> <h3><span class="name western">Mladen Roko Rašin</span></h3> <div class="p"> <sup>a</sup>Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10,000 Zagreb, Croatia;</div> <div class="p"> <sup>b</sup>Department of Neurobiology and</div> <div class="p"> <sup>c</sup>Kavli Institute for Neuroscience, Yale University, New Haven, CT 06520; and</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Ra%C5%A1in%20MR%22%5BAuthor%5D" class="usa-link"><span class="name western">Mladen Roko Rašin</span></a> </div> </div> <sup>a,</sup><sup>b,</sup><sup>c</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Uylings%20HBM%22%5BAuthor%5D" class="usa-link" aria-describedby="id5"><span class="name western">Harry B M Uylings</span></a><div hidden="hidden" id="id5"> <h3><span class="name western">Harry B M Uylings</span></h3> <div class="p"> <sup>d</sup>Department of Anatomy and Neuroscience, VU University Medical Center, 1007 MB, Amsterdam, The Netherlands</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Uylings%20HBM%22%5BAuthor%5D" class="usa-link"><span class="name western">Harry B M Uylings</span></a> </div> </div> <sup>d</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Rakic%20P%22%5BAuthor%5D" class="usa-link" aria-describedby="id6"><span class="name western">Pasko Rakic</span></a><div hidden="hidden" id="id6"> <h3><span class="name western">Pasko Rakic</span></h3> <div class="p"> <sup>b</sup>Department of Neurobiology and</div> <div class="p"> <sup>c</sup>Kavli Institute for Neuroscience, Yale University, New Haven, CT 06520; and</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Rakic%20P%22%5BAuthor%5D" class="usa-link"><span class="name western">Pasko Rakic</span></a> </div> </div> <sup>b,</sup><sup>c,</sup><sup>1</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Kostovi%C4%87%20I%22%5BAuthor%5D" class="usa-link" aria-describedby="id7"><span class="name western">Ivica Kostović</span></a><div hidden="hidden" id="id7"> <h3><span class="name western">Ivica Kostović</span></h3> <div class="p"> <sup>a</sup>Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10,000 Zagreb, Croatia;</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Kostovi%C4%87%20I%22%5BAuthor%5D" class="usa-link"><span class="name western">Ivica Kostović</span></a> </div> </div> <sup>a</sup> </div> <ul class="d-buttons inline-list"> <li><button class="d-button" aria-controls="aip_a" aria-expanded="false">Author information</button></li> <li><button class="d-button" aria-controls="anp_a" aria-expanded="false">Article notes</button></li> <li><button class="d-button" aria-controls="clp_a" aria-expanded="false">Copyright and License information</button></li> </ul> <div class="d-panels font-secondary-light"> <div id="aip_a" class="d-panel p" style="display: none"> <div class="p" id="aff1"> <sup>a</sup>Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10,000 Zagreb, Croatia;</div> <div id="aff2"> <sup>b</sup>Department of Neurobiology and</div> <div id="aff3"> <sup>c</sup>Kavli Institute for Neuroscience, Yale University, New Haven, CT 06520; and</div> <div id="aff4"> <sup>d</sup>Department of Anatomy and Neuroscience, VU University Medical Center, 1007 MB, Amsterdam, The Netherlands</div> <div class="author-notes p"> <div class="fn" id="cor1"> <sup>1</sup><p class="display-inline">To whom correspondence should be addressed. E-mail: <span>pasko.rakic@yale.edu</span>.</p> </div> <div class="fn" id="fn1_pmc"><p>Edited<a href="#fn1" class="usa-link">*</a> by Jean-Pierre Changeux, Institut Pasteur, Paris Cedex 15, France, and approved June 27, 2011 (received for review March 30, 2011)</p></div> <div class="fn" id="fn2"><p>Author contributions: Z.P., M.J., H.B.M.U., and I.K. designed research; Z.P., G.Š., M.R.R., and H.B.M.U. performed research; Z.P., M.J., G.Š., M.R.R., H.B.M.U., P.R., and I.K. analyzed data; and Z.P., M.J., H.B.M.U., P.R., and I.K. wrote the paper.</p></div> </div> </div> <div id="anp_a" class="d-panel p" style="display: none"><div class="notes p"><section id="historyarticle-meta1" class="history"><p>Issue date 2011 Aug 9.</p></section></div></div> <div id="clp_a" class="d-panel p" style="display: none"><div class="p"><a href="/about/copyright/" class="usa-link">PMC Copyright notice</a></div></div> </div> <div>PMCID: PMC3156171  PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/21788513/" class="usa-link">21788513</a> </div> </div></section></section><section aria-label="Article content"><section class="body main-article-body"><section class="abstract" id="abstract1"><h2>Abstract</h2> <p>The major mechanism for generating diversity of neuronal connections beyond their genetic determination is the activity-dependent stabilization and selective elimination of the initially overproduced synapses [Changeux JP, Danchin A (1976) <em>Nature</em> 264:705–712]. The largest number of supranumerary synapses has been recorded in the cerebral cortex of human and nonhuman primates. It is generally accepted that synaptic pruning in the cerebral cortex, including prefrontal areas, occurs at puberty and is completed during early adolescence [Huttenlocher PR, et al. (1979) <em>Brain Res</em> 163:195–205]. In the present study we analyzed synaptic spine density on the dendrites of layer IIIC cortico–cortical and layer V cortico–subcortical projecting pyramidal neurons in a large sample of human prefrontal cortices in subjects ranging in age from newborn to 91 y. We confirm that dendritic spine density in childhood exceeds adult values by two- to threefold and begins to decrease during puberty. However, we also obtained evidence that overproduction and developmental remodeling, including substantial elimination of synaptic spines, continues beyond adolescence and throughout the third decade of life before stabilizing at the adult level. Such an extraordinarily long phase of developmental reorganization of cortical neuronal circuitry has implications for understanding the effect of environmental impact on the development of human cognitive and emotional capacities as well as the late onset of human-specific neuropsychiatric disorders.</p> <section id="kwd-group1" class="kwd-group"><p><strong>Keywords:</strong> association cortex, critical period, schizophrenia, synaptogenesis</p></section></section><hr class="headless"> <p>Selective stabilization of developing synapses as a mechanism for specification of neuronal connections was proposed more than 4 decades ago (<a href="#r1" class="usa-link" aria-describedby="r1">1</a>). This hypothesis gained considerable support from the discovery that synaptic connections in the cerebral cortex of human and nonhuman primates initially are overproduced to about two times the adult number and are then pruned during puberty to reach the adult level at the onset of adolescence (<a href="#r2" class="usa-link" aria-describedby="r2">2</a>–<a href="#r5" class="usa-link" aria-describedby="r5">5</a>). The selective-elimination hypothesis basically assumes that during a period of overproduction of synapses neuronal activity tunes the molecular structure of individual synapses and determines which will be retained and which removed from the neural network (<a href="#r6" class="usa-link" aria-describedby="r6">6</a>, <a href="#r7" class="usa-link" aria-describedby="r7">7</a>). Previous EM analyses in nonhuman primates revealed that synaptic elimination in the monkey prefrontal cortex occurs mainly by removal of asymmetric synapses on spines, whereas the number of symmetric synapses on dendritic shafts remains constant (<a href="#r5" class="usa-link" aria-describedby="r5">5</a>, <a href="#r8" class="usa-link" aria-describedby="r8">8</a>).</p> <p>The tempo of elimination of supranumerary synaptic spines and the identification of the end of this critical period are extremely important, because these factors are related to establishment of cognitive abilities and duration of the window for optimal acquisition of new language and mathematical skills as well as personality transformation from the developmental mode to adult status. In addition, the several leading hypotheses for the explanation of late-onset neuropsychiatric disorders, such as schizophrenia and drug- or stress-induced psychoses, implicate defective pruning of the initially overproduced synapses on dendritic spines (<a href="#r8" class="usa-link" aria-describedby="r8">8</a>–<a href="#r15" class="usa-link" aria-describedby="r15">15</a>). Furthermore, spine dysgenesis is the only detectable anatomical phenotype in some human cognitive disorders such as nonsyndromic mental retardation (<a href="#r16" class="usa-link" aria-describedby="r16">16</a>). Finally, this biomedically and socially important concept (<a href="#r9" class="usa-link" aria-describedby="r9">9</a>) is also the subject of continuing dialogue between proponents of selectionism versus constructionism (<a href="#r17" class="usa-link" aria-describedby="r17">17</a>).</p> <p>The end of the critical period of synaptic spine elimination in the human cortex basically relies on the pioneering study of Huttenlocher and colleagues (<a href="#r2" class="usa-link" aria-describedby="r2">2</a>, <a href="#r4" class="usa-link" aria-describedby="r4">4</a>). Thus, it usually is assumed tacitly that the period of synaptic overproduction in the human cerebral cortex is completed by the end of puberty (<a href="#r18" class="usa-link" aria-describedby="r18">18</a>), even though Huttenlocher's study contains only a single 19-y-old brain specimen in the age group between 15 and 32 y. In contrast, more recent studies using electroencephalography (<a href="#r15" class="usa-link" aria-describedby="r15">15</a>, <a href="#r19" class="usa-link" aria-describedby="r19">19</a>), PET (<a href="#r20" class="usa-link" aria-describedby="r20">20</a>), and functional MRI (<a href="#r18" class="usa-link" aria-describedby="r18">18</a>, <a href="#r21" class="usa-link" aria-describedby="r21">21</a>–<a href="#r26" class="usa-link" aria-describedby="r26">26</a>) have suggested that the dynamic changes in gray matter density and white matter integrity in the human association neocortex extend into the third decade of life (<a href="#r21" class="usa-link" aria-describedby="r21">21</a>, <a href="#r23" class="usa-link" aria-describedby="r23">23</a>, <a href="#r26" class="usa-link" aria-describedby="r26">26</a>, <a href="#r27" class="usa-link" aria-describedby="r27">27</a>). These changes, observed by MRI, cannot be explained by a capacious increase in dendritic length, because the dendritic growth in the human neocortex is limited mainly to early childhood (<a href="#r28" class="usa-link" aria-describedby="r28">28</a>). Therefore, it has been assumed that functional plasticity probably reflects reorganization of circuitry, including synaptic elimination (<a href="#r29" class="usa-link" aria-describedby="r29">29</a>–<a href="#r32" class="usa-link" aria-describedby="r32">32</a>), essential for acquisition of the highest brain functions in humans, including affective modulation of emotional cues, self-conceptualization, mentalization, cognitive flexibility, and working memory (<a href="#r33" class="usa-link" aria-describedby="r33">33</a>–<a href="#r36" class="usa-link" aria-describedby="r36">36</a>). However, the cellular data supporting this assumption have been missing.</p> <section id="s1"><h2 class="pmc_sec_title">Results</h2> <p>To fill this gap in our knowledge, we analyzed the initial overproduction and subsequent elimination of dendritic spines on layer IIIc and layer V pyramidal neurons in the dorsolateral prefrontal cortex [Brodmann area 9 (<a href="#r28" class="usa-link" aria-describedby="r28">28</a>, <a href="#r37" class="usa-link" aria-describedby="r37">37</a>)]. Our focus was on the prefrontal cortex because of the relevance of this region for late-onset, human-specific, neuropsychiatric disorders and the possible implications in understanding the mechanisms of environmental impacts such as education and training on prolonged development of human cognitive capacities (<a href="#r8" class="usa-link" aria-describedby="r8">8</a>–<a href="#r12" class="usa-link" aria-describedby="r12">12</a>, <a href="#r38" class="usa-link" aria-describedby="r38">38</a>–<a href="#r41" class="usa-link" aria-describedby="r41">41</a>). Because dendritic spines are impregnated reliably by the rapid Golgi methods in postmortem brain tissue (<a href="#s1" class="usa-link"><em>Material and Methods</em></a>), we decided to examine their development and measure their density on dendrites in well-preserved human tissue, including ages that were not analyzed in previous studies (<a href="http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1105108108/-/DCSupplemental/pnas.201105108SI.pdf?targetid=nameddest=ST1" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Table S1</a>).</p> <p>We selected to focus on the large pyramidal cells in layer IIIc and layer V (<a href="#r28" class="usa-link" aria-describedby="r28">28</a>), that form cortico–cortical and subcortical projections, respectively (<a href="#fig01" class="usa-link">Fig. 1<em>A</em></a> and <a href="http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1105108108/-/DCSupplemental/pnas.201105108SI.pdf?targetid=nameddest=SF1" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Figs. S1</a> and <a href="http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1105108108/-/DCSupplemental/pnas.201105108SI.pdf?targetid=nameddest=SF2" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">S2</a>). The dendrites were defined by their division into basal and oblique branches emanating from the main apical shaft (<a href="#fig01" class="usa-link">Fig. 1 <em>A</em> and <em>B</em></a>). In addition, the oblique branches were subdivided into proximal and distal groups, and all types were quantified separately (<a href="#fig01" class="usa-link">Fig. 1<em>C</em></a>). We found that the vast majority of spines (about 90% after the neonatal period) belong to the mushroom type characterized by a neck 1.5–3.5 μm long and up to 0.5 μm thick that expands into a bulb with a radius of 1–2 μm. The morphology of the head and neck of mushroom spines remained relatively constant except in the late adolescent stage (age 16–20 y), when spine heads become slightly larger. The second type, hair-like thin spines, which lack an obvious bulb and have terminal expansions slightly wider than the neck, were observed predominantly during the first postnatal month, and their percentage diminished afterward. The percentage of the third type of dendritic spines, stubby spines with a broad neck, was low on both oblique and basal dendrites at all ages analyzed (<a href="#fig01" class="usa-link">Fig. 1<em>C</em></a>).</p> <figure class="fig xbox font-sm" id="fig01"><h3 class="obj_head">Fig. 1.</h3> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=3156171_pnas.1105108108fig01.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca73/3156171/af18da71586f/pnas.1105108108fig01.jpg" loading="lazy" id="gra1" height="563" width="654" alt="Fig. 1."></a></p> <div class="p text-right font-secondary"><a href="figure/fig01/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p>(<em>A</em>) Representative low-magnification photographs of the rapid Golgi-impregnated layer IIIc and V pyramidal cells in the dorsolateral prefrontal cortex of a 16-y-old subject. Black arrows indicate basal dendrites, and gray arrows indicate oblique dendrites. (Scale bar: 100 μm.) (<em>B</em>) Neurolucida reconstruction of layer IIIc pyramidal neuron of a 49-y-old subject, illustrating sites selected for counting spines over a 50-μm length of apical distal oblique dendrites (green), apical proximal oblique dendrites (blue), and basal dendrites (red). (Scale bar: 100 μm.) (<em>C</em>) Representative high-power magnification images of rapid Golgi-impregnated layer IIIc pyramidal neurons from the dorsolateral prefrontal cortex showing basal dendrites (<em>Left</em>) and distal apical oblique dendrites (<em>Right</em>) during different stages: an infant 1 mo of age, a 2.5-y-old child, and 16-y-old, 28-y-old, and 49-y-old subjects. (Scale bar: 10 μm.) (<em>D</em>) Graphs representing number of dendritic spines per 50-μm dendrite segment on basal dendrites after the first bifurcation (red); apical proximal oblique dendrites originating within 100 μm from the apical main shaft (blue); and apical distal oblique dendrites originating within the second 100-μm segment from the apical main shaft (green) of layer IIIc (filled symbols) and layer V (open symbols) pyramidal cells in the dorsolateral prefrontal cortex. Squares represent males; circles represent females. The age in postnatal years is shown on a logarithmic scale. Puberty is marked by a shaded bar. B, birth (fourth postnatal day); P, puberty. Specification of tissue analyzed is given in <a href="http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1105108108/-/DCSupplemental/pnas.201105108SI.pdf?targetid=nameddest=ST1" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Table S1</a>, and the positions of sections on which pyramidal neurons were measured are indicated on the reconstructed pyramidal neuron shown in <em>B</em>.</p></figcaption></figure><p>Statistical analysis of interindividual differences in dendritic spine density (DSD), using the a posteriori Student–Newman–Keuls test for multiple comparisons, revealed that in all dendritic segments of both layer IIIc and layer V pyramidal neurons, the DSD increased significantly during infancy and reached its peak during childhood, when the DSD was, on average, more than two times higher than in the adults (<a href="#fig01" class="usa-link">Figs. 1<em>D</em></a>, <a href="#fig02" class="usa-link">2 <em>A</em>–<em>C</em></a>, and <a href="http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1105108108/-/DCSupplemental/pnas.201105108SI.pdf?targetid=nameddest=ST2" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Table S2</a>). Importantly, although the DSD diminished gradually during late childhood and adolescence (9–22 y), it remained significantly higher throughout this period than in the adult (<a href="#fig01" class="usa-link">Figs. 1<em>D</em></a> and <a href="#fig02" class="usa-link">2</a>).</p> <figure class="fig xbox font-sm" id="fig02"><h3 class="obj_head">Fig. 2.</h3> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=3156171_pnas.1105108108fig02.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca73/3156171/9217fad4b21a/pnas.1105108108fig02.jpg" loading="lazy" id="gra2" height="632" width="407" alt="Fig. 2."></a></p> <div class="p text-right font-secondary"><a href="figure/fig02/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p>The DSD, as defined in <a href="#fig01" class="usa-link">Fig. 1</a>, plotted at the linear scale to illustrate the dynamics of changes occurring during the 100-y human lifespan. Regression curves fit the distribution of data from the basal dendrites (<em>A</em>), apical proximal oblique dendrites (<em>B</em>), and apical distal oblique dendrites (<em>C</em>) of pyramidal cells from layer IIIc and V. In all cases the equation of the curves is a double exponential function in the form: <em>y</em> = <em>a</em>*exp(<em>−bt</em>)+<em>c</em>*exp (−<em>dt</em>)+<em>e</em>, where <em>a</em>, <em>b</em>, <em>c</em>, <em>d</em>, and <em>e</em> are fixed coefficients, and <em>t</em> is time in years (<a href="http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1105108108/-/DCSupplemental/pnas.201105108SI.pdf?targetid=nameddest=ST3" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Table S3</a>).</p></figcaption></figure><p>The rate of decrease in DSD varied among dendritic segments. The highest DSD values for all segments in layer IIIc pyramidal neurons (<a href="http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1105108108/-/DCSupplemental/pnas.201105108SI.pdf?targetid=nameddest=SF2" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Fig. S2</a>) were reached by the age of 2.5–7 y (<a href="#fig01" class="usa-link">Fig. 1 <em>C</em> and <em>D</em></a>, <a href="http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1105108108/-/DCSupplemental/pnas.201105108SI.pdf?targetid=nameddest=SF2" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Fig. S2</a>, and <a href="http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1105108108/-/DCSupplemental/pnas.201105108SI.pdf?targetid=nameddest=ST2" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Table S2</a>). Although a significant decline of DSD in basal and proximal apical oblique dendrites started at age 7–9 y, the DSD of distal apical oblique dendrites did not decrease significantly until age 17 y (<a href="#fig01" class="usa-link">Figs. 1 <em>C</em> and <em>D</em></a> and <a href="#fig02" class="usa-link">2 <em>A</em>–<em>C</em></a>). In all dendritic segments of layer IIIc pyramidal neurons, the DSD decreased to an adult level by age 30 y and remained stable thereafter (<a href="#fig01" class="usa-link">Figs. 1<em>D</em></a> and <a href="#fig02" class="usa-link">2</a> and <a href="http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1105108108/-/DCSupplemental/pnas.201105108SI.pdf?targetid=nameddest=ST2" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Table S2</a>). In almost all subjects older than 30 y (<em>n</em> = 16), DSD values for all segments of layer IIIc pyramidal neurons were significantly lower than in subjects of a younger age group (15 m to 28 y; <em>n</em> = 11). Despite the relatively smaller sample and interindividual variability, the DSD on all segments of layer V pyramids clearly displayed the highest values between age 7 and 9 y before beginning to decline. Thus, the overall developmental course of the DSD was similar in both layer IIIc and layer V pyramidal neurons, and the DSD in both types attained the stable adult value around age 30 y (<a href="#fig01" class="usa-link">Figs. 1<em>D</em></a> and<a href="#fig02" class="usa-link"> 2</a>).</p> <p>During the peak in number of dendritic spines (i.e., between 2 and 19 y of age), the DSD values were 25–40% higher in layer IIIc than in layer V pyramidal neurons (<a href="#fig02" class="usa-link">Fig. 2</a>); the difference was larger on the apical proximal oblique dendrites (<em>P</em> = 0.04) than on apical distal oblique (<em>P</em> = 0.10) or basal dendrites (<em>P</em> = 0.12). Because both types of neurons attain the adult-like total dendritic length during the third postnatal year (<a href="#r28" class="usa-link" aria-describedby="r28">28</a>), our findings suggest that the number of overproduced spines is consistently higher on layer IIIc than on layer V pyramidal neurons. This difference probably reflects a more recent evolutionary history of layer IIIc pyramidal neurons, which in primates represent a major source of highly expanded ipsi- and contralateral associative cortico–cortical connections (<a href="#r28" class="usa-link" aria-describedby="r28">28</a>, <a href="#r42" class="usa-link" aria-describedby="r42">42</a>–<a href="#r46" class="usa-link" aria-describedby="r46">46</a>).</p> <p>The average DSD value remained relatively constant between 38 and 65 y of age for a particular segment type (<a href="#fig02" class="usa-link">Fig. 2</a>). However, on layer IIIc neurons, the DSD was most prominent in the distal apical oblique dendrites (<a href="#fig02" class="usa-link">Fig. 2</a> and <a href="http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1105108108/-/DCSupplemental/pnas.201105108SI.pdf?targetid=nameddest=ST2" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Table S2</a>); those neurons display DSD values that are ∼20% higher in the adult prefrontal cortex than in layer V pyramidal neurons (<em>P</em> = 0.18 for apical distal oblique dendrites, <em>P</em> = 0.05 for apical proximal oblique dendrites, and <em>P</em> = 0.10 for basal dendrites) (<a href="#fig02" class="usa-link">Fig. 2</a>). It should be noted that both basal and apical oblique dendrites of layer IIIc pyramid neurons are ∼10% longer than those of layer V neurons (<a href="#r28" class="usa-link" aria-describedby="r28">28</a>). Thus, the total number of dendritic spines remains greater in layer IIIc than in layer V pyramidal neurons both during development and in the adult prefrontal cortex.</p></section><section id="s2"><h2 class="pmc_sec_title">Discussion</h2> <p>The present study provides three findings concerning maturation of the human prefrontal cortex: (<em>i</em>) the period of overproduction and elimination of dendritic spines on pyramidal neurons in this area extends to the third decade of life; (<em>ii</em>) the pruning of supernumerary dendritic spines is more pronounced in layer IIIc cortico–cortical neurons than in comparable segments of layer V subcortically projecting neurons; and (<em>iii</em>) for layer IIIc neurons, spine pruning begins earlier in basal and proximal apical oblique dendrites than in distal apical oblique dendrites.</p> <p>Previous data from human and nonhuman primates showed somewhat higher synaptic overproduction in supragranular than in infragranular layers (<a href="#r8" class="usa-link" aria-describedby="r8">8</a>), results that are consistent with the data obtained in the present study. Furthermore, recent data on identified neurons obtained from both the rhesus monkey (<a href="#r47" class="usa-link" aria-describedby="r47">47</a>) and human (<a href="#r48" class="usa-link" aria-describedby="r48">48</a>) showed marked regional differences in the number of spines grown and pruned in the basal dendritic tree of layer III pyramidal neurons. The spine formation and elimination between sensory, association, and executive cortex in these studies displayed a similar pattern. However, the number of spines in the adult cortex was related to functional hierarchy, as was the number of spines overproduced, being highest in the prefrontal cortex and lowest in the primary sensory regions (<a href="#r47" class="usa-link" aria-describedby="r47">47</a>, <a href="#r48" class="usa-link" aria-describedby="r48">48</a>).</p> <p>In the present study we have not performed the regional comparison because of the lack of appropriate material. However, there is converging evidence that dynamics of synaptic overproduction and elimination differ among cytoarchitectonic areas both in humans and in nonhuman primates (<a href="#r2" class="usa-link" aria-describedby="r2">2</a>, <a href="#r8" class="usa-link" aria-describedby="r8">8</a>, <a href="#r47" class="usa-link" aria-describedby="r47">47</a>–<a href="#r49" class="usa-link" aria-describedby="r49">49</a>). Most of these studies indicate that the prefrontal cortex undergoes the largest overproduction and the slowest rate of elimination of all areas, an observation which is explained by the late evolutionary emergence of the prefrontal cortex (<a href="#r47" class="usa-link" aria-describedby="r47">47</a>). Although the present study provides data only for the prefrontal cortex, it reveals a difference in the rate of spine formation and elimination between two evolutionarily different pyramidal cell populations and their dendrites situated in the different layers within the same region. Thus, our findings support the notion that different types of microcircuitry may have different rates of synaptic formation and elimination. These findings are in line with the finding that reorganization of intracortical excitatory synaptic systems in macaque prefrontal cortex continues after puberty, when the cortico–cortical synapses reach maturity (<a href="#r49" class="usa-link" aria-describedby="r49">49</a>). Therefore, we propose that the most extensive and protracted overproduction in humans is related to the associative and intracortical excitatory network that becomes more represented across the functional hierarchy and markedly prominent in the areas of highest order, such as the prefrontal cortex (<a href="#r28" class="usa-link" aria-describedby="r28">28</a>, <a href="#r43" class="usa-link" aria-describedby="r43">43</a>, <a href="#r45" class="usa-link" aria-describedby="r45">45</a>, <a href="#r46" class="usa-link" aria-describedby="r46">46</a>, <a href="#r50" class="usa-link" aria-describedby="r50">50</a>).</p> <p>Taken together, the previous data and the present findings strongly indicate that anatomical (<a href="#r23" class="usa-link" aria-describedby="r23">23</a>, <a href="#r24" class="usa-link" aria-describedby="r24">24</a>, <a href="#r26" class="usa-link" aria-describedby="r26">26</a>–<a href="#r28" class="usa-link" aria-describedby="r28">28</a>, <a href="#r31" class="usa-link" aria-describedby="r31">31</a>) and functional changes (<a href="#r15" class="usa-link" aria-describedby="r15">15</a>, <a href="#r18" class="usa-link" aria-describedby="r18">18</a>, <a href="#r19" class="usa-link" aria-describedby="r19">19</a>, <a href="#r21" class="usa-link" aria-describedby="r21">21</a>, <a href="#r22" class="usa-link" aria-describedby="r22">22</a>, <a href="#r25" class="usa-link" aria-describedby="r25">25</a>, <a href="#r35" class="usa-link" aria-describedby="r35">35</a>) in the prefrontal cortex observed in vivo during late adolescence and young adulthood reflect the dynamic reorganization of synaptic circuitry rather than solely activity-dependent molecular tuning of the stable synaptic connections. Experimental studies performed in developing and adult rodents indicate that dendritic spines in the cerebral cortex are remarkably plastic initially but gradually become very stable, with the majority lasting throughout the entire lifespan (<a href="#r51" class="usa-link" aria-describedby="r51">51</a>–<a href="#r55" class="usa-link" aria-describedby="r55">55</a>). Analysis of the human frontal cortex also shows significant changes in synapse-associated molecules during the period of growth and strengthening of synaptic elements in childhood (<a href="#r32" class="usa-link" aria-describedby="r32">32</a>). Therefore, molecular tuning of synaptic strength during the formative years may be a major mechanism for the environmental effect on structural reorganization, including elimination of supernumerary spines and synapses (<a href="#r1" class="usa-link" aria-describedby="r1">1</a>, <a href="#r6" class="usa-link" aria-describedby="r6">6</a>, <a href="#r7" class="usa-link" aria-describedby="r7">7</a>). This hypothesis is supported by the finding that a peak in the expression of genes regulating neuronal development, including those that are associated with schizophrenia, occurs between age 15 and 25 y (<a href="#r56" class="usa-link" aria-describedby="r56">56</a>). Finally, comparative analysis of mRNA expression in the prefrontal cortex shows that the dramatic changes in transcriptome profiles in the human brain are delayed relative to nonhuman primates (<a href="#r57" class="usa-link" aria-describedby="r57">57</a>). Thus, our data on spine overproduction and elimination are not in contradiction to the molecular changes in the synaptic membranes. It is likely that molecular changes occur in each phase, but after the period of synaptic stabilization molecular tuning becomes the predominant way of interacting with the environment (<a href="#r51" class="usa-link" aria-describedby="r51">51</a>, <a href="#r52" class="usa-link" aria-describedby="r52">52</a>, <a href="#r54" class="usa-link" aria-describedby="r54">54</a>).</p> <p>Although the molecular mechanisms that regulate prolonged reorganization of dendritic spines are not well understood, there are indications that they reflect the changes in dopaminergic innervation. In both human and nonhuman primates, the dopaminergic input, together with glutamatergic synapses, terminates predominantly on the dendrites of layer IIIc pyramidal neurons of the prefrontal cortex (<a href="#r8" class="usa-link" aria-describedby="r8">8</a>, <a href="#r29" class="usa-link" aria-describedby="r29">29</a>, <a href="#r42" class="usa-link" aria-describedby="r42">42</a>, <a href="#r58" class="usa-link" aria-describedby="r58">58</a>), where it modulates neuronal activity (<a href="#r59" class="usa-link" aria-describedby="r59">59</a>). The magnitude of dopaminergic innervation in the monkey and human cortex, including gene expression of the D1-receptor that is essential for the bidirectional modulation of synaptic plasticity in the medial prefrontal cortex (<a href="#r60" class="usa-link" aria-describedby="r60">60</a>), increases up to young adulthood (<a href="#r61" class="usa-link" aria-describedby="r61">61</a>) and reaches its highest level during adolescence and young adulthood (<a href="#r62" class="usa-link" aria-describedby="r62">62</a>–<a href="#r64" class="usa-link" aria-describedby="r64">64</a>). These data led to the hypothesis that an increase in dopaminergic innervation in the prefrontal cortex is associated with an increase in modulation of glutamatergic synapses located on the dendritic spine and involved in synaptic stabilization (<a href="#r65" class="usa-link" aria-describedby="r65">65</a>). Furthermore, dopamine–glutamate interaction on dendritic spines of pyramidal neurons in the prefrontal cortex during synaptic elimination also might be involved in protecting vulnerable subjects from developing schizophrenia (<a href="#r66" class="usa-link" aria-describedby="r66">66</a>). It may be significant that the largest postnatal increase in the level of catechol-<em>o</em>-methyltransferase enzyme activity (which alters extracellular dopamine levels in the prefrontal cortex) occurs between the second and the fourth decade (<a href="#r67" class="usa-link" aria-describedby="r67">67</a>), supporting the hypothesis that the dopamine–glutamate interaction is involved in regulating synaptic elimination in the human prefrontal cortex.</p> <p>It may seem paradoxical that the period during which learning and acquisition of new knowledge are highest in the human coincides with a net decrease rather than an increase in the number of synapses. The protracted postadolescent period of synaptic elimination and increase in dopaminergic innervation of the prefrontal cortex (<a href="#r61" class="usa-link" aria-describedby="r61">61</a>) may be linked to human-specific cognitive functions and circuitry specializations (<a href="#r58" class="usa-link" aria-describedby="r58">58</a>) that are a product of cooperation between genetic endowment and environment, as postulated by the selective-stabilization hypothesis (<a href="#r1" class="usa-link" aria-describedby="r1">1</a>, <a href="#r3" class="usa-link" aria-describedby="r3">3</a>, <a href="#r8" class="usa-link" aria-describedby="r8">8</a>). The prolonged developmental plasticity in the associative frontal cortex in human allows an unprecedented opportunity for acquisition of the highest level of cognitive abilities (<a href="#r27" class="usa-link" aria-describedby="r27">27</a>, <a href="#r39" class="usa-link" aria-describedby="r39">39</a>, <a href="#r50" class="usa-link" aria-describedby="r50">50</a>, <a href="#r68" class="usa-link" aria-describedby="r68">68</a>–<a href="#r70" class="usa-link" aria-describedby="r70">70</a>) but also is susceptible to the formation of abnormal circuitry that is manifested in late-expressed neuropsychiatric disorders (<a href="#r10" class="usa-link" aria-describedby="r10">10</a>, <a href="#r71" class="usa-link" aria-describedby="r71">71</a>–<a href="#r74" class="usa-link" aria-describedby="r74">74</a>).</p></section><section id="s3"><h2 class="pmc_sec_title">Materials and Methods</h2> <section id="sec4"><h3 class="pmc_sec_title">Subjects.</h3> <p>Thirty-two subjects, ranging in age from a 1-wk-old term newborn to 91 y, were studied quantitatively (<a href="http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1105108108/-/DCSupplemental/pnas.201105108SI.pdf?targetid=nameddest=ST1" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Table S1</a>). None of the subjects had a clinical history of neurological disorder or a neuropathological alteration detected at autopsy. All analyzed subjects lived under standard environmental and socioeconomic conditions. Details on subject age, sex, postmortem delay, and cause of death as described in autopsy and medical records are given in <a href="http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1105108108/-/DCSupplemental/pnas.201105108SI.pdf?targetid=nameddest=ST1" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Table S1</a>. In two subjects (19 and 22 y old) death was caused by suicide, but personal and clinical records did not point to any specific psychiatric disorders. The brains were collected with the approval of the Ethical Committee of the University of Zagreb School of Medicine in compliance with Croatian law. The prefrontal cortex tissue was studied in sections from the Zagreb Collection located at the Croatian Institute for Brain Research (<a href="#r75" class="usa-link" aria-describedby="r75">75</a>).</p> <p>The time interval between death and fixation of the tissue (i.e., the postmortem delay) was &lt;8 h for early postnatal cases, &lt;13 h for infants, &lt;16 h for children, and &lt;20 h for adults. All analyzed subjects died without preagonal state, so that the postmortem delay actually represents the interval in which neuron death took place. No staining artifacts caused by postmortem delay described for rapid Golgi staining were detected in the cases that were studied quantitatively.</p></section><section id="sec5"><h3 class="pmc_sec_title">Tissue Preparation.</h3> <p>The parts of the prefrontal cortex examined included the superior and middle frontal gyrus, mainly defined as the frontal granular and magnopyramidal Brodmann's area 9 (<a href="#r76" class="usa-link" aria-describedby="r76">76</a>). Blocks of tissue (1 cm<sup>3</sup>) were sectioned perpendicular to the long axis of the frontal gyrus, from the right hemisphere in the majority of cases. The classical rapid Golgi method was used, as described previously (<a href="#r28" class="usa-link" aria-describedby="r28">28</a>, <a href="#r46" class="usa-link" aria-describedby="r46">46</a>). The pia was not removed. After sectioning, the cortical tissue was immersed immediately in rapid Golgi solution (0.3% osmium tetroxide and 3% potassium dichromate) and kept in the dark. After 7 d, the dichromate solution was replaced by 1% silver nitrate for 2 d. Then the tissue was dehydrated and embedded rapidly in 8% celloidin. After embedding, a microtome was used to section the blocks serially into coronal sections 160–200 μm in thickness. This thickness was chosen as a compromise to have many dendrites and good microscopic clarity. Nissl-stained sections from adjacent blocks were cut at 30 μm to check and additionally ensure that the neurons quantified were taken from Brodmann's area 9 (<a href="#r37" class="usa-link" aria-describedby="r37">37</a>).</p></section><section id="sec6"><h3 class="pmc_sec_title">Quantitative Analysis.</h3> <p>The criteria for cell selection for quantitative analysis included clear impregnation of the finest dendrites and dendritic spines visible on all parts of the dendritic tree, without smooth segments and at least 10 well-impregnated neurons per layer. The entire measured part of the dendritic segments had to be sharply visible with a 40× objective without moving the microscope in z direction (depth). The use of these criteria for quantification resulted in the inclusion of only 32 of 109 subjects analyzed.</p> <p>The measurements were performed using a 63×-oil immersion objective with a long working distance (Olympus 1.4 N.A.). The cases were coded, so that investigators were not aware of the subjects’ age, sex, or medical history. Large layer IIIc pyramidal neurons were always located within the 200-μm–wide zone above layer IV. Layer V was detected in counterstained Nissl sections and in Golgi sections as a 200-μm–thick layer below the transparent layer IV. Only neurons of typical pyramidal morphology were analyzed (<a href="#r28" class="usa-link" aria-describedby="r28">28</a>, <a href="#r45" class="usa-link" aria-describedby="r45">45</a>, <a href="#r46" class="usa-link" aria-describedby="r46">46</a>, <a href="#r77" class="usa-link" aria-describedby="r77">77</a>). Modified pyramidal neurons were not included in the analysis.</p> <p>Dendritic spine density was analyzed on apical side branches (oblique dendrites) and basal dendrites (<a href="#fig01" class="usa-link">Fig. 1 <em>A</em> and <em>B</em></a>). Data in <a href="http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1105108108/-/DCSupplemental/pnas.201105108SI.pdf?targetid=nameddest=ST2" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Table S2</a> give spine numbers on (<em>i</em>) the most proximal 50-μm length of the first-order basal dendrite, (<em>ii</em>) the first 50-μm length in side branches of apical dendrites (oblique dendrites), which were divided into two groups: proximal oblique dendrites, originating from the apical dendrite segment at up to 100-μm distance from soma, and (<em>iii</em>) distal oblique dendrites, originating in the segment of apical dendrite at a distance of 100–200 μm from soma (<a href="#fig01" class="usa-link">Fig. 1<em>B</em></a>).</p></section><section id="sec7"><h3 class="pmc_sec_title">Statistical Analysis.</h3> <p>The SPSS package was used for statistical analysis. The spine number was tested separately for each layer and each segment with one-way ANOVA with parametric and nonparametric analyses with age as a main effect (<a href="#r28" class="usa-link" aria-describedby="r28">28</a>). In the statistical analysis every subject represents a separate age. The a posteriori Student-Newman-Keuls test for multiple comparisons was applied to determine which subjects were significantly different. <em>P</em> values &lt;0.05 were considered statistically significant. Statistical analysis with parametric and nonparametric procedures showed comparable results.</p> <p>DSD was plotted at the linear scale to illustrate the dynamics of changes occurring during the 100-y human lifespan (<a href="#fig02" class="usa-link">Fig. 2</a>) and to obtain regression curves fitting the distribution of data from the basal, apical proximal oblique, and apical distal oblique dendrites of the pyramidal cells from layer IIIc and V. In all cases the equation of the curves was a double exponential function in the form: <em>y</em> = <em>a</em>*exp(<em>−bt</em>)+<em>c</em>*exp(−<em>dt</em>) + <em>e</em>, where <em>a</em>, <em>b</em>, <em>c</em>, <em>d</em>, and <em>e</em> are fixed coefficients and <em>t</em> is time in years (<a href="http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1105108108/-/DCSupplemental/pnas.201105108SI.pdf?targetid=nameddest=ST3" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Table S3</a>).</p></section></section><section id="sec8"><h2 class="pmc_sec_title">Supplementary Material</h2> <section class="sm xbox font-sm" id="PMC_1"><div class="caption p"><span>Supporting Information</span></div> <div class="media p"><div class="caption"> <a href="/articles/instance/3156171/bin/supp_108_32_13281__index.html" data-ga-action="click_feat_suppl" class="usa-link">supp_108_32_13281__index.html</a><sup> (859B, html) </sup> </div></div></section></section><section id="ack1" class="ack"><h2 class="pmc_sec_title">Acknowledgments</h2> <p>We thank J. Arellano for insightful discussions and A. Bernacchia for help with regression curves in <a href="#fig02" class="usa-link">Fig. 2</a>. This work was supported by grants from the Ministry of Science, Education, and Sports of the Republic of Croatia (to Z.P., M.J., I.K., and G.Š.), the Unity Through Knowledge Fund (to I.K.), the National Institutes of Health, and the Kavli Institute for Neuroscience at Yale University (to P.R.).</p></section><section id="fn-group1" class="fn-group"><h2 class="pmc_sec_title">Footnotes</h2> <div class="fn-group p font-secondary-light font-sm"> <div class="fn p" id="fn3"><p>The authors declare no conflict of interest.</p></div> <div class="fn p" id="fn1"><p>*This Direct Submission article had a prearranged editor.</p></div> <div class="fn p" id="fn5"><p>This article contains supporting information online at <a href="http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1105108108/-/DCSupplemental" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">www.pnas.org/lookup/suppl/doi:10.1073/pnas.1105108108/-/DCSupplemental</a>.</p></div> </div></section><section id="ref-list1" class="ref-list"><h2 class="pmc_sec_title">References</h2> <section id="ref-list1_sec2"><ul class="ref-list font-sm" style="list-style-type:none"> <li id="r1"> <span class="label">1.</span><cite>Changeux JP, Danchin A. Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature. 1976;264:705–712. doi: 10.1038/264705a0.</cite> [<a href="https://doi.org/10.1038/264705a0" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/189195/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nature&amp;title=Selective%20stabilisation%20of%20developing%20synapses%20as%20a%20mechanism%20for%20the%20specification%20of%20neuronal%20networks&amp;author=JP%20Changeux&amp;author=A%20Danchin&amp;volume=264&amp;publication_year=1976&amp;pages=705-712&amp;pmid=189195&amp;doi=10.1038/264705a0&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r2"> <span class="label">2.</span><cite>Huttenlocher PR, Dabholkar AS. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol. 1997;387:167–178. doi: 10.1002/(sici)1096-9861(19971020)387:2&lt;167::aid-cne1&gt;3.0.co;2-z.</cite> [<a href="https://doi.org/10.1002/(sici)1096-9861(19971020)387:2&lt;167::aid-cne1&gt;3.0.co;2-z" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9336221/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Comp%20Neurol&amp;title=Regional%20differences%20in%20synaptogenesis%20in%20human%20cerebral%20cortex&amp;author=PR%20Huttenlocher&amp;author=AS%20Dabholkar&amp;volume=387&amp;publication_year=1997&amp;pages=167-178&amp;pmid=9336221&amp;doi=10.1002/(sici)1096-9861(19971020)387:2&lt;167::aid-cne1&gt;3.0.co;2-z&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r3"> <span class="label">3.</span><cite>Rakic P, Bourgeois JP, Eckenhoff MF, Zecevic N, Goldman-Rakic PS. Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science. 1986;232:232–235. doi: 10.1126/science.3952506.</cite> [<a href="https://doi.org/10.1126/science.3952506" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/3952506/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Science&amp;title=Concurrent%20overproduction%20of%20synapses%20in%20diverse%20regions%20of%20the%20primate%20cerebral%20cortex&amp;author=P%20Rakic&amp;author=JP%20Bourgeois&amp;author=MF%20Eckenhoff&amp;author=N%20Zecevic&amp;author=PS%20Goldman-Rakic&amp;volume=232&amp;publication_year=1986&amp;pages=232-235&amp;pmid=3952506&amp;doi=10.1126/science.3952506&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r4"> <span class="label">4.</span><cite>Huttenlocher PR. Synaptic density in human frontal cortex—developmental changes and effects of aging. Brain Res. 1979;163:195–205. doi: 10.1016/0006-8993(79)90349-4.</cite> [<a href="https://doi.org/10.1016/0006-8993(79)90349-4" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/427544/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Brain%20Res&amp;title=Synaptic%20density%20in%20human%20frontal%20cortex%E2%80%94developmental%20changes%20and%20effects%20of%20aging&amp;author=PR%20Huttenlocher&amp;volume=163&amp;publication_year=1979&amp;pages=195-205&amp;pmid=427544&amp;doi=10.1016/0006-8993(79)90349-4&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r5"> <span class="label">5.</span><cite>Bourgeois JP, Goldman-Rakic PS, Rakic P. Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cereb Cortex. 1994;4:78–96. doi: 10.1093/cercor/4.1.78.</cite> [<a href="https://doi.org/10.1093/cercor/4.1.78" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8180493/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cereb%20Cortex&amp;title=Synaptogenesis%20in%20the%20prefrontal%20cortex%20of%20rhesus%20monkeys&amp;author=JP%20Bourgeois&amp;author=PS%20Goldman-Rakic&amp;author=P%20Rakic&amp;volume=4&amp;publication_year=1994&amp;pages=78-96&amp;pmid=8180493&amp;doi=10.1093/cercor/4.1.78&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r6"> <span class="label">6.</span><cite>Rakic P, Riley KP. Overproduction and elimination of retinal axons in the fetal rhesus monkey. Science. 1983;219:1441–1444. doi: 10.1126/science.6828871.</cite> [<a href="https://doi.org/10.1126/science.6828871" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/6828871/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Science&amp;title=Overproduction%20and%20elimination%20of%20retinal%20axons%20in%20the%20fetal%20rhesus%20monkey&amp;author=P%20Rakic&amp;author=KP%20Riley&amp;volume=219&amp;publication_year=1983&amp;pages=1441-1444&amp;pmid=6828871&amp;doi=10.1126/science.6828871&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r7"> <span class="label">7.</span><cite>Purves D, Lichtman JW. Elimination of synapses in the developing nervous system. Science. 1980;210:153–157. doi: 10.1126/science.7414326.</cite> [<a href="https://doi.org/10.1126/science.7414326" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/7414326/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Science&amp;title=Elimination%20of%20synapses%20in%20the%20developing%20nervous%20system&amp;author=D%20Purves&amp;author=JW%20Lichtman&amp;volume=210&amp;publication_year=1980&amp;pages=153-157&amp;pmid=7414326&amp;doi=10.1126/science.7414326&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r8"> <span class="label">8.</span><cite>Rakic P, Bourgeois JP, Goldman-Rakic PS. Synaptic development of the cerebral cortex: Implications for learning, memory, and mental illness. Prog Brain Res. 1994;102:227–243. doi: 10.1016/S0079-6123(08)60543-9.</cite> [<a href="https://doi.org/10.1016/S0079-6123(08)60543-9" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/7800815/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Prog%20Brain%20Res&amp;title=Synaptic%20development%20of%20the%20cerebral%20cortex:%20Implications%20for%20learning,%20memory,%20and%20mental%20illness&amp;author=P%20Rakic&amp;author=JP%20Bourgeois&amp;author=PS%20Goldman-Rakic&amp;volume=102&amp;publication_year=1994&amp;pages=227-243&amp;pmid=7800815&amp;doi=10.1016/S0079-6123(08)60543-9&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r9"> <span class="label">9.</span><cite>Bizzi E, Scolnick E, Desimone R. Advances in brain sciences: Implication for therapy. Bull Am Acad Sci. 2010;63:15–22.</cite> [<a href="https://scholar.google.com/scholar_lookup?journal=Bull%20Am%20Acad%20Sci&amp;title=Advances%20in%20brain%20sciences:%20Implication%20for%20therapy&amp;author=E%20Bizzi&amp;author=E%20Scolnick&amp;author=R%20Desimone&amp;volume=63&amp;publication_year=2010&amp;pages=15-22&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r10"> <span class="label">10.</span><cite>Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry. 1987;44:660–669. doi: 10.1001/archpsyc.1987.01800190080012.</cite> [<a href="https://doi.org/10.1001/archpsyc.1987.01800190080012" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/3606332/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Arch%20Gen%20Psychiatry&amp;title=Implications%20of%20normal%20brain%20development%20for%20the%20pathogenesis%20of%20schizophrenia&amp;author=DR%20Weinberger&amp;volume=44&amp;publication_year=1987&amp;pages=660-669&amp;pmid=3606332&amp;doi=10.1001/archpsyc.1987.01800190080012&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r11"> <span class="label">11.</span><cite>Bennett A O MR. Dual constraints on synapse formation and regression in schizophrenia: Neuregulin, neuroligin, dysbindin, DISC1, MuSK and agrin. Aust N Z J Psychiatry. 2008;42:662–677. doi: 10.1080/00048670802203467.</cite> [<a href="https://doi.org/10.1080/00048670802203467" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18622774/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Aust%20N%20Z%20J%20Psychiatry&amp;title=Dual%20constraints%20on%20synapse%20formation%20and%20regression%20in%20schizophrenia:%20Neuregulin,%20neuroligin,%20dysbindin,%20DISC1,%20MuSK%20and%20agrin&amp;author=MR%20Bennett%20A%20O&amp;volume=42&amp;publication_year=2008&amp;pages=662-677&amp;pmid=18622774&amp;doi=10.1080/00048670802203467&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r12"> <span class="label">12.</span><cite>Garber K. Neuroscience. Autism's cause may reside in abnormalities at the synapse. Science. 2007;317:190–191. doi: 10.1126/science.317.5835.190.</cite> [<a href="https://doi.org/10.1126/science.317.5835.190" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17626859/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Science&amp;title=Neuroscience.%20Autism's%20cause%20may%20reside%20in%20abnormalities%20at%20the%20synapse&amp;author=K%20Garber&amp;volume=317&amp;publication_year=2007&amp;pages=190-191&amp;pmid=17626859&amp;doi=10.1126/science.317.5835.190&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r13"> <span class="label">13.</span><cite>Hutsler JJ, Zhang H. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res. 2010;1309:83–94. doi: 10.1016/j.brainres.2009.09.120.</cite> [<a href="https://doi.org/10.1016/j.brainres.2009.09.120" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19896929/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Brain%20Res&amp;title=Increased%20dendritic%20spine%20densities%20on%20cortical%20projection%20neurons%20in%20autism%20spectrum%20disorders&amp;author=JJ%20Hutsler&amp;author=H%20Zhang&amp;volume=1309&amp;publication_year=2010&amp;pages=83-94&amp;pmid=19896929&amp;doi=10.1016/j.brainres.2009.09.120&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r14"> <span class="label">14.</span><cite>Bossong MG, Niesink RJ. Adolescent brain maturation, the endogenous cannabinoid system and the neurobiology of cannabis-induced schizophrenia. Prog Neurobiol. 2010;92:370–385. doi: 10.1016/j.pneurobio.2010.06.010.</cite> [<a href="https://doi.org/10.1016/j.pneurobio.2010.06.010" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20624444/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Prog%20Neurobiol&amp;title=Adolescent%20brain%20maturation,%20the%20endogenous%20cannabinoid%20system%20and%20the%20neurobiology%20of%20cannabis-induced%20schizophrenia&amp;author=MG%20Bossong&amp;author=RJ%20Niesink&amp;volume=92&amp;publication_year=2010&amp;pages=370-385&amp;pmid=20624444&amp;doi=10.1016/j.pneurobio.2010.06.010&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r15"> <span class="label">15.</span><cite>Feinberg I, Campbell IG. Sleep EEG changes during adolescence: An index of a fundamental brain reorganization. Brain Cogn. 2010;72:56–65. doi: 10.1016/j.bandc.2009.09.008.</cite> [<a href="https://doi.org/10.1016/j.bandc.2009.09.008" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19883968/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Brain%20Cogn&amp;title=Sleep%20EEG%20changes%20during%20adolescence:%20An%20index%20of%20a%20fundamental%20brain%20reorganization&amp;author=I%20Feinberg&amp;author=IG%20Campbell&amp;volume=72&amp;publication_year=2010&amp;pages=56-65&amp;pmid=19883968&amp;doi=10.1016/j.bandc.2009.09.008&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r16"> <span class="label">16.</span><cite>Dierssen M, Ramakers GJ. Dendritic pathology in mental retardation: From molecular genetics to neurobiology. Genes Brain Behav. 2006;5(Suppl 2):48–60. doi: 10.1111/j.1601-183X.2006.00224.x.</cite> [<a href="https://doi.org/10.1111/j.1601-183X.2006.00224.x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16681800/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Genes%20Brain%20Behav&amp;title=Dendritic%20pathology%20in%20mental%20retardation:%20From%20molecular%20genetics%20to%20neurobiology&amp;author=M%20Dierssen&amp;author=GJ%20Ramakers&amp;volume=5&amp;issue=Suppl%202&amp;publication_year=2006&amp;pages=48-60&amp;pmid=16681800&amp;doi=10.1111/j.1601-183X.2006.00224.x&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r17"> <span class="label">17.</span><cite>Quartz SR, Sejnowski TJ. The neural basis of cognitive development: A constructivist manifesto. Behav Brain Sci. 1997;20:537–556, discussion 556–596. doi: 10.1017/s0140525x97001581.</cite> [<a href="https://doi.org/10.1017/s0140525x97001581" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/10097006/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Behav%20Brain%20Sci&amp;title=The%20neural%20basis%20of%20cognitive%20development:%20A%20constructivist%20manifesto&amp;author=SR%20Quartz&amp;author=TJ%20Sejnowski&amp;volume=20&amp;publication_year=1997&amp;pages=537-556,%20discussion%20556%E2%80%93596&amp;pmid=10097006&amp;doi=10.1017/s0140525x97001581&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r18"> <span class="label">18.</span><cite>Casey BJ, Jones RM, Hare TA. The adolescent brain. Ann N Y Acad Sci. 2008;1124:111–126. doi: 10.1196/annals.1440.010.</cite> [<a href="https://doi.org/10.1196/annals.1440.010" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2475802/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18400927/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Ann%20N%20Y%20Acad%20Sci&amp;title=The%20adolescent%20brain&amp;author=BJ%20Casey&amp;author=RM%20Jones&amp;author=TA%20Hare&amp;volume=1124&amp;publication_year=2008&amp;pages=111-126&amp;pmid=18400927&amp;doi=10.1196/annals.1440.010&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r19"> <span class="label">19.</span><cite>Whitford TJ, et al. Brain maturation in adolescence: Concurrent changes in neuroanatomy and neurophysiology. Hum Brain Mapp. 2007;28:228–237. doi: 10.1002/hbm.20273.</cite> [<a href="https://doi.org/10.1002/hbm.20273" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6871488/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16767769/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Hum%20Brain%20Mapp&amp;title=Brain%20maturation%20in%20adolescence:%20Concurrent%20changes%20in%20neuroanatomy%20and%20neurophysiology&amp;author=TJ%20Whitford&amp;volume=28&amp;publication_year=2007&amp;pages=228-237&amp;pmid=16767769&amp;doi=10.1002/hbm.20273&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r20"> <span class="label">20.</span><cite>Chugani HT. A critical period of brain development: Studies of cerebral glucose utilization with PET. Prev Med. 1998;27:184–188. doi: 10.1006/pmed.1998.0274.</cite> [<a href="https://doi.org/10.1006/pmed.1998.0274" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9578992/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Prev%20Med&amp;title=A%20critical%20period%20of%20brain%20development:%20Studies%20of%20cerebral%20glucose%20utilization%20with%20PET&amp;author=HT%20Chugani&amp;volume=27&amp;publication_year=1998&amp;pages=184-188&amp;pmid=9578992&amp;doi=10.1006/pmed.1998.0274&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r21"> <span class="label">21.</span><cite>Dosenbach NU, et al. Prediction of individual brain maturity using fMRI. Science. 2010;329:1358–1361. doi: 10.1126/science.1194144.</cite> [<a href="https://doi.org/10.1126/science.1194144" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3135376/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20829489/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Science&amp;title=Prediction%20of%20individual%20brain%20maturity%20using%20fMRI&amp;author=NU%20Dosenbach&amp;volume=329&amp;publication_year=2010&amp;pages=1358-1361&amp;pmid=20829489&amp;doi=10.1126/science.1194144&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r22"> <span class="label">22.</span><cite>Luna B, Padmanabhan A, O'Hearn K. What has fMRI told us about the development of cognitive control through adolescence? Brain Cogn. 2010;72:101–113. doi: 10.1016/j.bandc.2009.08.005.</cite> [<a href="https://doi.org/10.1016/j.bandc.2009.08.005" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2815087/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19765880/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Brain%20Cogn&amp;title=What%20has%20fMRI%20told%20us%20about%20the%20development%20of%20cognitive%20control%20through%20adolescence?&amp;author=B%20Luna&amp;author=A%20Padmanabhan&amp;author=K%20O'Hearn&amp;volume=72&amp;publication_year=2010&amp;pages=101-113&amp;pmid=19765880&amp;doi=10.1016/j.bandc.2009.08.005&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r23"> <span class="label">23.</span><cite>Asato MR, Terwilliger R, Woo J, Luna B. White matter development in adolescence: A DTI study. Cereb Cortex. 2010;20:2122–2131. doi: 10.1093/cercor/bhp282.</cite> [<a href="https://doi.org/10.1093/cercor/bhp282" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2923214/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20051363/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cereb%20Cortex&amp;title=White%20matter%20development%20in%20adolescence:%20A%20DTI%20study&amp;author=MR%20Asato&amp;author=R%20Terwilliger&amp;author=J%20Woo&amp;author=B%20Luna&amp;volume=20&amp;publication_year=2010&amp;pages=2122-2131&amp;pmid=20051363&amp;doi=10.1093/cercor/bhp282&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r24"> <span class="label">24.</span><cite>Gogtay N, et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA. 2004;101:8174–8179. doi: 10.1073/pnas.0402680101.</cite> [<a href="https://doi.org/10.1073/pnas.0402680101" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC419576/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15148381/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Proc%20Natl%20Acad%20Sci%20USA&amp;title=Dynamic%20mapping%20of%20human%20cortical%20development%20during%20childhood%20through%20early%20adulthood&amp;author=N%20Gogtay&amp;volume=101&amp;publication_year=2004&amp;pages=8174-8179&amp;pmid=15148381&amp;doi=10.1073/pnas.0402680101&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r25"> <span class="label">25.</span><cite>Jolles DD, van Buchem MA, Crone EA, Rombouts SA. A comprehensive study of whole-brain functional connectivity in children and young adults. Cereb Cortex. 2011;21:385–391. doi: 10.1093/cercor/bhq104.</cite> [<a href="https://doi.org/10.1093/cercor/bhq104" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20542991/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cereb%20Cortex&amp;title=A%20comprehensive%20study%20of%20whole-brain%20functional%20connectivity%20in%20children%20and%20young%20adults&amp;author=DD%20Jolles&amp;author=MA%20van%20Buchem&amp;author=EA%20Crone&amp;author=SA%20Rombouts&amp;volume=21&amp;publication_year=2011&amp;pages=385-391&amp;pmid=20542991&amp;doi=10.1093/cercor/bhq104&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r26"> <span class="label">26.</span><cite>Knickmeyer RC, et al. Maturational trajectories of cortical brain development through the pubertal transition: Unique species and sex differences in the monkey revealed through structural magnetic resonance imaging. Cereb Cortex. 2010;20:1053–1063. doi: 10.1093/cercor/bhp166.</cite> [<a href="https://doi.org/10.1093/cercor/bhp166" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2852502/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19703936/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cereb%20Cortex&amp;title=Maturational%20trajectories%20of%20cortical%20brain%20development%20through%20the%20pubertal%20transition:%20Unique%20species%20and%20sex%20differences%20in%20the%20monkey%20revealed%20through%20structural%20magnetic%20resonance%20imaging&amp;author=RC%20Knickmeyer&amp;volume=20&amp;publication_year=2010&amp;pages=1053-1063&amp;pmid=19703936&amp;doi=10.1093/cercor/bhp166&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r27"> <span class="label">27.</span><cite>Shaw P, et al. Intellectual ability and cortical development in children and adolescents. Nature. 2006;440:676–679. doi: 10.1038/nature04513.</cite> [<a href="https://doi.org/10.1038/nature04513" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16572172/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nature&amp;title=Intellectual%20ability%20and%20cortical%20development%20in%20children%20and%20adolescents&amp;author=P%20Shaw&amp;volume=440&amp;publication_year=2006&amp;pages=676-679&amp;pmid=16572172&amp;doi=10.1038/nature04513&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r28"> <span class="label">28.</span><cite>Petanjek Z, Judaš M, Kostović I, Uylings HB. Lifespan alterations of basal dendritic trees of pyramidal neurons in the human prefrontal cortex: A layer-specific pattern. Cereb Cortex. 2008;18:915–929. doi: 10.1093/cercor/bhm124.</cite> [<a href="https://doi.org/10.1093/cercor/bhm124" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17652464/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cereb%20Cortex&amp;title=Lifespan%20alterations%20of%20basal%20dendritic%20trees%20of%20pyramidal%20neurons%20in%20the%20human%20prefrontal%20cortex:%20A%20layer-specific%20pattern&amp;author=Z%20Petanjek&amp;author=M%20Juda%C5%A1&amp;author=I%20Kostovi%C4%87&amp;author=HB%20Uylings&amp;volume=18&amp;publication_year=2008&amp;pages=915-929&amp;pmid=17652464&amp;doi=10.1093/cercor/bhm124&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r29"> <span class="label">29.</span><cite>Gonzalez-Burgos G, et al. Functional maturation of excitatory synapses in layer 3 pyramidal neurons during postnatal development of the primate prefrontal cortex. Cereb Cortex. 2008;18:626–637. doi: 10.1093/cercor/bhm095.</cite> [<a href="https://doi.org/10.1093/cercor/bhm095" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17591597/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cereb%20Cortex&amp;title=Functional%20maturation%20of%20excitatory%20synapses%20in%20layer%203%20pyramidal%20neurons%20during%20postnatal%20development%20of%20the%20primate%20prefrontal%20cortex&amp;author=G%20Gonzalez-Burgos&amp;volume=18&amp;publication_year=2008&amp;pages=626-637&amp;pmid=17591597&amp;doi=10.1093/cercor/bhm095&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r30"> <span class="label">30.</span><cite>Paus T, Keshavan M, Giedd JN. Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci. 2008;9:947–957. doi: 10.1038/nrn2513.</cite> [<a href="https://doi.org/10.1038/nrn2513" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2762785/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19002191/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat%20Rev%20Neurosci&amp;title=Why%20do%20many%20psychiatric%20disorders%20emerge%20during%20adolescence?&amp;author=T%20Paus&amp;author=M%20Keshavan&amp;author=JN%20Giedd&amp;volume=9&amp;publication_year=2008&amp;pages=947-957&amp;pmid=19002191&amp;doi=10.1038/nrn2513&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r31"> <span class="label">31.</span><cite>Sowell ER, et al. Mapping cortical change across the human life span. Nat Neurosci. 2003;6:309–315. doi: 10.1038/nn1008.</cite> [<a href="https://doi.org/10.1038/nn1008" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12548289/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat%20Neurosci&amp;title=Mapping%20cortical%20change%20across%20the%20human%20life%20span&amp;author=ER%20Sowell&amp;volume=6&amp;publication_year=2003&amp;pages=309-315&amp;pmid=12548289&amp;doi=10.1038/nn1008&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r32"> <span class="label">32.</span><cite>Webster MJ, Elashoff M, Weickert CS. Molecular evidence that cortical synaptic growth predominates during the first decade of life in humans. Int J Dev Neurosci. 2011;29:225–236. doi: 10.1016/j.ijdevneu.2010.09.006.</cite> [<a href="https://doi.org/10.1016/j.ijdevneu.2010.09.006" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20888897/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Int%20J%20Dev%20Neurosci&amp;title=Molecular%20evidence%20that%20cortical%20synaptic%20growth%20predominates%20during%20the%20first%20decade%20of%20life%20in%20humans&amp;author=MJ%20Webster&amp;author=M%20Elashoff&amp;author=CS%20Weickert&amp;volume=29&amp;publication_year=2011&amp;pages=225-236&amp;pmid=20888897&amp;doi=10.1016/j.ijdevneu.2010.09.006&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r33"> <span class="label">33.</span><cite>Leppänen JM, Nelson CA. Tuning the developing brain to social signals of emotions. Nat Rev Neurosci. 2009;10:37–47. doi: 10.1038/nrn2554.</cite> [<a href="https://doi.org/10.1038/nrn2554" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2976651/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19050711/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat%20Rev%20Neurosci&amp;title=Tuning%20the%20developing%20brain%20to%20social%20signals%20of%20emotions&amp;author=JM%20Lepp%C3%A4nen&amp;author=CA%20Nelson&amp;volume=10&amp;publication_year=2009&amp;pages=37-47&amp;pmid=19050711&amp;doi=10.1038/nrn2554&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r34"> <span class="label">34.</span><cite>Blakemore SJ. The social brain in adolescence. Nat Rev Neurosci. 2008;9:267–277. doi: 10.1038/nrn2353.</cite> [<a href="https://doi.org/10.1038/nrn2353" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18354399/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat%20Rev%20Neurosci&amp;title=The%20social%20brain%20in%20adolescence&amp;author=SJ%20Blakemore&amp;volume=9&amp;publication_year=2008&amp;pages=267-277&amp;pmid=18354399&amp;doi=10.1038/nrn2353&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r35"> <span class="label">35.</span><cite>Sebastian C, Viding E, Williams KD, Blakemore SJ. Social brain development and the affective consequences of ostracism in adolescence. Brain Cogn. 2010;72:134–145. doi: 10.1016/j.bandc.2009.06.008.</cite> [<a href="https://doi.org/10.1016/j.bandc.2009.06.008" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19628323/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Brain%20Cogn&amp;title=Social%20brain%20development%20and%20the%20affective%20consequences%20of%20ostracism%20in%20adolescence&amp;author=C%20Sebastian&amp;author=E%20Viding&amp;author=KD%20Williams&amp;author=SJ%20Blakemore&amp;volume=72&amp;publication_year=2010&amp;pages=134-145&amp;pmid=19628323&amp;doi=10.1016/j.bandc.2009.06.008&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r36"> <span class="label">36.</span><cite>Germine LT, Duchaine B, Nakayama K. Where cognitive development and aging meet: Face learning ability peaks after age 30. Cognition. 2011;118:201–210. doi: 10.1016/j.cognition.2010.11.002.</cite> [<a href="https://doi.org/10.1016/j.cognition.2010.11.002" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21130422/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cognition&amp;title=Where%20cognitive%20development%20and%20aging%20meet:%20Face%20learning%20ability%20peaks%20after%20age%2030&amp;author=LT%20Germine&amp;author=B%20Duchaine&amp;author=K%20Nakayama&amp;volume=118&amp;publication_year=2011&amp;pages=201-210&amp;pmid=21130422&amp;doi=10.1016/j.cognition.2010.11.002&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r37"> <span class="label">37.</span><cite>Rajkowska G, Goldman-Rakic PS. Cytoarchitectonic definition of prefrontal areas in the normal human cortex: I. Remapping of areas 9 and 46 using quantitative criteria. Cereb Cortex. 1995;5:307–322. doi: 10.1093/cercor/5.4.307.</cite> [<a href="https://doi.org/10.1093/cercor/5.4.307" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/7580124/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cereb%20Cortex&amp;title=Cytoarchitectonic%20definition%20of%20prefrontal%20areas%20in%20the%20normal%20human%20cortex:%20I.%20Remapping%20of%20areas%209%20and%2046%20using%20quantitative%20criteria&amp;author=G%20Rajkowska&amp;author=PS%20Goldman-Rakic&amp;volume=5&amp;publication_year=1995&amp;pages=307-322&amp;pmid=7580124&amp;doi=10.1093/cercor/5.4.307&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r38"> <span class="label">38.</span><cite>Beckman M. Neuroscience. Crime, culpability, and the adolescent brain. Science. 2004;305:596–599. doi: 10.1126/science.305.5684.596.</cite> [<a href="https://doi.org/10.1126/science.305.5684.596" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15286340/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Science&amp;title=Neuroscience.%20Crime,%20culpability,%20and%20the%20adolescent%20brain&amp;author=M%20Beckman&amp;volume=305&amp;publication_year=2004&amp;pages=596-599&amp;pmid=15286340&amp;doi=10.1126/science.305.5684.596&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r39"> <span class="label">39.</span><cite>Kishiyama MM, Boyce WT, Jimenez AM, Perry LM, Knight RT. Socioeconomic disparities affect prefrontal function in children. J Cogn Neurosci. 2009;21:1106–1115. doi: 10.1162/jocn.2009.21101.</cite> [<a href="https://doi.org/10.1162/jocn.2009.21101" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18752394/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Cogn%20Neurosci&amp;title=Socioeconomic%20disparities%20affect%20prefrontal%20function%20in%20children&amp;author=MM%20Kishiyama&amp;author=WT%20Boyce&amp;author=AM%20Jimenez&amp;author=LM%20Perry&amp;author=RT%20Knight&amp;volume=21&amp;publication_year=2009&amp;pages=1106-1115&amp;pmid=18752394&amp;doi=10.1162/jocn.2009.21101&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r40"> <span class="label">40.</span><cite>Dehaene S, Changeux JP. A hierarchical neuronal network for planning behavior. Proc Natl Acad Sci USA. 1997;94:13293–13298. doi: 10.1073/pnas.94.24.13293.</cite> [<a href="https://doi.org/10.1073/pnas.94.24.13293" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC24302/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9371839/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Proc%20Natl%20Acad%20Sci%20USA&amp;title=A%20hierarchical%20neuronal%20network%20for%20planning%20behavior&amp;author=S%20Dehaene&amp;author=JP%20Changeux&amp;volume=94&amp;publication_year=1997&amp;pages=13293-13298&amp;pmid=9371839&amp;doi=10.1073/pnas.94.24.13293&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r41"> <span class="label">41.</span><cite>Hill J, et al. Similar patterns of cortical expansion during human development and evolution. Proc Natl Acad Sci USA. 2010;107:13135–13140. doi: 10.1073/pnas.1001229107.</cite> [<a href="https://doi.org/10.1073/pnas.1001229107" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2919958/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20624964/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Proc%20Natl%20Acad%20Sci%20USA&amp;title=Similar%20patterns%20of%20cortical%20expansion%20during%20human%20development%20and%20evolution&amp;author=J%20Hill&amp;volume=107&amp;publication_year=2010&amp;pages=13135-13140&amp;pmid=20624964&amp;doi=10.1073/pnas.1001229107&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r42"> <span class="label">42.</span><cite>Goldman-Rakic PS. Cellular basis of working memory. Neuron. 1995;14:477–485. doi: 10.1016/0896-6273(95)90304-6.</cite> [<a href="https://doi.org/10.1016/0896-6273(95)90304-6" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/7695894/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Neuron&amp;title=Cellular%20basis%20of%20working%20memory&amp;author=PS%20Goldman-Rakic&amp;volume=14&amp;publication_year=1995&amp;pages=477-485&amp;pmid=7695894&amp;doi=10.1016/0896-6273(95)90304-6&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r43"> <span class="label">43.</span><cite>Elston GN, et al. Specializations of the granular prefrontal cortex of primates: Implications for cognitive processing. Anat Rec A Discov Mol Cell Evol Biol. 2006;288:26–35. doi: 10.1002/ar.a.20278.</cite> [<a href="https://doi.org/10.1002/ar.a.20278" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16342214/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Anat%20Rec%20A%20Discov%20Mol%20Cell%20Evol%20Biol&amp;title=Specializations%20of%20the%20granular%20prefrontal%20cortex%20of%20primates:%20Implications%20for%20cognitive%20processing&amp;author=GN%20Elston&amp;volume=288&amp;publication_year=2006&amp;pages=26-35&amp;pmid=16342214&amp;doi=10.1002/ar.a.20278&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r44"> <span class="label">44.</span><cite>Dehaene S, Kerszberg M, Changeux JP. A neuronal model of a global workspace in effortful cognitive tasks. Proc Natl Acad Sci USA. 1998;95:14529–14534. doi: 10.1073/pnas.95.24.14529.</cite> [<a href="https://doi.org/10.1073/pnas.95.24.14529" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC24407/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9826734/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Proc%20Natl%20Acad%20Sci%20USA&amp;title=A%20neuronal%20model%20of%20a%20global%20workspace%20in%20effortful%20cognitive%20tasks&amp;author=S%20Dehaene&amp;author=M%20Kerszberg&amp;author=JP%20Changeux&amp;volume=95&amp;publication_year=1998&amp;pages=14529-14534&amp;pmid=9826734&amp;doi=10.1073/pnas.95.24.14529&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r45"> <span class="label">45.</span><cite>Elston GN, Benavides-Piccione R, Elston A, Manger PR, Defelipe J. Pyramidal cells in prefrontal cortex of primates: Marked differences in neuronal structure among species. Front Neuroanat. 2011;5:2. doi: 10.3389/fnana.2011.00002.</cite> [<a href="https://doi.org/10.3389/fnana.2011.00002" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3039119/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21347276/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Front%20Neuroanat&amp;title=Pyramidal%20cells%20in%20prefrontal%20cortex%20of%20primates:%20Marked%20differences%20in%20neuronal%20structure%20among%20species&amp;author=GN%20Elston&amp;author=R%20Benavides-Piccione&amp;author=A%20Elston&amp;author=PR%20Manger&amp;author=J%20Defelipe&amp;volume=5&amp;publication_year=2011&amp;pages=2&amp;pmid=21347276&amp;doi=10.3389/fnana.2011.00002&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r46"> <span class="label">46.</span><cite>Zeba M, Jovanov-Milosević N, Petanjek Z. Quantitative analysis of basal dendritic tree of layer III pyramidal neurons in different areas of adult human frontal cortex. Coll Antropol. 2008;32(Suppl 1):161–169.</cite> [<a href="https://pubmed.ncbi.nlm.nih.gov/18405077/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Coll%20Antropol&amp;title=Quantitative%20analysis%20of%20basal%20dendritic%20tree%20of%20layer%20III%20pyramidal%20neurons%20in%20different%20areas%20of%20adult%20human%20frontal%20cortex&amp;author=M%20Zeba&amp;author=N%20Jovanov-Milosevi%C4%87&amp;author=Z%20Petanjek&amp;volume=32&amp;issue=Suppl%201&amp;publication_year=2008&amp;pages=161-169&amp;pmid=18405077&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r47"> <span class="label">47.</span><cite>Elston GN, Oga T, Fujita I. Spinogenesis and pruning scales across functional hierarchies. J Neurosci. 2009;29:3271–3275. doi: 10.1523/JNEUROSCI.5216-08.2009.</cite> [<a href="https://doi.org/10.1523/JNEUROSCI.5216-08.2009" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6666449/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19279264/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Neurosci&amp;title=Spinogenesis%20and%20pruning%20scales%20across%20functional%20hierarchies&amp;author=GN%20Elston&amp;author=T%20Oga&amp;author=I%20Fujita&amp;volume=29&amp;publication_year=2009&amp;pages=3271-3275&amp;pmid=19279264&amp;doi=10.1523/JNEUROSCI.5216-08.2009&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r48"> <span class="label">48.</span><cite>Jacobs B, Driscoll L, Schall M. Life-span dendritic and spine changes in areas 10 and 18 of human cortex: A quantitative Golgi study. J Comp Neurol. 1997;386:661–680.</cite> [<a href="https://pubmed.ncbi.nlm.nih.gov/9378859/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Comp%20Neurol&amp;title=Life-span%20dendritic%20and%20spine%20changes%20in%20areas%2010%20and%2018%20of%20human%20cortex:%20A%20quantitative%20Golgi%20study&amp;author=B%20Jacobs&amp;author=L%20Driscoll&amp;author=M%20Schall&amp;volume=386&amp;publication_year=1997&amp;pages=661-680&amp;pmid=9378859&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r49"> <span class="label">49.</span><cite>Woo TU, Pucak ML, Kye CH, Matus CV, Lewis DA. Peripubertal refinement of the intrinsic and associational circuitry in monkey prefrontal cortex. Neuroscience. 1997;80:1149–1158. doi: 10.1016/s0306-4522(97)00059-6.</cite> [<a href="https://doi.org/10.1016/s0306-4522(97)00059-6" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/9284067/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Neuroscience&amp;title=Peripubertal%20refinement%20of%20the%20intrinsic%20and%20associational%20circuitry%20in%20monkey%20prefrontal%20cortex&amp;author=TU%20Woo&amp;author=ML%20Pucak&amp;author=CH%20Kye&amp;author=CV%20Matus&amp;author=DA%20Lewis&amp;volume=80&amp;publication_year=1997&amp;pages=1149-1158&amp;pmid=9284067&amp;doi=10.1016/s0306-4522(97)00059-6&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r50"> <span class="label">50.</span><cite>Jacobs B, et al. Regional dendritic and spine variation in human cerebral cortex: A quantitative Golgi study. Cereb Cortex. 2001;11:558–571. doi: 10.1093/cercor/11.6.558.</cite> [<a href="https://doi.org/10.1093/cercor/11.6.558" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11375917/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cereb%20Cortex&amp;title=Regional%20dendritic%20and%20spine%20variation%20in%20human%20cerebral%20cortex:%20A%20quantitative%20Golgi%20study&amp;author=B%20Jacobs&amp;volume=11&amp;publication_year=2001&amp;pages=558-571&amp;pmid=11375917&amp;doi=10.1093/cercor/11.6.558&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r51"> <span class="label">51.</span><cite>Yang G, Pan F, Gan WB. Stably maintained dendritic spines are associated with lifelong memories. Nature. 2009;462:920–924. doi: 10.1038/nature08577.</cite> [<a href="https://doi.org/10.1038/nature08577" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4724802/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19946265/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nature&amp;title=Stably%20maintained%20dendritic%20spines%20are%20associated%20with%20lifelong%20memories&amp;author=G%20Yang&amp;author=F%20Pan&amp;author=WB%20Gan&amp;volume=462&amp;publication_year=2009&amp;pages=920-924&amp;pmid=19946265&amp;doi=10.1038/nature08577&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r52"> <span class="label">52.</span><cite>Grutzendler J, Kasthuri N, Gan WB. Long-term dendritic spine stability in the adult cortex. Nature. 2002;420:812–816. doi: 10.1038/nature01276.</cite> [<a href="https://doi.org/10.1038/nature01276" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12490949/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nature&amp;title=Long-term%20dendritic%20spine%20stability%20in%20the%20adult%20cortex&amp;author=J%20Grutzendler&amp;author=N%20Kasthuri&amp;author=WB%20Gan&amp;volume=420&amp;publication_year=2002&amp;pages=812-816&amp;pmid=12490949&amp;doi=10.1038/nature01276&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r53"> <span class="label">53.</span><cite>Bloss EB, et al. Evidence for reduced experience-dependent dendritic spine plasticity in the aging prefrontal cortex. J Neurosci. 2011;31:7831–7839. doi: 10.1523/JNEUROSCI.0839-11.2011.</cite> [<a href="https://doi.org/10.1523/JNEUROSCI.0839-11.2011" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3398699/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21613496/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Neurosci&amp;title=Evidence%20for%20reduced%20experience-dependent%20dendritic%20spine%20plasticity%20in%20the%20aging%20prefrontal%20cortex&amp;author=EB%20Bloss&amp;volume=31&amp;publication_year=2011&amp;pages=7831-7839&amp;pmid=21613496&amp;doi=10.1523/JNEUROSCI.0839-11.2011&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r54"> <span class="label">54.</span><cite>Lin YC, Koleske AJ. Mechanisms of synapse and dendrite maintenance and their disruption in psychiatric and neurodegenerative disorders. Annu Rev Neurosci. 2010;33:349–378. doi: 10.1146/annurev-neuro-060909-153204.</cite> [<a href="https://doi.org/10.1146/annurev-neuro-060909-153204" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3063389/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20367247/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Annu%20Rev%20Neurosci&amp;title=Mechanisms%20of%20synapse%20and%20dendrite%20maintenance%20and%20their%20disruption%20in%20psychiatric%20and%20neurodegenerative%20disorders&amp;author=YC%20Lin&amp;author=AJ%20Koleske&amp;volume=33&amp;publication_year=2010&amp;pages=349-378&amp;pmid=20367247&amp;doi=10.1146/annurev-neuro-060909-153204&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r55"> <span class="label">55.</span><cite>Arellano JI, Espinosa A, Fairén A, Yuste R, DeFelipe J. Non-synaptic dendritic spines in neocortex. Neuroscience. 2007;145:464–469. doi: 10.1016/j.neuroscience.2006.12.015.</cite> [<a href="https://doi.org/10.1016/j.neuroscience.2006.12.015" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17240073/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Neuroscience&amp;title=Non-synaptic%20dendritic%20spines%20in%20neocortex&amp;author=JI%20Arellano&amp;author=A%20Espinosa&amp;author=A%20Fair%C3%A9n&amp;author=R%20Yuste&amp;author=J%20DeFelipe&amp;volume=145&amp;publication_year=2007&amp;pages=464-469&amp;pmid=17240073&amp;doi=10.1016/j.neuroscience.2006.12.015&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r56"> <span class="label">56.</span><cite>Harris LW, et al. Gene expression in the prefrontal cortex during adolescence: Implications for the onset of schizophrenia. BMC Med Genomics. 2009;2:28. doi: 10.1186/1755-8794-2-28.</cite> [<a href="https://doi.org/10.1186/1755-8794-2-28" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2694209/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19457239/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=BMC%20Med%20Genomics&amp;title=Gene%20expression%20in%20the%20prefrontal%20cortex%20during%20adolescence:%20Implications%20for%20the%20onset%20of%20schizophrenia&amp;author=LW%20Harris&amp;volume=2&amp;publication_year=2009&amp;pages=28&amp;pmid=19457239&amp;doi=10.1186/1755-8794-2-28&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r57"> <span class="label">57.</span><cite>Somel M, et al. Transcriptional neoteny in the human brain. Proc Natl Acad Sci USA. 2009;106:5743–5748. doi: 10.1073/pnas.0900544106.</cite> [<a href="https://doi.org/10.1073/pnas.0900544106" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2659716/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19307592/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Proc%20Natl%20Acad%20Sci%20USA&amp;title=Transcriptional%20neoteny%20in%20the%20human%20brain&amp;author=M%20Somel&amp;volume=106&amp;publication_year=2009&amp;pages=5743-5748&amp;pmid=19307592&amp;doi=10.1073/pnas.0900544106&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r58"> <span class="label">58.</span><cite>Raghanti MA, et al. Cortical dopaminergic innervation among humans, chimpanzees, and macaque monkeys: A comparative study. Neuroscience. 2008;155:203–220. doi: 10.1016/j.neuroscience.2008.05.008.</cite> [<a href="https://doi.org/10.1016/j.neuroscience.2008.05.008" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3177596/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18562124/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Neuroscience&amp;title=Cortical%20dopaminergic%20innervation%20among%20humans,%20chimpanzees,%20and%20macaque%20monkeys:%20A%20comparative%20study&amp;author=MA%20Raghanti&amp;volume=155&amp;publication_year=2008&amp;pages=203-220&amp;pmid=18562124&amp;doi=10.1016/j.neuroscience.2008.05.008&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r59"> <span class="label">59.</span><cite>Henze DA, González-Burgos GR, Urban NN, Lewis DA, Barrionuevo G. Dopamine increases excitability of pyramidal neurons in primate prefrontal cortex. J Neurophysiol. 2000;84:2799–2809. doi: 10.1152/jn.2000.84.6.2799.</cite> [<a href="https://doi.org/10.1152/jn.2000.84.6.2799" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11110810/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Neurophysiol&amp;title=Dopamine%20increases%20excitability%20of%20pyramidal%20neurons%20in%20primate%20prefrontal%20cortex&amp;author=DA%20Henze&amp;author=GR%20Gonz%C3%A1lez-Burgos&amp;author=NN%20Urban&amp;author=DA%20Lewis&amp;author=G%20Barrionuevo&amp;volume=84&amp;publication_year=2000&amp;pages=2799-2809&amp;pmid=11110810&amp;doi=10.1152/jn.2000.84.6.2799&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r60"> <span class="label">60.</span><cite>Huang YY, Simpson E, Kellendonk C, Kandel ER. Genetic evidence for the bidirectional modulation of synaptic plasticity in the prefrontal cortex by D1 receptors. Proc Natl Acad Sci USA. 2004;101:3236–3241. doi: 10.1073/pnas.0308280101.</cite> [<a href="https://doi.org/10.1073/pnas.0308280101" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC365773/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/14981263/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Proc%20Natl%20Acad%20Sci%20USA&amp;title=Genetic%20evidence%20for%20the%20bidirectional%20modulation%20of%20synaptic%20plasticity%20in%20the%20prefrontal%20cortex%20by%20D1%20receptors&amp;author=YY%20Huang&amp;author=E%20Simpson&amp;author=C%20Kellendonk&amp;author=ER%20Kandel&amp;volume=101&amp;publication_year=2004&amp;pages=3236-3241&amp;pmid=14981263&amp;doi=10.1073/pnas.0308280101&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r61"> <span class="label">61.</span><cite>Wahlstrom D, White T, Luciana M. Neurobehavioral evidence for changes in dopamine system activity during adolescence. Neurosci Biobehav Rev. 2010;34:631–648. doi: 10.1016/j.neubiorev.2009.12.007.</cite> [<a href="https://doi.org/10.1016/j.neubiorev.2009.12.007" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2845533/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20026110/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Neurosci%20Biobehav%20Rev&amp;title=Neurobehavioral%20evidence%20for%20changes%20in%20dopamine%20system%20activity%20during%20adolescence&amp;author=D%20Wahlstrom&amp;author=T%20White&amp;author=M%20Luciana&amp;volume=34&amp;publication_year=2010&amp;pages=631-648&amp;pmid=20026110&amp;doi=10.1016/j.neubiorev.2009.12.007&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r62"> <span class="label">62.</span><cite>Weickert CS, et al. Postnatal alterations in dopaminergic markers in the human prefrontal cortex. Neuroscience. 2007;144:1109–1119. doi: 10.1016/j.neuroscience.2006.10.009.</cite> [<a href="https://doi.org/10.1016/j.neuroscience.2006.10.009" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17123740/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Neuroscience&amp;title=Postnatal%20alterations%20in%20dopaminergic%20markers%20in%20the%20human%20prefrontal%20cortex&amp;author=CS%20Weickert&amp;volume=144&amp;publication_year=2007&amp;pages=1109-1119&amp;pmid=17123740&amp;doi=10.1016/j.neuroscience.2006.10.009&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r63"> <span class="label">63.</span><cite>Lambe EK, Krimer LS, Goldman-Rakic PS. Differential postnatal development of catecholamine and serotonin inputs to identified neurons in prefrontal cortex of rhesus monkey. J Neurosci. 2000;20:8780–8787. doi: 10.1523/JNEUROSCI.20-23-08780.2000.</cite> [<a href="https://doi.org/10.1523/JNEUROSCI.20-23-08780.2000" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6773090/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11102486/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Neurosci&amp;title=Differential%20postnatal%20development%20of%20catecholamine%20and%20serotonin%20inputs%20to%20identified%20neurons%20in%20prefrontal%20cortex%20of%20rhesus%20monkey&amp;author=EK%20Lambe&amp;author=LS%20Krimer&amp;author=PS%20Goldman-Rakic&amp;volume=20&amp;publication_year=2000&amp;pages=8780-8787&amp;pmid=11102486&amp;doi=10.1523/JNEUROSCI.20-23-08780.2000&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r64"> <span class="label">64.</span><cite>Rosenberg DR, Lewis DA. Postnatal maturation of the dopaminergic innervation of monkey prefrontal and motor cortices: A tyrosine hydroxylase immunohistochemical analysis. J Comp Neurol. 1995;358:383–400. doi: 10.1002/cne.903580306.</cite> [<a href="https://doi.org/10.1002/cne.903580306" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/7560293/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Comp%20Neurol&amp;title=Postnatal%20maturation%20of%20the%20dopaminergic%20innervation%20of%20monkey%20prefrontal%20and%20motor%20cortices:%20A%20tyrosine%20hydroxylase%20immunohistochemical%20analysis&amp;author=DR%20Rosenberg&amp;author=DA%20Lewis&amp;volume=358&amp;publication_year=1995&amp;pages=383-400&amp;pmid=7560293&amp;doi=10.1002/cne.903580306&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r65"> <span class="label">65.</span><cite>Goldman-Rakic PS, Muly EC, 3rd, Williams GV. D(1) receptors in prefrontal cells and circuits. Brain Res Brain Res Rev. 2000;31:295–301. doi: 10.1016/s0165-0173(99)00045-4.</cite> [<a href="https://doi.org/10.1016/s0165-0173(99)00045-4" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/10719156/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Brain%20Res%20Brain%20Res%20Rev&amp;title=D(1)%20receptors%20in%20prefrontal%20cells%20and%20circuits&amp;author=PS%20Goldman-Rakic&amp;author=EC%20Muly&amp;author=GV%20Williams&amp;volume=31&amp;publication_year=2000&amp;pages=295-301&amp;pmid=10719156&amp;doi=10.1016/s0165-0173(99)00045-4&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r66"> <span class="label">66.</span><cite>Tan HY, Callicott JH, Weinberger DR. Prefrontal cognitive systems in schizophrenia: Towards human genetic brain mechanisms. Cogn Neuropsychiatry. 2009;14:277–298. doi: 10.1080/13546800903091665.</cite> [<a href="https://doi.org/10.1080/13546800903091665" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19634031/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cogn%20Neuropsychiatry&amp;title=Prefrontal%20cognitive%20systems%20in%20schizophrenia:%20Towards%20human%20genetic%20brain%20mechanisms&amp;author=HY%20Tan&amp;author=JH%20Callicott&amp;author=DR%20Weinberger&amp;volume=14&amp;publication_year=2009&amp;pages=277-298&amp;pmid=19634031&amp;doi=10.1080/13546800903091665&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r67"> <span class="label">67.</span><cite>Tunbridge EM, et al. Catechol-o-methyltransferase enzyme activity and protein expression in human prefrontal cortex across the postnatal lifespan. Cereb Cortex. 2007;17:1206–1212. doi: 10.1093/cercor/bhl032.</cite> [<a href="https://doi.org/10.1093/cercor/bhl032" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16835293/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cereb%20Cortex&amp;title=Catechol-o-methyltransferase%20enzyme%20activity%20and%20protein%20expression%20in%20human%20prefrontal%20cortex%20across%20the%20postnatal%20lifespan&amp;author=EM%20Tunbridge&amp;volume=17&amp;publication_year=2007&amp;pages=1206-1212&amp;pmid=16835293&amp;doi=10.1093/cercor/bhl032&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r68"> <span class="label">68.</span><cite>Nelson CA, 3rd, et al. Cognitive recovery in socially deprived young children: The Bucharest Early Intervention Project. Science. 2007;318:1937–1940. doi: 10.1126/science.1143921.</cite> [<a href="https://doi.org/10.1126/science.1143921" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18096809/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Science&amp;title=Cognitive%20recovery%20in%20socially%20deprived%20young%20children:%20The%20Bucharest%20Early%20Intervention%20Project&amp;author=CA%20Nelson&amp;volume=318&amp;publication_year=2007&amp;pages=1937-1940&amp;pmid=18096809&amp;doi=10.1126/science.1143921&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r69"> <span class="label">69.</span><cite>Uylings HBM. In: Series in Cognitive Neuroscience and Language Learning and Processing. Gullberg M, Indefrey P, editors. Oxford: Blackwell; 2006. pp. 59–90.</cite> [<a href="https://scholar.google.com/scholar_lookup?title=Series%20in%20Cognitive%20Neuroscience%20and%20Language%20Learning%20and%20Processing&amp;author=HBM%20Uylings&amp;publication_year=2006&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r70"> <span class="label">70.</span><cite>Raizada RD, Kishiyama MM. Effects of socioeconomic status on brain development, and how cognitive neuroscience may contribute to levelling the playing field. Front Hum Neurosci. 2010;4:3. doi: 10.3389/neuro.09.003.2010.</cite> [<a href="https://doi.org/10.3389/neuro.09.003.2010" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2820392/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20161995/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Front%20Hum%20Neurosci&amp;title=Effects%20of%20socioeconomic%20status%20on%20brain%20development,%20and%20how%20cognitive%20neuroscience%20may%20contribute%20to%20levelling%20the%20playing%20field&amp;author=RD%20Raizada&amp;author=MM%20Kishiyama&amp;volume=4&amp;publication_year=2010&amp;pages=3&amp;pmid=20161995&amp;doi=10.3389/neuro.09.003.2010&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r71"> <span class="label">71.</span><cite>Eluvathingal TJ, et al. Abnormal brain connectivity in children after early severe socioemotional deprivation: A diffusion tensor imaging study. Pediatrics. 2006;117:2093–2100. doi: 10.1542/peds.2005-1727.</cite> [<a href="https://doi.org/10.1542/peds.2005-1727" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16740852/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Pediatrics&amp;title=Abnormal%20brain%20connectivity%20in%20children%20after%20early%20severe%20socioemotional%20deprivation:%20A%20diffusion%20tensor%20imaging%20study&amp;author=TJ%20Eluvathingal&amp;volume=117&amp;publication_year=2006&amp;pages=2093-2100&amp;pmid=16740852&amp;doi=10.1542/peds.2005-1727&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r72"> <span class="label">72.</span><cite>Diamond A, Barnett WS, Thomas J, Munro S. Preschool program improves cognitive control. Science. 2007;318:1387–1388. doi: 10.1126/science.1151148.</cite> [<a href="https://doi.org/10.1126/science.1151148" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2174918/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18048670/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Science&amp;title=Preschool%20program%20improves%20cognitive%20control&amp;author=A%20Diamond&amp;author=WS%20Barnett&amp;author=J%20Thomas&amp;author=S%20Munro&amp;volume=318&amp;publication_year=2007&amp;pages=1387-1388&amp;pmid=18048670&amp;doi=10.1126/science.1151148&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r73"> <span class="label">73.</span><cite>Changeux JP. Nicotinic receptors and nicotine addiction. C R Biol. 2009;332:421–425. doi: 10.1016/j.crvi.2009.02.005.</cite> [<a href="https://doi.org/10.1016/j.crvi.2009.02.005" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19393973/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=C%20R%20Biol&amp;title=Nicotinic%20receptors%20and%20nicotine%20addiction&amp;author=JP%20Changeux&amp;volume=332&amp;publication_year=2009&amp;pages=421-425&amp;pmid=19393973&amp;doi=10.1016/j.crvi.2009.02.005&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r74"> <span class="label">74.</span><cite>Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM. Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci. 2011;14:285–293. doi: 10.1038/nn.2741.</cite> [<a href="https://doi.org/10.1038/nn.2741" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3530413/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21346746/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat%20Neurosci&amp;title=Dendritic%20spine%20pathology%20in%20neuropsychiatric%20disorders&amp;author=P%20Penzes&amp;author=ME%20Cahill&amp;author=KA%20Jones&amp;author=JE%20VanLeeuwen&amp;author=KM%20Woolfrey&amp;volume=14&amp;publication_year=2011&amp;pages=285-293&amp;pmid=21346746&amp;doi=10.1038/nn.2741&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r75"> <span class="label">75.</span><cite>Judaš M, et al. The Zagreb Collection of human brains: A unique, versatile, but underexploited resource for the neuroscience community. Ann N Y Acad Sci. 2011;1225(Suppl 1):E105–E130. doi: 10.1111/j.1749-6632.2011.05993.x.</cite> [<a href="https://doi.org/10.1111/j.1749-6632.2011.05993.x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21599691/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Ann%20N%20Y%20Acad%20Sci&amp;title=The%20Zagreb%20Collection%20of%20human%20brains:%20A%20unique,%20versatile,%20but%20underexploited%20resource%20for%20the%20neuroscience%20community&amp;author=M%20Juda%C5%A1&amp;volume=1225&amp;issue=Suppl%201&amp;publication_year=2011&amp;pages=E105-E130&amp;pmid=21599691&amp;doi=10.1111/j.1749-6632.2011.05993.x&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r76"> <span class="label">76.</span><cite>Rajkowska G, Goldman-Rakic PS. Cytoarchitectonic definition of prefrontal areas in the normal human cortex: II. Variability in locations of areas 9 and 46 and relationship to the Talairach Coordinate System. Cereb Cortex. 1995;5:323–337. doi: 10.1093/cercor/5.4.323.</cite> [<a href="https://doi.org/10.1093/cercor/5.4.323" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/7580125/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cereb%20Cortex&amp;title=Cytoarchitectonic%20definition%20of%20prefrontal%20areas%20in%20the%20normal%20human%20cortex:%20II.%20Variability%20in%20locations%20of%20areas%209%20and%2046%20and%20relationship%20to%20the%20Talairach%20Coordinate%20System&amp;author=G%20Rajkowska&amp;author=PS%20Goldman-Rakic&amp;volume=5&amp;publication_year=1995&amp;pages=323-337&amp;pmid=7580125&amp;doi=10.1093/cercor/5.4.323&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r77"> <span class="label">77.</span><cite>DeFelipe J, Fariñas I. The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs. Prog Neurobiol. 1992;39:563–607. doi: 10.1016/0301-0082(92)90015-7.</cite> [<a href="https://doi.org/10.1016/0301-0082(92)90015-7" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/1410442/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Prog%20Neurobiol&amp;title=The%20pyramidal%20neuron%20of%20the%20cerebral%20cortex:%20Morphological%20and%20chemical%20characteristics%20of%20the%20synaptic%20inputs&amp;author=J%20DeFelipe&amp;author=I%20Fari%C3%B1as&amp;volume=39&amp;publication_year=1992&amp;pages=563-607&amp;pmid=1410442&amp;doi=10.1016/0301-0082(92)90015-7&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> </ul></section></section><section id="_ad93_" lang="en" class="associated-data"><h2 class="pmc_sec_title">Associated Data</h2> <p class="font-secondary"><em>This section collects any data citations, data availability statements, or supplementary materials included in this article.</em></p> <section id="_adsm93_" lang="en" class="supplementary-materials"><h3 class="pmc_sec_title">Supplementary Materials</h3> <section class="sm xbox font-sm" id="db_ds_supplementary-material1_reqid_"><div class="caption p"><span>Supporting Information</span></div> <div class="media p"><div class="caption"> <a href="/articles/instance/3156171/bin/supp_108_32_13281__index.html" data-ga-action="click_feat_suppl" class="usa-link">supp_108_32_13281__index.html</a><sup> (859B, html) </sup> </div></div> <div class="media p"><div class="caption"> <a href="/articles/instance/3156171/bin/1105108108_pnas.201105108SI.pdf" data-ga-action="click_feat_suppl" class="usa-link">1105108108_pnas.201105108SI.pdf</a><sup> (420.6KB, pdf) </sup> </div></div></section></section></section></section><footer class="p courtesy-note font-secondary font-sm text-center"><hr class="headless"> <p>Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of <strong>National Academy of Sciences</strong></p></footer></section></article> </main> </div> </div> </div> <!-- Secondary navigation placeholder --> <div class="pmc-sidenav desktop:grid-col-4 display-flex"> <section class="pmc-sidenav__container" aria-label="Article resources and navigation"> <button type="button" class="usa-button pmc-sidenav__container__close usa-button--unstyled"> <img src="/static/img/usa-icons/close.svg" role="img" alt="Close" /> </button> <div class="display-none desktop:display-block"> <section class="margin-top-4 desktop:margin-top-0"> <h2 class="margin-top-0">ACTIONS</h2> <ul class="usa-list usa-list--unstyled usa-list--actions"> <li> <a href="https://doi.org/10.1073/pnas.1105108108" class="usa-button usa-button--outline width-24 font-xs usa-link--external padding-left-0 padding-right-0" target="_blank" rel="noreferrer noopener" data-ga-category="actions" data-ga-action="click" data-ga-label="publisher_link_desktop" > <span class="height-3 display-inline-flex flex-align-center">View on publisher site</span> </a> </li> <li> <a href="pdf/pnas.201105108.pdf" class="usa-button usa-button--outline width-24 display-inline-flex flex-align-center flex-justify-start padding-left-1" data-ga-category="actions" data-ga-action="click" data-ga-label="pdf_download_desktop" > <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#file_download"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1">PDF (671.9 KB)</span> </a> </li> <li> <button role="button" class="usa-button width-24 citation-dialog-trigger display-inline-flex flex-align-center flex-justify-start padding-left-1" aria-label="Open dialog with citation text in different styles" data-ga-category="actions" data-ga-action="open" data-ga-label="cite_desktop" data-all-citations-url="/resources/citations/3156171/" data-citation-style="nlm" data-download-format-link="/resources/citations/3156171/export/" > <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#format_quote"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1 button-label">Cite</span> </button> </li> <li> <button class="usa-button width-24 collections-dialog-trigger collections-button display-inline-flex flex-align-center flex-justify-start padding-left-1 collections-button-empty" aria-label="Save article in MyNCBI collections." data-ga-category="actions" data-ga-action="click" data-ga-label="collections_button_desktop" data-collections-open-dialog-enabled="false" data-collections-open-dialog-url="https://account.ncbi.nlm.nih.gov/?back_url=https%3A%2F%2Fpmc.ncbi.nlm.nih.gov%2Farticles%2FPMC3156171%2F%23open-collections-dialog" data-in-collections="false"> <svg class="usa-icon width-3 height-3 usa-icon--bookmark-full" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-full.svg#icon"></use> </svg> <svg class="usa-icon width-3 height-3 usa-icon--bookmark-empty" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-empty.svg#icon"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1">Collections</span> </button> </li> <li class="pmc-permalink"> <button type="button" class="usa-button usa-button--outline width-24 display-inline-flex flex-align-center flex-justify padding-left-1 shadow-none" aria-label="Show article permalink" aria-expanded="false" aria-haspopup="true" data-ga-category="actions" data-ga-action="open" data-ga-label="permalink_desktop" > <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#share"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1 button-label">Permalink</span> </button> <div class="pmc-permalink__dropdown" hidden> <div class="pmc-permalink__dropdown__container"> <h2 class="usa-modal__heading margin-top-0 margin-bottom-2">PERMALINK</h2> <div class="pmc-permalink__dropdown__content"> <input type="text" class="usa-input" value="https://pmc.ncbi.nlm.nih.gov/articles/PMC3156171/" aria-label="Article permalink"> <button class="usa-button display-inline-flex pmc-permalink__dropdown__copy__btn margin-right-0" title="Copy article permalink" data-ga-category="save_share" data-ga-action="link" data-ga-label="copy_link"> <svg class="usa-icon" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#content_copy"></use> </svg> <span class="margin-left-1">Copy</span> </button> </div> </div> </div> </li> </ul> </section> </div> <section class="pmc-resources margin-top-6 desktop:margin-top-4" data-page-path="/articles/PMC3156171/"> <h2 class="margin-top-0">RESOURCES</h2> <div class="usa-accordion usa-accordion--multiselectable" data-allow-multiple> <h3 class="usa-accordion__heading"> <button type="button" class="usa-accordion__button" aria-expanded="false" aria-controls="resources-similar-articles" data-ga-category="resources_accordion" data-ga-action="open_similar_articles" data-ga-label="/articles/PMC3156171/" data-action-open="open_similar_articles" data-action-close="close_similar_articles" > Similar articles </button> </h3> <div id="resources-similar-articles" class="usa-accordion__content usa-prose" data-source-url="/resources/similar-article-links/21788513/" > </div> <h3 class="usa-accordion__heading"> <button type="button" class="usa-accordion__button" aria-expanded="false" aria-controls="resources-cited-by-other-articles" data-ga-category="resources_accordion" data-ga-action="open_cited_by" data-ga-label="/articles/PMC3156171/" data-action-open="open_cited_by" data-action-close="close_cited_by" > Cited by other articles </button> </h3> <div id="resources-cited-by-other-articles" class="usa-accordion__content usa-prose" data-source-url="/resources/cited-by-links/21788513/" > </div> <h3 class="usa-accordion__heading"> <button type="button" class="usa-accordion__button" aria-expanded="false" aria-controls="resources-links-to-ncbi-databases" data-ga-category="resources_accordion" data-ga-action="open_NCBI_links" data-ga-label="/articles/PMC3156171/" data-action-open="open_NCBI_links" data-action-close="close_NCBI_link" > Links to NCBI Databases </button> </h3> <div id="resources-links-to-ncbi-databases" class="usa-accordion__content usa-prose" data-source-url="/resources/db-links/3156171/" > </div> </div> </section> <section class="usa-in-page-nav usa-in-page-nav--wide margin-top-6 desktop:margin-top-4" data-title-text="On this page" data-title-heading-level="h2" data-scroll-offset="0" data-root-margin="-10% 0px -80% 0px" data-main-content-selector="main" data-threshold="1" hidden ></section> </section> </div> <div class="overlay" role="dialog" aria-label="Citation Dialog" hidden> <div class="dialog citation-dialog" aria-hidden="true"> <div class="display-inline-flex flex-align-center flex-justify width-full margin-bottom-2"> <h2 class="usa-modal__heading margin-0">Cite</h2> <button type="button" class="usa-button usa-button--unstyled close-overlay text-black width-auto" tabindex="1"> <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#close"></use> </svg> </button> </div> <div class="citation-text-block"> <div class="citation-text margin-bottom-2"></div> <ul class="usa-list usa-list--unstyled display-inline-flex flex-justify width-full flex-align-center"> <li> <button class="usa-button usa-button--unstyled text-no-underline display-flex flex-align-center copy-button dialog-focus" data-ga-category="save_share" data-ga-action="cite" data-ga-label="copy" tabindex="2"> <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#content_copy"></use> </svg> <span>Copy</span> </button> </li> <li> <a href="#" role="button" class="usa-button usa-button--unstyled text-no-underline display-flex flex-align-center export-button" data-ga-category="save_share" data-ga-action="cite" data-ga-label="download" title="Download a file for external citation management software" tabindex="3"> <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#file_download"></use> </svg> <span class="display-none mobile-lg:display-inline">Download .nbib</span> <span class="display-inline mobile-lg:display-none">.nbib</span> </a> </li> <li> <div class="display-inline-flex flex-align-center"> <label class="usa-label margin-top-0">Format:</label> <select aria-label="Format" class="usa-select citation-style-selector padding-1 margin-top-0 border-0 padding-right-4" tabindex="4" > <option data-style-url-name="ama" value="AMA" > AMA </option> <option data-style-url-name="apa" value="APA" > APA </option> <option data-style-url-name="mla" value="MLA" > MLA </option> <option data-style-url-name="nlm" value="NLM" selected="selected"> NLM </option> </select> </div> </li> </ul> </div> </div> </div> <div class="overlay" role="dialog" hidden> <div id="collections-action-dialog" class="dialog collections-dialog" aria-hidden="true"> <div class="display-inline-flex flex-align-center flex-justify width-full margin-bottom-2"> <h2 class="usa-modal__heading margin-0">Add to Collections</h2> </div> <div class="collections-action-panel action-panel"> <form id="collections-action-dialog-form" class="usa-form maxw-full collections-action-panel-form action-panel-content action-form action-panel-smaller-selectors" data-existing-collections-url="/list-existing-collections/" data-add-to-existing-collection-url="/add-to-existing-collection/" data-create-and-add-to-new-collection-url="/create-and-add-to-new-collection/" data-myncbi-max-collection-name-length="100" data-collections-root-url="https://www.ncbi.nlm.nih.gov/myncbi/collections/"> <input type="hidden" name="csrfmiddlewaretoken" value="QT2Z4v81DKw0Yj0HV5EHvZR6PSYAVPg95JmEWeHK4I27sMePdtyJxoQtE30ToLk1"> <fieldset class="usa-fieldset margin-bottom-2"> <div class="usa-radio"> <input type="radio" id="collections-action-dialog-new" class="usa-radio__input usa-radio__input--tile collections-new margin-top-0" name="collections" value="new" data-ga-category="collections_button" data-ga-action="click" data-ga-label="collections_radio_new" /> <label class="usa-radio__label" for="collections-action-dialog-new">Create a new collection</label> </div> <div class="usa-radio"> <input type="radio" id="collections-action-dialog-existing" class="usa-radio__input usa-radio__input--tile collections-existing" name="collections" value="existing" checked="true" data-ga-category="collections_button" data-ga-action="click" data-ga-label="collections_radio_existing" /> <label class="usa-radio__label" for="collections-action-dialog-existing">Add to an existing collection</label> </div> </fieldset> <fieldset class="usa-fieldset margin-bottom-2"> <div class="action-panel-control-wrap new-collections-controls"> <label for="collections-action-dialog-add-to-new" class="usa-label margin-top-0"> Name your collection <abbr title="required" class="usa-hint usa-hint--required text-no-underline">*</abbr> </label> <input type="text" name="add-to-new-collection" id="collections-action-dialog-add-to-new" class="usa-input collections-action-add-to-new" pattern="[^&quot;&amp;=&lt;&gt;/]*" title="The following characters are not allowed in the Name field: &quot;&amp;=&lt;&gt;/" maxlength="" data-ga-category="collections_button" data-ga-action="create_collection" data-ga-label="non_favorties_collection" required /> </div> <div class="action-panel-control-wrap existing-collections-controls"> <label for="collections-action-dialog-add-to-existing" class="usa-label margin-top-0"> Choose a collection </label> <select id="collections-action-dialog-add-to-existing" class="usa-select collections-action-add-to-existing" data-ga-category="collections_button" data-ga-action="select_collection" data-ga-label="($('.collections-action-add-to-existing').val() === 'Favorites') ? 'Favorites' : 'non_favorites_collection'"> </select> <div class="collections-retry-load-on-error usa-input-error-message selection-validation-message"> Unable to load your collection due to an error<br> <a href="#">Please try again</a> </div> </div> </fieldset> <div class="display-inline-flex"> <button class="usa-button margin-top-0 action-panel-submit" type="submit" data-loading-label="Adding..." data-pinger-ignore data-ga-category="collections_button" data-ga-action="click" data-ga-label="add"> Add </button> <button class="usa-button usa-button--outline margin-top-0 action-panel-cancel" aria-label="Close 'Add to Collections' panel" ref="linksrc=close_collections_panel" data-ga-category="collections_button" data-ga-action="click" data-ga-label="cancel"> Cancel </button> </div> </form> </div> </div> </div> </div> </div> </div> <footer class="ncbi-footer ncbi-dark-background " > <div class="ncbi-footer__icon-section"> <div class="ncbi-footer__social-header"> Follow NCBI </div> <div class="grid-container ncbi-footer__ncbi-social-icons-container"> <a href="https://twitter.com/ncbi" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="40" height="40" viewBox="0 0 40 40" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="m6.067 8 10.81 13.9L6 33.2h4.2l8.4-9.1 7.068 9.1H34L22.8 18.5 31.9 8h-3.5l-7.7 8.4L14.401 8H6.067Zm3.6 1.734h3.266l16.8 21.732H26.57L9.668 9.734Z"> </path> </svg> <span class="usa-sr-only">NCBI on X (formerly known as Twitter)</span> </a> <a href="https://www.facebook.com/ncbi.nlm" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="16" height="29" focusable="false" aria-hidden="true" viewBox="0 0 16 29" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M3.8809 21.4002C3.8809 19.0932 3.8809 16.7876 3.8809 14.478C3.8809 14.2117 3.80103 14.1452 3.54278 14.1492C2.53372 14.1638 1.52334 14.1492 0.514288 14.1598C0.302626 14.1598 0.248047 14.0972 0.248047 13.8936C0.256034 12.4585 0.256034 11.0239 0.248047 9.58978C0.248047 9.37013 0.302626 9.30224 0.528931 9.3049C1.53798 9.31688 2.54837 9.3049 3.55742 9.31555C3.80103 9.31555 3.8809 9.26097 3.87957 9.00272C3.87158 8.00565 3.85428 7.00592 3.90753 6.00884C3.97142 4.83339 4.31487 3.73115 5.04437 2.78467C5.93095 1.63318 7.15699 1.09005 8.56141 0.967577C10.5582 0.79319 12.555 0.982221 14.5518 0.927641C14.7102 0.927641 14.7462 0.99287 14.7449 1.13664C14.7449 2.581 14.7449 4.02668 14.7449 5.47104C14.7449 5.67604 14.6517 5.68669 14.4946 5.68669C13.4523 5.68669 12.4113 5.68669 11.3703 5.68669C10.3506 5.68669 9.92057 6.10868 9.90593 7.13904C9.89661 7.7647 9.91525 8.39303 9.89794 9.01869C9.88995 9.26364 9.96583 9.31822 10.2015 9.31688C11.7204 9.30623 13.2393 9.31688 14.7595 9.3049C15.0257 9.3049 15.0723 9.3728 15.0444 9.62439C14.89 10.9849 14.7515 12.3467 14.6144 13.7085C14.5691 14.1571 14.5785 14.1585 14.1458 14.1585C12.8386 14.1585 11.5313 14.1665 10.2254 14.1518C9.95119 14.1518 9.89794 14.2317 9.89794 14.4899C9.90593 19.0799 9.89794 23.6752 9.91125 28.2612C9.91125 28.5674 9.8407 28.646 9.53186 28.6433C7.77866 28.6273 6.02414 28.6366 4.27094 28.634C3.82499 28.634 3.87158 28.6992 3.87158 28.22C3.87602 25.9472 3.87913 23.6739 3.8809 21.4002Z"> </path> </svg> <span class="usa-sr-only">NCBI on Facebook</span> </a> <a href="https://www.linkedin.com/company/ncbinlm" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="25" height="23" viewBox="0 0 26 24" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M14.6983 9.98423C15.6302 9.24808 16.5926 8.74754 17.6762 8.51991C19.673 8.09126 21.554 8.30824 23.1262 9.7526C24.2351 10.7723 24.7529 12.1115 25.0165 13.5612C25.1486 14.3363 25.2105 15.1218 25.2015 15.9081C25.2015 18.3043 25.2015 20.6898 25.2082 23.0806C25.2082 23.3468 25.1549 23.444 24.8621 23.4414C23.1297 23.4272 21.3992 23.4272 19.6704 23.4414C19.4041 23.4414 19.3429 23.3588 19.3442 23.1019C19.3535 20.5194 19.3442 17.9368 19.3442 15.3543C19.3442 14.0005 18.3258 12.9448 17.0266 12.9488C15.7273 12.9528 14.6983 14.0071 14.6983 15.361C14.6983 17.9328 14.6917 20.5047 14.6983 23.0753C14.6983 23.3708 14.6198 23.444 14.3296 23.4427C12.6185 23.4294 10.9079 23.4294 9.19779 23.4427C8.93155 23.4427 8.86099 23.3735 8.86232 23.1086C8.8783 19.7619 8.88628 16.4144 8.88628 13.066C8.88628 11.5688 8.87874 10.0708 8.86365 8.57182C8.86365 8.3575 8.90758 8.27896 9.14054 8.28029C10.9048 8.29094 12.6687 8.29094 14.4321 8.28029C14.6464 8.28029 14.6983 8.34818 14.6983 8.54653C14.6903 9.00047 14.6983 9.45441 14.6983 9.98423Z"> </path> <path d="M6.55316 15.8443C6.55316 18.2564 6.55316 20.6699 6.55316 23.082C6.55316 23.3629 6.48127 23.4388 6.19906 23.4374C4.47737 23.4241 2.75568 23.4241 1.03399 23.4374C0.767751 23.4374 0.69986 23.3629 0.701191 23.1006C0.709178 18.2648 0.709178 13.4281 0.701191 8.59053C0.701191 8.34026 0.765089 8.27237 1.01669 8.2737C2.74991 8.28435 4.48048 8.28435 6.20838 8.2737C6.47462 8.2737 6.5465 8.33627 6.54517 8.6065C6.54783 11.0186 6.55316 13.4308 6.55316 15.8443Z"> </path> <path d="M3.65878 0.243898C5.36804 0.243898 6.58743 1.45529 6.58743 3.1406C6.58743 4.75801 5.32145 5.95742 3.60819 5.96807C3.22177 5.97614 2.83768 5.90639 2.47877 5.76299C2.11985 5.61959 1.79344 5.40546 1.51897 5.13334C1.24449 4.86123 1.02755 4.53668 0.881058 4.17902C0.734563 3.82136 0.661505 3.43788 0.666231 3.05141C0.67555 1.42601 1.9362 0.242566 3.65878 0.243898Z"> </path> </svg> <span class="usa-sr-only">NCBI on LinkedIn</span> </a> <a href="https://github.com/ncbi" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="28" height="27" viewBox="0 0 28 28" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M16.7228 20.6334C17.5057 20.5527 18.2786 20.3944 19.0301 20.1608C21.3108 19.4193 22.5822 17.8259 22.963 15.4909C23.1228 14.5112 23.1814 13.5287 22.9883 12.5437C22.8106 11.6423 22.4013 10.8028 21.8007 10.1076C21.7526 10.0605 21.7197 10 21.7064 9.934C21.6931 9.86799 21.7 9.79952 21.7262 9.73748C22.0856 8.6206 21.9711 7.51969 21.601 6.42677C21.582 6.3497 21.5345 6.2827 21.468 6.23923C21.4016 6.19577 21.3211 6.17906 21.2429 6.19248C20.7329 6.21649 20.2313 6.33051 19.7611 6.52928C19.1103 6.7908 18.4899 7.12198 17.9104 7.51703C17.84 7.56996 17.7581 7.60551 17.6713 7.62078C17.5846 7.63605 17.4954 7.6306 17.4112 7.60489C15.2596 7.05882 13.0054 7.06203 10.8554 7.61421C10.7806 7.63586 10.7018 7.63967 10.6253 7.62534C10.5487 7.611 10.4766 7.57892 10.4148 7.53167C9.64788 7.03247 8.85171 6.58918 7.96368 6.33359C7.65781 6.24338 7.34123 6.19458 7.02239 6.18849C6.94879 6.17986 6.87462 6.19893 6.81432 6.242C6.75402 6.28507 6.71191 6.34904 6.69621 6.42145C6.32342 7.51437 6.2209 8.61527 6.56307 9.73348C6.59635 9.84264 6.64694 9.93316 6.54177 10.0516C5.47666 11.2604 5.09988 12.6834 5.19574 14.2676C5.2663 15.4244 5.46201 16.5466 6.01454 17.5769C6.84399 19.1171 8.21664 19.9119 9.85158 20.3352C10.3938 20.4706 10.9444 20.5698 11.4998 20.632C11.5384 20.7492 11.4506 20.7798 11.408 20.8291C11.1734 21.1179 10.9894 21.4441 10.8634 21.7942C10.7622 22.0458 10.8315 22.4039 10.6065 22.5516C10.263 22.7766 9.83827 22.8485 9.42421 22.8871C8.17936 23.0056 7.26471 22.4877 6.6283 21.4348C6.25552 20.8184 5.76956 20.3325 5.08523 20.0663C4.76981 19.9325 4.42139 19.8967 4.08537 19.9638C3.7898 20.029 3.73788 20.1901 3.93891 20.4111C4.03639 20.5234 4.14989 20.6207 4.27575 20.6999C4.9796 21.1318 5.51717 21.7884 5.80152 22.5636C6.37002 23.9973 7.48039 24.5697 8.93825 24.6323C9.43741 24.6575 9.93768 24.615 10.4254 24.5058C10.5892 24.4672 10.6531 24.4872 10.6517 24.6762C10.6451 25.4936 10.6637 26.3123 10.6517 27.131C10.6517 27.6635 10.1684 27.9297 9.58663 27.7393C8.17396 27.2671 6.84977 26.5631 5.66838 25.656C2.59555 23.2891 0.720966 20.1861 0.217704 16.3376C-0.357453 11.9127 0.911353 8.00824 3.98551 4.73881C6.11909 2.42656 8.99932 0.939975 12.1203 0.540191C16.5351 -0.0601815 20.4347 1.14323 23.7232 4.16373C26.2449 6.47869 27.724 9.37672 28.1048 12.7726C28.5828 17.0325 27.3686 20.7945 24.4768 23.9827C22.9762 25.6323 21.0956 26.8908 18.9982 27.6488C18.8783 27.6927 18.7585 27.738 18.636 27.7726C18.0356 27.9404 17.6189 27.6395 17.6189 27.0098C17.6189 25.7452 17.6308 24.4806 17.6295 23.2159C17.6329 22.9506 17.6128 22.6856 17.5696 22.4238C17.4325 21.6664 17.3419 21.484 16.7228 20.6334Z"> </path> </svg> <span class="usa-sr-only">NCBI on GitHub</span> </a> <a href="https://ncbiinsights.ncbi.nlm.nih.gov/" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="26" height="26" viewBox="0 0 27 27" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M23.7778 26.4574C23.1354 26.3913 22.0856 26.8024 21.636 26.3087C21.212 25.8444 21.4359 24.8111 21.324 24.0347C19.9933 14.8323 14.8727 8.80132 6.09057 5.85008C4.37689 5.28406 2.58381 4.99533 0.779072 4.99481C0.202773 4.99481 -0.0229751 4.83146 0.00455514 4.21479C0.0660406 3.08627 0.0660406 1.95525 0.00455514 0.826734C-0.0413285 0.0815827 0.259669 -0.0193618 0.896534 0.00266238C6.96236 0.222904 12.3693 2.24179 16.9889 6.16209C22.9794 11.2478 26.1271 17.7688 26.4372 25.648C26.4629 26.294 26.3179 26.5271 25.6609 26.4684C25.0827 26.417 24.4991 26.4574 23.7778 26.4574Z"> </path> <path d="M14.8265 26.441C14.0924 26.441 13.2371 26.6795 12.6626 26.3786C12.0092 26.0372 12.3781 25.0644 12.246 24.378C11.1154 18.5324 6.6849 14.5497 0.74755 14.1001C0.217135 14.0615 -0.0104482 13.9422 0.0134113 13.3659C0.0519536 12.1454 0.0482829 10.9213 0.0134113 9.69524C-0.00127145 9.14464 0.196946 9.03268 0.703502 9.04736C9.21217 9.27128 16.5994 16.2511 17.2804 24.7231C17.418 26.4446 17.418 26.4446 15.6579 26.4446H14.832L14.8265 26.441Z"> </path> <path d="M3.58928 26.4555C2.64447 26.4618 1.73584 26.0925 1.06329 25.4289C0.39073 24.7653 0.00933763 23.8617 0.0030097 22.9169C-0.00331824 21.9721 0.365937 21.0635 1.02954 20.3909C1.69315 19.7184 2.59675 19.337 3.54156 19.3306C4.48637 19.3243 5.39499 19.6936 6.06755 20.3572C6.7401 21.0208 7.1215 21.9244 7.12782 22.8692C7.13415 23.814 6.7649 24.7226 6.10129 25.3952C5.43768 26.0677 4.53409 26.4491 3.58928 26.4555Z"> </path> </svg> <span class="usa-sr-only">NCBI RSS feed</span> </a> </div> </div> <div data-testid="gridContainer" class="grid-container ncbi-footer__container"> <div class="grid-row ncbi-footer__main-content-container" data-testid="grid"> <div class="ncbi-footer__column"> <p class="ncbi-footer__circled-icons-heading"> Connect with NLM </p> <div class="ncbi-footer__circled-icons-list"> <a href=https://twitter.com/nlm_nih class="ncbi-footer__social-icon ncbi-footer__social-icon--circled" target="_blank" rel="noreferrer noopener"> <svg width="32" height="32" viewBox="0 0 40 40" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="m6.067 8 10.81 13.9L6 33.2h4.2l8.4-9.1 7.068 9.1H34L22.8 18.5 31.9 8h-3.5l-7.7 8.4L14.401 8H6.067Zm3.6 1.734h3.266l16.8 21.732H26.57L9.668 9.734Z"> </path> </svg> <span class="usa-sr-only">NLM on X (formerly known as Twitter)</span> </a> <a href=https://www.facebook.com/nationallibraryofmedicine class="ncbi-footer__social-icon ncbi-footer__social-icon--circled" target="_blank" rel="noreferrer noopener"> <svg width="13" height="24" viewBox="0 0 13 24" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M4.11371 23.1369C4.11371 23.082 4.11371 23.0294 4.11371 22.9745V12.9411H0.817305C0.6709 12.9411 0.670898 12.9411 0.670898 12.8016C0.670898 11.564 0.670898 10.3287 0.670898 9.09341C0.670898 8.97903 0.705213 8.95158 0.815017 8.95158C1.8673 8.95158 2.91959 8.95158 3.97417 8.95158H4.12057V8.83263C4.12057 7.8055 4.12057 6.7738 4.12057 5.74897C4.1264 4.92595 4.31387 4.11437 4.66959 3.37217C5.12916 2.38246 5.94651 1.60353 6.95717 1.1921C7.64827 0.905008 8.3913 0.764035 9.13953 0.778051C10.0019 0.791777 10.8644 0.830666 11.7268 0.860404C11.8869 0.860404 12.047 0.894717 12.2072 0.90158C12.2964 0.90158 12.3261 0.940469 12.3261 1.02968C12.3261 1.5421 12.3261 2.05452 12.3261 2.56465C12.3261 3.16857 12.3261 3.7725 12.3261 4.37642C12.3261 4.48165 12.2964 4.51367 12.1912 4.51138C11.5369 4.51138 10.8804 4.51138 10.2261 4.51138C9.92772 4.51814 9.63058 4.5526 9.33855 4.61433C9.08125 4.6617 8.84537 4.78881 8.66431 4.97766C8.48326 5.16652 8.3662 5.40755 8.32972 5.66661C8.28476 5.89271 8.26027 6.1224 8.25652 6.35289C8.25652 7.19014 8.25652 8.02969 8.25652 8.86923C8.25652 8.89439 8.25652 8.91955 8.25652 8.95615H12.0219C12.1797 8.95615 12.182 8.95616 12.1614 9.10714C12.0768 9.76596 11.9876 10.4248 11.9029 11.0813C11.8312 11.6319 11.7626 12.1824 11.697 12.733C11.6719 12.9434 11.6787 12.9434 11.4683 12.9434H8.26338V22.899C8.26338 22.979 8.26338 23.0591 8.26338 23.1392L4.11371 23.1369Z"> </path> </svg> <span class="usa-sr-only">NLM on Facebook</span> </a> <a href=https://www.youtube.com/user/NLMNIH class="ncbi-footer__social-icon ncbi-footer__social-icon--circled" target="_blank" rel="noreferrer noopener"> <svg width="21" height="15" viewBox="0 0 21 15" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M19.2561 1.47914C18.9016 1.15888 18.5699 0.957569 17.2271 0.834039C15.5503 0.678484 13.2787 0.655608 11.563 0.65332H9.43556C7.71987 0.65332 5.4483 0.678484 3.77151 0.834039C2.43098 0.957569 2.097 1.15888 1.74242 1.47914C0.813665 2.32097 0.619221 4.62685 0.598633 6.89384C0.598633 7.31781 0.598633 7.74101 0.598633 8.16345C0.626084 10.4121 0.827391 12.686 1.74242 13.521C2.097 13.8412 2.4287 14.0425 3.77151 14.1661C5.4483 14.3216 7.71987 14.3445 9.43556 14.3468H11.563C13.2787 14.3468 15.5503 14.3216 17.2271 14.1661C18.5676 14.0425 18.9016 13.8412 19.2561 13.521C20.1712 12.6929 20.3725 10.451 20.3999 8.22064C20.3999 7.74025 20.3999 7.25986 20.3999 6.77946C20.3725 4.54907 20.1689 2.30724 19.2561 1.47914ZM8.55942 10.5311V4.65201L13.5601 7.50005L8.55942 10.5311Z" fill="white" /> </svg> <span class="usa-sr-only">NLM on YouTube</span> </a> </div> </div> <address class="ncbi-footer__address ncbi-footer__column"> <p> <a class="usa-link usa-link--external" href="https://www.google.com/maps/place/8600+Rockville+Pike,+Bethesda,+MD+20894/%4038.9959508, -77.101021,17z/data%3D!3m1!4b1!4m5!3m4!1s0x89b7c95e25765ddb%3A0x19156f88b27635b8!8m2!3d38.9959508! 4d-77.0988323" rel="noopener noreferrer" target="_blank">National Library of Medicine <br/> 8600 Rockville Pike<br/> Bethesda, MD 20894</a> </p> </address> <ul class="usa-list usa-list--unstyled ncbi-footer__vertical-list ncbi-footer__column"> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nlm.nih.gov/web_policies.html" class="usa-link usa-link--alt ncbi-footer__link" > Web Policies </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nih.gov/institutes-nih/nih-office-director/office-communications-public-liaison/freedom-information-act-office" class="usa-link usa-link--alt ncbi-footer__link" > FOIA </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.hhs.gov/vulnerability-disclosure-policy/index.html" class="usa-link usa-link--external usa-link--alt ncbi-footer__link" rel="noreferrer noopener" target='_blank' > HHS Vulnerability Disclosure </a> </li> </ul> <ul class="usa-list usa-list--unstyled ncbi-footer__vertical-list ncbi-footer__column"> <li class="ncbi-footer__vertical-list-item"> <a href="https://support.nlm.nih.gov/" class="usa-link usa-link--alt ncbi-footer__link" > Help </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nlm.nih.gov/accessibility.html" class="usa-link usa-link--alt ncbi-footer__link" > Accessibility </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nlm.nih.gov/careers/careers.html" class="usa-link usa-link--alt ncbi-footer__link" > Careers </a> </li> </ul> </div> <div class="grid-row grid-col-12" data-testid="grid"> <ul class="ncbi-footer__bottom-links-list"> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.nlm.nih.gov/" class="usa-link usa-link--alt ncbi-footer__link" > NLM </a> </li> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.nih.gov/" class="usa-link usa-link--alt ncbi-footer__link" > NIH </a> </li> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.hhs.gov/" class="usa-link usa-link--external usa-link--alt ncbi-footer__link" rel="noreferrer noopener" target='_blank' > HHS </a> </li> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.usa.gov/" class="usa-link usa-link--external usa-link--alt ncbi-footer__link" rel="noreferrer noopener" target='_blank' > USA.gov </a> </li> </ul> </div> </div> </footer> <script type="text/javascript" src="https://cdn.ncbi.nlm.nih.gov/core/pinger/pinger.js"> </script> <button class="back-to-top" data-ga-category="pagination" data-ga-action="back_to_top"> <label>Back to Top</label> <svg class="usa-icon order-0" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#arrow_upward"></use> </svg> </button> <script src="https://code.jquery.com/jquery-3.5.0.min.js" integrity="sha256-xNzN2a4ltkB44Mc/Jz3pT4iU1cmeR0FkXs4pru/JxaQ=" crossorigin="anonymous"> </script> <script type="text/javascript">var exports = {};</script> <script src="/static/CACHE/js/output.13b077bc3ffd.js"></script> <script type="application/javascript"> window.ncbi = window.ncbi || {}; window.ncbi.pmc = window.ncbi.pmc || {}; window.ncbi.pmc.options = { logLevel: 'INFO', staticEndpoint: '/static/', citeCookieName: 'pmc-cf', }; </script> <script type="module" crossorigin="" src="/static/assets/base-9bea7450.js"></script> <script type="module" crossorigin="" src="/static/assets/article-722d91a2.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10