CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 182 results for author: <span class="mathjax">Forster, K</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Forster, K"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Forster%2C+K&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Forster, K"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Forster%2C+K&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Forster%2C+K&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Forster%2C+K&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Forster%2C+K&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Forster%2C+K&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.07339">arXiv:2410.07339</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.07339">pdf</a>, <a href="https://arxiv.org/format/2410.07339">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> The NuSTAR Local AGN $N_{\rm H}$ Distribution Survey (NuLANDS) I: Towards a Truly Representative Column Density Distribution in the Local Universe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Boorman%2C+P+G">Peter G. Boorman</a>, <a href="/search/?searchtype=author&amp;query=Gandhi%2C+P">Poshak Gandhi</a>, <a href="/search/?searchtype=author&amp;query=Buchner%2C+J">Johannes Buchner</a>, <a href="/search/?searchtype=author&amp;query=Stern%2C+D">Daniel Stern</a>, <a href="/search/?searchtype=author&amp;query=Ricci%2C+C">Claudio Ricci</a>, <a href="/search/?searchtype=author&amp;query=Balokovi%C4%87%2C+M">Mislav Balokovi膰</a>, <a href="/search/?searchtype=author&amp;query=Asmus%2C+D">Daniel Asmus</a>, <a href="/search/?searchtype=author&amp;query=Harrison%2C+F+A">Fiona A. Harrison</a>, <a href="/search/?searchtype=author&amp;query=Svoboda%2C+J">Ji艡铆 Svoboda</a>, <a href="/search/?searchtype=author&amp;query=Greenwell%2C+C">Claire Greenwell</a>, <a href="/search/?searchtype=author&amp;query=Koss%2C+M">Michael Koss</a>, <a href="/search/?searchtype=author&amp;query=Alexander%2C+D+M">David M. Alexander</a>, <a href="/search/?searchtype=author&amp;query=Annuar%2C+A">Adlyka Annuar</a>, <a href="/search/?searchtype=author&amp;query=Bauer%2C+F">Franz Bauer</a>, <a href="/search/?searchtype=author&amp;query=Brandt%2C+W+N">William N. Brandt</a>, <a href="/search/?searchtype=author&amp;query=Brightman%2C+M">Murray Brightman</a>, <a href="/search/?searchtype=author&amp;query=Panessa%2C+F">Francesca Panessa</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+C+J">Chien-Ting J. Chen</a>, <a href="/search/?searchtype=author&amp;query=Farrah%2C+D">Duncan Farrah</a>, <a href="/search/?searchtype=author&amp;query=Forster%2C+K">Karl Forster</a>, <a href="/search/?searchtype=author&amp;query=Grefenstette%2C+B">Brian Grefenstette</a>, <a href="/search/?searchtype=author&amp;query=H%C3%B6nig%2C+S+F">Sebastian F. H枚nig</a>, <a href="/search/?searchtype=author&amp;query=Hill%2C+A+B">Adam B. Hill</a>, <a href="/search/?searchtype=author&amp;query=Kammoun%2C+E">Elias Kammoun</a>, <a href="/search/?searchtype=author&amp;query=Lansbury%2C+G">George Lansbury</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.07339v1-abstract-short" style="display: inline;"> Hard X-ray-selected samples of Active Galactic Nuclei (AGN) provide one of the cleanest views of supermassive black hole accretion, but are biased against objects obscured by Compton-thick gas column densities of $N_{\rm H}$ $&gt;$ 10$^{24}$ cm$^{-2}$. To tackle this issue, we present the NuSTAR Local AGN $N_{\rm H}$ Distribution Survey (NuLANDS)$-$a legacy sample of 122 nearby ($z$ $&lt;$ 0.044) AGN pr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07339v1-abstract-full').style.display = 'inline'; document.getElementById('2410.07339v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.07339v1-abstract-full" style="display: none;"> Hard X-ray-selected samples of Active Galactic Nuclei (AGN) provide one of the cleanest views of supermassive black hole accretion, but are biased against objects obscured by Compton-thick gas column densities of $N_{\rm H}$ $&gt;$ 10$^{24}$ cm$^{-2}$. To tackle this issue, we present the NuSTAR Local AGN $N_{\rm H}$ Distribution Survey (NuLANDS)$-$a legacy sample of 122 nearby ($z$ $&lt;$ 0.044) AGN primarily selected to have warm infrared colors from IRAS between 25$-$60 $渭$m. We show that optically classified type 1 and 2 AGN in NuLANDS are indistinguishable in terms of optical [OIII] line flux and mid-to-far infrared AGN continuum bolometric indicators, as expected from an isotropically selected AGN sample, while type 2 AGN are deficient in terms of their observed hard X-ray flux. By testing many X-ray spectroscopic models, we show the measured line-of-sight column density varies on average by $\sim$ 1.4 orders of magnitude depending on the obscurer geometry. To circumvent such issues we propagate the uncertainties per source into the parent column density distribution, finding a directly measured Compton-thick fraction of 35 $\pm$ 9%. By construction, our sample will miss sources affected by severe narrow-line reddening, and thus segregates sources dominated by small-scale nuclear obscuration from large-scale host-galaxy obscuration. This bias implies an even higher intrinsic obscured AGN fraction may be possible, although tests for additional biases arising from our infrared selection find no strong effects on the measured column-density distribution. NuLANDS thus holds potential as an optimized sample for future follow-up with current and next-generation instruments aiming to study the local AGN population in an isotropic manner. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07339v1-abstract-full').style.display = 'none'; document.getElementById('2410.07339v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ. 50 pages (78 including appendix and bibliography), 21 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02021">arXiv:2410.02021</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.02021">pdf</a>, <a href="https://arxiv.org/format/2410.02021">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Structures and Algorithms">cs.DS</span> </div> </div> <p class="title is-5 mathjax"> On the Resilience of Fast Failover Routing Against Dynamic Link Failures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dai%2C+W">Wenkai Dai</a>, <a href="/search/?searchtype=author&amp;query=Foerster%2C+K">Klaus-Tycho Foerster</a>, <a href="/search/?searchtype=author&amp;query=Schmid%2C+S">Stefan Schmid</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02021v1-abstract-short" style="display: inline;"> Modern communication networks feature local fast failover mechanisms in the data plane, to swiftly respond to link failures with pre-installed rerouting rules. This paper explores resilient routing meant to tolerate $\leq k$ simultaneous link failures, ensuring packet delivery, provided that the source and destination remain connected. While past theoretical works studied failover routing under st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02021v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02021v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02021v1-abstract-full" style="display: none;"> Modern communication networks feature local fast failover mechanisms in the data plane, to swiftly respond to link failures with pre-installed rerouting rules. This paper explores resilient routing meant to tolerate $\leq k$ simultaneous link failures, ensuring packet delivery, provided that the source and destination remain connected. While past theoretical works studied failover routing under static link failures, i.e., links which permanently and simultaneously fail, real-world networks often face link flapping--dynamic down states caused by, e.g., numerous short-lived software-related faults. Thus, in this initial work, we re-investigate the resilience of failover routing against link flapping, by categorizing link failures into static, semi-dynamic (removing the assumption that links fail simultaneously), and dynamic (removing the assumption that links fail permanently) types, shedding light on the capabilities and limitations of failover routing under these scenarios. We show that $k$-edge-connected graphs exhibit $(k-1)$-resilient routing against dynamic failures for $k \leq 5$. We further show that this result extends to arbitrary $k$ if it is possible to rewrite $\log k$ bits in the packet header. Rewriting $3$ bits suffices to cope with $k$ semi-dynamic failures. However, on general graphs, tolerating $2$ dynamic failures becomes impossible without bit-rewriting. Even by rewriting $\log k$ bits, resilient routing cannot resolve $k$ dynamic failures, demonstrating the limitation of local fast rerouting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02021v1-abstract-full').style.display = 'none'; document.getElementById('2410.02021v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.09432">arXiv:2407.09432</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.09432">pdf</a>, <a href="https://arxiv.org/format/2407.09432">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> International Astrophysical Consortium for High-energy Calibration: Summary of the 15th IACHEC Workshop </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Madsen%2C+K+K">K. K. Madsen</a>, <a href="/search/?searchtype=author&amp;query=Burwitz%2C+V">V. Burwitz</a>, <a href="/search/?searchtype=author&amp;query=Forster%2C+K">K. Forster</a>, <a href="/search/?searchtype=author&amp;query=Grant%2C+C+E">C. E. Grant</a>, <a href="/search/?searchtype=author&amp;query=Guainazzi%2C+M">M. Guainazzi</a>, <a href="/search/?searchtype=author&amp;query=Kashyap%2C+V">V. Kashyap</a>, <a href="/search/?searchtype=author&amp;query=Marshall%2C+H+L">H. L. Marshall</a>, <a href="/search/?searchtype=author&amp;query=Miller%2C+E+D">E. D. Miller</a>, <a href="/search/?searchtype=author&amp;query=Natalucci%2C+L">L. Natalucci</a>, <a href="/search/?searchtype=author&amp;query=Plucinsky%2C+P+P">P. P. Plucinsky</a>, <a href="/search/?searchtype=author&amp;query=Terada%2C+Y">Y. Terada</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.09432v1-abstract-short" style="display: inline;"> In this report, we summarize the activities of the International Astronomical Consortium for High Energy Calibration (IACHEC) from the 15th IACHEC Workshop in Pelham, Germany. Sixty scientists directly involved in the calibration of operational and future high-energy missions gathered for 3.5 days to discuss the status of the cross-calibration between the current international complement of X-ray&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09432v1-abstract-full').style.display = 'inline'; document.getElementById('2407.09432v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.09432v1-abstract-full" style="display: none;"> In this report, we summarize the activities of the International Astronomical Consortium for High Energy Calibration (IACHEC) from the 15th IACHEC Workshop in Pelham, Germany. Sixty scientists directly involved in the calibration of operational and future high-energy missions gathered for 3.5 days to discuss the status of the cross-calibration between the current international complement of X-ray observatories and the possibilities to improve it. This summary consists of reports from the Working Groups with topics ranging across the identification and characterization of standard calibration sources, multi-observatory cross-calibration campaigns, appropriate and new statistical techniques, calibration of instruments and characterization of background, preservation of knowledge, and results for the benefit of the astronomical community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09432v1-abstract-full').style.display = 'none'; document.getElementById('2407.09432v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 1 figure. arXiv admin note: text overlap with arXiv:2111.01613</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.17637">arXiv:2404.17637</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.17637">pdf</a>, <a href="https://arxiv.org/format/2404.17637">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The NuSTAR Serendipitous Survey: the 80-month catalog and source properties of the high-energy emitting AGN and quasar population </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Greenwell%2C+C+L">Claire L. Greenwell</a>, <a href="/search/?searchtype=author&amp;query=Klindt%2C+L">Lizelke Klindt</a>, <a href="/search/?searchtype=author&amp;query=Lansbury%2C+G+B">George B. Lansbury</a>, <a href="/search/?searchtype=author&amp;query=Rosario%2C+D+J">David J. Rosario</a>, <a href="/search/?searchtype=author&amp;query=Alexander%2C+D+M">David M. Alexander</a>, <a href="/search/?searchtype=author&amp;query=Aird%2C+J">James Aird</a>, <a href="/search/?searchtype=author&amp;query=Stern%2C+D">Daniel Stern</a>, <a href="/search/?searchtype=author&amp;query=Forster%2C+K">Karl Forster</a>, <a href="/search/?searchtype=author&amp;query=Koss%2C+M+J">Michael J. Koss</a>, <a href="/search/?searchtype=author&amp;query=Bauer%2C+F+E">Franz E. Bauer</a>, <a href="/search/?searchtype=author&amp;query=Ricci%2C+C">Claudio Ricci</a>, <a href="/search/?searchtype=author&amp;query=Tomsick%2C+J">John Tomsick</a>, <a href="/search/?searchtype=author&amp;query=Brandt%2C+W+N">William N. Brandt</a>, <a href="/search/?searchtype=author&amp;query=Connor%2C+T">Thomas Connor</a>, <a href="/search/?searchtype=author&amp;query=Boorman%2C+P+G">Peter G. Boorman</a>, <a href="/search/?searchtype=author&amp;query=Annuar%2C+A">Adlyka Annuar</a>, <a href="/search/?searchtype=author&amp;query=Ballantyne%2C+D+R">David R. Ballantyne</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+C">Chien-Ting Chen</a>, <a href="/search/?searchtype=author&amp;query=Civano%2C+F">Francesca Civano</a>, <a href="/search/?searchtype=author&amp;query=Comastri%2C+A">Andrea Comastri</a>, <a href="/search/?searchtype=author&amp;query=Fawcett%2C+V+A">Victoria A. Fawcett</a>, <a href="/search/?searchtype=author&amp;query=Fornasini%2C+F+M">Francesca M. Fornasini</a>, <a href="/search/?searchtype=author&amp;query=Gandhi%2C+P">Poshak Gandhi</a>, <a href="/search/?searchtype=author&amp;query=Harrison%2C+F">Fiona Harrison</a>, <a href="/search/?searchtype=author&amp;query=Heida%2C+M">Marianne Heida</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.17637v1-abstract-short" style="display: inline;"> We present a catalog of hard X-ray serendipitous sources detected in the first 80 months of observations by the Nuclear Spectroscopic Telescope Array (NuSTAR). The NuSTAR serendipitous survey 80-month (NSS80) catalog has an unprecedented $\sim$ 62 Ms of effective exposure time over 894 unique fields (a factor of three increase over the 40-month catalog), with an areal coverage of $\sim $36 deg&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17637v1-abstract-full').style.display = 'inline'; document.getElementById('2404.17637v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.17637v1-abstract-full" style="display: none;"> We present a catalog of hard X-ray serendipitous sources detected in the first 80 months of observations by the Nuclear Spectroscopic Telescope Array (NuSTAR). The NuSTAR serendipitous survey 80-month (NSS80) catalog has an unprecedented $\sim$ 62 Ms of effective exposure time over 894 unique fields (a factor of three increase over the 40-month catalog), with an areal coverage of $\sim $36 deg$^2$, larger than all NuSTAR extragalactic surveys. NSS80 provides 1274 hard X-ray sources in the $3-24$ keV band (822 new detections compared to the previous 40-month catalog). Approximately 76% of the NuSTAR sources have lower-energy ($&lt;10$ keV) X-ray counterparts from Chandra, XMM-Newton, and Swift-XRT. We have undertaken an extensive campaign of ground-based spectroscopic follow-up to obtain new source redshifts and classifications for 427 sources. Combining these with existing archival spectroscopy provides redshifts for 550 NSS80 sources, of which 547 are classified. The sample is primarily composed of active galactic nuclei (AGN), detected over a large range in redshift ($z$ = 0.012-3.43), but also includes 58 spectroscopically confirmed Galactic sources. In addition, five AGN/galaxy pairs, one dual AGN system, one BL Lac candidate, and a hotspot of 4C 74.26 (radio quasar) have been identified. The median rest-frame $10-40$ keV luminosity and redshift of the NSS80 are $\langle{L_\mathrm{10-40 keV}}\rangle$ = 1.2 $\times$ 10$^{44}$ erg s$^{-1}$ and $\langle z \rangle = 0.56$. We investigate the optical properties and construct composite optical spectra to search for subtle signatures not present in the individual spectra, finding an excess of redder BL AGN compared to optical quasar surveys predominantly due to the presence of the host-galaxy and, at least in part, due to dust obscuration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17637v1-abstract-full').style.display = 'none'; document.getElementById('2404.17637v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ:S. 57 pages, 32 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.13845">arXiv:2402.13845</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.13845">pdf</a>, <a href="https://arxiv.org/ps/2402.13845">ps</a>, <a href="https://arxiv.org/format/2402.13845">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Structures and Algorithms">cs.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> Multi-Agent Online Graph Exploration on Cycles and Tadpole Graphs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Akker%2C+E+v+d">Erik van den Akker</a>, <a href="/search/?searchtype=author&amp;query=Buchin%2C+K">Kevin Buchin</a>, <a href="/search/?searchtype=author&amp;query=Foerster%2C+K">Klaus-Tycho Foerster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.13845v2-abstract-short" style="display: inline;"> We study the problem of multi-agent online graph exploration, in which a team of k agents has to explore a given graph, starting and ending on the same node. The graph is initially unknown. Whenever a node is visited by an agent, its neighborhood and adjacent edges are revealed. The agents share a global view of the explored parts of the graph. The cost of the exploration has to be minimized, wher&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13845v2-abstract-full').style.display = 'inline'; document.getElementById('2402.13845v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.13845v2-abstract-full" style="display: none;"> We study the problem of multi-agent online graph exploration, in which a team of k agents has to explore a given graph, starting and ending on the same node. The graph is initially unknown. Whenever a node is visited by an agent, its neighborhood and adjacent edges are revealed. The agents share a global view of the explored parts of the graph. The cost of the exploration has to be minimized, where cost either describes the time needed for the entire exploration (time model), or the length of the longest path traversed by any agent (energy model). We investigate graph exploration on cycles and tadpole graphs for 2-4 agents, providing optimal results on the competitive ratio in the energy model (1-competitive with two agents on cycles and three agents on tadpole graphs), and for tadpole graphs in the time model (1.5-competitive with four agents). We also show competitive upper bounds of 2 for the exploration of tadpole graphs with three agents, and 2.5 for the exploration of tadpole graphs with two agents in the time model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13845v2-abstract-full').style.display = 'none'; document.getElementById('2402.13845v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2: Update Related Work, more detailed description of models in Motivation</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.04638">arXiv:2401.04638</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.04638">pdf</a>, <a href="https://arxiv.org/format/2401.04638">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Performance">cs.PF</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Discrete Mathematics">cs.DM</span> </div> </div> <p class="title is-5 mathjax"> Approximation Algorithms for Minimizing Congestion in Demand-Aware Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dai%2C+W">Wenkai Dai</a>, <a href="/search/?searchtype=author&amp;query=Dinitz%2C+M">Michael Dinitz</a>, <a href="/search/?searchtype=author&amp;query=Foerster%2C+K">Klaus-Tycho Foerster</a>, <a href="/search/?searchtype=author&amp;query=Luo%2C+L">Long Luo</a>, <a href="/search/?searchtype=author&amp;query=Schmid%2C+S">Stefan Schmid</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.04638v1-abstract-short" style="display: inline;"> Emerging reconfigurable optical communication technologies allow to enhance datacenter topologies with demand-aware links optimized towards traffic patterns. This paper studies the algorithmic problem of jointly optimizing topology and routing in such demand-aware networks to minimize congestion, along two dimensions: (1) splittable or unsplittable flows, and (2) whether routing is segregated, i.e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04638v1-abstract-full').style.display = 'inline'; document.getElementById('2401.04638v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.04638v1-abstract-full" style="display: none;"> Emerging reconfigurable optical communication technologies allow to enhance datacenter topologies with demand-aware links optimized towards traffic patterns. This paper studies the algorithmic problem of jointly optimizing topology and routing in such demand-aware networks to minimize congestion, along two dimensions: (1) splittable or unsplittable flows, and (2) whether routing is segregated, i.e., whether routes can or cannot combine both demand-aware and demand-oblivious (static) links. For splittable and segregated routing, we show that the problem is generally $2$-approximable, but APX-hard even for uniform demands induced by a bipartite demand graph. For unsplittable and segregated routing, we establish upper and lower bounds of $O\left(\log m/ \log\log m \right)$ and $惟\left(\log m/ \log\log m \right)$, respectively, for polynomial-time approximation algorithms, where $m$ is the number of static links. We further reveal that under un-/splittable and non-segregated routing, even for demands of a single source (resp., destination), the problem cannot be approximated better than $惟\left(\frac{c_{\max}}{c_{\min}} \right)$ unless P=NP, where $c_{\max}$ (resp., $c_{\min}$) denotes the maximum (resp., minimum) capacity. It remains NP-hard for uniform capacities, but is tractable for a single commodity and uniform capacities. Our trace-driven simulations show a significant reduction in network congestion compared to existing solutions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04638v1-abstract-full').style.display = 'none'; document.getElementById('2401.04638v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.06131">arXiv:2211.06131</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.06131">pdf</a>, <a href="https://arxiv.org/format/2211.06131">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.4230/LIPIcs.OPODIS.2022.4">10.4230/LIPIcs.OPODIS.2022.4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chopin: Combining Distributed and Centralized Schedulers for Self-Adjusting Datacenter Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Schiff%2C+N+R">Neta Rozen Schiff</a>, <a href="/search/?searchtype=author&amp;query=Foerster%2C+K">Klaus-Tycho Foerster</a>, <a href="/search/?searchtype=author&amp;query=Schmid%2C+S">Stefan Schmid</a>, <a href="/search/?searchtype=author&amp;query=Hay%2C+D">David Hay</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.06131v1-abstract-short" style="display: inline;"> The performance of distributed and data-centric applications often critically depends on the interconnecting network. Emerging reconfigurable datacenter networks (RDCNs) are a particularly innovative approach to improve datacenter throughput. Relying on a dynamic optical topology which can be adjusted towards the workload in a demand-aware manner, RDCNs allow to exploit temporal and spatial locali&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.06131v1-abstract-full').style.display = 'inline'; document.getElementById('2211.06131v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.06131v1-abstract-full" style="display: none;"> The performance of distributed and data-centric applications often critically depends on the interconnecting network. Emerging reconfigurable datacenter networks (RDCNs) are a particularly innovative approach to improve datacenter throughput. Relying on a dynamic optical topology which can be adjusted towards the workload in a demand-aware manner, RDCNs allow to exploit temporal and spatial locality in the communication pattern, and to provide topological shortcuts for frequently communicating racks. The key challenge, however, concerns how to realize demand-awareness in RDCNs in a scalable fashion. This paper presents and evaluates Chopin, a hybrid scheduler for self-adjusting networks that provides demand-awareness at low overhead, by combining centralized and distributed approaches. Chopin allocates optical circuits to elephant flows, through its slower centralized scheduler, utilizing global information. Chopin&#39;s distributed scheduler is orders of magnitude faster and can swiftly react to changes in the traffic and adjust the optical circuits accordingly, by using only local information and running at each rack separately. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.06131v1-abstract-full').style.display = 'none'; document.getElementById('2211.06131v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear at OPODIS 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.04058">arXiv:2206.04058</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.04058">pdf</a>, <a href="https://arxiv.org/format/2206.04058">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Measuring the Evolution of the NuSTAR Detector Gains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Grefenstette%2C+B">Brian Grefenstette</a>, <a href="/search/?searchtype=author&amp;query=Brightman%2C+M">Murray Brightman</a>, <a href="/search/?searchtype=author&amp;query=Earnshaw%2C+H+P">Hannah P. Earnshaw</a>, <a href="/search/?searchtype=author&amp;query=Forster%2C+K">Karl Forster</a>, <a href="/search/?searchtype=author&amp;query=Madsen%2C+K+K">Kristin K. Madsen</a>, <a href="/search/?searchtype=author&amp;query=Miyasaka%2C+H">Hiromasa Miyasaka</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.04058v2-abstract-short" style="display: inline;"> The memo describes the methods used to track the long-term gain variations in the NuSTAR detectors. It builds on the analysis presented in Madsen et al. (2015) using the deployable calibration source to measure the gain drift in the NuSTAR CdZnTe detectors. This is intended to be a live document that is periodically updated as new entries are required in the NuSTAR gain CALDB files. This document&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.04058v2-abstract-full').style.display = 'inline'; document.getElementById('2206.04058v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.04058v2-abstract-full" style="display: none;"> The memo describes the methods used to track the long-term gain variations in the NuSTAR detectors. It builds on the analysis presented in Madsen et al. (2015) using the deployable calibration source to measure the gain drift in the NuSTAR CdZnTe detectors. This is intended to be a live document that is periodically updated as new entries are required in the NuSTAR gain CALDB files. This document covers analysis up through early-2022 and the gain v011 CALDB file released in version 20240226. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.04058v2-abstract-full').style.display = 'none'; document.getElementById('2206.04058v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 page, 7 figures. Intended as a living, easy-to-find document. No intention of submitting this to a journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.03413">arXiv:2204.03413</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.03413">pdf</a>, <a href="https://arxiv.org/format/2204.03413">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> On the Price of Locality in Static Fast Rerouting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Foerster%2C+K">Klaus-Tycho Foerster</a>, <a href="/search/?searchtype=author&amp;query=Hirvonen%2C+J">Juho Hirvonen</a>, <a href="/search/?searchtype=author&amp;query=Pignolet%2C+Y">Yvonne-Anne Pignolet</a>, <a href="/search/?searchtype=author&amp;query=Schmid%2C+S">Stefan Schmid</a>, <a href="/search/?searchtype=author&amp;query=Tredan%2C+G">Gilles Tredan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.03413v1-abstract-short" style="display: inline;"> Modern communication networks feature fully decentralized flow rerouting mechanisms which allow them to quickly react to link failures. This paper revisits the fundamental algorithmic problem underlying such local fast rerouting mechanisms. Is it possible to achieve perfect resilience, i.e., to define local routing tables which preserve connectivity as long as the underlying network is still conne&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.03413v1-abstract-full').style.display = 'inline'; document.getElementById('2204.03413v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.03413v1-abstract-full" style="display: none;"> Modern communication networks feature fully decentralized flow rerouting mechanisms which allow them to quickly react to link failures. This paper revisits the fundamental algorithmic problem underlying such local fast rerouting mechanisms. Is it possible to achieve perfect resilience, i.e., to define local routing tables which preserve connectivity as long as the underlying network is still connected? Feigenbaum et al. (ACM PODC&#39;12) and Foerster et al. (SIAM APOCS&#39;21) showed that, unfortunately, it is impossible in general. This paper charts a more complete landscape of the feasibility of perfect resilience. We first show a perhaps surprisingly large price of locality in static fast rerouting mechanisms: even when source and destination remain connected by a linear number of link-disjoint paths after link failures, local rerouting algorithms cannot find any of them which leads to a disconnection on the routing level. This motivates us to study resilience in graphs which exclude certain dense minors, such as cliques or a complete bipartite graphs, and in particular, provide characterizations of the possibility of perfect resilience in different routing models. We provide further insights into the price of locality by showing impossibility results for few failures and investigate perfect resilience on Topology Zoo networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.03413v1-abstract-full').style.display = 'none'; document.getElementById('2204.03413v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted and to appear at the 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN&#39;22)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.04685">arXiv:2202.04685</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.04685">pdf</a>, <a href="https://arxiv.org/format/2202.04685">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Reconstruction of the NuSTAR point spread function using single-laser metrology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Earnshaw%2C+H+P">Hannah P. Earnshaw</a>, <a href="/search/?searchtype=author&amp;query=Madsen%2C+K+K">Kristin K. Madsen</a>, <a href="/search/?searchtype=author&amp;query=Forster%2C+K">Karl Forster</a>, <a href="/search/?searchtype=author&amp;query=Grefenstette%2C+B+W">Brian W. Grefenstette</a>, <a href="/search/?searchtype=author&amp;query=Brightman%2C+M">Murray Brightman</a>, <a href="/search/?searchtype=author&amp;query=Zoglauer%2C+A">Andreas Zoglauer</a>, <a href="/search/?searchtype=author&amp;query=Harrison%2C+F">Fiona Harrison</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.04685v1-abstract-short" style="display: inline;"> This paper describes a method by which the metrology system of the Nuclear Spectroscopic Telescope Array (NuSTAR) X-ray space observatory, which uses two lasers to characterize the relative motion of the optics and focal plane benches, can be approximated should one laser fail. The two benches are separated by a ten-meter-long rigid mast that undergoes small amounts of thermal flexing which need t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.04685v1-abstract-full').style.display = 'inline'; document.getElementById('2202.04685v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.04685v1-abstract-full" style="display: none;"> This paper describes a method by which the metrology system of the Nuclear Spectroscopic Telescope Array (NuSTAR) X-ray space observatory, which uses two lasers to characterize the relative motion of the optics and focal plane benches, can be approximated should one laser fail. The two benches are separated by a ten-meter-long rigid mast that undergoes small amounts of thermal flexing which need to be compensated for in order to produce a non-blurred image. We analyze the trends of mast motion by archival observation parameters in order to discover whether the mast motion in future observations can be predicted. We find that, by using the solar aspect angle (SAA), observation date, and orbital phase, we can simulate the motion of one laser by translating the track produced by the other and applying modifications to the resulting mast aspect solution, allowing the reconstruction of a minimally distorted point spread function in most cases. We will implement the generation of simulated mast files alongside the usual NuSTAR data reduction pipeline for contingency purposes. This work has implications for reducing the risk of implementing laser metrology systems on future missions that use deployable masts to achieve the long focal lengths required in high-energy astronomy by mitigating the impact of a metrology laser failure in the extended phase of a mission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.04685v1-abstract-full').style.display = 'none'; document.getElementById('2202.04685v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 20 figures, 1 table. Accepted for publication in JATIS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.00878">arXiv:2202.00878</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.00878">pdf</a>, <a href="https://arxiv.org/format/2202.00878">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> A Longitudinal Dataset of Twitter ISIS Users </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Karimi%2C+Y">Younes Karimi</a>, <a href="/search/?searchtype=author&amp;query=Squicciarini%2C+A">Anna Squicciarini</a>, <a href="/search/?searchtype=author&amp;query=Forster%2C+P+K">Peter K. Forster</a>, <a href="/search/?searchtype=author&amp;query=Leavitt%2C+K+M">Kira M. Leavitt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.00878v1-abstract-short" style="display: inline;"> We present a large longitudinal dataset of tweets from two sets of users that are suspected to be affiliated with ISIS. These sets of users are identified based on a prior study and a campaign aimed at shutting down ISIS Twitter accounts. These users have engaged with known ISIS accounts at least once during 2014-2015 and are still active as of 2021. Some of them have directly supported the ISIS u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.00878v1-abstract-full').style.display = 'inline'; document.getElementById('2202.00878v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.00878v1-abstract-full" style="display: none;"> We present a large longitudinal dataset of tweets from two sets of users that are suspected to be affiliated with ISIS. These sets of users are identified based on a prior study and a campaign aimed at shutting down ISIS Twitter accounts. These users have engaged with known ISIS accounts at least once during 2014-2015 and are still active as of 2021. Some of them have directly supported the ISIS users and their tweets by retweeting them, and some of the users that have quoted tweets of ISIS, have uncertain connections to ISIS seed accounts. This study and the dataset represent a unique approach to analyzing ISIS data. Although much research exists on ISIS online activities, few studies have focused on individual accounts. Our approach to validating accounts as well as developing a framework for differentiating accounts&#39; functionality (e.g., propaganda versus operational planning) offers a foundation for future research. We perform some descriptive statistics and preliminary analyses on our collected data to provide deeper insight and highlight the significance and practicality of such analyses. We further discuss several cross-disciplinary potential use cases and research directions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.00878v1-abstract-full').style.display = 'none'; document.getElementById('2202.00878v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures; Submitted to the 16th International Conference on Web and Social Media (AAAI ICWSM-2022)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 68T50; 68-11 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> J.4; K.4.1; I.2.7; H.4.3 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.07746">arXiv:2201.07746</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.07746">pdf</a>, <a href="https://arxiv.org/format/2201.07746">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> A Centrality Analysis of the Lightning Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Zabka%2C+P">Philipp Zabka</a>, <a href="/search/?searchtype=author&amp;query=Foerster%2C+K">Klaus-Tycho Foerster</a>, <a href="/search/?searchtype=author&amp;query=Schmid%2C+S">Stefan Schmid</a>, <a href="/search/?searchtype=author&amp;query=Decker%2C+C">Christian Decker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.07746v1-abstract-short" style="display: inline;"> Payment channel networks (PCNs) such as the Lightning Network offer an appealing solution to the scalability problem faced by many cryptocurrencies operating on a blockchain such as Bitcoin. However, PCNs also inherit the stringent dependability requirements of blockchain. In particular, in order to mitigate liquidity bottlenecks as well as on-path attacks, it is important that payment channel net&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.07746v1-abstract-full').style.display = 'inline'; document.getElementById('2201.07746v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.07746v1-abstract-full" style="display: none;"> Payment channel networks (PCNs) such as the Lightning Network offer an appealing solution to the scalability problem faced by many cryptocurrencies operating on a blockchain such as Bitcoin. However, PCNs also inherit the stringent dependability requirements of blockchain. In particular, in order to mitigate liquidity bottlenecks as well as on-path attacks, it is important that payment channel networks maintain a high degree of decentralization. Motivated by this requirement, we conduct an empirical centrality analysis of the popular Lightning Network, and in particular, the betweenness centrality distribution of the routing system. Based on our extensive data set (using several millions of channel update messages), we implemented a TimeMachine tool which enables us to study the network evolution over time. We find that although the network is generally fairly decentralized, a small number of nodes can attract a significant fraction of the transactions, introducing skew. Furthermore, our analysis suggests that over the last two years, the centrality has increased significantly, e.g., the inequality (measured by the Gini index) has increased by more than 10%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.07746v1-abstract-full').style.display = 'none'; document.getElementById('2201.07746v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.00339">arXiv:2112.00339</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.00339">pdf</a>, <a href="https://arxiv.org/format/2112.00339">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac8d67">10.3847/1538-4357/ac8d67 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Orbital decay in M82 X-2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bachetti%2C+M">Matteo Bachetti</a>, <a href="/search/?searchtype=author&amp;query=Heida%2C+M">Marianne Heida</a>, <a href="/search/?searchtype=author&amp;query=Maccarone%2C+T">Thomas Maccarone</a>, <a href="/search/?searchtype=author&amp;query=Huppenkothen%2C+D">Daniela Huppenkothen</a>, <a href="/search/?searchtype=author&amp;query=Israel%2C+G+L">Gian Luca Israel</a>, <a href="/search/?searchtype=author&amp;query=Barret%2C+D">Didier Barret</a>, <a href="/search/?searchtype=author&amp;query=Brightman%2C+M">Murray Brightman</a>, <a href="/search/?searchtype=author&amp;query=Brumback%2C+M">McKinley Brumback</a>, <a href="/search/?searchtype=author&amp;query=Earnshaw%2C+H+P">Hannah P. Earnshaw</a>, <a href="/search/?searchtype=author&amp;query=Forster%2C+K">Karl Forster</a>, <a href="/search/?searchtype=author&amp;query=F%C3%BCrst%2C+F">Felix F眉rst</a>, <a href="/search/?searchtype=author&amp;query=Grefenstette%2C+B+W">Brian W. Grefenstette</a>, <a href="/search/?searchtype=author&amp;query=Harrison%2C+F+A">Fiona A. Harrison</a>, <a href="/search/?searchtype=author&amp;query=Jaodand%2C+A+D">Amruta D. Jaodand</a>, <a href="/search/?searchtype=author&amp;query=Madsen%2C+K+K">Kristin K. Madsen</a>, <a href="/search/?searchtype=author&amp;query=Middleton%2C+M">Matthew Middleton</a>, <a href="/search/?searchtype=author&amp;query=Pike%2C+S+N">Sean N. Pike</a>, <a href="/search/?searchtype=author&amp;query=Pilia%2C+M">Maura Pilia</a>, <a href="/search/?searchtype=author&amp;query=Poutanen%2C+J">Juri Poutanen</a>, <a href="/search/?searchtype=author&amp;query=Stern%2C+D">Daniel Stern</a>, <a href="/search/?searchtype=author&amp;query=Tomsick%2C+J+A">John A. Tomsick</a>, <a href="/search/?searchtype=author&amp;query=Walton%2C+D+J">Dominic J. Walton</a>, <a href="/search/?searchtype=author&amp;query=Webb%2C+N">Natalie Webb</a>, <a href="/search/?searchtype=author&amp;query=Wilms%2C+J">J枚rn Wilms</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.00339v2-abstract-short" style="display: inline;"> M82 X-2 is the first pulsating ultraluminous X-ray source (PULX) discovered. The luminosity of these extreme pulsars, if isotropic, implies an extreme mass transfer rate. An alternative is to assume a much lower mass transfer rate, but with an apparent luminosity boosted by geometrical beaming. Only an independent measurement of the mass transfer rate can help discriminate between these two scenar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00339v2-abstract-full').style.display = 'inline'; document.getElementById('2112.00339v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.00339v2-abstract-full" style="display: none;"> M82 X-2 is the first pulsating ultraluminous X-ray source (PULX) discovered. The luminosity of these extreme pulsars, if isotropic, implies an extreme mass transfer rate. An alternative is to assume a much lower mass transfer rate, but with an apparent luminosity boosted by geometrical beaming. Only an independent measurement of the mass transfer rate can help discriminate between these two scenarios. In this Paper, we follow the orbit of the neutron star for seven years, measure the decay of the orbit ($\dot{P}_{orb}/{P}_{orb}\approx-8\cdot10^{-6}\mathrm{yr}^{-1}$), and argue that this orbital decay is driven by extreme mass transfer of more than 150 times the mass transfer limit set by the Eddington luminosity. If this is true, the mass available to the accretor is more than enough to justify its luminosity, with no need for beaming. This also strongly favors models where the accretor is a highly-magnetized neutron star. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00339v2-abstract-full').style.display = 'none'; document.getElementById('2112.00339v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 6 figures, accepted for publication in ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 937, 125 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.14579">arXiv:2111.14579</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.14579">pdf</a>, <a href="https://arxiv.org/format/2111.14579">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3493425.3502751">10.1145/3493425.3502751 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Shortcutting Fast Failover Routes in the Data Plane </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Shukla%2C+A">Apoorv Shukla</a>, <a href="/search/?searchtype=author&amp;query=Foerster%2C+K">Klaus-Tycho Foerster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.14579v1-abstract-short" style="display: inline;"> In networks, availability is of paramount importance. As link failures are disruptive, modern networks in turn provide Fast ReRoute (FRR) mechanisms to rapidly restore connectivity. However, existing FRR approaches heavily impact performance until the slower convergence protocols kick in. The fast failover routes commonly involve unnecessary loops and detours, disturbing other traffic while causin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14579v1-abstract-full').style.display = 'inline'; document.getElementById('2111.14579v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.14579v1-abstract-full" style="display: none;"> In networks, availability is of paramount importance. As link failures are disruptive, modern networks in turn provide Fast ReRoute (FRR) mechanisms to rapidly restore connectivity. However, existing FRR approaches heavily impact performance until the slower convergence protocols kick in. The fast failover routes commonly involve unnecessary loops and detours, disturbing other traffic while causing costly packet loss. In this paper, we make a case for augmenting FRR mechanisms to avoid such inefficiencies. We introduce ShortCut that routes the packets in a loop free fashion, avoiding costly detours and decreasing link load. ShortCut achieves this by leveraging data plane programmability: when a loop is locally observed, it can be removed by short-cutting the respective route parts. As such, ShortCut is topology-independent and agnostic to the type of FRR currently deployed. Our first experimental simulations show that ShortCut can outperform control plane convergence mechanisms; moreover avoiding loops and keeping packet loss minimal opposed to existing FRR mechanisms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14579v1-abstract-full').style.display = 'none'; document.getElementById('2111.14579v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear at the ACM/IEEE Symposium on Architectures for Networking and Communications Systems 2021 (ANCS&#39;21)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.14123">arXiv:2111.14123</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.14123">pdf</a>, <a href="https://arxiv.org/format/2111.14123">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3493425.3502747">10.1145/3493425.3502747 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improving the Resilience of Fast Failover Routing: TREE (Tree Routing to Extend Edge disjoint paths) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Schweiger%2C+O">Oliver Schweiger</a>, <a href="/search/?searchtype=author&amp;query=Foerster%2C+K">Klaus-Tycho Foerster</a>, <a href="/search/?searchtype=author&amp;query=Schmid%2C+S">Stefan Schmid</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.14123v1-abstract-short" style="display: inline;"> Today&#39;s communication networks have stringent availability requirements and hence need to rapidly restore connectivity after failures. Modern networks thus implement various forms of fast reroute mechanisms in the data plane, to bridge the gap to slow global control plane convergence. State-of-the-art fast reroute commonly relies on disjoint route structures, to offer multiple independent paths to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14123v1-abstract-full').style.display = 'inline'; document.getElementById('2111.14123v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.14123v1-abstract-full" style="display: none;"> Today&#39;s communication networks have stringent availability requirements and hence need to rapidly restore connectivity after failures. Modern networks thus implement various forms of fast reroute mechanisms in the data plane, to bridge the gap to slow global control plane convergence. State-of-the-art fast reroute commonly relies on disjoint route structures, to offer multiple independent paths to the destination. We propose to leverage the network&#39;s path diversity to extend edge disjoint path mechanisms to tree routing, in order to improve the performance of fast rerouting. We present two such tree-mechanisms in detail and show that they boost resilience by up to 12% and 25% respectively on real-world, synthetic, and data center topologies, while still retaining good path length qualities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14123v1-abstract-full').style.display = 'none'; document.getElementById('2111.14123v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted at the ACM/IEEE Symposium on Architectures for Networking and Communications Systems 2021 (ANCS&#39;21)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.10199">arXiv:2111.10199</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.10199">pdf</a>, <a href="https://arxiv.org/format/2111.10199">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP05(2022)156">10.1007/JHEP05(2022)156 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Data-driven analysis of a SUSY GUT of flavour </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bernigaud%2C+J">Jordan Bernigaud</a>, <a href="/search/?searchtype=author&amp;query=Forster%2C+A+K">Adam K. Forster</a>, <a href="/search/?searchtype=author&amp;query=Herrmann%2C+B">Bj枚rn Herrmann</a>, <a href="/search/?searchtype=author&amp;query=King%2C+S+F">Stephen F. King</a>, <a href="/search/?searchtype=author&amp;query=Porod%2C+W">Werner Porod</a>, <a href="/search/?searchtype=author&amp;query=Rowley%2C+S+J">Samuel J. Rowley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.10199v3-abstract-short" style="display: inline;"> We present a data-driven analysis of a concrete Supersymmetric (SUSY) Grand Unified Theory (GUT) of flavour, based on $SU(5)\times S_4$, which predicts charged fermion and neutrino mass and mixing, and where the mass matrices of both the Standard Model and the Supersymmetric particles are controlled by a common symmetry at the GUT scale. This framework also predicts non-vanishing non-minimal flavo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.10199v3-abstract-full').style.display = 'inline'; document.getElementById('2111.10199v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.10199v3-abstract-full" style="display: none;"> We present a data-driven analysis of a concrete Supersymmetric (SUSY) Grand Unified Theory (GUT) of flavour, based on $SU(5)\times S_4$, which predicts charged fermion and neutrino mass and mixing, and where the mass matrices of both the Standard Model and the Supersymmetric particles are controlled by a common symmetry at the GUT scale. This framework also predicts non-vanishing non-minimal flavour violating effects, motivating a sophisticated data-driven parameter analysis to uncover the signatures and viability of the model. This computer-intensive Markov-Chain-Monte-Carlo (MCMC) based analysis includes a large range of flavour as well as dark matter and SUSY observables, predicts distributions for a range of physical quantities which may be used to test the model. The predictions include maximally mixed sfermions, $渭\rightarrow e 纬$ close to its experimental limit and successful bino-like dark matter with nearby winos (making direct detection unlikely), implying good prospects for discovering winos and gluinos at forthcoming collider runs. The results also demonstrate that the Georgi-Jarlskog mechanism does not provide a good description of the splitting of down type quark masses and charged leptons, while neutrinoless double beta decay is predicted at observable rates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.10199v3-abstract-full').style.display = 'none'; document.getElementById('2111.10199v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, three .spc files corresponding to the benchmarks are attached, wording improved references added, matches journal version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TTP21-048, P3H-21-093, LAPTH-043/21 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 05 (2022) 156 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.01613">arXiv:2111.01613</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.01613">pdf</a>, <a href="https://arxiv.org/format/2111.01613">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> IACHEC 2020/2021 Pandemic Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Madsen%2C+K+K">K. K. Madsen</a>, <a href="/search/?searchtype=author&amp;query=Burwitz%2C+V">V. Burwitz</a>, <a href="/search/?searchtype=author&amp;query=Forster%2C+K">K. Forster</a>, <a href="/search/?searchtype=author&amp;query=Grant%2C+C+E">C. E. Grant</a>, <a href="/search/?searchtype=author&amp;query=Guainazzi%2C+M">M. Guainazzi</a>, <a href="/search/?searchtype=author&amp;query=Kashyap%2C+V">V. Kashyap</a>, <a href="/search/?searchtype=author&amp;query=Marshall%2C+H+L">H. L. Marshall</a>, <a href="/search/?searchtype=author&amp;query=Miller%2C+E+D">E. D. Miller</a>, <a href="/search/?searchtype=author&amp;query=Natalucci%2C+L">L. Natalucci</a>, <a href="/search/?searchtype=author&amp;query=Plucinsky%2C+P+P">P. P. Plucinsky</a>, <a href="/search/?searchtype=author&amp;query=Terada%2C+Y">Y. Terada</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.01613v1-abstract-short" style="display: inline;"> In this report we summarize the activities of the International Astronomical Consortium for High Energy Calibration (IACHEC) and the work done since the last in-person meeting in Japan (Shonan Village Center), May 2019, through two virtual meetings that were held in November 2020 and May 2021. The on-line only meetings divided the contents of the usual in-person workshop between mission updates an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01613v1-abstract-full').style.display = 'inline'; document.getElementById('2111.01613v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.01613v1-abstract-full" style="display: none;"> In this report we summarize the activities of the International Astronomical Consortium for High Energy Calibration (IACHEC) and the work done since the last in-person meeting in Japan (Shonan Village Center), May 2019, through two virtual meetings that were held in November 2020 and May 2021. The on-line only meetings divided the contents of the usual in-person workshop between mission updates and working group updates. The November meeting was dedicated to mission calibration updates and the current status of the cross-calibration between NuSTAR, Swift, and NICER, which frequently join together in observations of bright transients, and a review of the XMM-Newton and Chandra cross-calibration. Results between \nustar\ and \swift\ overall show good agreement, but issues persist in the overlap region 3--5 keV for bright source with large dust scattering halos. The NICER cross-calibration is still progressing and evolving, while for the XMM-Newton and Chandra cross-calibration systematic differences both in the absolute flux and spectral shape determination still exists on different classes of sources. The meeting in May was focused on the Working Group progress and reports summarized here. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01613v1-abstract-full').style.display = 'none'; document.getElementById('2111.01613v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Yearly activity report of the IACHEC, 16 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.11522">arXiv:2110.11522</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.11522">pdf</a>, <a href="https://arxiv.org/format/2110.11522">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> 2021 Effective Area calibration of the Nuclear Spectroscopic Telescope ARray (NuSTAR) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Madsen%2C+K+K">Kristin K. Madsen</a>, <a href="/search/?searchtype=author&amp;query=Forster%2C+K">Karl Forster</a>, <a href="/search/?searchtype=author&amp;query=Grefenstette%2C+B+W">Brian W. Grefenstette</a>, <a href="/search/?searchtype=author&amp;query=Harrison%2C+F+A">Fiona A. Harrison</a>, <a href="/search/?searchtype=author&amp;query=Miyasaka%2C+H">Hiromasa Miyasaka</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.11522v1-abstract-short" style="display: inline;"> We present here the updated calibration of The Nuclear Spectroscopic Telescope ARray NuSTAR, which was performed using data on the Crab accumulated over the last 9 years in orbit. The basis for this new calibration contains over 250ks of focused Crab (imaged through the optics) and over 500ks of stray-light Crab (not imaged through optics). We measured an epoch averaged Crab spectrum of the stray-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.11522v1-abstract-full').style.display = 'inline'; document.getElementById('2110.11522v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.11522v1-abstract-full" style="display: none;"> We present here the updated calibration of The Nuclear Spectroscopic Telescope ARray NuSTAR, which was performed using data on the Crab accumulated over the last 9 years in orbit. The basis for this new calibration contains over 250ks of focused Crab (imaged through the optics) and over 500ks of stray-light Crab (not imaged through optics). We measured an epoch averaged Crab spectrum of the stray-light Crab data and define a canonical Crab spectrum of Gamma = 2.103 +- 0.001 and N = 9.69 +- 0.02 keV-1 cm-2 s-1 at 1 keV, which we use as our calibration standard. The new calibration, released in the CALDB update 20211020, provides significant updates to: 1) the detector absorption component, 2) the detector response function, and 3) the effective area vignetting function. The calibration improves agreement between FPMA and FPMB across detectors with a standard deviation of 1.7% for repeat observations between off-axis angles of 1-4 arcmin, and the measured flux has increased by 5-15%, with 5% below 1 arcmin off-axis angle, 10% between 1-2 arcmin, and 15 above 4arcmin. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.11522v1-abstract-full').style.display = 'none'; document.getElementById('2110.11522v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 18 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.10802">arXiv:2109.10802</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.10802">pdf</a>, <a href="https://arxiv.org/format/2109.10802">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2022.115700">10.1016/j.nuclphysb.2022.115700 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Muon g-2, Dark Matter and the Higgs mass in No-Scale Supergravity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Forster%2C+A+K">Adam K. Forster</a>, <a href="/search/?searchtype=author&amp;query=King%2C+S+F">Stephen F. King</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.10802v2-abstract-short" style="display: inline;"> We discuss the phenomenology of no-scale supergravity (SUGRA), in which the universal scalar mass is zero at the high scale, focussing on the recently updated muon g-2 measurement, and including dark matter and the correct Higgs boson mass. Such no-scale supergravity scenarios arise naturally from string theory and are also inspired by the successful Starobinsky inflation, with a class of minimal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.10802v2-abstract-full').style.display = 'inline'; document.getElementById('2109.10802v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.10802v2-abstract-full" style="display: none;"> We discuss the phenomenology of no-scale supergravity (SUGRA), in which the universal scalar mass is zero at the high scale, focussing on the recently updated muon g-2 measurement, and including dark matter and the correct Higgs boson mass. Such no-scale supergravity scenarios arise naturally from string theory and are also inspired by the successful Starobinsky inflation, with a class of minimal models leading to a strict upper bound on the gravitino mass m3/2 &lt; 103 TeV. We perform a Monte Carlo scan over the allowed parameter space, assuming a mixture of pure gravity mediated and universal gaugino masses, using the SPheno package linked to FeynHiggs, MicrOmegas and CheckMate, displaying the results in terms of a Likelihood function. We present results for zero and non-zero trilinear soft parameters, and for different signs of gaugino masses, giving a representative set of benchmark points for each viable region of parameter space. We find that, while no-scale SUGRA can readily satisfy the dark matter and Higgs boson mass requirements, consistent with all other phenomenological constraints, the muon g- 2 measurement may be accommodated only in certain regions of parameter space, close to the LHC excluded regions for light sleptons and charginos. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.10802v2-abstract-full').style.display = 'none'; document.getElementById('2109.10802v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">46 pages 18 figures 16 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.13482">arXiv:2108.13482</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.13482">pdf</a>, <a href="https://arxiv.org/format/2108.13482">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> </div> </div> <p class="title is-5 mathjax"> On Comparing and Enhancing Common Approaches to Network Community Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Motschnig%2C+N">Niko Motschnig</a>, <a href="/search/?searchtype=author&amp;query=Ramharter%2C+A">Alexander Ramharter</a>, <a href="/search/?searchtype=author&amp;query=Schweiger%2C+O">Oliver Schweiger</a>, <a href="/search/?searchtype=author&amp;query=Zabka%2C+P">Philipp Zabka</a>, <a href="/search/?searchtype=author&amp;query=Foerster%2C+K">Klaus-Tycho Foerster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.13482v1-abstract-short" style="display: inline;"> In this work, we explore four common algorithms for community detection in networks, namely Agglomerative Hierarchical Clustering, Divisive Hierarchical Clustering (Girvan-Newman), Fastgreedy and the Louvain Method. We investigate their mechanics and compare their differences in terms of implementation and results of the clustering behavior on a standard dataset. We further propose some enhancemen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.13482v1-abstract-full').style.display = 'inline'; document.getElementById('2108.13482v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.13482v1-abstract-full" style="display: none;"> In this work, we explore four common algorithms for community detection in networks, namely Agglomerative Hierarchical Clustering, Divisive Hierarchical Clustering (Girvan-Newman), Fastgreedy and the Louvain Method. We investigate their mechanics and compare their differences in terms of implementation and results of the clustering behavior on a standard dataset. We further propose some enhancements to these algorithms that show promising results in our evaluations, such as self-neighboring for Neighbor Matrix constructions, a deterministic slightly faster version of the Louvain Method that favors less bigger clusters and various implementation changes to the Fastgreedy algorithm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.13482v1-abstract-full').style.display = 'none'; document.getElementById('2108.13482v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.05806">arXiv:2108.05806</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.05806">pdf</a>, <a href="https://arxiv.org/format/2108.05806">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> Inverse Optimization on Hierarchical Networks: An Application to Breast Cancer Clinical Pathways </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Chan%2C+T+C+Y">Timothy C. Y. Chan</a>, <a href="/search/?searchtype=author&amp;query=Forster%2C+K">Katharina Forster</a>, <a href="/search/?searchtype=author&amp;query=Habbous%2C+S">Steven Habbous</a>, <a href="/search/?searchtype=author&amp;query=Holloway%2C+C">Claire Holloway</a>, <a href="/search/?searchtype=author&amp;query=Ieraci%2C+L">Luciano Ieraci</a>, <a href="/search/?searchtype=author&amp;query=Shalaby%2C+Y">Yusuf Shalaby</a>, <a href="/search/?searchtype=author&amp;query=Yousefi%2C+N">Nasrin Yousefi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.05806v2-abstract-short" style="display: inline;"> Clinical pathways are standardized processes that outline the steps required for managing a specific disease. However, patient pathways often deviate from clinical pathways. Measuring the concordance of patient pathways to clinical pathways is important for health system monitoring and informing quality improvement initiatives. In this paper, we develop an inverse optimization-based approach to me&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.05806v2-abstract-full').style.display = 'inline'; document.getElementById('2108.05806v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.05806v2-abstract-full" style="display: none;"> Clinical pathways are standardized processes that outline the steps required for managing a specific disease. However, patient pathways often deviate from clinical pathways. Measuring the concordance of patient pathways to clinical pathways is important for health system monitoring and informing quality improvement initiatives. In this paper, we develop an inverse optimization-based approach to measuring pathway concordance in breast cancer, a complex disease. We capture this complexity in a hierarchical network that models the patient&#39;s journey through the health system. A novel inverse shortest path model is formulated and solved on this hierarchical network to estimate arc costs, which are used to form a concordance metric to measure the distance between patient pathways and shortest paths (i.e., clinical pathways). Using real breast cancer patient data from Ontario, Canada, we demonstrate that our concordance metric has a statistically significant association with survival for all breast cancer patient subgroups. We also use it to quantify the extent of patient pathway discordances across all subgroups, finding that patients undertaking additional clinical activities constitute the primary driver of discordance in the population. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.05806v2-abstract-full').style.display = 'none'; document.getElementById('2108.05806v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages + Appendices</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.10347">arXiv:2009.10347</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.10347">pdf</a>, <a href="https://arxiv.org/format/2009.10347">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/abd1d6">10.3847/1538-4357/abd1d6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Timing Calibration of the NuSTAR X-ray Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bachetti%2C+M">Matteo Bachetti</a>, <a href="/search/?searchtype=author&amp;query=Markwardt%2C+C+B">Craig B. Markwardt</a>, <a href="/search/?searchtype=author&amp;query=Grefenstette%2C+B+W">Brian W. Grefenstette</a>, <a href="/search/?searchtype=author&amp;query=Gotthelf%2C+E+V">Eric V. Gotthelf</a>, <a href="/search/?searchtype=author&amp;query=Kuiper%2C+L">Lucien Kuiper</a>, <a href="/search/?searchtype=author&amp;query=Barret%2C+D">Didier Barret</a>, <a href="/search/?searchtype=author&amp;query=Cook%2C+W+R">W. Rick Cook</a>, <a href="/search/?searchtype=author&amp;query=Davis%2C+A">Andrew Davis</a>, <a href="/search/?searchtype=author&amp;query=F%C3%BCrst%2C+F">Felix F眉rst</a>, <a href="/search/?searchtype=author&amp;query=Forster%2C+K">Karl Forster</a>, <a href="/search/?searchtype=author&amp;query=Harrison%2C+F+A">Fiona A. Harrison</a>, <a href="/search/?searchtype=author&amp;query=Madsen%2C+K+K">Kristin K. Madsen</a>, <a href="/search/?searchtype=author&amp;query=Miyasaka%2C+H">Hiromasa Miyasaka</a>, <a href="/search/?searchtype=author&amp;query=Roberts%2C+B">Bryce Roberts</a>, <a href="/search/?searchtype=author&amp;query=Tomsick%2C+J+A">John A. Tomsick</a>, <a href="/search/?searchtype=author&amp;query=Walton%2C+D+J">Dominic J. Walton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.10347v3-abstract-short" style="display: inline;"> The Nuclear Spectroscopic Telescope Array (NuSTAR) mission is the first focusing X-ray telescope in the hard X-ray (3-79 keV) band. Among the phenomena that can be studied in this energy band, some require high time resolution and stability: rotation-powered and accreting millisecond pulsars, fast variability from black holes and neutron stars, X-ray bursts, and more. Moreover, a good alignment of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.10347v3-abstract-full').style.display = 'inline'; document.getElementById('2009.10347v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.10347v3-abstract-full" style="display: none;"> The Nuclear Spectroscopic Telescope Array (NuSTAR) mission is the first focusing X-ray telescope in the hard X-ray (3-79 keV) band. Among the phenomena that can be studied in this energy band, some require high time resolution and stability: rotation-powered and accreting millisecond pulsars, fast variability from black holes and neutron stars, X-ray bursts, and more. Moreover, a good alignment of the timestamps of X-ray photons to UTC is key for multi-instrument studies of fast astrophysical processes. In this Paper, we describe the timing calibration of the NuSTAR mission. In particular, we present a method to correct the temperature-dependent frequency response of the on-board temperature-compensated crystal oscillator. Together with measurements of the spacecraft clock offsets obtained during downlinks passes, this allows a precise characterization of the behavior of the oscillator. The calibrated NuSTAR event timestamps for a typical observation are shown to be accurate to a precision of ~65 microsec. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.10347v3-abstract-full').style.display = 'none'; document.getElementById('2009.10347v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 10 figures. Comments welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 908, 184 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.06513">arXiv:2006.06513</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.06513">pdf</a>, <a href="https://arxiv.org/format/2006.06513">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> On the Feasibility of Perfect Resilience with Local Fast Failover </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Foerster%2C+K">Klaus-Tycho Foerster</a>, <a href="/search/?searchtype=author&amp;query=Hirvonen%2C+J">Juho Hirvonen</a>, <a href="/search/?searchtype=author&amp;query=Pignolet%2C+Y">Yvonne-Anne Pignolet</a>, <a href="/search/?searchtype=author&amp;query=Schmid%2C+S">Stefan Schmid</a>, <a href="/search/?searchtype=author&amp;query=Tredan%2C+G">Gilles Tredan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.06513v2-abstract-short" style="display: inline;"> In order to provide a high resilience and to react quickly to link failures, modern computer networks support fully decentralized flow rerouting, also known as local fast failover. In a nutshell, the task of a local fast failover algorithm is to pre-define fast failover rules for each node using locally available information only. These rules determine for each incoming link from which a packet ma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.06513v2-abstract-full').style.display = 'inline'; document.getElementById('2006.06513v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.06513v2-abstract-full" style="display: none;"> In order to provide a high resilience and to react quickly to link failures, modern computer networks support fully decentralized flow rerouting, also known as local fast failover. In a nutshell, the task of a local fast failover algorithm is to pre-define fast failover rules for each node using locally available information only. These rules determine for each incoming link from which a packet may arrive and the set of local link failures (i.e., the failed links incident to a node), on which outgoing link a packet should be forwarded. Ideally, such a local fast failover algorithm provides a perfect resilience deterministically: a packet emitted from any source can reach any target, as long as the underlying network remains connected. Feigenbaum et al. (ACM PODC 2012) and also Chiesa et al. (IEEE/ACM Trans. Netw. 2017) showed that it is not always possible to provide perfect resilience. Interestingly, not much more is known currently about the feasibility of perfect resilience. This paper revisits perfect resilience with local fast failover, both in a model where the source can and cannot be used for forwarding decisions. We first derive several fairly general impossibility results: By establishing a connection between graph minors and resilience, we prove that it is impossible to achieve perfect resilience on any non-planar graph; furthermore, while planarity is necessary, it is also not sufficient for perfect resilience. On the positive side, we show that graph families closed under link subdivision allow for simple and efficient failover algorithms which simply skip failed links. We demonstrate this technique by deriving perfect resilience for outerplanar graphs and related scenarios, as well as for scenarios where the source and target are topologically close after failures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.06513v2-abstract-full').style.display = 'none'; document.getElementById('2006.06513v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in the proceedings of the 2nd Symposium on Algorithmic Principles of Computer Systems (APOCS) 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.07637">arXiv:2005.07637</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.07637">pdf</a>, <a href="https://arxiv.org/format/2005.07637">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3447384">10.1145/3447384 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Input-Dynamic Distributed Algorithms for Communication Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Foerster%2C+K">Klaus-Tycho Foerster</a>, <a href="/search/?searchtype=author&amp;query=Korhonen%2C+J+H">Janne H. Korhonen</a>, <a href="/search/?searchtype=author&amp;query=Paz%2C+A">Ami Paz</a>, <a href="/search/?searchtype=author&amp;query=Rybicki%2C+J">Joel Rybicki</a>, <a href="/search/?searchtype=author&amp;query=Schmid%2C+S">Stefan Schmid</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.07637v3-abstract-short" style="display: inline;"> Consider a distributed task where the communication network is fixed but the local inputs given to the nodes of the distributed system may change over time. In this work, we explore the following question: if some of the local inputs change, can an existing solution be updated efficiently, in a dynamic and distributed manner? To address this question, we define the batch dynamic CONGEST model in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.07637v3-abstract-full').style.display = 'inline'; document.getElementById('2005.07637v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.07637v3-abstract-full" style="display: none;"> Consider a distributed task where the communication network is fixed but the local inputs given to the nodes of the distributed system may change over time. In this work, we explore the following question: if some of the local inputs change, can an existing solution be updated efficiently, in a dynamic and distributed manner? To address this question, we define the batch dynamic CONGEST model in which we are given a bandwidth-limited communication network and a dynamic edge labelling defines the problem input. The task is to maintain a solution to a graph problem on the labeled graph under batch changes. We investigate, when a batch of $伪$ edge label changes arrive, -- how much time as a function of $伪$ we need to update an existing solution, and -- how much information the nodes have to keep in local memory between batches in order to update the solution quickly. Our work lays the foundations for the theory of input-dynamic distributed network algorithms. We give a general picture of the complexity landscape in this model, design both universal algorithms and algorithms for concrete problems, and present a general framework for lower bounds. In particular, we derive non-trivial upper bounds for two selected, contrasting problems: maintaining a minimum spanning tree and detecting cliques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.07637v3-abstract-full').style.display = 'none'; document.getElementById('2005.07637v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.00569">arXiv:2005.00569</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.00569">pdf</a>, <a href="https://arxiv.org/format/2005.00569">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> NuSTAR low energy effective area correction due to thermal blanket tear </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Madsen%2C+K+K">Kristin K. Madsen</a>, <a href="/search/?searchtype=author&amp;query=Grefenstette%2C+B+W">Brian W. Grefenstette</a>, <a href="/search/?searchtype=author&amp;query=Pike%2C+S">Sean Pike</a>, <a href="/search/?searchtype=author&amp;query=Miyasaka%2C+H">Hiromasa Miyasaka</a>, <a href="/search/?searchtype=author&amp;query=Brightman%2C+M">Murray Brightman</a>, <a href="/search/?searchtype=author&amp;query=Forster%2C+K">Karl Forster</a>, <a href="/search/?searchtype=author&amp;query=Harrison%2C+F+A">Fiona A. Harrison</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.00569v2-abstract-short" style="display: inline;"> A rip in the MLI at the exit aperture of OMA, the NuSTAR optic aligned with detector focal plane module FPMA, has resulted in an increased photon flux through OMA that has manifested itself as a low energy excess. Overall, the MLI coverage has decreased by 10%, but there is an additional time-varying component, which occasionally causes the opening to increase by up to 20%. We address the problem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.00569v2-abstract-full').style.display = 'inline'; document.getElementById('2005.00569v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.00569v2-abstract-full" style="display: none;"> A rip in the MLI at the exit aperture of OMA, the NuSTAR optic aligned with detector focal plane module FPMA, has resulted in an increased photon flux through OMA that has manifested itself as a low energy excess. Overall, the MLI coverage has decreased by 10%, but there is an additional time-varying component, which occasionally causes the opening to increase by up to 20%. We address the problem with a calibration update, and in this paper, we describe the attributes of the problem, the implications it has on data analysis, and the solution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.00569v2-abstract-full').style.display = 'none'; document.getElementById('2005.00569v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The paper has been updated for the NuSTARDAS release v. 2.0.0 and CALDB version 20200813</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.01914">arXiv:2003.01914</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.01914">pdf</a>, <a href="https://arxiv.org/format/2003.01914">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> Conic Formation in Presence of Faulty Robots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Pattanayak%2C+D">Debasish Pattanayak</a>, <a href="/search/?searchtype=author&amp;query=Foerster%2C+K">Klaus-Tycho Foerster</a>, <a href="/search/?searchtype=author&amp;query=Mandal%2C+P+S">Partha Sarathi Mandal</a>, <a href="/search/?searchtype=author&amp;query=Schmid%2C+S">Stefan Schmid</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.01914v2-abstract-short" style="display: inline;"> Pattern formation is one of the most fundamental problems in distributed computing, which has recently received much attention. In this paper, we initiate the study of distributed pattern formation in situations when some robots can be \textit{faulty}. In particular, we consider the well-established \textit{look-compute-move} model with oblivious, anonymous robots. We first present lower bounds an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.01914v2-abstract-full').style.display = 'inline'; document.getElementById('2003.01914v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.01914v2-abstract-full" style="display: none;"> Pattern formation is one of the most fundamental problems in distributed computing, which has recently received much attention. In this paper, we initiate the study of distributed pattern formation in situations when some robots can be \textit{faulty}. In particular, we consider the well-established \textit{look-compute-move} model with oblivious, anonymous robots. We first present lower bounds and show that any deterministic algorithm takes at least two rounds to form simple patterns in the presence of faulty robots. We then present distributed algorithms for our problem which match this bound, \textit{for conic sections}: in at most two rounds, robots form lines, circles and parabola tolerating $f=2,3$ and $4$ faults, respectively. For $f=5$, the target patterns are parabola, hyperbola and ellipse. We show that the resulting pattern includes the $f$ faulty robots in the pattern of $n$ robots, where $n \geq 2f+1$, and that $f &lt; n &lt; 2f+1$ robots cannot form such patterns. We conclude by discussing several relaxations and extensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.01914v2-abstract-full').style.display = 'none'; document.getElementById('2003.01914v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Full version of the conference paper in ALGOSENSORS, 2020</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.00003">arXiv:2003.00003</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.00003">pdf</a>, <a href="https://arxiv.org/format/2003.00003">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Toward Active and Passive Confidentiality Attacks On Cryptocurrency Off-Chain Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Nisslmueller%2C+U">Utz Nisslmueller</a>, <a href="/search/?searchtype=author&amp;query=Foerster%2C+K">Klaus-Tycho Foerster</a>, <a href="/search/?searchtype=author&amp;query=Schmid%2C+S">Stefan Schmid</a>, <a href="/search/?searchtype=author&amp;query=Decker%2C+C">Christian Decker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.00003v1-abstract-short" style="display: inline;"> Cryptocurrency off-chain networks such as Lightning (e.g., Bitcoin) or Raiden (e.g., Ethereum) aim to increase the scalability of traditional on-chain transactions. To support nodes in learning about possible paths to route their transactions, these networks need to provide gossip and probing mechanisms. This paper explores whether these mechanisms may be exploited to infer sensitive information a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.00003v1-abstract-full').style.display = 'inline'; document.getElementById('2003.00003v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.00003v1-abstract-full" style="display: none;"> Cryptocurrency off-chain networks such as Lightning (e.g., Bitcoin) or Raiden (e.g., Ethereum) aim to increase the scalability of traditional on-chain transactions. To support nodes in learning about possible paths to route their transactions, these networks need to provide gossip and probing mechanisms. This paper explores whether these mechanisms may be exploited to infer sensitive information about the flow of transactions, and eventually harm privacy. In particular, we identify two threats, related to an active and a passive adversary. The first is a probing attack: here the adversary aims to detect the maximum amount which is transferable in a given direction over a target channel by actively probing it and differentiating the response messages it receives. The second is a timing attack: the adversary discovers how close the destination of a routed payment actually is, by acting as a passive man-in-the middle and analyzing the time deltas between sent messages and their corresponding responses. We then analyze the limitations of these attacks and propose remediations for scenarios in which they are able to produce accurate results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.00003v1-abstract-full').style.display = 'none'; document.getElementById('2003.00003v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.10617">arXiv:1911.10617</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.10617">pdf</a>, <a href="https://arxiv.org/format/1911.10617">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41386-020-0666-3">10.1038/s41386-020-0666-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Biological sex classification with structural MRI data shows increased misclassification in transgender women </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Flint%2C+C">Claas Flint</a>, <a href="/search/?searchtype=author&amp;query=F%C3%B6rster%2C+K">Katharina F枚rster</a>, <a href="/search/?searchtype=author&amp;query=Koser%2C+S+A">Sophie A. Koser</a>, <a href="/search/?searchtype=author&amp;query=Konrad%2C+C">Carsten Konrad</a>, <a href="/search/?searchtype=author&amp;query=Zwitserlood%2C+P">Pienie Zwitserlood</a>, <a href="/search/?searchtype=author&amp;query=Berger%2C+K">Klaus Berger</a>, <a href="/search/?searchtype=author&amp;query=Hermesdorf%2C+M">Marco Hermesdorf</a>, <a href="/search/?searchtype=author&amp;query=Kircher%2C+T">Tilo Kircher</a>, <a href="/search/?searchtype=author&amp;query=Nenadic%2C+I">Igor Nenadic</a>, <a href="/search/?searchtype=author&amp;query=Krug%2C+A">Axel Krug</a>, <a href="/search/?searchtype=author&amp;query=Baune%2C+B+T">Bernhard T. Baune</a>, <a href="/search/?searchtype=author&amp;query=Dohm%2C+K">Katharina Dohm</a>, <a href="/search/?searchtype=author&amp;query=Redlich%2C+R">Ronny Redlich</a>, <a href="/search/?searchtype=author&amp;query=Opel%2C+N">Nils Opel</a>, <a href="/search/?searchtype=author&amp;query=Arolt%2C+V">Volker Arolt</a>, <a href="/search/?searchtype=author&amp;query=Hahn%2C+T">Tim Hahn</a>, <a href="/search/?searchtype=author&amp;query=Jiang%2C+X">Xiaoyi Jiang</a>, <a href="/search/?searchtype=author&amp;query=Dannlowski%2C+U">Udo Dannlowski</a>, <a href="/search/?searchtype=author&amp;query=Grotegerd%2C+D">Dominik Grotegerd</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.10617v2-abstract-short" style="display: inline;"> Transgender individuals (TIs) show brain structural alterations that differ from their biological sex as well as their perceived gender. To substantiate evidence that the brain structure of TIs differs from male and female, we use a combined multivariate and univariate approach. Gray matter segments resulting from voxel-based morphometry preprocessing of $N = 1753$ cisgender (CG) healthy participa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.10617v2-abstract-full').style.display = 'inline'; document.getElementById('1911.10617v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.10617v2-abstract-full" style="display: none;"> Transgender individuals (TIs) show brain structural alterations that differ from their biological sex as well as their perceived gender. To substantiate evidence that the brain structure of TIs differs from male and female, we use a combined multivariate and univariate approach. Gray matter segments resulting from voxel-based morphometry preprocessing of $N = 1753$ cisgender (CG) healthy participants were used to train ($N=1402$) and validate (20 % hold-out; $N = 351$) a support-vector machine classifying the biological sex. As a second validation, we classified $N = 1104$ patients with depression. A third validation was performed using the matched CG sample of the transgender women (TWs) application-sample. Subsequently, the classifier was applied to $N = 26$ TWs. Finally, we compared brain volumes of CG-men, women and TW-pre/post treatment (cross-sex hormone treatment) in a univariate analysis controlling for sexual orientation, age and total brain volume. The application of our biological sex classifier to the transgender sample resulted in a significantly lower true positive rate (TPR) (TPR-male = 56.0 %). The TPR did not differ between CG-individuals with (TPR-male = 86.9 %) and without depression (TPR-male = 88.5 %). The univariate analysis of the transgender application-sample revealed that TW-pre/post treatment show brain structural differences from CG-women and CG-men in the putamen and insula, as well as the whole-brain analysis. Our results support the hypothesis that brain structure in TW differs from brain structure of their biological sex (male) as well as their perceived gender (female). This finding substantiates evidence that TIs show specific brain structural alterations leading to a different pattern of brain structure than CG-individuals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.10617v2-abstract-full').style.display = 'none'; document.getElementById('1911.10617v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Content adapted to the publication at Neuropsychopharmacology</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Neuropsychopharmacology 45 (2020) 1758-1765 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.08284">arXiv:1910.08284</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.08284">pdf</a>, <a href="https://arxiv.org/format/1910.08284">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stx2963">10.1093/mnras/stx2963 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The WiggleZ Dark Energy Survey: Final Data Release and the Metallicity of UV-Luminous Galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Drinkwater%2C+M+J">Michael J. Drinkwater</a>, <a href="/search/?searchtype=author&amp;query=Byrne%2C+Z+J">Zachary J. Byrne</a>, <a href="/search/?searchtype=author&amp;query=Blake%2C+C">Chris Blake</a>, <a href="/search/?searchtype=author&amp;query=Glazebrook%2C+K">Karl Glazebrook</a>, <a href="/search/?searchtype=author&amp;query=Brough%2C+S">Sarah Brough</a>, <a href="/search/?searchtype=author&amp;query=Colless%2C+M">Matthew Colless</a>, <a href="/search/?searchtype=author&amp;query=Couch%2C+W">Warrick Couch</a>, <a href="/search/?searchtype=author&amp;query=Croton%2C+D+J">Darren J. Croton</a>, <a href="/search/?searchtype=author&amp;query=Croom%2C+S+M">Scott M. Croom</a>, <a href="/search/?searchtype=author&amp;query=Davis%2C+T+M">Tamara M. Davis</a>, <a href="/search/?searchtype=author&amp;query=Forster%2C+K">Karl Forster</a>, <a href="/search/?searchtype=author&amp;query=Gilbank%2C+D">David Gilbank</a>, <a href="/search/?searchtype=author&amp;query=Hinton%2C+S+R">Samuel R. Hinton</a>, <a href="/search/?searchtype=author&amp;query=Jelliffe%2C+B">Ben Jelliffe</a>, <a href="/search/?searchtype=author&amp;query=Jurek%2C+R+J">Russell J. Jurek</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+I">I-hui Li</a>, <a href="/search/?searchtype=author&amp;query=Martin%2C+D+C">D. Christopher Martin</a>, <a href="/search/?searchtype=author&amp;query=Pimbblet%2C+K">Kevin Pimbblet</a>, <a href="/search/?searchtype=author&amp;query=Poole%2C+G+B">Gregory B. Poole</a>, <a href="/search/?searchtype=author&amp;query=Pracy%2C+M">Michael Pracy</a>, <a href="/search/?searchtype=author&amp;query=Sharp%2C+R">Rob Sharp</a>, <a href="/search/?searchtype=author&amp;query=Smillie%2C+J">Jon Smillie</a>, <a href="/search/?searchtype=author&amp;query=Spolaor%2C+M">Max Spolaor</a>, <a href="/search/?searchtype=author&amp;query=Wisnioski%2C+E">Emily Wisnioski</a>, <a href="/search/?searchtype=author&amp;query=Woods%2C+D">David Woods</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.08284v1-abstract-short" style="display: inline;"> The WiggleZ Dark Energy Survey measured the redshifts of over 200,000 UV-selected (NUV&lt;22.8 mag) galaxies on the Anglo-Australian Telescope. The survey detected the baryon acoustic oscillation signal in the large scale distribution of galaxies over the redshift range 0.2&lt;z&lt;1.0, confirming the acceleration of the expansion of the Universe and measuring the rate of structure growth within it. Here w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.08284v1-abstract-full').style.display = 'inline'; document.getElementById('1910.08284v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.08284v1-abstract-full" style="display: none;"> The WiggleZ Dark Energy Survey measured the redshifts of over 200,000 UV-selected (NUV&lt;22.8 mag) galaxies on the Anglo-Australian Telescope. The survey detected the baryon acoustic oscillation signal in the large scale distribution of galaxies over the redshift range 0.2&lt;z&lt;1.0, confirming the acceleration of the expansion of the Universe and measuring the rate of structure growth within it. Here we present the final data release of the survey: a catalogue of 225415 galaxies and individual files of the galaxy spectra. We analyse the emission-line properties of these UV-luminous Lyman-break galaxies by stacking the spectra in bins of luminosity, redshift, and stellar mass. The most luminous (-25 mag &lt; MFUV &lt;-22 mag) galaxies have very broad H-beta emission from active nuclei, as well as a broad second component to the [OIII] (495.9 nm, 500.7 nm) doublet lines that is blue shifted by 100 km/s, indicating the presence of gas outflows in these galaxies. The composite spectra allow us to detect and measure the temperature-sensitive [OIII] (436.3 nm) line and obtain metallicities using the direct method. The metallicities of intermediate stellar mass (8.8&lt;log(M*/Msun)&lt;10) WiggleZ galaxies are consistent with normal emission-line galaxies at the same masses. In contrast, the metallicities of high stellar mass (10&lt;log(M*/Msun)&lt;12) WiggleZ galaxies are significantly lower than for normal emission-line galaxies at the same masses. This is not an effect of evolution as the metallicities do not vary with redshift; it is most likely a property specific to the extremely UV-luminous WiggleZ galaxies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.08284v1-abstract-full').style.display = 'none'; document.getElementById('1910.08284v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Catalogue available at MNRAS (DOI link below) and also at: https://espace.library.uq.edu.au/view/UQ:3e43575</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Monthly Notices of the Royal Astronomical Society, 2018, Volume 474, p.4151-4168 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.10086">arXiv:1908.10086</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.10086">pdf</a>, <a href="https://arxiv.org/format/1908.10086">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Distributed Consistent Network Updates in SDNs: Local Verification for Global Guarantees </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Foerster%2C+K">Klaus-Tycho Foerster</a>, <a href="/search/?searchtype=author&amp;query=Schmid%2C+S">Stefan Schmid</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.10086v1-abstract-short" style="display: inline;"> While SDNs enable more flexible and adaptive network operations, (logically) centralized reconfigurations introduce overheads and delays, which can limit network reactivity. This paper initiates the study of a more distributed approach, in which the consistent network updates are implemented by the switches and routers directly in the data plane. In particular, our approach leverages concepts from&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.10086v1-abstract-full').style.display = 'inline'; document.getElementById('1908.10086v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.10086v1-abstract-full" style="display: none;"> While SDNs enable more flexible and adaptive network operations, (logically) centralized reconfigurations introduce overheads and delays, which can limit network reactivity. This paper initiates the study of a more distributed approach, in which the consistent network updates are implemented by the switches and routers directly in the data plane. In particular, our approach leverages concepts from local proof labeling systems, which allows the data plane elements to locally check network properties, and we show that this is sufficient to obtain global network guarantees. We demonstrate our approach considering three fundamental use cases, and analyze its benefits in terms of performance and fault-tolerance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.10086v1-abstract-full').style.display = 'none'; document.getElementById('1908.10086v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Appears in IEEE NCA 2019</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.02636">arXiv:1906.02636</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.02636">pdf</a>, <a href="https://arxiv.org/format/1906.02636">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applications">stat.AP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> An Inverse Optimization Approach to Measuring Clinical Pathway Concordance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Chan%2C+T+C+Y">Timothy C. Y. Chan</a>, <a href="/search/?searchtype=author&amp;query=Eberg%2C+M">Maria Eberg</a>, <a href="/search/?searchtype=author&amp;query=Forster%2C+K">Katharina Forster</a>, <a href="/search/?searchtype=author&amp;query=Holloway%2C+C">Claire Holloway</a>, <a href="/search/?searchtype=author&amp;query=Ieraci%2C+L">Luciano Ieraci</a>, <a href="/search/?searchtype=author&amp;query=Shalaby%2C+Y">Yusuf Shalaby</a>, <a href="/search/?searchtype=author&amp;query=Yousefi%2C+N">Nasrin Yousefi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.02636v3-abstract-short" style="display: inline;"> Clinical pathways outline standardized processes in the delivery of care for a specific disease. Patient journeys through the healthcare system, though, can deviate substantially from these pathways. Given the positive benefits of clinical pathways, it is important to measure the concordance of patient pathways so that variations in health system performance or bottlenecks in the delivery of care&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.02636v3-abstract-full').style.display = 'inline'; document.getElementById('1906.02636v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.02636v3-abstract-full" style="display: none;"> Clinical pathways outline standardized processes in the delivery of care for a specific disease. Patient journeys through the healthcare system, though, can deviate substantially from these pathways. Given the positive benefits of clinical pathways, it is important to measure the concordance of patient pathways so that variations in health system performance or bottlenecks in the delivery of care can be detected, monitored, and acted upon. This paper proposes the first data-driven inverse optimization approach to measuring pathway concordance in any problem context. Our specific application considers clinical pathway concordance for stage III colon cancer. We develop a novel concordance metric and demonstrate using real patient data from Ontario, Canada that it has a statistically significant association with survival. Our methodological approach considers a patient&#39;s journey as a walk in a directed graph, where the costs on the arcs are derived by solving an inverse shortest path problem. The inverse optimization model uses two sources of information to find the arc costs: reference pathways developed by a provincial cancer agency (primary) and data from real-world patient-related activity from patients with both positive and negative clinical outcomes (secondary). Thus, our inverse optimization framework extends existing models by including data points of both varying &#34;primacy&#34; and &#34;alignment&#34;. Data primacy is addressed through a two-stage approach to imputing the cost vector, while data alignment is addressed by a hybrid objective function that aims to minimize and maximize suboptimality error for different subsets of input data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.02636v3-abstract-full').style.display = 'none'; document.getElementById('1906.02636v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">61 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.03012">arXiv:1905.03012</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.03012">pdf</a>, <a href="https://arxiv.org/format/1905.03012">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> Brief Announcement: Does Preprocessing Help under Congestion? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Foerster%2C+K">Klaus-Tycho Foerster</a>, <a href="/search/?searchtype=author&amp;query=Korhonen%2C+J+H">Janne H. Korhonen</a>, <a href="/search/?searchtype=author&amp;query=Rybicki%2C+J">Joel Rybicki</a>, <a href="/search/?searchtype=author&amp;query=Schmid%2C+S">Stefan Schmid</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.03012v1-abstract-short" style="display: inline;"> This paper investigates the power of preprocessing in the CONGEST model. Schmid and Suomela (ACM HotSDN 2013) introduced the SUPPORTED CONGEST model to study the application of distributed algorithms in Software-Defined Networks (SDNs). In this paper, we show that a large class of lower bounds in the CONGEST model still hold in the SUPPORTED model, highlighting the robustness of these bounds. This&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.03012v1-abstract-full').style.display = 'inline'; document.getElementById('1905.03012v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.03012v1-abstract-full" style="display: none;"> This paper investigates the power of preprocessing in the CONGEST model. Schmid and Suomela (ACM HotSDN 2013) introduced the SUPPORTED CONGEST model to study the application of distributed algorithms in Software-Defined Networks (SDNs). In this paper, we show that a large class of lower bounds in the CONGEST model still hold in the SUPPORTED model, highlighting the robustness of these bounds. This also raises the question how much does preprocessing help in the CONGEST model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.03012v1-abstract-full').style.display = 'none'; document.getElementById('1905.03012v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Appears in PODC 2019</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.00581">arXiv:1903.00581</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.00581">pdf</a>, <a href="https://arxiv.org/ps/1903.00581">ps</a>, <a href="https://arxiv.org/format/1903.00581">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Structures and Algorithms">cs.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> Online Graph Exploration on a Restricted Graph Class: Optimal Solutions for Tadpole Graphs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Brandt%2C+S">Sebastian Brandt</a>, <a href="/search/?searchtype=author&amp;query=Foerster%2C+K">Klaus-Tycho Foerster</a>, <a href="/search/?searchtype=author&amp;query=Maurer%2C+J">Jonathan Maurer</a>, <a href="/search/?searchtype=author&amp;query=Wattenhofer%2C+R">Roger Wattenhofer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.00581v3-abstract-short" style="display: inline;"> We study the problem of online graph exploration on undirected graphs, where a searcher has to visit every vertex and return to the origin. Once a new vertex is visited, the searcher learns of all neighboring vertices and the connecting edge weights. The goal such an exploration is to minimize its total cost, where each edge traversal incurs a cost of the corresponding edge weight. We investigate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.00581v3-abstract-full').style.display = 'inline'; document.getElementById('1903.00581v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.00581v3-abstract-full" style="display: none;"> We study the problem of online graph exploration on undirected graphs, where a searcher has to visit every vertex and return to the origin. Once a new vertex is visited, the searcher learns of all neighboring vertices and the connecting edge weights. The goal such an exploration is to minimize its total cost, where each edge traversal incurs a cost of the corresponding edge weight. We investigate the problem on tadpole graphs (also known as dragons, kites), which consist of a cycle with an attached path. Miyazaki et al. (The online graph exploration problem on restricted graphs, IEICE Transactions 92-D (9), 2009) showed that every online algorithm on these graphs must have a competitive ratio of 2-epsilon, but did not provide upper bounds for non-unit edge weights. We show via amortized analysis that a greedy approach yields a matching competitive ratio of 2 on tadpole graphs, for arbitrary non-negative edge weights. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.00581v3-abstract-full').style.display = 'none'; document.getElementById('1903.00581v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.00854">arXiv:1812.00854</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.00854">pdf</a>, <a href="https://arxiv.org/format/1812.00854">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> On the Power of Preprocessing in Decentralized Network Optimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Foerster%2C+K">Klaus-Tycho Foerster</a>, <a href="/search/?searchtype=author&amp;query=Hirvonen%2C+J">Juho Hirvonen</a>, <a href="/search/?searchtype=author&amp;query=Schmid%2C+S">Stefan Schmid</a>, <a href="/search/?searchtype=author&amp;query=Suomela%2C+J">Jukka Suomela</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.00854v1-abstract-short" style="display: inline;"> As communication networks are growing at a fast pace, the need for more scalable approaches to operate such networks is pressing. Decentralization and locality are key concepts to provide scalability. Existing models for which local algorithms are designed fail to model an important aspect of many modern communication networks such as software-defined networks: the possibility to precompute distri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.00854v1-abstract-full').style.display = 'inline'; document.getElementById('1812.00854v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.00854v1-abstract-full" style="display: none;"> As communication networks are growing at a fast pace, the need for more scalable approaches to operate such networks is pressing. Decentralization and locality are key concepts to provide scalability. Existing models for which local algorithms are designed fail to model an important aspect of many modern communication networks such as software-defined networks: the possibility to precompute distributed network state. We take this as an opportunity to study the fundamental question of how and to what extent local algorithms can benefit from preprocessing. In particular, we show that preprocessing allows for significant speedups of various networking problems. A main benefit is the precomputation of structural primitives, where purely distributed algorithms have to start from scratch. Maybe surprisingly, we also show that there are strict limitations on how much preprocessing can help in different scenarios. To this end, we provide approximation bounds for the maximum independent set problem---which however show that our obtained speedups are asymptotically optimal. Even though we show that physical link failures in general hinder the power of preprocessing, we can still facilitate the precomputation of symmetry breaking processes to bypass various runtime barriers. We believe that our model and results are of interest beyond the scope of this paper and apply to other dynamic networks as well. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.00854v1-abstract-full').style.display = 'none'; document.getElementById('1812.00854v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.10518">arXiv:1810.10518</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.10518">pdf</a>, <a href="https://arxiv.org/format/1810.10518">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab1280">10.1093/mnras/stab1280 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> NuSTAR reveals the hidden nature of SS433 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Middleton%2C+M+J">M. J. Middleton</a>, <a href="/search/?searchtype=author&amp;query=Walton%2C+D+J">D. J. Walton</a>, <a href="/search/?searchtype=author&amp;query=Alston%2C+W">W. Alston</a>, <a href="/search/?searchtype=author&amp;query=Dauser%2C+T">T. Dauser</a>, <a href="/search/?searchtype=author&amp;query=Eikenberry%2C+S">S. Eikenberry</a>, <a href="/search/?searchtype=author&amp;query=Jiang%2C+Y">Y-F Jiang</a>, <a href="/search/?searchtype=author&amp;query=Fabian%2C+A+C">A. C. Fabian</a>, <a href="/search/?searchtype=author&amp;query=Fuerst%2C+F">F. Fuerst</a>, <a href="/search/?searchtype=author&amp;query=Brightman%2C+M">M. Brightman</a>, <a href="/search/?searchtype=author&amp;query=Marshall%2C+H">H. Marshall</a>, <a href="/search/?searchtype=author&amp;query=Parker%2C+M">M. Parker</a>, <a href="/search/?searchtype=author&amp;query=Pinto%2C+C">C. Pinto</a>, <a href="/search/?searchtype=author&amp;query=Harrison%2C+F+A">F. A. Harrison</a>, <a href="/search/?searchtype=author&amp;query=Bachetti%2C+M">M. Bachetti</a>, <a href="/search/?searchtype=author&amp;query=Altamirano%2C+D">D. Altamirano</a>, <a href="/search/?searchtype=author&amp;query=Bird%2C+A+J">A. J. Bird</a>, <a href="/search/?searchtype=author&amp;query=Perez%2C+G">G. Perez</a>, <a href="/search/?searchtype=author&amp;query=Miller-Jones%2C+J">J. Miller-Jones</a>, <a href="/search/?searchtype=author&amp;query=Charles%2C+P+A">P. A. Charles</a>, <a href="/search/?searchtype=author&amp;query=Boggs%2C+S">S. Boggs</a>, <a href="/search/?searchtype=author&amp;query=Christensen%2C+F">F. Christensen</a>, <a href="/search/?searchtype=author&amp;query=Craig%2C+W">W. Craig</a>, <a href="/search/?searchtype=author&amp;query=Forster%2C+K">K. Forster</a>, <a href="/search/?searchtype=author&amp;query=Grefenstette%2C+B">B. Grefenstette</a>, <a href="/search/?searchtype=author&amp;query=Hailey%2C+C">C. Hailey</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.10518v3-abstract-short" style="display: inline;"> SS433 is the only Galactic binary system known to persistently accrete at highly super-critical (or hyper-critical) rates, similar to those in tidal disruption events, and likely needed to explain the rapid growth of those very high redshift quasars containing massive SMBHs. Probing the inner regions of SS433 in the X-rays is crucial to understanding this system, and super-critical accretion in ge&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.10518v3-abstract-full').style.display = 'inline'; document.getElementById('1810.10518v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.10518v3-abstract-full" style="display: none;"> SS433 is the only Galactic binary system known to persistently accrete at highly super-critical (or hyper-critical) rates, similar to those in tidal disruption events, and likely needed to explain the rapid growth of those very high redshift quasars containing massive SMBHs. Probing the inner regions of SS433 in the X-rays is crucial to understanding this system, and super-critical accretion in general, but is highly challenging due to obscuration by the surrounding wind, driven from the accretion flow. NuSTAR observed SS433 in the hard X-ray band across multiple phases of its 162 day super-orbital precession period. Spectral-timing tools allow us to infer that the hard X-ray emission from the inner regions is likely being scattered towards us by the walls of the wind-cone. By comparing to numerical models, we determine an intrinsic X-ray luminosity of $\ge$ 2$\times$10$^{37}$ erg/s and that, if viewed face on, we would infer an apparent luminosity of $&gt;$ 1$\times$10$^{39}$ erg/s, confirming SS433&#39;s long-suspected nature as an ultraluminous X-ray source (ULX). We present the discovery of a narrow, $\sim 100$s lag due to atomic processes occurring in outflowing material travelling at least 0.14-0.29c, which matches absorption lines seen in ULXs and -- in the future -- will allow us to map a super-critical outflow for the first time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.10518v3-abstract-full').style.display = 'none'; document.getElementById('1810.10518v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 10 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.07705">arXiv:1805.07705</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.07705">pdf</a>, <a href="https://arxiv.org/ps/1805.07705">ps</a>, <a href="https://arxiv.org/format/1805.07705">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aada03">10.3847/1538-4357/aada03 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Hard State of the Highly Absorbed High Inclination Black Hole Binary Candidate Swift J1658.2-4242 Observed by NuSTAR and Swift </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Xu%2C+Y">Yanjun Xu</a>, <a href="/search/?searchtype=author&amp;query=Harrison%2C+F+A">Fiona A. Harrison</a>, <a href="/search/?searchtype=author&amp;query=Kennea%2C+J+A">Jamie A. Kennea</a>, <a href="/search/?searchtype=author&amp;query=Walton%2C+D+J">Dominic J. Walton</a>, <a href="/search/?searchtype=author&amp;query=Tomsick%2C+J+A">John A. Tomsick</a>, <a href="/search/?searchtype=author&amp;query=Miller%2C+J+M">Jon M. Miller</a>, <a href="/search/?searchtype=author&amp;query=Barret%2C+D">Didier Barret</a>, <a href="/search/?searchtype=author&amp;query=Fabian%2C+A+C">Andrew C. Fabian</a>, <a href="/search/?searchtype=author&amp;query=Forster%2C+K">Karl Forster</a>, <a href="/search/?searchtype=author&amp;query=Fuerst%2C+F">Felix Fuerst</a>, <a href="/search/?searchtype=author&amp;query=Gandhi%2C+P">Poshak Gandhi</a>, <a href="/search/?searchtype=author&amp;query=Garcia%2C+J+A">Javier A. Garcia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.07705v2-abstract-short" style="display: inline;"> We present a spectral and timing analysis of the newly reported Galactic X-ray transient Swift J1658.2-4242 observed by NuSTAR and Swift. The broad-band X-ray continuum is typical of a black hole binary in the bright hard state, with a photon index of $螕=1.63\pm0.02$ and a low coronal temperature of $kT_{\rm e}=22\pm1$ keV, corresponding to a low spectral cutoff well constrained by NuSTAR. Spectra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.07705v2-abstract-full').style.display = 'inline'; document.getElementById('1805.07705v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.07705v2-abstract-full" style="display: none;"> We present a spectral and timing analysis of the newly reported Galactic X-ray transient Swift J1658.2-4242 observed by NuSTAR and Swift. The broad-band X-ray continuum is typical of a black hole binary in the bright hard state, with a photon index of $螕=1.63\pm0.02$ and a low coronal temperature of $kT_{\rm e}=22\pm1$ keV, corresponding to a low spectral cutoff well constrained by NuSTAR. Spectral modeling of the relativistic disk reflection features, consisting of a broad Fe K$伪$ line and the Compton reflection hump, reveals that the black hole is rapidly spinning with the spin parameter of $a^{*}&gt;0.96$, and the inner accretion disk is viewed at a high inclination angle of $i=64^{+2}_{-3}{^\circ}$ (statistical errors, 90% confidence). The high inclination is independently confirmed by dips in the light curves, which can be explained by absorbing material located near the disk plane temporarily obscuring the central region. In addition, we detect an absorption line in the NuSTAR spectra centered at $7.03^{+0.04}_{-0.03}$ keV. If associated with ionized Fe K absorption lines, this provides evidence for the presence of outflowing material in the low/hard state of a black hole binary candidate. A timing analysis shows the presence of a type-C QPO in the power spectrum, with the frequency increasing from $\sim0.14$ Hz to $\sim0.21$ Hz during the single NuSTAR exposure. Our analysis reveals that Swift J1658.2-4242 displays characteristics typical for a black hole binary that is viewed at a high inclination angle, making it a good system for studying the accretion geometry in black hole binaries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.07705v2-abstract-full').style.display = 'none'; document.getElementById('1805.07705v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures, accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.02719">arXiv:1711.02719</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.02719">pdf</a>, <a href="https://arxiv.org/format/1711.02719">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/1.JATIS.3.4.044003.">10.1117/1.JATIS.3.4.044003. <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observational Artifacts of NuSTAR: Ghost Rays and Stray Light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Madsen%2C+K+K">Kristin K. Madsen</a>, <a href="/search/?searchtype=author&amp;query=Christensen%2C+F+E">Finn E. Christensen</a>, <a href="/search/?searchtype=author&amp;query=Craig%2C+W+W">William W. Craig</a>, <a href="/search/?searchtype=author&amp;query=Forster%2C+K+W">Karl W. Forster</a>, <a href="/search/?searchtype=author&amp;query=Grefenstette%2C+B+W">Brian W. Grefenstette</a>, <a href="/search/?searchtype=author&amp;query=Harrison%2C+F+A">Fiona A. Harrison</a>, <a href="/search/?searchtype=author&amp;query=Miyasaka%2C+H">Hiromasa Miyasaka</a>, <a href="/search/?searchtype=author&amp;query=Rana%2C+V">Vikram Rana</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.02719v1-abstract-short" style="display: inline;"> The Nuclear Spectroscopic Telescope Array (NuSTAR), launched in June 2012, flies two conical approximation Wolter-I mirrors at the end of a 10.15m mast. The optics are coated with multilayers of Pt/C and W/Si that operate from 3--80 keV. Since the optical path is not shrouded, aperture stops are used to limit the field of view from background and sources outside the field of view. However, there i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.02719v1-abstract-full').style.display = 'inline'; document.getElementById('1711.02719v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.02719v1-abstract-full" style="display: none;"> The Nuclear Spectroscopic Telescope Array (NuSTAR), launched in June 2012, flies two conical approximation Wolter-I mirrors at the end of a 10.15m mast. The optics are coated with multilayers of Pt/C and W/Si that operate from 3--80 keV. Since the optical path is not shrouded, aperture stops are used to limit the field of view from background and sources outside the field of view. However, there is still a sliver of sky (~1.0--4.0 degrees) where photons may bypass the optics altogether and fall directly on the detector array. We term these photons Stray-light. Additionally, there are also photons that do not undergo the focused double reflections in the optics and we term these Ghost Rays. We present detailed analysis and characterization of these two components and discuss how they impact observations. Finally, we discuss how they could have been prevented and should be in future observatories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.02719v1-abstract-full').style.display = 'none'; document.getElementById('1711.02719v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Journal of Astronomical Telescopes, Instruments, and Systems. Open Access. http://dx.doi.org/10.1117/1.JATIS.3.4.044003</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Astron. Telesc. Instrum. Syst. 3(4), 044003 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.05437">arXiv:1710.05437</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.05437">pdf</a>, <a href="https://arxiv.org/format/1710.05437">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.aap9580">10.1126/science.aap9580 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Swift and NuSTAR observations of GW170817: detection of a blue kilonova </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Evans%2C+P+A">P. A. Evans</a>, <a href="/search/?searchtype=author&amp;query=Cenko%2C+S+B">S. B. Cenko</a>, <a href="/search/?searchtype=author&amp;query=Kennea%2C+J+A">J. A. Kennea</a>, <a href="/search/?searchtype=author&amp;query=Emery%2C+S+W+K">S. W. K. Emery</a>, <a href="/search/?searchtype=author&amp;query=Kuin%2C+N+P+M">N. P. M. Kuin</a>, <a href="/search/?searchtype=author&amp;query=Korobkin%2C+O">O. Korobkin</a>, <a href="/search/?searchtype=author&amp;query=Wollaeger%2C+R+T">R. T. Wollaeger</a>, <a href="/search/?searchtype=author&amp;query=Fryer%2C+C+L">C. L. Fryer</a>, <a href="/search/?searchtype=author&amp;query=Madsen%2C+K+K">K. K. Madsen</a>, <a href="/search/?searchtype=author&amp;query=Harrison%2C+F+A">F. A. Harrison</a>, <a href="/search/?searchtype=author&amp;query=Xu%2C+Y">Y. Xu</a>, <a href="/search/?searchtype=author&amp;query=Nakar%2C+E">E. Nakar</a>, <a href="/search/?searchtype=author&amp;query=Hotokezaka%2C+K">K. Hotokezaka</a>, <a href="/search/?searchtype=author&amp;query=Lien%2C+A">A. Lien</a>, <a href="/search/?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/?searchtype=author&amp;query=Oates%2C+S+R">S. R. Oates</a>, <a href="/search/?searchtype=author&amp;query=Troja%2C+E">E. Troja</a>, <a href="/search/?searchtype=author&amp;query=Breeveld%2C+A+A">A. A. Breeveld</a>, <a href="/search/?searchtype=author&amp;query=Marshall%2C+F+E">F. E. Marshall</a>, <a href="/search/?searchtype=author&amp;query=Barthelmy%2C+S+D">S. D. Barthelmy</a>, <a href="/search/?searchtype=author&amp;query=Beardmore%2C+A+P">A. P. Beardmore</a>, <a href="/search/?searchtype=author&amp;query=Burrows%2C+D+N">D. N. Burrows</a>, <a href="/search/?searchtype=author&amp;query=Cusumano%2C+G">G. Cusumano</a>, <a href="/search/?searchtype=author&amp;query=D%27Ai%2C+A">A. D&#39;Ai</a>, <a href="/search/?searchtype=author&amp;query=D%27Avanzo%2C+P">P. D&#39;Avanzo</a> , et al. (34 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.05437v1-abstract-short" style="display: inline;"> With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. A complete picture of compact object mergers, however, requires the detection of an electromagnetic (EM) counterpart. We report ultraviolet (UV) and X-ray observations by Swift and the Nuclear Spectroscopic Telescope ARray (NuSTAR) of the EM counterpart of the binary neutron star&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.05437v1-abstract-full').style.display = 'inline'; document.getElementById('1710.05437v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.05437v1-abstract-full" style="display: none;"> With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. A complete picture of compact object mergers, however, requires the detection of an electromagnetic (EM) counterpart. We report ultraviolet (UV) and X-ray observations by Swift and the Nuclear Spectroscopic Telescope ARray (NuSTAR) of the EM counterpart of the binary neutron star merger GW170817. The bright, rapidly fading ultraviolet emission indicates a high mass ($\approx0.03$ solar masses) wind-driven outflow with moderate electron fraction ($Y_{e}\approx0.27$). Combined with the X-ray limits, we favor an observer viewing angle of $\approx 30^{\circ}$ away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultra-relativistic, highly collimated ejecta (a gamma-ray burst afterglow). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.05437v1-abstract-full').style.display = 'none'; document.getElementById('1710.05437v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Science, in press; 56 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.09827">arXiv:1708.09827</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.09827">pdf</a>, <a href="https://arxiv.org/ps/1708.09827">ps</a>, <a href="https://arxiv.org/format/1708.09827">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Structures and Algorithms">cs.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Walking Through Waypoints </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Amiri%2C+S+A">Saeed Akhoondian Amiri</a>, <a href="/search/?searchtype=author&amp;query=Foerster%2C+K">Klaus-Tycho Foerster</a>, <a href="/search/?searchtype=author&amp;query=Schmid%2C+S">Stefan Schmid</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.09827v2-abstract-short" style="display: inline;"> We initiate the study of a fundamental combinatorial problem: Given a capacitated graph $G=(V,E)$, find a shortest walk (&#34;route&#34;) from a source $s\in V$ to a destination $t\in V$ that includes all vertices specified by a set $\mathscr{W}\subseteq V$: the \emph{waypoints}. This waypoint routing problem finds immediate applications in the context of modern networked distributed systems. Our main con&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.09827v2-abstract-full').style.display = 'inline'; document.getElementById('1708.09827v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.09827v2-abstract-full" style="display: none;"> We initiate the study of a fundamental combinatorial problem: Given a capacitated graph $G=(V,E)$, find a shortest walk (&#34;route&#34;) from a source $s\in V$ to a destination $t\in V$ that includes all vertices specified by a set $\mathscr{W}\subseteq V$: the \emph{waypoints}. This waypoint routing problem finds immediate applications in the context of modern networked distributed systems. Our main contribution is an exact polynomial-time algorithm for graphs of bounded treewidth. We also show that if the number of waypoints is logarithmically bounded, exact polynomial-time algorithms exist even for general graphs. Our two algorithms provide an almost complete characterization of what can be solved exactly in polynomial-time: we show that more general problems (e.g., on grid graphs of maximum degree 3, with slightly more waypoints) are computationally intractable. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.09827v2-abstract-full').style.display = 'none'; document.getElementById('1708.09827v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.01446">arXiv:1708.01446</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.01446">pdf</a>, <a href="https://arxiv.org/ps/1708.01446">ps</a>, <a href="https://arxiv.org/format/1708.01446">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Summary of the 12th IACHEC Meeting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Forster%2C+K">K. Forster</a>, <a href="/search/?searchtype=author&amp;query=Grant%2C+C+E">C. E. Grant</a>, <a href="/search/?searchtype=author&amp;query=Guainazzi%2C+M">M. Guainazzi</a>, <a href="/search/?searchtype=author&amp;query=Kashyap%2C+V">V. Kashyap</a>, <a href="/search/?searchtype=author&amp;query=Marshall%2C+H+L">H. L. Marshall</a>, <a href="/search/?searchtype=author&amp;query=Miller%2C+E+D">E. D. Miller</a>, <a href="/search/?searchtype=author&amp;query=Natalucci%2C+L">L. Natalucci</a>, <a href="/search/?searchtype=author&amp;query=Nevalainen%2C+J">J. Nevalainen</a>, <a href="/search/?searchtype=author&amp;query=Plucinsky%2C+P+P">P. P. Plucinsky</a>, <a href="/search/?searchtype=author&amp;query=Terada%2C+Y">Y. Terada</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.01446v1-abstract-short" style="display: inline;"> We summarize the outcome of the 12th meeting of the International Astronomical Consortium for High Energy Calibration (IACHEC), held at the UCLA conference center in Lake Arrowhead (California) in March 2017. 56 scientists directly involved in the calibration of operational and future high-energy missions gathered during 3.5 days to discuss the status of the X-ray payload inter-calibration, as wel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.01446v1-abstract-full').style.display = 'inline'; document.getElementById('1708.01446v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.01446v1-abstract-full" style="display: none;"> We summarize the outcome of the 12th meeting of the International Astronomical Consortium for High Energy Calibration (IACHEC), held at the UCLA conference center in Lake Arrowhead (California) in March 2017. 56 scientists directly involved in the calibration of operational and future high-energy missions gathered during 3.5 days to discuss the status of the X-ray payload inter-calibration, as well as possible ways to improve it. The &#34;Thermal Supernovas Remnant&#34; (SNR) Working Group presented a recently published paper on 1E0102.2-7219 as a calibration standard in the 0.5-1.0 keV band. A new method to measure the high-energy spectrum of the Crab Nebula and pulsar with NuSTAR without using its optics may yield a new absolute flux standard in the 3-7 keV band. A new ACIS contamination model - released with CALDB version 4.7.3 - leads to a significant improvement in modeling the spectral, spatial, and temporal properties of the contaminant. The first calibration results of the scientific payload on board Hitomi confirm the excellent performance of the instruments before the spacecraft operation problems leading to its loss. Finally, the meeting discussed extensively a novel statistic approach to formally identify in which direction the effective areas of different instruments would need to be changed to bring them into concordance. This method could inform future further calibration efforts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.01446v1-abstract-full').style.display = 'none'; document.getElementById('1708.01446v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 1 figure, summary of the 12th IACHEC meeting (27-30 March 2017)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.00055">arXiv:1705.00055</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.00055">pdf</a>, <a href="https://arxiv.org/format/1705.00055">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Structures and Algorithms">cs.DS</span> </div> </div> <p class="title is-5 mathjax"> Charting the Complexity Landscape of Waypoint Routing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Amiri%2C+S+A">Saeed Akhoondian Amiri</a>, <a href="/search/?searchtype=author&amp;query=Foerster%2C+K">Klaus-Tycho Foerster</a>, <a href="/search/?searchtype=author&amp;query=Jacob%2C+R">Riko Jacob</a>, <a href="/search/?searchtype=author&amp;query=Schmid%2C+S">Stefan Schmid</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.00055v2-abstract-short" style="display: inline;"> Modern computer networks support interesting new routing models in which traffic flows from a source s to a destination t can be flexibly steered through a sequence of waypoints, such as (hardware) middleboxes or (virtualized) network functions, to create innovative network services like service chains or segment routing. While the benefits and technological challenges of providing such routing mo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.00055v2-abstract-full').style.display = 'inline'; document.getElementById('1705.00055v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.00055v2-abstract-full" style="display: none;"> Modern computer networks support interesting new routing models in which traffic flows from a source s to a destination t can be flexibly steered through a sequence of waypoints, such as (hardware) middleboxes or (virtualized) network functions, to create innovative network services like service chains or segment routing. While the benefits and technological challenges of providing such routing models have been articulated and studied intensively over the last years, much less is known about the underlying algorithmic traffic routing problems. This paper shows that the waypoint routing problem features a deep combinatorial structure, and we establish interesting connections to several classic graph theoretical problems. We find that the difficulty of the waypoint routing problem depends on the specific setting, and chart a comprehensive landscape of the computational complexity. In particular, we derive several NP-hardness results, but we also demonstrate that exact polynomial-time algorithms exist for a wide range of practically relevant scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.00055v2-abstract-full').style.display = 'none'; document.getElementById('1705.00055v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.00021">arXiv:1703.00021</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.00021">pdf</a>, <a href="https://arxiv.org/format/1703.00021">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/aa61fc">10.3847/1538-4365/aa61fc <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The NuSTAR Hard X-ray Survey of the Norma Arm Region </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Fornasini%2C+F+M">Francesca M. Fornasini</a>, <a href="/search/?searchtype=author&amp;query=Tomsick%2C+J+A">John A. Tomsick</a>, <a href="/search/?searchtype=author&amp;query=Hong%2C+J">JaeSub Hong</a>, <a href="/search/?searchtype=author&amp;query=Gotthelf%2C+E+V">Eric V. Gotthelf</a>, <a href="/search/?searchtype=author&amp;query=Bauer%2C+F">Franz Bauer</a>, <a href="/search/?searchtype=author&amp;query=Rahoui%2C+F">Farid Rahoui</a>, <a href="/search/?searchtype=author&amp;query=Stern%2C+D">Daniel Stern</a>, <a href="/search/?searchtype=author&amp;query=Bodaghee%2C+A">Arash Bodaghee</a>, <a href="/search/?searchtype=author&amp;query=Chiu%2C+J">Jeng-Lun Chiu</a>, <a href="/search/?searchtype=author&amp;query=Clavel%2C+M">Ma茂ca Clavel</a>, <a href="/search/?searchtype=author&amp;query=Corral-Santana%2C+J+M">Jes煤s M. Corral-Santana</a>, <a href="/search/?searchtype=author&amp;query=Hailey%2C+C+J">Charles J. Hailey</a>, <a href="/search/?searchtype=author&amp;query=Krivonos%2C+R+A">Roman A. Krivonos</a>, <a href="/search/?searchtype=author&amp;query=Mori%2C+K">Kaya Mori</a>, <a href="/search/?searchtype=author&amp;query=Alexander%2C+D+M">David M. Alexander</a>, <a href="/search/?searchtype=author&amp;query=Barret%2C+D">Didier Barret</a>, <a href="/search/?searchtype=author&amp;query=Boggs%2C+S+E">Steven E. Boggs</a>, <a href="/search/?searchtype=author&amp;query=Christensen%2C+F+E">Finn E. Christensen</a>, <a href="/search/?searchtype=author&amp;query=Craig%2C+W+W">William W. Craig</a>, <a href="/search/?searchtype=author&amp;query=Forster%2C+K">Karl Forster</a>, <a href="/search/?searchtype=author&amp;query=Giommi%2C+P">Paolo Giommi</a>, <a href="/search/?searchtype=author&amp;query=Grefenstette%2C+B+W">Brian W. Grefenstette</a>, <a href="/search/?searchtype=author&amp;query=Harrison%2C+F+A">Fiona A. Harrison</a>, <a href="/search/?searchtype=author&amp;query=Hornstrup%2C+A">Allan Hornstrup</a>, <a href="/search/?searchtype=author&amp;query=Kitaguchi%2C+T">Takao Kitaguchi</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.00021v1-abstract-short" style="display: inline;"> We present a catalog of hard X-ray sources in a square-degree region surveyed by NuSTAR in the direction of the Norma spiral arm. This survey has a total exposure time of 1.7 Ms, and typical and maximum exposure depths of 50 ks and 1 Ms, respectively. In the area of deepest coverage, sensitivity limits of $5\times10^{-14}$ and $4\times10^{-14}$ erg s$^{-1}$ cm$^{-2}$ in the 3-10 and 10-20 keV band&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.00021v1-abstract-full').style.display = 'inline'; document.getElementById('1703.00021v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.00021v1-abstract-full" style="display: none;"> We present a catalog of hard X-ray sources in a square-degree region surveyed by NuSTAR in the direction of the Norma spiral arm. This survey has a total exposure time of 1.7 Ms, and typical and maximum exposure depths of 50 ks and 1 Ms, respectively. In the area of deepest coverage, sensitivity limits of $5\times10^{-14}$ and $4\times10^{-14}$ erg s$^{-1}$ cm$^{-2}$ in the 3-10 and 10-20 keV bands, respectively, are reached. Twenty-eight sources are firmly detected and ten are detected with low significance; eight of the 38 sources are expected to be active galactic nuclei. The three brightest sources were previously identified as a low-mass X-ray binary, high-mass X-ray binary, and pulsar wind nebula. Based on their X-ray properties and multi-wavelength counterparts, we identify the likely nature of the other sources as two colliding wind binaries, three pulsar wind nebulae, a black hole binary, and a plurality of cataclysmic variables (CVs). The CV candidates in the Norma region have plasma temperatures of $\approx$10-20 keV, consistent with the Galactic Ridge X-ray emission spectrum but lower than temperatures of CVs near the Galactic Center. This temperature difference may indicate that the Norma region has a lower fraction of intermediate polars relative to other types of CVs compared to the Galactic Center. The NuSTAR log$N$-log$S$ distribution in the 10-20 keV band is consistent with the distribution measured by Chandra at 2-10 keV if the average source spectrum is assumed to be a thermal model with $kT\approx15$~keV, as observed for the CV candidates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.00021v1-abstract-full').style.display = 'none'; document.getElementById('1703.00021v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42 pages, 12 figures, 11 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.06389">arXiv:1612.06389</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1612.06389">pdf</a>, <a href="https://arxiv.org/format/1612.06389">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/836/1/99">10.3847/1538-4357/836/1/99 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The NuSTAR Serendipitous Survey: The 40 month Catalog and the Properties of the Distant High Energy X-ray Source Population </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lansbury%2C+G+B">G. B. Lansbury</a>, <a href="/search/?searchtype=author&amp;query=Stern%2C+D">D. Stern</a>, <a href="/search/?searchtype=author&amp;query=Aird%2C+J">J. Aird</a>, <a href="/search/?searchtype=author&amp;query=Alexander%2C+D+M">D. M. Alexander</a>, <a href="/search/?searchtype=author&amp;query=Fuentes%2C+C">C. Fuentes</a>, <a href="/search/?searchtype=author&amp;query=Harrison%2C+F+A">F. A. Harrison</a>, <a href="/search/?searchtype=author&amp;query=Treister%2C+E">E. Treister</a>, <a href="/search/?searchtype=author&amp;query=Bauer%2C+F+E">F. E. Bauer</a>, <a href="/search/?searchtype=author&amp;query=Tomsick%2C+J+A">J. A. Tomsick</a>, <a href="/search/?searchtype=author&amp;query=Balokovic%2C+M">M. Balokovic</a>, <a href="/search/?searchtype=author&amp;query=Del+Moro%2C+A">A. Del Moro</a>, <a href="/search/?searchtype=author&amp;query=Gandhi%2C+P">P. Gandhi</a>, <a href="/search/?searchtype=author&amp;query=Ajello%2C+M">M. Ajello</a>, <a href="/search/?searchtype=author&amp;query=Annuar%2C+A">A. Annuar</a>, <a href="/search/?searchtype=author&amp;query=Ballantyne%2C+D+R">D. R. Ballantyne</a>, <a href="/search/?searchtype=author&amp;query=Boggs%2C+S+E">S. E. Boggs</a>, <a href="/search/?searchtype=author&amp;query=Brandt%2C+N">N. Brandt</a>, <a href="/search/?searchtype=author&amp;query=Brightman%2C+M">M. Brightman</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+C+J">C. J. Chen</a>, <a href="/search/?searchtype=author&amp;query=Christensen%2C+F+E">F. E. Christensen</a>, <a href="/search/?searchtype=author&amp;query=Civano%2C+F">F. Civano</a>, <a href="/search/?searchtype=author&amp;query=Comastri%2C+A">A. Comastri</a>, <a href="/search/?searchtype=author&amp;query=Craig%2C+W+W">W. W. Craig</a>, <a href="/search/?searchtype=author&amp;query=Forster%2C+K">K. Forster</a>, <a href="/search/?searchtype=author&amp;query=Grefenstette%2C+B+W">B. W. Grefenstette</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.06389v1-abstract-short" style="display: inline;"> We present the first full catalog and science results for the NuSTAR serendipitous survey. The catalog incorporates data taken during the first 40 months of NuSTAR operation, which provide ~20Ms of effective exposure time over 331 fields, with an areal coverage of 13 sq deg, and 497 sources detected in total over the 3-24 keV energy range. There are 276 sources with spectroscopic redshifts and cla&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.06389v1-abstract-full').style.display = 'inline'; document.getElementById('1612.06389v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.06389v1-abstract-full" style="display: none;"> We present the first full catalog and science results for the NuSTAR serendipitous survey. The catalog incorporates data taken during the first 40 months of NuSTAR operation, which provide ~20Ms of effective exposure time over 331 fields, with an areal coverage of 13 sq deg, and 497 sources detected in total over the 3-24 keV energy range. There are 276 sources with spectroscopic redshifts and classifications, largely resulting from our extensive campaign of ground-based spectroscopic followup. We characterize the overall sample in terms of the X-ray, optical, and infrared source properties. The sample is primarily comprised of active galactic nuclei (AGNs), detected over a large range in redshift from z = 0.002 - 3.4 (median of &lt;z&gt; = 0.56), but also includes 16 spectroscopically confirmed Galactic sources. There is a large range in X-ray flux, from log( f_3-24keV / erg s^-1 cm^-2 ) ~ -14 to -11, and in rest-frame 10-40 keV luminosity, from log( L_10-40keV / erg s^-1 ) ~ 39 to 46, with a median of 44.1. Approximately 79% of the NuSTAR sources have lower energy (&lt;10 keV) X-ray counterparts from XMM-Newton, Chandra, and Swift/XRT. The mid-infrared (MIR) analysis, using WISE all-sky survey data, shows that MIR AGN color selections miss a large fraction of the NuSTAR-selected AGN population, from ~15% at the highest luminosities (Lx &gt; 10^44 erg s^-1) to ~80% at the lowest luminosities (Lx &lt; 10^43 erg s^-1). Our optical spectroscopic analysis finds that the observed fraction of optically obscured AGNs (i.e., the Type 2 fraction) is F_Type2 = 53(+14-15)%, for a well-defined subset of the 8-24 keV selected sample. This is higher, albeit at a low significance level, than the Type 2 fraction measured for redshift- and luminosity-matched AGNs selected by &lt;10 keV X-ray missions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.06389v1-abstract-full').style.display = 'none'; document.getElementById('1612.06389v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">49 pages, 23 figures, 8 tables. Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.02774">arXiv:1612.02774</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1612.02774">pdf</a>, <a href="https://arxiv.org/format/1612.02774">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/834/1/19">10.3847/1538-4357/834/1/19 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The distribution of radioactive $^{44}$Ti in Cassiopeia A </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Grefenstette%2C+B+W">Brian W. Grefenstette</a>, <a href="/search/?searchtype=author&amp;query=Fryer%2C+C+L">Chris L. Fryer</a>, <a href="/search/?searchtype=author&amp;query=Harrison%2C+F+A">Fiona A. Harrison</a>, <a href="/search/?searchtype=author&amp;query=Boggs%2C+S+E">Steven E. Boggs</a>, <a href="/search/?searchtype=author&amp;query=DeLaney%2C+T">Tracey DeLaney</a>, <a href="/search/?searchtype=author&amp;query=Laming%2C+J+M">J. Martin Laming</a>, <a href="/search/?searchtype=author&amp;query=Reynolds%2C+S+P">Stephen P. Reynolds</a>, <a href="/search/?searchtype=author&amp;query=Alexander%2C+D+M">David M. Alexander</a>, <a href="/search/?searchtype=author&amp;query=Barret%2C+D">Didier Barret</a>, <a href="/search/?searchtype=author&amp;query=Christensen%2C+F+E">Finn E. Christensen</a>, <a href="/search/?searchtype=author&amp;query=Craig%2C+W+W">William W. Craig</a>, <a href="/search/?searchtype=author&amp;query=Forster%2C+K">Karl Forster</a>, <a href="/search/?searchtype=author&amp;query=Giommi%2C+P">Paolo Giommi</a>, <a href="/search/?searchtype=author&amp;query=Hailey%2C+C+J">Charles J. Hailey</a>, <a href="/search/?searchtype=author&amp;query=Hornstrup%2C+A">Alan Hornstrup</a>, <a href="/search/?searchtype=author&amp;query=Kitaguchi%2C+T">Takao Kitaguchi</a>, <a href="/search/?searchtype=author&amp;query=Koglin%2C+J+E">J. E. Koglin</a>, <a href="/search/?searchtype=author&amp;query=Lopez%2C+L">Laura Lopez</a>, <a href="/search/?searchtype=author&amp;query=Mao%2C+P+H">Peter H. Mao</a>, <a href="/search/?searchtype=author&amp;query=Madsen%2C+K+K">Kristin K. Madsen</a>, <a href="/search/?searchtype=author&amp;query=Miyasaka%2C+H">Hiromasa Miyasaka</a>, <a href="/search/?searchtype=author&amp;query=Mori%2C+K">Kaya Mori</a>, <a href="/search/?searchtype=author&amp;query=Perri%2C+M">Matteo Perri</a>, <a href="/search/?searchtype=author&amp;query=Pivovaroff%2C+M+J">Michael J. Pivovaroff</a>, <a href="/search/?searchtype=author&amp;query=Puccetti%2C+S">Simonetta Puccetti</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.02774v1-abstract-short" style="display: inline;"> The distribution of elements produced in the inner-most layers of a supernova explosion is a key diagnostic for studying the collapse of massive stars. Here we present the results of a 2.4 Ms \textit{NuSTAR} observing campaign aimed at studying the supernova remnant Cassiopeia A (Cas A). We perform spatially-resolved spectroscopic analyses of the $^{44}$Ti ejecta which we use to determine the Dopp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.02774v1-abstract-full').style.display = 'inline'; document.getElementById('1612.02774v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.02774v1-abstract-full" style="display: none;"> The distribution of elements produced in the inner-most layers of a supernova explosion is a key diagnostic for studying the collapse of massive stars. Here we present the results of a 2.4 Ms \textit{NuSTAR} observing campaign aimed at studying the supernova remnant Cassiopeia A (Cas A). We perform spatially-resolved spectroscopic analyses of the $^{44}$Ti ejecta which we use to determine the Doppler shift and thus the three-dimensional (3D) velocities of the $^{44}$Ti ejecta. We find an initial $^{44}$Ti mass of 1.54 $\pm$ 0.21 $\times 10^{-4}$ M$_{\odot}$ which has a present day average momentum direction of 340$^{\circ}$ $\pm$ 15$^{\circ}$ projected on to the plane of the sky (measured clockwise from Celestial North) and tilted by 58$^{\circ}$ $\pm$ 20$^{\circ}$ into the plane of the sky away from the observer, roughly opposite to the inferred direction of motion of the central compact object. We find some $^{44}$Ti ejecta that are clearly interior to the reverse shock and some that are clearly exterior to the reverse shock. Where we observe $^{44}$Ti ejecta exterior to the reverse shock we also see shock-heated iron; however, there are regions where we see iron but do not observe $^{44}$Ti. This suggests that the local conditions of the supernova shock during explosive nucleosynthesis varied enough to suppress the production of $^{44}$Ti in some regions by at least a factor of two, even in regions that are assumed to be the result of processes like $伪$-rich freezeout that should produce both iron and titanium. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.02774v1-abstract-full').style.display = 'none'; document.getElementById('1612.02774v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 13 figures (6 3D animations in the online journal). Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.09032">arXiv:1609.09032</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.09032">pdf</a>, <a href="https://arxiv.org/format/1609.09032">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/153/1/2">10.3847/1538-3881/153/1/2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> IACHEC Cross-Calibration of Chandra, NuSTAR, Swift, Suzaku, and XMM-Newton with 3C 273 and PKS 2155-304 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Madsen%2C+K+K">Kristin K. Madsen</a>, <a href="/search/?searchtype=author&amp;query=Beardmore%2C+A+P">Andrew P. Beardmore</a>, <a href="/search/?searchtype=author&amp;query=Forster%2C+K">Karl Forster</a>, <a href="/search/?searchtype=author&amp;query=Guainazzi%2C+M">Matteo Guainazzi</a>, <a href="/search/?searchtype=author&amp;query=Marshall%2C+H+L">Herman L. Marshall</a>, <a href="/search/?searchtype=author&amp;query=Miller%2C+E+D">Eric D. Miller</a>, <a href="/search/?searchtype=author&amp;query=Page%2C+K+L">Kim L. Page</a>, <a href="/search/?searchtype=author&amp;query=Stuhlinge%2C+M">Martin Stuhlinge</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.09032v1-abstract-short" style="display: inline;"> On behalf of the International Astronomical Consortium for High Energy Calibration (IACHEC), we present results from the cross-calibration campaigns in 2012 on 3C 273 and in 2013 on PKS 2155-304 between the then active X-ray observatories Chandra, NuSTAR, Suzaku, Swift and XMM-Newton. We compare measured fluxes between instrument pairs in two energy bands, 1-5 keV and 3-7 keV and calculate an aver&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.09032v1-abstract-full').style.display = 'inline'; document.getElementById('1609.09032v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.09032v1-abstract-full" style="display: none;"> On behalf of the International Astronomical Consortium for High Energy Calibration (IACHEC), we present results from the cross-calibration campaigns in 2012 on 3C 273 and in 2013 on PKS 2155-304 between the then active X-ray observatories Chandra, NuSTAR, Suzaku, Swift and XMM-Newton. We compare measured fluxes between instrument pairs in two energy bands, 1-5 keV and 3-7 keV and calculate an average cross-normalization constant for each energy range. We review known cross-calibration features and provide a series of tables and figures to be used for evaluating cross-normalization constants obtained from other observations with the above mentioned observatories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.09032v1-abstract-full').style.display = 'none'; document.getElementById('1609.09032v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in the Astronomical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.06307">arXiv:1609.06307</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.06307">pdf</a>, <a href="https://arxiv.org/ps/1609.06307">ps</a>, <a href="https://arxiv.org/format/1609.06307">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/833/2/226">10.3847/1538-4357/833/2/226 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The GALEX Time Domain Survey. II. Wavelength-Dependent Variability of Active Galactic Nuclei in the Pan-STARRS1 Medium Deep Survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hung%2C+T">T. Hung</a>, <a href="/search/?searchtype=author&amp;query=Gezari%2C+S">S. Gezari</a>, <a href="/search/?searchtype=author&amp;query=Jones%2C+D+O">D. O. Jones</a>, <a href="/search/?searchtype=author&amp;query=Kirshner%2C+R+P">R. P. Kirshner</a>, <a href="/search/?searchtype=author&amp;query=Chornock%2C+R">R. Chornock</a>, <a href="/search/?searchtype=author&amp;query=Berger%2C+E">E. Berger</a>, <a href="/search/?searchtype=author&amp;query=Rest%2C+A">A. Rest</a>, <a href="/search/?searchtype=author&amp;query=Huber%2C+M">M. Huber</a>, <a href="/search/?searchtype=author&amp;query=Narayan%2C+G">G. Narayan</a>, <a href="/search/?searchtype=author&amp;query=Scolnic%2C+D">D. Scolnic</a>, <a href="/search/?searchtype=author&amp;query=Waters%2C+C">C. Waters</a>, <a href="/search/?searchtype=author&amp;query=Wainscoat%2C+R">R. Wainscoat</a>, <a href="/search/?searchtype=author&amp;query=Martin%2C+D+C">D. C. Martin</a>, <a href="/search/?searchtype=author&amp;query=Forster%2C+K">K. Forster</a>, <a href="/search/?searchtype=author&amp;query=Neill%2C+J+D">J. D. Neill</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.06307v1-abstract-short" style="display: inline;"> We analyze the wavelength-dependent variability of a sample of spectroscopically confirmed active galactic nuclei (AGN) selected from near-UV ($NUV$) variable sources in the GALEX Time Domain Survey that have a large amplitude of optical variability (difference-flux S/N $&gt;$ 3) in the Pan-STARRS1 Medium Deep Survey (PS1 MDS). By matching GALEX and PS1 epochs in 5 bands ($NUV$, $g_{P1}$, $r_{P1}$,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.06307v1-abstract-full').style.display = 'inline'; document.getElementById('1609.06307v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.06307v1-abstract-full" style="display: none;"> We analyze the wavelength-dependent variability of a sample of spectroscopically confirmed active galactic nuclei (AGN) selected from near-UV ($NUV$) variable sources in the GALEX Time Domain Survey that have a large amplitude of optical variability (difference-flux S/N $&gt;$ 3) in the Pan-STARRS1 Medium Deep Survey (PS1 MDS). By matching GALEX and PS1 epochs in 5 bands ($NUV$, $g_{P1}$, $r_{P1}$, $i_{P1}$, $z_{P1}$) in time, and taking their flux difference, we create co-temporal difference-flux spectral energy distributions ($螖f$SEDs) using two chosen epochs for each of the 23 objects in our sample on timescales of about a year. We confirm the &#34;bluer-when-brighter&#34; trend reported in previous studies, and measure a median spectral index of the $螖f$SEDs of $伪_位$ = 2.1 that is consistent with an accretion disk spectrum. We further fit the $螖f$SEDs of each source with a standard accretion disk model in which the accretion rate changes from one epoch to the other. In our sample, 17 out of 23 ($\sim$74 %) sources are well described by this variable accretion-rate disk model, with a median average characteristic disk temperature $\bar{T}^*$ of $1.2\times 10^5$~K that is consistent with the temperatures expected given the distribution of accretion rates and black hole masses inferred for the sample. Our analysis also shows that the variable accretion rate model is a better fit to the $螖f$SEDs than a simple power law. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.06307v1-abstract-full').style.display = 'none'; document.getElementById('1609.06307v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 11 figures, Accepted for publication in The Astrophysical Journal September, 20, 2016</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.02305">arXiv:1609.02305</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.02305">pdf</a>, <a href="https://arxiv.org/format/1609.02305">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Structures and Algorithms">cs.DS</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/COMST.2018.2876749">10.1109/COMST.2018.2876749 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Survey of Consistent Software-Defined Network Updates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Foerster%2C+K">Klaus-Tycho Foerster</a>, <a href="/search/?searchtype=author&amp;query=Schmid%2C+S">Stefan Schmid</a>, <a href="/search/?searchtype=author&amp;query=Vissicchio%2C+S">Stefano Vissicchio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.02305v3-abstract-short" style="display: inline;"> Computer networks have become a critical infrastructure. In fact, networks should not only meet strict requirements in terms of correctness, availability, and performance, but they should also be very flexible and support fast updates, e.g., due to policy changes, increasing traffic, or failures. This paper presents a structured survey of mechanism and protocols to update computer networks in a fa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.02305v3-abstract-full').style.display = 'inline'; document.getElementById('1609.02305v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.02305v3-abstract-full" style="display: none;"> Computer networks have become a critical infrastructure. In fact, networks should not only meet strict requirements in terms of correctness, availability, and performance, but they should also be very flexible and support fast updates, e.g., due to policy changes, increasing traffic, or failures. This paper presents a structured survey of mechanism and protocols to update computer networks in a fast and consistent manner. In particular, we identify and discuss the different desirable consistency properties that should be provided throughout a network update, the algorithmic techniques which are needed to meet these consistency properties, and the implications on the speed and costs at which updates can be performed. We also explain the relationship between consistent network update problems and classic algorithmic optimization ones. While our survey is mainly motivated by the advent of Software-Defined Networks (SDNs) and their primary need for correct and efficient update techniques, the fundamental underlying problems are not new, and we provide a historical perspective of the subject as well. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.02305v3-abstract-full').style.display = 'none'; document.getElementById('1609.02305v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> C.2.4; G.2.2 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Communications Surveys &amp; Tutorials 2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.02203">arXiv:1609.02203</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.02203">pdf</a>, <a href="https://arxiv.org/ps/1609.02203">ps</a>, <a href="https://arxiv.org/format/1609.02203">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/0004-637X/831/2/142">10.3847/0004-637X/831/2/142 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First NuSTAR observations of the BL Lac - type blazar PKS~2155-304: constraints on the jet content and distribution of radiating particles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Madejski%2C+G+M">G. M. Madejski</a>, <a href="/search/?searchtype=author&amp;query=Nalewajko%2C+K">K. Nalewajko</a>, <a href="/search/?searchtype=author&amp;query=Madsen%2C+K+K">K. K. Madsen</a>, <a href="/search/?searchtype=author&amp;query=Chiang%2C+J">J. Chiang</a>, <a href="/search/?searchtype=author&amp;query=Balokovi%C4%87%2C+M">M. Balokovi膰</a>, <a href="/search/?searchtype=author&amp;query=Paneque%2C+D">D. Paneque</a>, <a href="/search/?searchtype=author&amp;query=Furniss%2C+A+K">A. K. Furniss</a>, <a href="/search/?searchtype=author&amp;query=Hayashida%2C+M">M. Hayashida</a>, <a href="/search/?searchtype=author&amp;query=Urry%2C+C+M">C. M. Urry</a>, <a href="/search/?searchtype=author&amp;query=Sikora%2C+M">M. Sikora</a>, <a href="/search/?searchtype=author&amp;query=Ajello%2C+M">M. Ajello</a>, <a href="/search/?searchtype=author&amp;query=Blandford%2C+R+D">R. D. Blandford</a>, <a href="/search/?searchtype=author&amp;query=Harrison%2C+F+A">F. A. Harrison</a>, <a href="/search/?searchtype=author&amp;query=Sanchez%2C+D">D. Sanchez</a>, <a href="/search/?searchtype=author&amp;query=Giebels%2C+B">B. Giebels</a>, <a href="/search/?searchtype=author&amp;query=Stern%2C+D">D. Stern</a>, <a href="/search/?searchtype=author&amp;query=Alexander%2C+D+M">D. M. Alexander</a>, <a href="/search/?searchtype=author&amp;query=Barret%2C+D">D. Barret</a>, <a href="/search/?searchtype=author&amp;query=Boggs%2C+S+E">S. E. Boggs</a>, <a href="/search/?searchtype=author&amp;query=Christensen%2C+F+E">F. E. Christensen</a>, <a href="/search/?searchtype=author&amp;query=Craig%2C+W+W">W. W. Craig</a>, <a href="/search/?searchtype=author&amp;query=Forster%2C+K">K. Forster</a>, <a href="/search/?searchtype=author&amp;query=Giommi%2C+P">P. Giommi</a>, <a href="/search/?searchtype=author&amp;query=Grefenstette%2C+B">B. Grefenstette</a>, <a href="/search/?searchtype=author&amp;query=Hailey%2C+C">C. Hailey</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.02203v1-abstract-short" style="display: inline;"> We report the first hard X-ray observations with NuSTAR of the BL Lac type blazar PKS 2155-304, augmented with soft X-ray data from XMM-Newton and gamma-ray data from the Fermi Large Area Telescope, obtained in April 2013 when the source was in a very low flux state. A joint NuSTAR and XMM spectrum, covering the energy range 0.5 - 60 keV, is best described by a model consisting of a log-parabola c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.02203v1-abstract-full').style.display = 'inline'; document.getElementById('1609.02203v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.02203v1-abstract-full" style="display: none;"> We report the first hard X-ray observations with NuSTAR of the BL Lac type blazar PKS 2155-304, augmented with soft X-ray data from XMM-Newton and gamma-ray data from the Fermi Large Area Telescope, obtained in April 2013 when the source was in a very low flux state. A joint NuSTAR and XMM spectrum, covering the energy range 0.5 - 60 keV, is best described by a model consisting of a log-parabola component with curvature beta = 0.3(+0.2,-0.1) and a (local) photon index 3.04 +/- 0.15 at photon energy of 2 keV, and a hard power-law tail with photon index 2.2 +/- 0.4. The hard X-ray tail can be smoothly joined to the quasi-simultaneous gamma-ray spectrum by a synchrotron self-Compton component produced by an electron distribution with index p = 2.2. Assuming that the power-law electron distribution extends down to the minimum electron Lorentz factor gamma_min = 1 and that there is one proton per electron, an unrealistically high total jet power L_p of roughly 10^47 erg/s is inferred. This can be reduced by two orders of magnitude either by considering a significant presence of electron-positron pairs with lepton-to-proton ratio of at least 30, or by introducing an additional, low-energy break in the electron energy distribution at the electron Lorentz factor gamma_br1 of roughly 100. In either case, the jet composition is expected to be strongly matter-dominated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.02203v1-abstract-full').style.display = 'none'; document.getElementById('1609.02203v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Astrophysical Journal, in press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.01293">arXiv:1609.01293</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.01293">pdf</a>, <a href="https://arxiv.org/ps/1609.01293">ps</a>, <a href="https://arxiv.org/format/1609.01293">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aa67e8">10.3847/1538-4357/aa67e8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Living on a Flare: Relativistic Reflection in V404 Cyg Observed by NuSTAR During its Summer 2015 Outburst </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Walton%2C+D+J">D. J. Walton</a>, <a href="/search/?searchtype=author&amp;query=Mooley%2C+K">K. Mooley</a>, <a href="/search/?searchtype=author&amp;query=King%2C+A+L">A. L. King</a>, <a href="/search/?searchtype=author&amp;query=Tomsick%2C+J+A">J. A. Tomsick</a>, <a href="/search/?searchtype=author&amp;query=Miller%2C+J+M">J. M. Miller</a>, <a href="/search/?searchtype=author&amp;query=Dauser%2C+T">T. Dauser</a>, <a href="/search/?searchtype=author&amp;query=Garcia%2C+J">J. Garcia</a>, <a href="/search/?searchtype=author&amp;query=Bachetti%2C+M">M. Bachetti</a>, <a href="/search/?searchtype=author&amp;query=Brightman%2C+M">M. Brightman</a>, <a href="/search/?searchtype=author&amp;query=Fabian%2C+A+C">A. C. Fabian</a>, <a href="/search/?searchtype=author&amp;query=Forster%2C+K">K. Forster</a>, <a href="/search/?searchtype=author&amp;query=Fuerst%2C+F">F. Fuerst</a>, <a href="/search/?searchtype=author&amp;query=Gandhi%2C+P">P. Gandhi</a>, <a href="/search/?searchtype=author&amp;query=Grefenstette%2C+B+W">B. W. Grefenstette</a>, <a href="/search/?searchtype=author&amp;query=Harrison%2C+F+A">F. A. Harrison</a>, <a href="/search/?searchtype=author&amp;query=Madsen%2C+K+K">K. K. Madsen</a>, <a href="/search/?searchtype=author&amp;query=Meier%2C+D+L">D. L. Meier</a>, <a href="/search/?searchtype=author&amp;query=Middleton%2C+M+J">M. J. Middleton</a>, <a href="/search/?searchtype=author&amp;query=Natalucci%2C+L">L. Natalucci</a>, <a href="/search/?searchtype=author&amp;query=Rahoui%2C+F">F. Rahoui</a>, <a href="/search/?searchtype=author&amp;query=Rana%2C+V">V. Rana</a>, <a href="/search/?searchtype=author&amp;query=Stern%2C+D">D. Stern</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.01293v2-abstract-short" style="display: inline;"> We present first results from a series of $NuSTAR$ observations of the black hole X-ray binary V404 Cyg obtained during its summer 2015 outburst, primarily focusing on observations during the height of this outburst activity. The $NuSTAR$ data show extreme variability in both the flux and spectral properties of the source. This is partly driven by strong and variable line-of-sight absorption, simi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.01293v2-abstract-full').style.display = 'inline'; document.getElementById('1609.01293v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.01293v2-abstract-full" style="display: none;"> We present first results from a series of $NuSTAR$ observations of the black hole X-ray binary V404 Cyg obtained during its summer 2015 outburst, primarily focusing on observations during the height of this outburst activity. The $NuSTAR$ data show extreme variability in both the flux and spectral properties of the source. This is partly driven by strong and variable line-of-sight absorption, similar to previous outbursts. The latter stages of this observation are dominated by strong flares, reaching luminosities close to Eddington. During these flares, the central source appears to be relatively unobscured and the data show clear evidence for a strong contribution from relativistic reflection, providing a means to probe the geometry of the innermost accretion flow. Based on the flare properties, analogy with other Galactic black hole binaries, and also the simultaneous onset of radio activity, we argue that this intense X-ray flaring is related to transient jet activity during which the ejected plasma is the primary source of illumination for the accretion disk. If this is the case, then our reflection modelling implies that these jets are launched in close proximity to the black hole (as close as a few gravitational radii), consistent with expectations for jet launching models that tap either the spin of the central black hole, or the very innermost accretion disk. Our analysis also allows us to place the first constraints on the black hole spin for this source, which we find to be $a^* &gt; 0.92$ (99% statistical uncertainty, based on an idealized lamppost geometry). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.01293v2-abstract-full').style.display = 'none'; document.getElementById('1609.01293v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 16 figures, accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.01704">arXiv:1608.01704</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.01704">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2231239">10.1117/12.2231239 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Getting NuSTAR on target: predicting mast motion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Forster%2C+K">Karl Forster</a>, <a href="/search/?searchtype=author&amp;query=Madsen%2C+K+K">Kristin K. Madsen</a>, <a href="/search/?searchtype=author&amp;query=Miyasaka%2C+H">Hiromasa Miyasaka</a>, <a href="/search/?searchtype=author&amp;query=Craig%2C+W+W">William W. Craig</a>, <a href="/search/?searchtype=author&amp;query=Harrison%2C+F+A">Fiona A. Harrison</a>, <a href="/search/?searchtype=author&amp;query=Rana%2C+V+R">Vikram R. Rana</a>, <a href="/search/?searchtype=author&amp;query=Markwardt%2C+C+B">Craig B. Markwardt</a>, <a href="/search/?searchtype=author&amp;query=Grefenstette%2C+B+W">Brian W. Grefenstette</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.01704v1-abstract-short" style="display: inline;"> The Nuclear Spectroscopic Telescope Array (NuSTAR) is the first focusing high energy (3-79 keV) X-ray observatory operating for four years from low Earth orbit. The X-ray detector arrays are located on the spacecraft bus with the optics modules mounted on a flexible mast of 10.14m length. The motion of the telescope optical axis on the detectors during each observation is measured by a laser metro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.01704v1-abstract-full').style.display = 'inline'; document.getElementById('1608.01704v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.01704v1-abstract-full" style="display: none;"> The Nuclear Spectroscopic Telescope Array (NuSTAR) is the first focusing high energy (3-79 keV) X-ray observatory operating for four years from low Earth orbit. The X-ray detector arrays are located on the spacecraft bus with the optics modules mounted on a flexible mast of 10.14m length. The motion of the telescope optical axis on the detectors during each observation is measured by a laser metrology system and matches the pre-launch predictions of the thermal flexing of the mast as the spacecraft enters and exits the Earths shadow each orbit. However, an additional motion of the telescope field of view was discovered during observatory commissioning that is associated with the spacecraft attitude control system and an additional flexing of the mast correlated with the Solar aspect angle for the observation. We present the methodology developed to predict where any particular target coordinate will fall on the NuSTAR detectors based on the Solar aspect angle at the scheduled time of an observation. This may be applicable to future observatories that employ optics deployed on extendable masts. The automation of the prediction system has greatly improved observatory operations efficiency and the reliability of observation planning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.01704v1-abstract-full').style.display = 'none'; document.getElementById('1608.01704v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 11 figures, in proceedings of SPIE conference 9910</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Forster et al. (2016) in &#34;Observatory Operations: Strategies, Processes, and Systems VI&#34;, edited by Alison B. Peck, Robert L. Seaman, Chris R. Benn, Proc. of SPIE Vol. 9910, 9910OZ </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Forster%2C+K&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Forster%2C+K&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Forster%2C+K&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Forster%2C+K&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Forster%2C+K&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10