CINXE.COM
Search results for: flexible link
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: flexible link</title> <meta name="description" content="Search results for: flexible link"> <meta name="keywords" content="flexible link"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="flexible link" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="flexible link"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2274</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: flexible link</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2274</span> Load Maximization of Two-Link Flexible Manipulator Using Suppression Vibration with Piezoelectric Transducer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Heidari">Hamidreza Heidari</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdollah%20Malmir%20Nasab"> Abdollah Malmir Nasab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the energy equations of a two-link flexible manipulator were extracted using the Euler-Bernoulli beam hypotheses. Applying Assumed mode and considering some finite degrees of freedom, we could obtain dynamic motions of each manipulator using Euler-Lagrange equations. Using its claws, the robots can carry a certain load with the ached control of vibrations for robot flexible links during the travelling path using the piezoceramics transducer; dynamic load carrying capacity increase. The traveling path of flexible robot claw has been taken from that of equivalent rigid manipulator and coupled; therefore to avoid the role of Euler-Bernoulli beam assumptions and linear strains, material and physical characteristics selection of robot cause deflection of link ends not exceed 5% of link length. To do so, the maximum load carrying capacity of robot is calculated at the horizontal plan. The increasing of robot load carrying capacity with vibration control is 53%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20link" title="flexible link">flexible link</a>, <a href="https://publications.waset.org/abstracts/search?q=DLCC" title=" DLCC"> DLCC</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20control%20vibration" title=" active control vibration"> active control vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=assumed%20mode%20method" title=" assumed mode method"> assumed mode method</a> </p> <a href="https://publications.waset.org/abstracts/54871/load-maximization-of-two-link-flexible-manipulator-using-suppression-vibration-with-piezoelectric-transducer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2273</span> A Method for Modeling Flexible Manipulators: Transfer Matrix Method with Finite Segments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haijie%20Li">Haijie Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuping%20Zhang"> Xuping Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a computationally efficient method for the modeling of robot manipulators with flexible links and joints. This approach combines the Discrete Time Transfer Matrix Method with the Finite Segment Method, in which the flexible links are discretized by a number of rigid segments connected by torsion springs; and the flexibility of joints are modeled by torsion springs. The proposed method avoids the global dynamics and has the advantage of modeling non-uniform manipulators. Experiments and simulations of a single-link flexible manipulator are conducted for verifying the proposed methodologies. The simulations of a three-link robot arm with links and joints flexibility are also performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20manipulator" title="flexible manipulator">flexible manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20matrix%20method" title=" transfer matrix method"> transfer matrix method</a>, <a href="https://publications.waset.org/abstracts/search?q=linearization" title=" linearization"> linearization</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20segment%20method" title=" finite segment method"> finite segment method</a> </p> <a href="https://publications.waset.org/abstracts/51465/a-method-for-modeling-flexible-manipulators-transfer-matrix-method-with-finite-segments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2272</span> Development and Evaluation of Removable Shear Link with Perforated Web</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Y.%20Abebe">Daniel Y. Abebe</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaehyouk%20Choi"> Jaehyouk Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to investigate, through an analytical study, the behavior of both stiffened and un-stiffened removable shear link with perforated web considering different number and size of web openings. Removable shear link with perforated web is a novel shear link beam proposed to be used in eccentrically braced frame (EBF). The proposed link overcomes the difficulties during construction slab due to less cross-sectional areas of the link to control the plastic deformation on the conventional EBF with removable shear link. Finite element analyses were conducted under both cyclic and monotonic loading and from the results obtained design equations are developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eccentrically%20braced%20frame" title="eccentrically braced frame">eccentrically braced frame</a>, <a href="https://publications.waset.org/abstracts/search?q=removable%20shear%20link" title=" removable shear link"> removable shear link</a>, <a href="https://publications.waset.org/abstracts/search?q=perforated%20web" title=" perforated web"> perforated web</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20FE%20analysis" title=" non-linear FE analysis"> non-linear FE analysis</a> </p> <a href="https://publications.waset.org/abstracts/39370/development-and-evaluation-of-removable-shear-link-with-perforated-web" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2271</span> Design of Reduced Links for Link-to-Column Connections in Eccentrically Braced Frames</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Y.%20Abebe">Daniel Y. Abebe</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaehyouk%20Choi"> Jaehyouk Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Link-to-column connection in eccentrically braced frames (EBF) has been a critical problem since the link flange connected to the column fractured prior to the required link rotation. Even though the problem in link-to-column connection still exist, the use of an eccentrically braced frame (EBF) is increasing day by day as EBF have high elastic stiffness, stable inelastic response under repeated lateral loading, and excellent ductility and energy dissipation capacity. In order to address this problem, a reduced web and flange link section is proposed and evaluated in this study. Reducing the web with holes makes the link to control the failure at the edge of holes introduced. Reducing the flange allows the link to control the location at which the plastic hinge is formed. Thus, the failure supposed to occur in the link flange connected at the connection move to the web and to the reduced link flange. Nonlinear FE analysis and experimental investigations have been done on the developed links, and the result shows that the link satisfies the plastic rotation limit recommended in AICS-360-10. Design equations that define the behavior of the proposed link have been recommended, and the equations were verified through the experimental and FE analysis results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EBFs" title="EBFs">EBFs</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20disaster" title=" earthquake disaster"> earthquake disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=link-to-column%20connection" title=" link-to-column connection"> link-to-column connection</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20link%20section" title=" reduced link section"> reduced link section</a> </p> <a href="https://publications.waset.org/abstracts/68724/design-of-reduced-links-for-link-to-column-connections-in-eccentrically-braced-frames" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2270</span> Ant Colony Optimization Control for Multilevel STATCOM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20T%C3%A9djini">H. Tédjini</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Meslem"> Y. Meslem</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Guesbaoui"> B. Guesbaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Safa"> A. Safa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flexible AC Transmission Systems (FACTS) are potentially becoming more flexible and more economical local controllers in the power system; and because of the high MVA ratings, it would be expensive to provide independent, equal, regulated DC voltage sources to power the multilevel converters which are presently proposed for STATCOMs. DC voltage sources can be derived from the DC link capacitances which are charged by the rectified ac power. In this paper a new stronger control combined of nonlinear control based Lyapunov’s theorem and Ant Colony Algorithm (ACA) to maintain stability of multilevel STATCOM and the utility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Static%20Compensator%20%28STATCOM%29" title="Static Compensator (STATCOM)">Static Compensator (STATCOM)</a>, <a href="https://publications.waset.org/abstracts/search?q=ant%20colony%20optimization%20%28ACO%29" title=" ant colony optimization (ACO)"> ant colony optimization (ACO)</a>, <a href="https://publications.waset.org/abstracts/search?q=lyapunov%20control%20theory" title=" lyapunov control theory"> lyapunov control theory</a>, <a href="https://publications.waset.org/abstracts/search?q=Decoupled%20power%20control" title=" Decoupled power control"> Decoupled power control</a>, <a href="https://publications.waset.org/abstracts/search?q=neutral%20point%20clamped%20%28NPC%29" title=" neutral point clamped (NPC)"> neutral point clamped (NPC)</a> </p> <a href="https://publications.waset.org/abstracts/19254/ant-colony-optimization-control-for-multilevel-statcom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">556</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2269</span> Missing Link Data Estimation with Recurrent Neural Network: An Application Using Speed Data of Daegu Metropolitan Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=JaeHwan%20Yang">JaeHwan Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Da-Woon%20Jeong"> Da-Woon Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Young%20Kho"> Seung-Young Kho</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Kyu%20Kim"> Dong-Kyu Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In terms of ITS, information on link characteristic is an essential factor for plan or operation. But in practical cases, not every link has installed sensors on it. The link that does not have data on it is called “Missing Link”. The purpose of this study is to impute data of these missing links. To get these data, this study applies the machine learning method. With the machine learning process, especially for the deep learning process, missing link data can be estimated from present link data. For deep learning process, this study uses “Recurrent Neural Network” to take time-series data of road. As input data, Dedicated Short-range Communications (DSRC) data of Dalgubul-daero of Daegu Metropolitan Area had been fed into the learning process. Neural Network structure has 17 links with present data as input, 2 hidden layers, for 1 missing link data. As a result, forecasted data of target link show about 94% of accuracy compared with actual data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20estimation" title="data estimation">data estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=link%20data" title=" link data"> link data</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20network" title=" road network"> road network</a> </p> <a href="https://publications.waset.org/abstracts/80183/missing-link-data-estimation-with-recurrent-neural-network-an-application-using-speed-data-of-daegu-metropolitan-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2268</span> Mathematical Modeling of Switching Processes in Magnetically Controlled MEMS Switches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergey%20M.%20Karabanov">Sergey M. Karabanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20V.%20Suvorov"> Dmitry V. Suvorov</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20Yu.%20Tarabrin"> Dmitry Yu. Tarabrin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The operating principle of magnetically controlled microelectromechanical system (MEMS) switches is based on controlling the beam movement under the influence of a magnetic field. Currently, there is a MEMS switch design with a flexible ferromagnetic electrode in the form of a fixed-terminal beam, with an electrode fastened on a straight or cranked anchor. The basic performance characteristics of magnetically controlled MEMS switches (service life, sensitivity, contact resistance, fast response) are largely determined by the flexible electrode design. To ensure the stable and controlled motion of the flexible electrode, it is necessary to provide the optimal design of a flexible electrode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20electrode" title="flexible electrode">flexible electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetically%20controlled%20MEMS" title=" magnetically controlled MEMS"> magnetically controlled MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title=" mathematical modeling"> mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20stress" title=" mechanical stress"> mechanical stress</a> </p> <a href="https://publications.waset.org/abstracts/99674/mathematical-modeling-of-switching-processes-in-magnetically-controlled-mems-switches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2267</span> The Effects of the Aspect Ratio of a Flexible Cylinder on the Vortex Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abouzar%20Kaboudian">Abouzar Kaboudian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Chaithanya%20Mysa"> Ravi Chaithanya Mysa</a>, <a href="https://publications.waset.org/abstracts/search?q=Boo%20Cheong%20Khoo"> Boo Cheong Khoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajeev%20Kumar%20Jaiman"> Rajeev Kumar Jaiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The vortex structures observed in the wake of a flexible cylinder can be significantly different from those of a traditional vibrating, spring mounted, rigid cylinder. These differences can significantly affect the VIV characteristics of the flow and subsequently the VIV response of the cylindrical structures. In this work, we present how the aspect ratio of a flexible cylinder can change the vortex structures in its wake. We will discuss different vortex dynamics which can be observed in the wake of the vibrating flexible cylinder, and how they can affect the vibrational response of the cylinder. Moreover, we will study the transition of these structures versus the aspect ratio of the flexible cylinder. We will discuss how these transitions affect the in-line and transverse forces on the structure. In the end, we will provide general guidelines on the minimum acceptable aspect ratio for the offshore riser studies which may have grave implications for future numerical and experimental works. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aspect%20ratio" title="aspect ratio">aspect ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20cylinder" title=" flexible cylinder"> flexible cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex-shedding" title=" vortex-shedding"> vortex-shedding</a>, <a href="https://publications.waset.org/abstracts/search?q=VIV" title=" VIV"> VIV</a> </p> <a href="https://publications.waset.org/abstracts/25475/the-effects-of-the-aspect-ratio-of-a-flexible-cylinder-on-the-vortex-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2266</span> Performance Evaluation of a Wireless 433 MHz Link in Underwater-Freshwater Communication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xavi%20Vilajosana%20Guillen">Xavi Vilajosana Guillen</a>, <a href="https://publications.waset.org/abstracts/search?q=Emilio%20Jos%C3%A9%20P%C3%A9rez%20Salgado"> Emilio José Pérez Salgado</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This document presents experimental results obtained in a realistic environment using an underwater LoRa link. It aims to analyze the behavior of electromagnetic waves underwater and determine this communication capability. With this it has been tried to empirically evaluate the results obtained in the mathematical model using a commercial device with low cost and low consumption that works at frequency 433Mhz. The mathematical results obtained for wireless communication at 433Mhz underwater indicate that a communication of up to 7.5 m is possible, however experimentally 8 m has been achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=433Mhz%20link" title="433Mhz link">433Mhz link</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20things" title=" internet of things"> internet of things</a>, <a href="https://publications.waset.org/abstracts/search?q=LoRa%20link" title=" LoRa link"> LoRa link</a>, <a href="https://publications.waset.org/abstracts/search?q=underwater%20communication" title=" underwater communication"> underwater communication</a> </p> <a href="https://publications.waset.org/abstracts/150673/performance-evaluation-of-a-wireless-433-mhz-link-in-underwater-freshwater-communication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150673.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2265</span> Fatigue Evaluation of Link Slab for Continuous Girder-Type Precast Modular Bridges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae-Joon%20Song">Jae-Joon Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Yoon%20Lee"> Sang-Yoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Bong-Chul%20Joo"> Bong-Chul Joo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The girder-type precast modular bridge has been developed as a simply supported bridge. The girder-type precast modular bridge could be applied to the multi-span bridges through the continuity method. The continuity of the girder-type precast modular bridge is achieved by using the link slab which is easy to construction and appropriate to the rapid construction. In this study, the link slab with transition zone was used for the continuity of the precast modular bridges, and the construction detail of link slab was modified. In addition, the modified iterative design method of link slab was proposed in this study. To verify the proposed design method, the fatigue test using the mock-up specimen was conducted with cycle loading condition up to two million cycles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=precast" title="precast">precast</a>, <a href="https://publications.waset.org/abstracts/search?q=modular%20bridge" title=" modular bridge"> modular bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=link%20slab" title=" link slab"> link slab</a> </p> <a href="https://publications.waset.org/abstracts/21430/fatigue-evaluation-of-link-slab-for-continuous-girder-type-precast-modular-bridges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2264</span> Non-Linear Vibration and Stability Analysis of an Axially Moving Beam with Rotating-Prismatic Joint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Najafi">M. Najafi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Rahimi%20Dehgolan"> F. Rahimi Dehgolan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the dynamic modeling of a single-link flexible beam with a tip mass is given by using Hamilton's principle. The link has been rotational and translational motion and it was assumed that the beam is moving with a harmonic velocity about a constant mean velocity. Non-linearity has been introduced by including the non-linear strain to the analysis. Dynamic model is obtained by Euler-Bernoulli beam assumption and modal expansion method. Also, the effects of rotary inertia, axial force, and associated boundary conditions of the dynamic model were analyzed. Since the complex boundary value problem cannot be solved analytically, the multiple scale method is utilized to obtain an approximate solution. Finally, the effects of several conditions on the differences among the behavior of the non-linear term, mean velocity on natural frequencies and the system stability are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-linear%20vibration" title="non-linear vibration">non-linear vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=axially%20moving%20beam" title=" axially moving beam"> axially moving beam</a>, <a href="https://publications.waset.org/abstracts/search?q=bifurcation" title=" bifurcation"> bifurcation</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20scales%20method" title=" multiple scales method"> multiple scales method</a> </p> <a href="https://publications.waset.org/abstracts/67244/non-linear-vibration-and-stability-analysis-of-an-axially-moving-beam-with-rotating-prismatic-joint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2263</span> Research on the Application of Flexible and Programmable Systems in Electronic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Xiaodong">Yang Xiaodong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article explores the application and structural characteristics of flexible and programmable systems in electronic systems, with a focus on analyzing their advantages and architectural differences in dealing with complex environments. By introducing mathematical models and simulation experiments, the performance of dynamic module combination in flexible systems and fixed path selection in programmable systems in resource utilization and performance optimization was demonstrated. This article also discusses the mutual transformation between the two in practical applications and proposes a solution to improve system flexibility and performance through dynamic reconfiguration technology. This study provides theoretical reference for the design and optimization of flexible and programmable systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexibility" title="flexibility">flexibility</a>, <a href="https://publications.waset.org/abstracts/search?q=programmable" title=" programmable"> programmable</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20systems" title=" electronic systems"> electronic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20architecture" title=" system architecture"> system architecture</a> </p> <a href="https://publications.waset.org/abstracts/193856/research-on-the-application-of-flexible-and-programmable-systems-in-electronic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">9</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2262</span> Performance Comparison of Prim’s and Ant Colony Optimization Algorithm to Select Shortest Path in Case of Link Failure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rimmy%20Yadav">Rimmy Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Avtar%20Singh"> Avtar Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> —Ant Colony Optimization (ACO) is a promising modern approach to the unused combinatorial optimization. Here ACO is applied to finding the shortest during communication link failure. In this paper, the performances of the prim’s and ACO algorithm are made. By comparing the time complexity and program execution time as set of parameters, we demonstrate the pleasant performance of ACO in finding excellent solution to finding shortest path during communication link failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ant%20colony%20optimization" title="ant colony optimization">ant colony optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=link%20failure" title=" link failure"> link failure</a>, <a href="https://publications.waset.org/abstracts/search?q=prim%E2%80%99s%20algorithm" title=" prim’s algorithm"> prim’s algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=shortest%20path" title=" shortest path"> shortest path</a> </p> <a href="https://publications.waset.org/abstracts/31818/performance-comparison-of-prims-and-ant-colony-optimization-algorithm-to-select-shortest-path-in-case-of-link-failure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2261</span> Influence of Flexible Plate's Contour on Dynamic Behavior of High Speed Flexible Coupling of Combat Aircraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dineshsingh%20Thakur">Dineshsingh Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Nagesh"> S. Nagesh</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Basha"> J. Basha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A lightweight High Speed Flexible Coupling (HSFC) is used to connect the Engine Gear Box (EGB) with an Accessory Gear Box (AGB) of the combat aircraft. The HSFC transmits the power at high speeds ranging from 10000 to 18000 rpm from the EGB to AGB. The HSFC is also accommodates larger misalignments resulting from thermal expansion of the aircraft engine and mounting arrangement. The HSFC has the series of metallic contoured annular thin cross-sectioned flexible plates to accommodate the misalignments. The flexible plates are accommodating the misalignment by the elastic material flexure. As the HSFC operates at higher speed, the flexural and axial resonance frequencies are to be kept away from the operating speed and proper prediction is required to prevent failure in the transmission line of a single engine fighter aircraft. To study the influence of flexible plate’s contour on the lateral critical speed (LCS) of HSFC, a mathematical model of HSFC as a elven rotor system is developed. The flexible plate being the bending member of the system, its bending stiffness which results from the contoured governs the LCS. Using transfer matrix method, Influence of various flexible plate contours on critical speed is analyzed. In the above analysis, the support bearing flexibility on critical speed prediction is also considered. Based on the study, a model is built with the optimum contour of flexible plate, for validation by experimental modal analysis. A good correlation between the theoretical prediction and model behavior is observed. From the study, it is found that the flexible plate’s contour is playing vital role in modification of system’s dynamic behavior and the present model can be extended for the development of similar type of flexible couplings for its computational simplicity and reliability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20rotor" title="flexible rotor">flexible rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20speed" title=" critical speed"> critical speed</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20modal%20analysis" title=" experimental modal analysis"> experimental modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20speed%20flexible%20coupling%20%28HSFC%29" title=" high speed flexible coupling (HSFC)"> high speed flexible coupling (HSFC)</a>, <a href="https://publications.waset.org/abstracts/search?q=misalignment" title=" misalignment "> misalignment </a> </p> <a href="https://publications.waset.org/abstracts/42547/influence-of-flexible-plates-contour-on-dynamic-behavior-of-high-speed-flexible-coupling-of-combat-aircraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2260</span> Study of the Effect of Rotation on the Deformation of a Flexible Blade Rotor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aref%20Maalej">Aref Maalej</a>, <a href="https://publications.waset.org/abstracts/search?q=Marwa%20Fakhfakh"> Marwa Fakhfakh</a>, <a href="https://publications.waset.org/abstracts/search?q=Wael%20Ben%20Amira"> Wael Ben Amira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present in this work a numerical investigation of fluid-structure interaction to study the elastic behavior of flexible rotors. The principal aim is to provide the effect of the aero/hydrodynamic parameters on the bending deformation of flexible rotors. This study is accomplished using the strong two-way fluid-structure interaction (FSI) developed by the ANSYS Workbench software. This method is used for coupling the fluid solver to the transient structural solver to study the elastic behavior of flexible rotors in water. In this study, we use a moderately flexible rotor modeled by a single blade with simplified rectangular geometry. In this work, we focus on the effect of the rotational frequency on the flapwise bending deformation. It is demonstrated that the blade deforms in the downstream direction, and the amplitude of these deformations increases with the rotational frequencies. Also, from a critical frequency, the blade begins to deform in the upstream direction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title="numerical simulation">numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20blade" title=" flexible blade"> flexible blade</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid-structure%20interaction" title=" fluid-structure interaction"> fluid-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS%20workbench" title=" ANSYS workbench"> ANSYS workbench</a>, <a href="https://publications.waset.org/abstracts/search?q=flapwise%20deformation" title=" flapwise deformation"> flapwise deformation</a> </p> <a href="https://publications.waset.org/abstracts/169091/study-of-the-effect-of-rotation-on-the-deformation-of-a-flexible-blade-rotor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169091.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2259</span> A Compact Wearable Slot Antenna for LTE and WLAN Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haider%20K.%20Raad">Haider K. Raad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a compact wide-band, ultra-thin and flexible slot antenna intended for wearable applications is presented. The presented antenna is designed to provide Wireless Local Area Network (WLAN) and Long Term Evolution (LTE) connectivity. The presented design exhibits a relatively wide bandwidth (1600-3500 MHz below -6 dB impedance bandwidth limit). The antenna is positioned on a 33 mm x 30 mm flexible substrate with a thickness of 50 µm. Antenna properties, such as the far-field radiation patterns, scattering parameter <em>S</em><sub>11</sub> are provided. The presented compact, thin and flexible design along with excellent radiation characteristics are deemed suitable for integration into flexible and wearable devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wearable%20electronics" title="wearable electronics">wearable electronics</a>, <a href="https://publications.waset.org/abstracts/search?q=slot%20Antenna" title=" slot Antenna"> slot Antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=LTE" title=" LTE"> LTE</a>, <a href="https://publications.waset.org/abstracts/search?q=WLAN" title=" WLAN"> WLAN</a> </p> <a href="https://publications.waset.org/abstracts/56808/a-compact-wearable-slot-antenna-for-lte-and-wlan-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2258</span> A Survey on Various Technique of Modified TORA over MANET</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shreyansh%20Adesara">Shreyansh Adesara</a>, <a href="https://publications.waset.org/abstracts/search?q=Sneha%20Pandiya"> Sneha Pandiya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mobile ad-hoc network (MANET) is an important and open area research for the examination and determination of the performance evolution. Temporary ordered routing algorithm (TORA) is adaptable and distributed MANET routing algorithm which is totally dependent on internet MANET Encapsulation protocol (IMEP) for the detection of the link and sensing of the link. If IMEP detect the wrong link failure then the network suffer from congestion and unnecessary route maintenance. Thus, the improvement in link detection method of TORA is introduced by various methods on IMEP by different perspective from different person. There are also different reactive routing protocols like AODV, TORA and DSR has been compared for the knowledge of the routing scenario for different parameter and using different model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IMEP" title="IMEP">IMEP</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20ad-hoc%20network" title=" mobile ad-hoc network"> mobile ad-hoc network</a>, <a href="https://publications.waset.org/abstracts/search?q=protocol" title=" protocol"> protocol</a>, <a href="https://publications.waset.org/abstracts/search?q=TORA" title=" TORA"> TORA</a> </p> <a href="https://publications.waset.org/abstracts/44072/a-survey-on-various-technique-of-modified-tora-over-manet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2257</span> Analytical Investigation of Replaceable Links with Reduced Web Section for Link-to-Column Connections in Eccentrically Braced Frames</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Y.%20Abebe">Daniel Y. Abebe</a>, <a href="https://publications.waset.org/abstracts/search?q=Sijeong%20Jeong"> Sijeong Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaehyouk%20Choi"> Jaehyouk Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of eccentrically braced frame (EBF) is increasing day by day as EBF possesses high elastic stiffness, stable inelastic response under cyclic lateral loading, and excellent ductility and energy dissipation capacity. The ductility and energy dissipation capacity of EBF depends on the active link beams. Recently, there are two types EBFs; these are conventional EBFs and EBFs with replaceable links. The conventional EBF has a disadvantage during maintenance in post-earthquake. The concept of removable active link beam in EBF is developed to overcome the limitation of the conventional EBF in post-earthquake. In this study, a replaceable link with reduced web section is introduced and design equations are suggested. In addition, nonlinear finite element analysis was conducted in order to evaluate the proposed links. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EBFs" title="EBFs">EBFs</a>, <a href="https://publications.waset.org/abstracts/search?q=replaceable%20link" title=" replaceable link"> replaceable link</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20disaster" title=" earthquake disaster"> earthquake disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20section" title=" reduced section"> reduced section</a> </p> <a href="https://publications.waset.org/abstracts/52320/analytical-investigation-of-replaceable-links-with-reduced-web-section-for-link-to-column-connections-in-eccentrically-braced-frames" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2256</span> Thin Film Thermoelectric Generator with Flexible Phase Change Material-Based Heatsink</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wu%20Peiqin">Wu Peiqin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flexible thermoelectric devices are light and flexible, which can be in close contact with any shape of heat source surfaces to minimize heat loss and achieve efficient energy conversion. Among the wide application fields, energy harvesting via flexible thermoelectric generators can adapt to a variety of curved heat sources (such as human body, circular tubes, and surfaces of different shapes) and can drive low-power electronic devices, exhibiting one of the most promising technologies in self-powered systems. The heat flux along the cross-section of the flexible thin-film generator is limited by the thickness, so the temperature difference decreases during the generation process, and the output power is low. At present, most of the heat flow directions of the thin film thermoelectric generator are along the thin-film plane; however, this method is not suitable for attaching to the human body surface to generate electricity. In order to make the film generator more suitable for thermoelectric generation, it is necessary to apply a flexible heatsink on the air sides with the film to maintain the temperature difference. In this paper, Bismuth telluride thermoelectric paste was deposited on polyimide flexible substrate by a screen printing method, and the flexible thermoelectric film was formed after drying. There are ten pairs of thermoelectric legs. The size of the thermoelectric leg is 20 x 2 x 0.1 mm, and adjacent thermoelectric legs are spaced 2 mm apart. A phase change material-based flexible heatsink was designed and fabricated. The flexible heatsink consists of n-octadecane, polystyrene, and expanded graphite. N-octadecane was used as the thermal storage material, polystyrene as the supporting material, and expanded graphite as the thermally conductive additive. The thickness of the flexible phase change material-based heatsink is 2mm. A thermoelectric performance testing platform was built, and its output performance was tested. The results show that the system can generate an open-circuit output voltage of 3.89 mV at a temperature difference of 10K, which is higher than the generator without a heatsink. Therefore, the flexible heatsink can increase the temperature difference between the two ends of the film and improve the output performance of the flexible film generator. This result promotes the application of the film thermoelectric generator in collecting human heat for power generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20thermoelectric%20generator" title="flexible thermoelectric generator">flexible thermoelectric generator</a>, <a href="https://publications.waset.org/abstracts/search?q=screen%20printing" title=" screen printing"> screen printing</a>, <a href="https://publications.waset.org/abstracts/search?q=PCM" title=" PCM"> PCM</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20heatsink" title=" flexible heatsink"> flexible heatsink</a> </p> <a href="https://publications.waset.org/abstracts/133649/thin-film-thermoelectric-generator-with-flexible-phase-change-material-based-heatsink" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2255</span> Modeling Dynamics and Control of Transversal Vibration of an Underactuated Flexible Plate Using Controlled Lagrangian Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmood%20Khalghollah">Mahmood Khalghollah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Tavallaeinejad"> Mohammad Tavallaeinejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Eghtesad"> Mohammad Eghtesad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The method of Controlled Lagrangian is an energy shaping control technique for under actuated Lagrangian systems. Energy shaping control design methods are appealing as they retain the underlying nonlinear dynamics and can provide stability results that hold over larger domain than can be obtained using linear design and analysis. In the present study, controlled lagrangian is employed for designing a controller in an under actuated rotating flexible plate system. In the system of rotating flexible plate, due to its nonlinear characteristics and coupled dynamics of rigid and flexible components, controller design is a known challenge. In this paper, controller objectives are considered to be vibration reduction of flexible component and position control of the tip of the plate. To achieve the goals, a method based on both kinetic and potential energy shaping is introduced. The stability of the closed-loop system is investigated and proved around its equilibrium points. Moreover, the proposed controller is shown to be robust against disturbance and plant uncertainties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=controlled%20lagrangian" title="controlled lagrangian">controlled lagrangian</a>, <a href="https://publications.waset.org/abstracts/search?q=underactuated%20system" title=" underactuated system"> underactuated system</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20rotating%20plate" title=" flexible rotating plate"> flexible rotating plate</a>, <a href="https://publications.waset.org/abstracts/search?q=disturbance" title=" disturbance"> disturbance</a> </p> <a href="https://publications.waset.org/abstracts/26345/modeling-dynamics-and-control-of-transversal-vibration-of-an-underactuated-flexible-plate-using-controlled-lagrangian-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2254</span> Optimization of a Flexible Thermoelectric Generator for Energy Harvesting from Human Skin to Power Wearable Electronics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dessalegn%20Abera%20Waktole">Dessalegn Abera Waktole</a>, <a href="https://publications.waset.org/abstracts/search?q=Boru%20Jia"> Boru Jia</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhengxing%20Zuo"> Zhengxing Zuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Wang"> Wei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Nianling%20Kuang"> Nianling Kuang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A flexible thermoelectric generator is one method for recycling waste heat. This research provides the optimum performance of a flexible thermoelectric generator with optimal geometric parameters and a detailed structural design. In this research, a numerical simulation and experiment were carried out to develop an efficient, flexible thermoelectric generator for energy harvesting from human skin. Heteromorphic electrodes and a polyimide substrate with a copper-printed circuit board were introduced into the structural design of a flexible thermoelectric generator. The heteromorphic electrode was used as a heat sink and component of a flexible thermoelectric generator to enhance the temperature difference within the thermoelectric legs. Both N-type and P-type thermoelectric legs were made of bismuth selenium telluride (Bi1.7Te3.7Se0.3) and bismuth antimony telluride (Bi0.4Sb1.6Te3). The output power of the flexible thermoelectric generator was analyzed under different heat source temperatures and heat dissipation conditions. The COMSOL Multiphysics 5.6 software was used to conduct the simulation, which was validated by experiment. It is recorded that the maximum power output of 232.064μW was obtained by considering different wind speed conditions, the ambient temperature of 20℃, and the heat source temperature of 36℃ under various load resistance conditions, which range from 0.24Ω to 0. 91Ω. According to this finding, heteromorphic electrodes have a significant impact on the performance of the device. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20thermoelectric%20generator" title="flexible thermoelectric generator">flexible thermoelectric generator</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20gradient" title=" temperature gradient"> temperature gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20heat%20recovery" title=" waste heat recovery"> waste heat recovery</a> </p> <a href="https://publications.waset.org/abstracts/170955/optimization-of-a-flexible-thermoelectric-generator-for-energy-harvesting-from-human-skin-to-power-wearable-electronics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2253</span> Design and Analysis of Flexible Slider Crank Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thanh-Phong%20Dao">Thanh-Phong Dao</a>, <a href="https://publications.waset.org/abstracts/search?q=Shyh-Chour%20Huang"> Shyh-Chour Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the optimal design and formulation of a kinematic model of a flexible slider crank mechanism. The objective of the proposed innovative design is to take extra advantage of the compliant mechanism and maximize the fatigue life by applying the Taguchi method. A formulated kinematic model is developed using a Pseudo-Rigid-Body Model (PRBM). By means of mathematic models, the kinematic behaviors of the flexible slider crank mechanism are captured using MATLAB software. Finite Element Analysis (FEA) is used to show the stress distribution. The results show that the optimal shape of the flexible hinge includes a force of 8.5N, a width of 9mm and a thickness of 1.1mm. Analysis of variance shows that the thickness of the proposed hinge is the most significant parameter, with an F test of 15.5. Finally, a prototype is manufactured to prepare for testing the kinematic and dynamic behaviors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kinematic%20behavior" title="kinematic behavior">kinematic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20life" title=" fatigue life"> fatigue life</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudo-rigid-body%20model" title=" pseudo-rigid-body model"> pseudo-rigid-body model</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20slider%20crank%20mechanism" title=" flexible slider crank mechanism"> flexible slider crank mechanism</a> </p> <a href="https://publications.waset.org/abstracts/4242/design-and-analysis-of-flexible-slider-crank-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2252</span> The Effect of Ingredients Mixing Sequence in Rubber Compounding on the Formation of Bound Rubber and Cross-Link Density of Natural Rubber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abu%20Hasan">Abu Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rochmadi"> Rochmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hary%20Sulistyo"> Hary Sulistyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Suharto%20Honggokusumo"> Suharto Honggokusumo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research purpose is to study the effect of Ingredients mixing sequence in rubber compounding onto the formation of bound rubber and cross link density of natural rubber and also the relationship of bound rubber and cross link density. Analysis of bound rubber formation of rubber compound and cross link density of rubber vulcanizates were carried out on a natural rubber formula having masticated and mixing, followed by curing. There were four methods of mixing and each mixing process was followed by four mixing sequence methods of carbon black into the rubber. In the first method of mixing sequence, rubber was masticated for 5 min and then rubber chemicals and carbon black N 330 were added simultaneously. In the second one, rubber was masticated for 1 min and followed by addition of rubber chemicals and carbon black N 330 simultaneously using the different method of mixing then the first one. In the third one, carbon black N 660 was used for the same mixing procedure of the second one, and in the last one, rubber was masticated for 3 min, carbon black N 330 and rubber chemicals were added subsequently. The addition of rubber chemicals and carbon black into masticated rubber was distinguished by the sequence and time allocated for each mixing process. Carbon black was added into two stages. In the first stage, 10 phr was added first and the remaining 40 phr was added later along with oil. In the second one to the fourth one, the addition of carbon black in the first and the second stage was added in the phr ratio 20:30, 30:20, and 40:10. The results showed that the ingredients mixing process influenced bound rubber formation and cross link density. In the three methods of mixing, the bound rubber formation was proportional with crosslink density. In contrast in the fourth one, bound rubber formation and cross link density had contradictive relation. Regardless of the mixing method operated, bound rubber had non linear relationship with cross link density. The high cross link density was formed when low bound rubber formation. The cross link density became constant at high bound rubber content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bound-rubber" title="bound-rubber">bound-rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-link%20density" title=" cross-link density"> cross-link density</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20rubber" title=" natural rubber"> natural rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber%20mixing%20process" title=" rubber mixing process"> rubber mixing process</a> </p> <a href="https://publications.waset.org/abstracts/12954/the-effect-of-ingredients-mixing-sequence-in-rubber-compounding-on-the-formation-of-bound-rubber-and-cross-link-density-of-natural-rubber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2251</span> A Hybrid Hopfield Neural Network for Dynamic Flexible Job Shop Scheduling Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aydin%20Teymourifar">Aydin Teymourifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurkan%20Ozturk"> Gurkan Ozturk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a new hybrid Hopfield neural network is proposed for the dynamic, flexible job shop scheduling problem. A new heuristic based and easy to implement energy function is designed for the Hopfield neural network, which penalizes the constraints violation and decreases makespan. Moreover, for enhancing the performance, several heuristics are integrated to it that achieve active, and non-delay schedules also, prevent early convergence of the neural network. The suggested algorithm that is designed as a generalization of the previous studies for the flexible and dynamic scheduling problems can be used for solving real scheduling problems. Comparison of the presented hybrid method results with the previous studies results proves its efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20flexible%20job%20shop%20scheduling" title="dynamic flexible job shop scheduling">dynamic flexible job shop scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristics" title=" heuristics"> heuristics</a>, <a href="https://publications.waset.org/abstracts/search?q=constrained%20optimization" title=" constrained optimization"> constrained optimization</a> </p> <a href="https://publications.waset.org/abstracts/72143/a-hybrid-hopfield-neural-network-for-dynamic-flexible-job-shop-scheduling-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2250</span> The Realization of a System’s State Space Based on Markov Parameters by Using Flexible Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Isapour">Ali Isapour</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Nateghi"> Ramin Nateghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> — Markov parameters are unique parameters of the system and remain unchanged under similarity transformations. Markov parameters from a power series that is convergent only if the system matrix’s eigenvalues are inside the unity circle. Therefore, Markov parameters of a stable discrete-time system are convergent. In this study, we aim to realize the system based on Markov parameters by using Artificial Neural Networks (ANN), and this end, we use Flexible Neural Networks. Realization means determining the elements of matrices A, B, C, and D. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Markov%20parameters" title="Markov parameters">Markov parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=realization" title=" realization"> realization</a>, <a href="https://publications.waset.org/abstracts/search?q=activation%20function" title=" activation function"> activation function</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20neural%20network" title=" flexible neural network"> flexible neural network</a> </p> <a href="https://publications.waset.org/abstracts/119535/the-realization-of-a-systems-state-space-based-on-markov-parameters-by-using-flexible-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2249</span> A Framework of Dynamic Rule Selection Method for Dynamic Flexible Job Shop Problem by Reinforcement Learning Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rui%20Wu">Rui Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the volatile modern manufacturing environment, new orders randomly occur at any time, while the pre-emptive methods are infeasible. This leads to a real-time scheduling method that can produce a reasonably good schedule quickly. The dynamic Flexible Job Shop problem is an NP-hard scheduling problem that hybrid the dynamic Job Shop problem with the Parallel Machine problem. A Flexible Job Shop contains different work centres. Each work centre contains parallel machines that can process certain operations. Many algorithms, such as genetic algorithms or simulated annealing, have been proposed to solve the static Flexible Job Shop problems. However, the time efficiency of these methods is low, and these methods are not feasible in a dynamic scheduling problem. Therefore, a dynamic rule selection scheduling system based on the reinforcement learning method is proposed in this research, in which the dynamic Flexible Job Shop problem is divided into several parallel machine problems to decrease the complexity of the dynamic Flexible Job Shop problem. Firstly, the features of jobs, machines, work centres, and flexible job shops are selected to describe the status of the dynamic Flexible Job Shop problem at each decision point in each work centre. Secondly, a framework of reinforcement learning algorithm using a double-layer deep Q-learning network is applied to select proper composite dispatching rules based on the status of each work centre. Then, based on the selected composite dispatching rule, an available operation is selected from the waiting buffer and assigned to an available machine in each work centre. Finally, the proposed algorithm will be compared with well-known dispatching rules on objectives of mean tardiness, mean flow time, mean waiting time, or mean percentage of waiting time in the real-time Flexible Job Shop problem. The result of the simulations proved that the proposed framework has reasonable performance and time efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20scheduling%20problem" title="dynamic scheduling problem">dynamic scheduling problem</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20job%20shop" title=" flexible job shop"> flexible job shop</a>, <a href="https://publications.waset.org/abstracts/search?q=dispatching%20rules" title=" dispatching rules"> dispatching rules</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20reinforcement%20learning" title=" deep reinforcement learning"> deep reinforcement learning</a> </p> <a href="https://publications.waset.org/abstracts/159322/a-framework-of-dynamic-rule-selection-method-for-dynamic-flexible-job-shop-problem-by-reinforcement-learning-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2248</span> Pavement Failures and Its Maintenance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maulik%20L.%20Sisodia">Maulik L. Sisodia</a>, <a href="https://publications.waset.org/abstracts/search?q=Tirth%20K.%20Raval"> Tirth K. Raval</a>, <a href="https://publications.waset.org/abstracts/search?q=Aarsh%20S.%20Mistry"> Aarsh S. Mistry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper summarizes the ongoing researches about the defects in both flexible and rigid pavement and the maintenance in both flexible and rigid pavements. Various defects in pavements have been identified since the existence of both flexible and rigid pavement. Flexible Pavement failure is defined in terms of decreasing serviceability caused by the development of cracks, ruts, potholes etc. Flexible Pavement structure can be destroyed in a single season due to water penetration. Defects in flexible pavements is a problem of multiple dimensions, phenomenal growth of vehicular traffic (in terms of no. of axle loading of commercial vehicles), the rapid expansion in the road network, non-availability of suitable technology, material, equipment, skilled labor and poor funds allocation have all added complexities to the problem of flexible pavements. In rigid pavements due to different type of destress the failure like joint spalling, faulting, shrinkage cracking, punch out, corner break etc. Application of correction in the existing surface will enhance the life of maintenance works as well as that of strengthening layer. Maintenance of a road network involves a variety of operations, i.e., identification of deficiencies and planning, programming and scheduling for actual implementation in the field and monitoring. The essential objective should be to keep the road surface and appurtenances in good condition and to extend the life of the road assets to its design life. The paper describes lessons learnt from pavement failures and problems experienced during the last few years on a number of projects in India. Broadly, the activities include identification of defects and the possible cause there off, determination of appropriate remedial measures; implement these in the field and monitoring of the results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Flexible%20Pavements" title="Flexible Pavements">Flexible Pavements</a>, <a href="https://publications.waset.org/abstracts/search?q=Rigid%20Pavements" title=" Rigid Pavements"> Rigid Pavements</a>, <a href="https://publications.waset.org/abstracts/search?q=Defects" title=" Defects"> Defects</a>, <a href="https://publications.waset.org/abstracts/search?q=Maintenance" title=" Maintenance"> Maintenance</a> </p> <a href="https://publications.waset.org/abstracts/120797/pavement-failures-and-its-maintenance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2247</span> Asynchronous Low Duty Cycle Media Access Control Protocol for Body Area Wireless Sensor Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasin%20Ghasemi-Zadeh">Yasin Ghasemi-Zadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Kavian"> Yousef Kavian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wireless body area networks (WBANs) technology has achieved lots of popularity over the last decade with a wide range of medical applications. This paper presents an asynchronous media access control (MAC) protocol based on B-MAC protocol by giving an application for medical issues. In WBAN applications, there are some serious problems such as energy, latency, link reliability (quality of wireless link) and throughput which are mainly due to size of sensor networks and human body specifications. To overcome these problems and improving link reliability, we concentrated on MAC layer that supports mobility models for medical applications. In the presented protocol, preamble frames are divided into some sub-frames considering the threshold level. Actually, the main reason for creating shorter preambles is the link reliability where due to some reasons such as water, the body signals are affected on some frequency bands and causes fading and shadowing on signals, therefore by increasing the link reliability, these effects are reduced. In case of mobility model, we use MoBAN model and modify that for some more areas. The presented asynchronous MAC protocol is modeled by OMNeT++ simulator. The results demonstrate increasing the link reliability comparing to B-MAC protocol where the packet reception ratio (PRR) is 92% also covers more mobility areas than MoBAN protocol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless%20body%20area%20networks%20%28WBANs%29" title="wireless body area networks (WBANs)">wireless body area networks (WBANs)</a>, <a href="https://publications.waset.org/abstracts/search?q=MAC%20protocol" title=" MAC protocol"> MAC protocol</a>, <a href="https://publications.waset.org/abstracts/search?q=link%20reliability" title=" link reliability"> link reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility" title=" mobility"> mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical" title=" biomedical"> biomedical</a> </p> <a href="https://publications.waset.org/abstracts/62759/asynchronous-low-duty-cycle-media-access-control-protocol-for-body-area-wireless-sensor-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2246</span> Flexible Ureterorenoscopy as a New Possibility of Treating Nephrolithiasis in Children – Preliminary Reports</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adam%20Hali%C5%84ski">Adam Haliński</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrzej%20Hali%C5%84ski"> Andrzej Haliński</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Flexible ureterorenoscopy is a surgery technique used for the treatment of the upper urinary tract. It is very often used in adult patients; however, due to the advancing miniaturization of the equipment as well as its precision, this technique has also become possible in the treatment process in children. Material and method: We would like to present 26 cases of flexible ureterorenoscopy carried out in children with nephrolithiasis of the upper urinary tract aged 6 to 17 years. The average age was 9.5 years and the children were treated in our department from June 2013 to January 2015. The first surgery in Poland took place in our Department on 06.06.2013. Because of nephrolithiasis all the children had been subjected earlier to ESWL treatment, which was unsuccessful. Results: 14 children had deposits in the lower calyx, 9 children had deposits in the middle and lower calyx and in 3 children a stone was located in the initial ureter. An efficiency of 88 % was achieved. Conclusions: Flexible ureterorenoscopy is effective and minimally invasive tool both for the diagnosis and treatment of upper urinary tract. We believe that the advancing miniaturization of the equipment and gaining experience will enable carrying out of this procedure in smaller children with high efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20ureterorenoscopy" title="flexible ureterorenoscopy">flexible ureterorenoscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=urolithisis" title=" urolithisis"> urolithisis</a>, <a href="https://publications.waset.org/abstracts/search?q=endourology" title=" endourology"> endourology</a>, <a href="https://publications.waset.org/abstracts/search?q=nephrolithiasis" title=" nephrolithiasis"> nephrolithiasis</a> </p> <a href="https://publications.waset.org/abstracts/27396/flexible-ureterorenoscopy-as-a-new-possibility-of-treating-nephrolithiasis-in-children-preliminary-reports" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2245</span> A Parametric Study of the Effect of Size, Position, and Number of Flexible Membranes Attached to a Circular Cylinder on the Fluid Flow Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nabaouia.Maktouf">Nabaouia.Maktouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ben%20Moussa"> Ali Ben Moussa</a>, <a href="https://publications.waset.org/abstracts/search?q=Sa%C3%AFd%20Turki"> Saïd Turki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses the effect of an attached flexible membrane on the control of fluid around a circular cylinder. A parametric study has been investigated for different positions, sizes, modes as well as frequencies of oscillation of the flexible membrane. The numerical investigation was conducted for a Reynolds number equal to 150 using the commercial code Fluent 16.0 and parallel calculation into 4 processors. The motion of the flexible membrane was managed by the dynamic mesh and compiled into Fluent as a user-defined function. The first part of this paper discusses the effect of changing the position of a flexible membrane sized 8° as an angle of aperture on the aerodynamic coefficients. Results show that the flexible membrane placed at 110° from the stagnation point presents more non-linearity on the behavior of the drag coefficient compared to the drag behavior when placed at 180°, relative to the stagnation point. The effect of the size of the flexible surface was studied for the corresponding angles of aperture: 32° and 42°, respectively. The effect of modes (modes 1, 2, and 3) of vibrations has been investigated at a constant frequency of vibration f=2Hz for angles 32° and 42°. All the calculations have been done with a constant amplitude A =0.001m. A non-linearity of the drag coefficient was clearly observed for all the sizes, modes as well as frequencies of excitation. The Fast Fourier transformation shows the appearance of the natural shedding frequency and the multiples of the frequency of excitation. An increase in the modes of oscillation leads to a more linear behavior of the drag coefficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20flow%20control" title="fluid flow control">fluid flow control</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20mesh" title=" dynamic mesh"> dynamic mesh</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20forces" title=" aerodynamic forces"> aerodynamic forces</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20membrane" title=" flexible membrane"> flexible membrane</a> </p> <a href="https://publications.waset.org/abstracts/164010/a-parametric-study-of-the-effect-of-size-position-and-number-of-flexible-membranes-attached-to-a-circular-cylinder-on-the-fluid-flow-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexible%20link&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexible%20link&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexible%20link&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexible%20link&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexible%20link&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexible%20link&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexible%20link&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexible%20link&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexible%20link&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexible%20link&page=75">75</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexible%20link&page=76">76</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flexible%20link&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>