CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–14 of 14 results for author: <span class="mathjax">Blumoff, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&query=Blumoff%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Blumoff, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Blumoff%2C+J&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Blumoff, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.11784">arXiv:2208.11784</a> <span> [<a href="https://arxiv.org/pdf/2208.11784">pdf</a>, <a href="https://arxiv.org/format/2208.11784">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Full-permutation dynamical decoupling in triple-quantum-dot spin qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Sun%2C+B">Bo Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Brecht%2C+T">Teresa Brecht</a>, <a href="/search/quant-ph?searchtype=author&query=Fong%2C+B">Bryan Fong</a>, <a href="/search/quant-ph?searchtype=author&query=Akmal%2C+M">Moonmoon Akmal</a>, <a href="/search/quant-ph?searchtype=author&query=Blumoff%2C+J+Z">Jacob Z. Blumoff</a>, <a href="/search/quant-ph?searchtype=author&query=Cain%2C+T+A">Tyler A. Cain</a>, <a href="/search/quant-ph?searchtype=author&query=Carter%2C+F+W">Faustin W. Carter</a>, <a href="/search/quant-ph?searchtype=author&query=Finestone%2C+D+H">Dylan H. Finestone</a>, <a href="/search/quant-ph?searchtype=author&query=Fireman%2C+M+N">Micha N. Fireman</a>, <a href="/search/quant-ph?searchtype=author&query=Ha%2C+W">Wonill Ha</a>, <a href="/search/quant-ph?searchtype=author&query=Hatke%2C+A+T">Anthony T. Hatke</a>, <a href="/search/quant-ph?searchtype=author&query=Hickey%2C+R+M">Ryan M. Hickey</a>, <a href="/search/quant-ph?searchtype=author&query=Jackson%2C+C+A+C">Clayton A. C. Jackson</a>, <a href="/search/quant-ph?searchtype=author&query=Jenkins%2C+I">Ian Jenkins</a>, <a href="/search/quant-ph?searchtype=author&query=Jones%2C+A+M">Aaron M. Jones</a>, <a href="/search/quant-ph?searchtype=author&query=Pan%2C+A">Andrew Pan</a>, <a href="/search/quant-ph?searchtype=author&query=Ward%2C+D+R">Daniel R. Ward</a>, <a href="/search/quant-ph?searchtype=author&query=Weinstein%2C+A+J">Aaron J. Weinstein</a>, <a href="/search/quant-ph?searchtype=author&query=Whiteley%2C+S+J">Samuel J. Whiteley</a>, <a href="/search/quant-ph?searchtype=author&query=Williams%2C+P">Parker Williams</a>, <a href="/search/quant-ph?searchtype=author&query=Borselli%2C+M+G">Matthew G. Borselli</a>, <a href="/search/quant-ph?searchtype=author&query=Rakher%2C+M+T">Matthew T. Rakher</a>, <a href="/search/quant-ph?searchtype=author&query=Ladd%2C+T+D">Thaddeus D. Ladd</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.11784v2-abstract-short" style="display: inline;"> Dynamical decoupling of spin qubits in silicon can enhance fidelity and be used to extract the frequency spectra of noise processes. We demonstrate a full-permutation dynamical decoupling technique that cyclically exchanges the spins in a triple-dot qubit. This sequence not only suppresses both low frequency charge-noise- and magnetic-noise-induced errors; it also refocuses leakage errors to first… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11784v2-abstract-full').style.display = 'inline'; document.getElementById('2208.11784v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.11784v2-abstract-full" style="display: none;"> Dynamical decoupling of spin qubits in silicon can enhance fidelity and be used to extract the frequency spectra of noise processes. We demonstrate a full-permutation dynamical decoupling technique that cyclically exchanges the spins in a triple-dot qubit. This sequence not only suppresses both low frequency charge-noise- and magnetic-noise-induced errors; it also refocuses leakage errors to first order, which is particularly interesting for encoded exchange-only qubits. For a specific construction, which we call NZ1y, the qubit is isolated from error sources to such a degree that we measure a remarkable exchange pulse error of $5\times10^{-5}$. This sequence maintains a quantum state for roughly 18,000 exchange pulses, extending the qubit coherence from $T_2^*=2~渭$s to $T_2 = 720~渭$s. We experimentally validate an error model that includes $1/f$ charge noise and $1/f$ magnetic noise in two ways: by direct exchange-qubit simulation, and by integration of the assumed noise spectra with derived filter functions, both of which reproduce the measured error and leakage with respect to changing the repetition rate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11784v2-abstract-full').style.display = 'none'; document.getElementById('2208.11784v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.03605">arXiv:2202.03605</a> <span> [<a href="https://arxiv.org/pdf/2202.03605">pdf</a>, <a href="https://arxiv.org/format/2202.03605">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-023-05777-3">10.1038/s41586-023-05777-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universal logic with encoded spin qubits in silicon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Weinstein%2C+A+J">Aaron J. Weinstein</a>, <a href="/search/quant-ph?searchtype=author&query=Reed%2C+M+D">Matthew D. Reed</a>, <a href="/search/quant-ph?searchtype=author&query=Jones%2C+A+M">Aaron M. Jones</a>, <a href="/search/quant-ph?searchtype=author&query=Andrews%2C+R+W">Reed W. Andrews</a>, <a href="/search/quant-ph?searchtype=author&query=Barnes%2C+D">David Barnes</a>, <a href="/search/quant-ph?searchtype=author&query=Blumoff%2C+J+Z">Jacob Z. Blumoff</a>, <a href="/search/quant-ph?searchtype=author&query=Euliss%2C+L+E">Larken E. Euliss</a>, <a href="/search/quant-ph?searchtype=author&query=Eng%2C+K">Kevin Eng</a>, <a href="/search/quant-ph?searchtype=author&query=Fong%2C+B">Bryan Fong</a>, <a href="/search/quant-ph?searchtype=author&query=Ha%2C+S+D">Sieu D. Ha</a>, <a href="/search/quant-ph?searchtype=author&query=Hulbert%2C+D+R">Daniel R. Hulbert</a>, <a href="/search/quant-ph?searchtype=author&query=Jackson%2C+C">Clayton Jackson</a>, <a href="/search/quant-ph?searchtype=author&query=Jura%2C+M">Michael Jura</a>, <a href="/search/quant-ph?searchtype=author&query=Keating%2C+T+E">Tyler E. Keating</a>, <a href="/search/quant-ph?searchtype=author&query=Kerckhoff%2C+J">Joseph Kerckhoff</a>, <a href="/search/quant-ph?searchtype=author&query=Kiselev%2C+A+A">Andrey A. Kiselev</a>, <a href="/search/quant-ph?searchtype=author&query=Matten%2C+J">Justine Matten</a>, <a href="/search/quant-ph?searchtype=author&query=Sabbir%2C+G">Golam Sabbir</a>, <a href="/search/quant-ph?searchtype=author&query=Smith%2C+A">Aaron Smith</a>, <a href="/search/quant-ph?searchtype=author&query=Wright%2C+J">Jeffrey Wright</a>, <a href="/search/quant-ph?searchtype=author&query=Rakher%2C+M+T">Matthew T. Rakher</a>, <a href="/search/quant-ph?searchtype=author&query=Ladd%2C+T+D">Thaddeus D. Ladd</a>, <a href="/search/quant-ph?searchtype=author&query=Borselli%2C+M+G">Matthew G. Borselli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.03605v1-abstract-short" style="display: inline;"> Qubits encoded in a decoherence-free subsystem and realized in exchange-coupled silicon quantum dots are promising candidates for fault-tolerant quantum computing. Benefits of this approach include excellent coherence, low control crosstalk, and configurable insensitivity to certain error sources. Key difficulties are that encoded entangling gates require a large number of control pulses and high-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.03605v1-abstract-full').style.display = 'inline'; document.getElementById('2202.03605v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.03605v1-abstract-full" style="display: none;"> Qubits encoded in a decoherence-free subsystem and realized in exchange-coupled silicon quantum dots are promising candidates for fault-tolerant quantum computing. Benefits of this approach include excellent coherence, low control crosstalk, and configurable insensitivity to certain error sources. Key difficulties are that encoded entangling gates require a large number of control pulses and high-yielding quantum dot arrays. Here we show a device made using the single-layer etch-defined gate electrode architecture that achieves both the required functional yield needed for full control and the coherence necessary for thousands of calibrated exchange pulses to be applied. We measure an average two-qubit Clifford fidelity of $97.1 \pm 0.2\%$ with randomized benchmarking. We also use interleaved randomized benchmarking to demonstrate the controlled-NOT gate with $96.3 \pm 0.7\%$ fidelity, SWAP with $99.3 \pm 0.5\%$ fidelity, and a specialized entangling gate that limits spreading of leakage with $93.8 \pm 0.7\%$ fidelity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.03605v1-abstract-full').style.display = 'none'; document.getElementById('2202.03605v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.09801">arXiv:2112.09801</a> <span> [<a href="https://arxiv.org/pdf/2112.09801">pdf</a>, <a href="https://arxiv.org/format/2112.09801">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PRXQuantum.3.010352">10.1103/PRXQuantum.3.010352 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fast and high-fidelity state preparation and measurement in triple-quantum-dot spin qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Blumoff%2C+J+Z">Jacob Z. Blumoff</a>, <a href="/search/quant-ph?searchtype=author&query=Pan%2C+A+S">Andrew S. Pan</a>, <a href="/search/quant-ph?searchtype=author&query=Keating%2C+T+E">Tyler E. Keating</a>, <a href="/search/quant-ph?searchtype=author&query=Andrews%2C+R+W">Reed W. Andrews</a>, <a href="/search/quant-ph?searchtype=author&query=Barnes%2C+D+W">David W. Barnes</a>, <a href="/search/quant-ph?searchtype=author&query=Brecht%2C+T+L">Teresa L. Brecht</a>, <a href="/search/quant-ph?searchtype=author&query=Croke%2C+E+T">Edward T. Croke</a>, <a href="/search/quant-ph?searchtype=author&query=Euliss%2C+L+E">Larken E. Euliss</a>, <a href="/search/quant-ph?searchtype=author&query=Fast%2C+J+A">Jacob A. Fast</a>, <a href="/search/quant-ph?searchtype=author&query=Jackson%2C+C+A+C">Clayton A. C. Jackson</a>, <a href="/search/quant-ph?searchtype=author&query=Jones%2C+A+M">Aaron M. Jones</a>, <a href="/search/quant-ph?searchtype=author&query=Kerckhoff%2C+J">Joseph Kerckhoff</a>, <a href="/search/quant-ph?searchtype=author&query=Lanza%2C+R+K">Robert K. Lanza</a>, <a href="/search/quant-ph?searchtype=author&query=Raach%2C+K">Kate Raach</a>, <a href="/search/quant-ph?searchtype=author&query=Thomas%2C+B+J">Bryan J. Thomas</a>, <a href="/search/quant-ph?searchtype=author&query=Velunta%2C+R">Roland Velunta</a>, <a href="/search/quant-ph?searchtype=author&query=Weinstein%2C+A+J">Aaron J. Weinstein</a>, <a href="/search/quant-ph?searchtype=author&query=Ladd%2C+T+D">Thaddeus D. Ladd</a>, <a href="/search/quant-ph?searchtype=author&query=Eng%2C+K">Kevin Eng</a>, <a href="/search/quant-ph?searchtype=author&query=Borselli%2C+M+G">Matthew G. Borselli</a>, <a href="/search/quant-ph?searchtype=author&query=Hunter%2C+A+T">Andrew T. Hunter</a>, <a href="/search/quant-ph?searchtype=author&query=Rakher%2C+M+T">Matthew T. Rakher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.09801v2-abstract-short" style="display: inline;"> We demonstrate rapid, high-fidelity state preparation and measurement in exchange-only Si/SiGe triple-quantum-dot qubits. Fast measurement integration ($980$ ns) and initialization ($\approx 300$ ns) operations are performed with all-electrical, baseband control. We emphasize a leakage-sensitive joint initialization and measurement metric, developed in the context of exchange-only qubits but appli… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09801v2-abstract-full').style.display = 'inline'; document.getElementById('2112.09801v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.09801v2-abstract-full" style="display: none;"> We demonstrate rapid, high-fidelity state preparation and measurement in exchange-only Si/SiGe triple-quantum-dot qubits. Fast measurement integration ($980$ ns) and initialization ($\approx 300$ ns) operations are performed with all-electrical, baseband control. We emphasize a leakage-sensitive joint initialization and measurement metric, developed in the context of exchange-only qubits but applicable more broadly, and report an infidelity of $2.5\pm0.5\times 10^{-3}$. This result is enabled by a high-valley-splitting heterostructure, initialization at the 2-to-3 electron charge boundary, and careful assessment and mitigation of $T_1$ during spin-to-charge conversion. The ultimate fidelity is limited by a number of comparably-important factors, and we identify clear paths towards further improved fidelity and speed. Along with an observed single-qubit randomized benchmarking error rate of $1.7\times 10^{-3}$, this work demonstrates initialization, control, and measurement of Si/SiGe triple-dot qubits at fidelities and durations which are promising for scalable quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09801v2-abstract-full').style.display = 'none'; document.getElementById('2112.09801v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRX Quantum 3, 010352 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.04818">arXiv:2010.04818</a> <span> [<a href="https://arxiv.org/pdf/2010.04818">pdf</a>, <a href="https://arxiv.org/format/2010.04818">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.15.044033">10.1103/PhysRevApplied.15.044033 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detuning Axis Pulsed Spectroscopy of Valley-Orbital States in Si/SiGe Quantum Dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chen%2C+E+H">Edward H. Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Raach%2C+K">Kate Raach</a>, <a href="/search/quant-ph?searchtype=author&query=Pan%2C+A">Andrew Pan</a>, <a href="/search/quant-ph?searchtype=author&query=Kiselev%2C+A+A">Andrey A. Kiselev</a>, <a href="/search/quant-ph?searchtype=author&query=Acuna%2C+E">Edwin Acuna</a>, <a href="/search/quant-ph?searchtype=author&query=Blumoff%2C+J+Z">Jacob Z. Blumoff</a>, <a href="/search/quant-ph?searchtype=author&query=Brecht%2C+T">Teresa Brecht</a>, <a href="/search/quant-ph?searchtype=author&query=Choi%2C+M">Maxwell Choi</a>, <a href="/search/quant-ph?searchtype=author&query=Ha%2C+W">Wonill Ha</a>, <a href="/search/quant-ph?searchtype=author&query=Hulbert%2C+D">Daniel Hulbert</a>, <a href="/search/quant-ph?searchtype=author&query=Jura%2C+M+P">Michael P. Jura</a>, <a href="/search/quant-ph?searchtype=author&query=Keating%2C+T">Tyler Keating</a>, <a href="/search/quant-ph?searchtype=author&query=Noah%2C+R">Ramsey Noah</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+B">Bo Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Thomas%2C+B+J">Bryan J. Thomas</a>, <a href="/search/quant-ph?searchtype=author&query=Borselli%2C+M">Matthew Borselli</a>, <a href="/search/quant-ph?searchtype=author&query=Jackson%2C+C+A+C">C. A. C. Jackson</a>, <a href="/search/quant-ph?searchtype=author&query=Rakher%2C+M+T">Matthew T. Rakher</a>, <a href="/search/quant-ph?searchtype=author&query=Ross%2C+R+S">Richard S. Ross</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.04818v2-abstract-short" style="display: inline;"> Silicon quantum dot qubits must contend with low-lying valley excited states which are sensitive functions of the quantum well heterostructure and disorder; quantifying and maximizing the energies of these states are critical to improving device performance. We describe a spectroscopic method for probing excited states in isolated Si/SiGe double quantum dots using standard baseband pulsing techniq… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.04818v2-abstract-full').style.display = 'inline'; document.getElementById('2010.04818v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.04818v2-abstract-full" style="display: none;"> Silicon quantum dot qubits must contend with low-lying valley excited states which are sensitive functions of the quantum well heterostructure and disorder; quantifying and maximizing the energies of these states are critical to improving device performance. We describe a spectroscopic method for probing excited states in isolated Si/SiGe double quantum dots using standard baseband pulsing techniques, easing the extraction of energy spectra in multiple-dot devices. We use this method to measure dozens of valley excited state energies spanning multiple wafers, quantum dots, and orbital states, crucial for evaluating the dependence of valley splitting on quantum well width and other epitaxial conditions. Our results suggest that narrower wells can be beneficial for improving valley splittings, but this effect can be confounded by variations in growth and fabrication conditions. These results underscore the importance of valley splitting measurements for guiding the development of Si qubits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.04818v2-abstract-full').style.display = 'none'; document.getElementById('2010.04818v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 12 figures. accepted for publication by Physical Review Applied</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 15, 044033 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.08320">arXiv:1809.08320</a> <span> [<a href="https://arxiv.org/pdf/1809.08320">pdf</a>, <a href="https://arxiv.org/format/1809.08320">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.12.014026">10.1103/PhysRevApplied.12.014026 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-Blockade Spectroscopy of Si/SiGe Quantum Dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Jones%2C+A+M">A. M. Jones</a>, <a href="/search/quant-ph?searchtype=author&query=Pritchett%2C+E+J">E. J. Pritchett</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+E+H">E. H. Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Keating%2C+T+E">T. E. Keating</a>, <a href="/search/quant-ph?searchtype=author&query=Andrews%2C+R+W">R. W. Andrews</a>, <a href="/search/quant-ph?searchtype=author&query=Blumoff%2C+J+Z">J. Z. Blumoff</a>, <a href="/search/quant-ph?searchtype=author&query=De+Lorenzo%2C+L+A">L. A. De Lorenzo</a>, <a href="/search/quant-ph?searchtype=author&query=Eng%2C+K">K. Eng</a>, <a href="/search/quant-ph?searchtype=author&query=Ha%2C+S+D">S. D. Ha</a>, <a href="/search/quant-ph?searchtype=author&query=Kiselev%2C+A+A">A. A. Kiselev</a>, <a href="/search/quant-ph?searchtype=author&query=Meenehan%2C+S+M">S. M. Meenehan</a>, <a href="/search/quant-ph?searchtype=author&query=Merkel%2C+S+T">S. T. Merkel</a>, <a href="/search/quant-ph?searchtype=author&query=Wright%2C+J+A">J. A. Wright</a>, <a href="/search/quant-ph?searchtype=author&query=Edge%2C+L+F">L. F. Edge</a>, <a href="/search/quant-ph?searchtype=author&query=Ross%2C+R+S">R. S. Ross</a>, <a href="/search/quant-ph?searchtype=author&query=Rakher%2C+M+T">M. T. Rakher</a>, <a href="/search/quant-ph?searchtype=author&query=Borselli%2C+M+G">M. G. Borselli</a>, <a href="/search/quant-ph?searchtype=author&query=Hunter%2C+A">A. Hunter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.08320v1-abstract-short" style="display: inline;"> We implement a technique for measuring the singlet-triplet energy splitting responsible for spin-to-charge conversion in semiconductor quantum dots. This method, which requires fast, single-shot charge measurement, reliably extracts an energy in the limits of both large and small splittings. We perform this technique on an undoped, accumulation-mode Si/SiGe triple-quantum dot and find that the mea… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.08320v1-abstract-full').style.display = 'inline'; document.getElementById('1809.08320v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.08320v1-abstract-full" style="display: none;"> We implement a technique for measuring the singlet-triplet energy splitting responsible for spin-to-charge conversion in semiconductor quantum dots. This method, which requires fast, single-shot charge measurement, reliably extracts an energy in the limits of both large and small splittings. We perform this technique on an undoped, accumulation-mode Si/SiGe triple-quantum dot and find that the measured splitting varies smoothly as a function of confinement gate biases. Not only does this demonstration prove the value of having an $in~situ$ excited-state measurement technique as part of a standard tune-up procedure, it also suggests that in typical Si/SiGe quantum dot devices, spin-blockade can be limited by lateral orbital excitation energy rather than valley splitting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.08320v1-abstract-full').style.display = 'none'; document.getElementById('1809.08320v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 12, 014026 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.05283">arXiv:1801.05283</a> <span> [<a href="https://arxiv.org/pdf/1801.05283">pdf</a>, <a href="https://arxiv.org/format/1801.05283">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-018-0470-y">10.1038/s41586-018-0470-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deterministic teleportation of a quantum gate between two logical qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chou%2C+K+S">K. S. Chou</a>, <a href="/search/quant-ph?searchtype=author&query=Blumoff%2C+J+Z">J. Z. Blumoff</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+C+S">C. S. Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Reinhold%2C+P+C">P. C. Reinhold</a>, <a href="/search/quant-ph?searchtype=author&query=Axline%2C+C+J">C. J. Axline</a>, <a href="/search/quant-ph?searchtype=author&query=Gao%2C+Y+Y">Y. Y. Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Frunzio%2C+L">L. Frunzio</a>, <a href="/search/quant-ph?searchtype=author&query=Devoret%2C+M+H">M. H. Devoret</a>, <a href="/search/quant-ph?searchtype=author&query=Jiang%2C+L">Liang Jiang</a>, <a href="/search/quant-ph?searchtype=author&query=Schoelkopf%2C+R+J">R. J. Schoelkopf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.05283v1-abstract-short" style="display: inline;"> A quantum computer has the potential to effciently solve problems that are intractable for classical computers. Constructing a large-scale quantum processor, however, is challenging due to errors and noise inherent in real-world quantum systems. One approach to this challenge is to utilize modularity--a pervasive strategy found throughout nature and engineering--to build complex systems robustly.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.05283v1-abstract-full').style.display = 'inline'; document.getElementById('1801.05283v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.05283v1-abstract-full" style="display: none;"> A quantum computer has the potential to effciently solve problems that are intractable for classical computers. Constructing a large-scale quantum processor, however, is challenging due to errors and noise inherent in real-world quantum systems. One approach to this challenge is to utilize modularity--a pervasive strategy found throughout nature and engineering--to build complex systems robustly. Such an approach manages complexity and uncertainty by assembling small, specialized components into a larger architecture. These considerations motivate the development of a quantum modular architecture, where separate quantum systems are combined via communication channels into a quantum network. In this architecture, an essential tool for universal quantum computation is the teleportation of an entangling quantum gate, a technique originally proposed in 1999 which, until now, has not been realized deterministically. Here, we experimentally demonstrate a teleported controlled-NOT (CNOT) operation made deterministic by utilizing real-time adaptive control. Additionally, we take a crucial step towards implementing robust, error-correctable modules by enacting the gate between logical qubits, encoding quantum information redundantly in the states of superconducting cavities. Such teleported operations have significant implications for fault-tolerant quantum computation, and when realized within a network can have broad applications in quantum communication, metrology, and simulations. Our results illustrate a compelling approach for implementing multi-qubit operations on logical qubits within an error-protected quantum modular architecture. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.05283v1-abstract-full').style.display = 'none'; document.getElementById('1801.05283v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 7 pages, 4 figures; Supplementary Information: 26 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.02401">arXiv:1705.02401</a> <span> [<a href="https://arxiv.org/pdf/1705.02401">pdf</a>, <a href="https://arxiv.org/format/1705.02401">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.8.021005">10.1103/PhysRevX.8.021005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coherent oscillations inside a quantum manifold stabilized by dissipation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Touzard%2C+S">S. Touzard</a>, <a href="/search/quant-ph?searchtype=author&query=Grimm%2C+A">A. Grimm</a>, <a href="/search/quant-ph?searchtype=author&query=Leghtas%2C+Z">Z. Leghtas</a>, <a href="/search/quant-ph?searchtype=author&query=Mundhada%2C+S+O">S. O. Mundhada</a>, <a href="/search/quant-ph?searchtype=author&query=Reinhold%2C+P">P. Reinhold</a>, <a href="/search/quant-ph?searchtype=author&query=Heeres%2C+R">R. Heeres</a>, <a href="/search/quant-ph?searchtype=author&query=Axline%2C+C">C. Axline</a>, <a href="/search/quant-ph?searchtype=author&query=Reagor%2C+M">M. Reagor</a>, <a href="/search/quant-ph?searchtype=author&query=Chou%2C+K">K. Chou</a>, <a href="/search/quant-ph?searchtype=author&query=Blumoff%2C+J">J. Blumoff</a>, <a href="/search/quant-ph?searchtype=author&query=Sliwa%2C+K+M">K. M. Sliwa</a>, <a href="/search/quant-ph?searchtype=author&query=Shankar%2C+S">S. Shankar</a>, <a href="/search/quant-ph?searchtype=author&query=Frunzio%2C+L">L. Frunzio</a>, <a href="/search/quant-ph?searchtype=author&query=Schoelkopf%2C+R+J">R. J. Schoelkopf</a>, <a href="/search/quant-ph?searchtype=author&query=Mirrahimi%2C+M">M. Mirrahimi</a>, <a href="/search/quant-ph?searchtype=author&query=Devoret%2C+M+H">M. H. Devoret</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.02401v3-abstract-short" style="display: inline;"> Manipulating the state of a logical quantum bit usually comes at the expense of exposing it to decoherence. Fault-tolerant quantum computing tackles this problem by manipulating quantum information within a stable manifold of a larger Hilbert space, whose symmetries restrict the number of independent errors. The remaining errors do not affect the quantum computation and are correctable after the f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.02401v3-abstract-full').style.display = 'inline'; document.getElementById('1705.02401v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.02401v3-abstract-full" style="display: none;"> Manipulating the state of a logical quantum bit usually comes at the expense of exposing it to decoherence. Fault-tolerant quantum computing tackles this problem by manipulating quantum information within a stable manifold of a larger Hilbert space, whose symmetries restrict the number of independent errors. The remaining errors do not affect the quantum computation and are correctable after the fact. Here we implement the autonomous stabilization of an encoding manifold spanned by Schroedinger cat states in a superconducting cavity. We show Zeno-driven coherent oscillations between these states analogous to the Rabi rotation of a qubit protected against phase-flips. Such gates are compatible with quantum error correction and hence are crucial for fault-tolerant logical qubits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.02401v3-abstract-full').style.display = 'none'; document.getElementById('1705.02401v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 8, 021005 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.02166">arXiv:1611.02166</a> <span> [<a href="https://arxiv.org/pdf/1611.02166">pdf</a>, <a href="https://arxiv.org/format/1611.02166">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.8.039902">10.1103/PhysRevApplied.8.039902 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Micromachined integrated quantum circuit containing a superconducting qubit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Brecht%2C+T">T. Brecht</a>, <a href="/search/quant-ph?searchtype=author&query=Chu%2C+Y">Y. Chu</a>, <a href="/search/quant-ph?searchtype=author&query=Axline%2C+C">C. Axline</a>, <a href="/search/quant-ph?searchtype=author&query=Pfaff%2C+W">W. Pfaff</a>, <a href="/search/quant-ph?searchtype=author&query=Blumoff%2C+J+Z">J. Z. Blumoff</a>, <a href="/search/quant-ph?searchtype=author&query=Chou%2C+K">K. Chou</a>, <a href="/search/quant-ph?searchtype=author&query=Krayzman%2C+L">L. Krayzman</a>, <a href="/search/quant-ph?searchtype=author&query=Frunzio%2C+L">L. Frunzio</a>, <a href="/search/quant-ph?searchtype=author&query=Schoelkopf%2C+R+J">R. J. Schoelkopf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.02166v1-abstract-short" style="display: inline;"> We present a device demonstrating a lithographically patterned transmon integrated with a micromachined cavity resonator. Our two-cavity, one-qubit device is a multilayer microwave integrated quantum circuit (MMIQC), comprising a basic unit capable of performing circuit-QED (cQED) operations. We describe the qubit-cavity coupling mechanism of a specialized geometry using an electric field picture… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.02166v1-abstract-full').style.display = 'inline'; document.getElementById('1611.02166v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.02166v1-abstract-full" style="display: none;"> We present a device demonstrating a lithographically patterned transmon integrated with a micromachined cavity resonator. Our two-cavity, one-qubit device is a multilayer microwave integrated quantum circuit (MMIQC), comprising a basic unit capable of performing circuit-QED (cQED) operations. We describe the qubit-cavity coupling mechanism of a specialized geometry using an electric field picture and a circuit model, and finally obtain specific system parameters using simulations. Fabrication of the MMIQC includes lithography, etching, and metallic bonding of silicon wafers. Superconducting wafer bonding is a critical capability that is demonstrated by a micromachined storage cavity lifetime $34.3~\mathrm{渭s}$, corresponding to a quality factor of 2 million at single-photon energies. The transmon coherence times are $T_1=6.4~\mathrm{渭s}$, and $T_2^{Echo}= 11.7~\mathrm{渭s}$. We measure qubit-cavity dispersive coupling with rate $蠂_{q渭}/2蟺=-1.17~$MHz, constituting a Jaynes-Cummings system with an interaction strength $g/2蟺=49~$MHz. With these parameters we are able to demonstrate cQED operations in the strong dispersive regime with ease. Finally, we highlight several improvements and anticipated extensions of the technology to complex MMIQCs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.02166v1-abstract-full').style.display = 'none'; document.getElementById('1611.02166v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 8, 039902 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.00817">arXiv:1606.00817</a> <span> [<a href="https://arxiv.org/pdf/1606.00817">pdf</a>, <a href="https://arxiv.org/format/1606.00817">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.6.031041">10.1103/PhysRevX.6.031041 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Implementing and characterizing precise multi-qubit measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Blumoff%2C+J+Z">J. Z. Blumoff</a>, <a href="/search/quant-ph?searchtype=author&query=Chou%2C+K">K. Chou</a>, <a href="/search/quant-ph?searchtype=author&query=Shen%2C+C">C. Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Reagor%2C+M">M. Reagor</a>, <a href="/search/quant-ph?searchtype=author&query=Axline%2C+C">C. Axline</a>, <a href="/search/quant-ph?searchtype=author&query=Brierley%2C+R+T">R. T. Brierley</a>, <a href="/search/quant-ph?searchtype=author&query=Silveri%2C+M+P">M. P. Silveri</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+C">C. Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Vlastakis%2C+B">B. Vlastakis</a>, <a href="/search/quant-ph?searchtype=author&query=Nigg%2C+S+E">S. E. Nigg</a>, <a href="/search/quant-ph?searchtype=author&query=Frunzio%2C+L">L. Frunzio</a>, <a href="/search/quant-ph?searchtype=author&query=Devoret%2C+M+H">M. H. Devoret</a>, <a href="/search/quant-ph?searchtype=author&query=Jiang%2C+L">L. Jiang</a>, <a href="/search/quant-ph?searchtype=author&query=Girvin%2C+S+M">S. M. Girvin</a>, <a href="/search/quant-ph?searchtype=author&query=Schoelkopf%2C+R+J">R. J. Schoelkopf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.00817v2-abstract-short" style="display: inline;"> There are two general requirements to harness the computational power of quantum mechanics: the ability to manipulate the evolution of an isolated system and the ability to faithfully extract information from it. Quantum error correction and simulation often make a more exacting demand: the ability to perform non-destructive measurements of specific correlations within that system. We realize such… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.00817v2-abstract-full').style.display = 'inline'; document.getElementById('1606.00817v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.00817v2-abstract-full" style="display: none;"> There are two general requirements to harness the computational power of quantum mechanics: the ability to manipulate the evolution of an isolated system and the ability to faithfully extract information from it. Quantum error correction and simulation often make a more exacting demand: the ability to perform non-destructive measurements of specific correlations within that system. We realize such measurements by employing a protocol adapted from [S. Nigg and S. M. Girvin, Phys. Rev. Lett. 110, 243604 (2013)], enabling real-time selection of arbitrary register-wide Pauli operators. Our implementation consists of a simple circuit quantum electrodynamics (cQED) module of four highly-coherent 3D transmon qubits, collectively coupled to a high-Q superconducting microwave cavity. As a demonstration, we enact all seven nontrivial subset-parity measurements on our three-qubit register. For each we fully characterize the realized measurement by analyzing the detector (observable operators) via quantum detector tomography and by analyzing the quantum back-action via conditioned process tomography. No single quantity completely encapsulates the performance of a measurement, and standard figures of merit have not yet emerged. Accordingly, we consider several new fidelity measures for both the detector and the complete measurement process. We measure all of these quantities and report high fidelities, indicating that we are measuring the desired quantities precisely and that the measurements are highly non-demolition. We further show that both results are improved significantly by an additional error-heralding measurement. The analyses presented here form a useful basis for the future characterization and validation of quantum measurements, anticipating the demands of emerging quantum technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.00817v2-abstract-full').style.display = 'none'; document.getElementById('1606.00817v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures, plus supplement</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 6, 031041 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.05505">arXiv:1601.05505</a> <span> [<a href="https://arxiv.org/pdf/1601.05505">pdf</a>, <a href="https://arxiv.org/format/1601.05505">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.aaf2941">10.1126/science.aaf2941 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Schrodinger Cat Living in Two Boxes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wang%2C+C">Chen Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Gao%2C+Y+Y">Yvonne Y. Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Reinhold%2C+P">Philip Reinhold</a>, <a href="/search/quant-ph?searchtype=author&query=Heeres%2C+R+W">R. W. Heeres</a>, <a href="/search/quant-ph?searchtype=author&query=Ofek%2C+N">Nissim Ofek</a>, <a href="/search/quant-ph?searchtype=author&query=Chou%2C+K">Kevin Chou</a>, <a href="/search/quant-ph?searchtype=author&query=Axline%2C+C">Christopher Axline</a>, <a href="/search/quant-ph?searchtype=author&query=Reagor%2C+M">Matthew Reagor</a>, <a href="/search/quant-ph?searchtype=author&query=Blumoff%2C+J">Jacob Blumoff</a>, <a href="/search/quant-ph?searchtype=author&query=Sliwa%2C+K+M">K. M. Sliwa</a>, <a href="/search/quant-ph?searchtype=author&query=Frunzio%2C+L">L. Frunzio</a>, <a href="/search/quant-ph?searchtype=author&query=Girvin%2C+S+M">S. M. Girvin</a>, <a href="/search/quant-ph?searchtype=author&query=Jiang%2C+L">Liang Jiang</a>, <a href="/search/quant-ph?searchtype=author&query=Mirrahimi%2C+M">M. Mirrahimi</a>, <a href="/search/quant-ph?searchtype=author&query=Devoret%2C+M+H">M. H. Devoret</a>, <a href="/search/quant-ph?searchtype=author&query=Schoelkopf%2C+R+J">R. J. Schoelkopf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.05505v1-abstract-short" style="display: inline;"> Quantum superpositions of distinct coherent states in a single-mode harmonic oscillator, known as "cat states", have been an elegant demonstration of Schrodinger's famous cat paradox. Here, we realize a two-mode cat state of electromagnetic fields in two microwave cavities bridged by a superconducting artificial atom, which can also be viewed as an entangled pair of single-cavity cat states. We pr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.05505v1-abstract-full').style.display = 'inline'; document.getElementById('1601.05505v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.05505v1-abstract-full" style="display: none;"> Quantum superpositions of distinct coherent states in a single-mode harmonic oscillator, known as "cat states", have been an elegant demonstration of Schrodinger's famous cat paradox. Here, we realize a two-mode cat state of electromagnetic fields in two microwave cavities bridged by a superconducting artificial atom, which can also be viewed as an entangled pair of single-cavity cat states. We present full quantum state tomography of this complex cat state over a Hilbert space exceeding 100 dimensions via quantum non-demolition measurements of the joint photon number parity. The ability to manipulate such multi-cavity quantum states paves the way for logical operations between redundantly encoded qubits for fault-tolerant quantum computation and communication. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.05505v1-abstract-full').style.display = 'none'; document.getElementById('1601.05505v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.05882">arXiv:1508.05882</a> <span> [<a href="https://arxiv.org/pdf/1508.05882">pdf</a>, <a href="https://arxiv.org/format/1508.05882">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.014506">10.1103/PhysRevB.94.014506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A quantum memory with near-millisecond coherence in circuit QED </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Reagor%2C+M">Matthew Reagor</a>, <a href="/search/quant-ph?searchtype=author&query=Pfaff%2C+W">Wolfgang Pfaff</a>, <a href="/search/quant-ph?searchtype=author&query=Axline%2C+C">Christopher Axline</a>, <a href="/search/quant-ph?searchtype=author&query=Heeres%2C+R+W">Reinier W. Heeres</a>, <a href="/search/quant-ph?searchtype=author&query=Ofek%2C+N">Nissim Ofek</a>, <a href="/search/quant-ph?searchtype=author&query=Sliwa%2C+K">Katrina Sliwa</a>, <a href="/search/quant-ph?searchtype=author&query=Holland%2C+E">Eric Holland</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+C">Chen Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Blumoff%2C+J">Jacob Blumoff</a>, <a href="/search/quant-ph?searchtype=author&query=Chou%2C+K">Kevin Chou</a>, <a href="/search/quant-ph?searchtype=author&query=Hatridge%2C+M+J">Michael J. Hatridge</a>, <a href="/search/quant-ph?searchtype=author&query=Frunzio%2C+L">Luigi Frunzio</a>, <a href="/search/quant-ph?searchtype=author&query=Devoret%2C+M+H">Michel H. Devoret</a>, <a href="/search/quant-ph?searchtype=author&query=Jiang%2C+L">Liang Jiang</a>, <a href="/search/quant-ph?searchtype=author&query=Schoelkopf%2C+R+J">Robert J. Schoelkopf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.05882v2-abstract-short" style="display: inline;"> Significant advances in coherence have made superconducting quantum circuits a viable platform for fault-tolerant quantum computing. To further extend capabilities, highly coherent quantum systems could act as quantum memories for these circuits. A useful quantum memory must be rapidly addressable by qubits, while maintaining superior coherence. We demonstrate a novel superconducting microwave cav… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.05882v2-abstract-full').style.display = 'inline'; document.getElementById('1508.05882v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.05882v2-abstract-full" style="display: none;"> Significant advances in coherence have made superconducting quantum circuits a viable platform for fault-tolerant quantum computing. To further extend capabilities, highly coherent quantum systems could act as quantum memories for these circuits. A useful quantum memory must be rapidly addressable by qubits, while maintaining superior coherence. We demonstrate a novel superconducting microwave cavity architecture that is highly robust against major sources of loss that are encountered in the engineering of circuit QED systems. The architecture allows for near-millisecond storage of quantum states in a resonator while strong coupling between the resonator and a transmon qubit enables control, encoding, and readout at MHz rates. The observed coherence times constitute an improvement of almost an order of magnitude over those of the best available superconducting qubits. Our design is an ideal platform for studying coherent quantum optics and marks an important step towards hardware-efficient quantum computing with Josephson junction-based quantum circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.05882v2-abstract-full').style.display = 'none'; document.getElementById('1508.05882v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 014506 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.02512">arXiv:1504.02512</a> <span> [<a href="https://arxiv.org/pdf/1504.02512">pdf</a>, <a href="https://arxiv.org/format/1504.02512">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Violating Bell's inequality with an artificial atom and a cat state in a cavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Vlastakis%2C+B">Brian Vlastakis</a>, <a href="/search/quant-ph?searchtype=author&query=Petrenko%2C+A">Andrei Petrenko</a>, <a href="/search/quant-ph?searchtype=author&query=Ofek%2C+N">Nissim Ofek</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+L">Luayn Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Leghtas%2C+Z">Zaki Leghtas</a>, <a href="/search/quant-ph?searchtype=author&query=Sliwa%2C+K">Katrina Sliwa</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+Y">Yehan Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Hatridge%2C+M">Michael Hatridge</a>, <a href="/search/quant-ph?searchtype=author&query=Blumoff%2C+J">Jacob Blumoff</a>, <a href="/search/quant-ph?searchtype=author&query=Frunzio%2C+L">Luigi Frunzio</a>, <a href="/search/quant-ph?searchtype=author&query=Mirrahimi%2C+M">Mazyar Mirrahimi</a>, <a href="/search/quant-ph?searchtype=author&query=Jiang%2C+L">Liang Jiang</a>, <a href="/search/quant-ph?searchtype=author&query=Devoret%2C+M+H">M. H. Devoret</a>, <a href="/search/quant-ph?searchtype=author&query=Schoelkopf%2C+R+J">R. J. Schoelkopf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.02512v1-abstract-short" style="display: inline;"> The `Schr枚dinger's cat' thought experiment highlights the counterintuitive facet of quantum theory that entanglement can exist between microscopic and macroscopic systems, producing a superposition of distinguishable states like the fictitious cat that is both alive and dead. The hallmark of entanglement is the detection of strong correlations between systems, for example by the violation of Bell'… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.02512v1-abstract-full').style.display = 'inline'; document.getElementById('1504.02512v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.02512v1-abstract-full" style="display: none;"> The `Schr枚dinger's cat' thought experiment highlights the counterintuitive facet of quantum theory that entanglement can exist between microscopic and macroscopic systems, producing a superposition of distinguishable states like the fictitious cat that is both alive and dead. The hallmark of entanglement is the detection of strong correlations between systems, for example by the violation of Bell's inequality. Using the CHSH variant of the Bell test, this violation has been observed with photons, atoms, solid state spins, and artificial atoms in superconducting circuits. For larger, more distinguishable states, the conflict between quantum predictions and our classical expectations is typically resolved due to the rapid onset of decoherence. To investigate this reconciliation, one can employ a superposition of coherent states in an oscillator, known as a cat state. In contrast to discrete systems, one can continuously vary the size of the prepared cat state and therefore its dependence on decoherence. Here we demonstrate and quantify entanglement between an artificial atom and a cat state in a cavity, which we call a `Bell-cat' state. We use a circuit QED architecture, high-fidelity measurements, and real-time feedback control to violate Bell's inequality without post-selection or corrections for measurement inefficiencies. Furthermore, we investigate the influence of decoherence by continuously varying the size of created Bell-cat states and characterize the entangled system by joint Wigner tomography. These techniques provide a toolset for quantum information processing with entangled qubits and resonators. While recent results have demonstrated a high level of control of such systems, this experiment demonstrates that information can be extracted efficiently and with high fidelity, a crucial requirement for quantum computing with resonators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.02512v1-abstract-full').style.display = 'none'; document.getElementById('1504.02512v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.2534">arXiv:1311.2534</a> <span> [<a href="https://arxiv.org/pdf/1311.2534">pdf</a>, <a href="https://arxiv.org/ps/1311.2534">ps</a>, <a href="https://arxiv.org/format/1311.2534">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nature13436">10.1038/nature13436 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tracking Photon Jumps with Repeated Quantum Non-Demolition Parity Measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Sun%2C+L">L. Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Petrenko%2C+A">A. Petrenko</a>, <a href="/search/quant-ph?searchtype=author&query=Leghtas%2C+Z">Z. Leghtas</a>, <a href="/search/quant-ph?searchtype=author&query=Vlastakis%2C+B">B. Vlastakis</a>, <a href="/search/quant-ph?searchtype=author&query=Kirchmair%2C+G">G. Kirchmair</a>, <a href="/search/quant-ph?searchtype=author&query=Sliwa%2C+K+M">K. M. Sliwa</a>, <a href="/search/quant-ph?searchtype=author&query=Narla%2C+A">A. Narla</a>, <a href="/search/quant-ph?searchtype=author&query=Hatridge%2C+M">M. Hatridge</a>, <a href="/search/quant-ph?searchtype=author&query=Shankar%2C+S">S. Shankar</a>, <a href="/search/quant-ph?searchtype=author&query=Blumoff%2C+J">J. Blumoff</a>, <a href="/search/quant-ph?searchtype=author&query=Frunzio%2C+L">L. Frunzio</a>, <a href="/search/quant-ph?searchtype=author&query=Mirrahimi%2C+M">M. Mirrahimi</a>, <a href="/search/quant-ph?searchtype=author&query=Devoret%2C+M+H">M. H. Devoret</a>, <a href="/search/quant-ph?searchtype=author&query=Schoelkopf%2C+R+J">R. J. Schoelkopf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.2534v1-abstract-short" style="display: inline;"> Quantum error correction (QEC) is required for a practical quantum computer because of the fragile nature of quantum information. In QEC, information is redundantly stored in a large Hilbert space and one or more observables must be monitored to reveal the occurrence of an error, without disturbing the information encoded in an unknown quantum state. Such observables, typically multi-qubit paritie… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.2534v1-abstract-full').style.display = 'inline'; document.getElementById('1311.2534v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.2534v1-abstract-full" style="display: none;"> Quantum error correction (QEC) is required for a practical quantum computer because of the fragile nature of quantum information. In QEC, information is redundantly stored in a large Hilbert space and one or more observables must be monitored to reveal the occurrence of an error, without disturbing the information encoded in an unknown quantum state. Such observables, typically multi-qubit parities such as <XXXX>, must correspond to a special symmetry property inherent to the encoding scheme. Measurements of these observables, or error syndromes, must also be performed in a quantum non-demolition (QND) way and faster than the rate at which errors occur. Previously, QND measurements of quantum jumps between energy eigenstates have been performed in systems such as trapped ions, electrons, cavity quantum electrodynamics (QED), nitrogen-vacancy (NV) centers, and superconducting qubits. So far, however, no fast and repeated monitoring of an error syndrome has been realized. Here, we track the quantum jumps of a possible error syndrome, the photon number parity of a microwave cavity, by mapping this property onto an ancilla qubit. This quantity is just the error syndrome required in a recently proposed scheme for a hardware-efficient protected quantum memory using Schr枚dinger cat states in a harmonic oscillator. We demonstrate the projective nature of this measurement onto a parity eigenspace by observing the collapse of a coherent state onto even or odd cat states. The measurement is fast compared to the cavity lifetime, has a high single-shot fidelity, and has a 99.8% probability per single measurement of leaving the parity unchanged. In combination with the deterministic encoding of quantum information in cat states realized earlier, our demonstrated QND parity tracking represents a significant step towards implementing an active system that extends the lifetime of a quantum bit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.2534v1-abstract-full').style.display = 'none'; document.getElementById('1311.2534v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages with 4 figures for the main text, 14 pages with 9 figures for supplementary material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 511, 444-448 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1009.4180">arXiv:1009.4180</a> <span> [<a href="https://arxiv.org/pdf/1009.4180">pdf</a>, <a href="https://arxiv.org/ps/1009.4180">ps</a>, <a href="https://arxiv.org/format/1009.4180">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.105.260502">10.1103/PhysRevLett.105.260502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Entanglement of light-shift compensated atomic spin waves with telecom light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Dudin%2C+Y+O">Y. O. Dudin</a>, <a href="/search/quant-ph?searchtype=author&query=Radnaev%2C+A+G">A. G. Radnaev</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+R">R. Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Blumoff%2C+J+Z">J. Z. Blumoff</a>, <a href="/search/quant-ph?searchtype=author&query=Kennedy%2C+T+A+B">T. A. B. Kennedy</a>, <a href="/search/quant-ph?searchtype=author&query=Kuzmich%2C+A">A. Kuzmich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1009.4180v1-abstract-short" style="display: inline;"> Entanglement of a 795 nm light polarization qubit and an atomic Rb spin wave qubit for a storage time of 0.1 s is observed by measuring the violation of Bell's inequality (S = 2.65 \pm 0.12). Long qubit storage times are achieved by pinning the spin wave in a 1064 nm wavelength optical lattice, with a magic-valued magnetic field superposed to eliminate lattice-induced dephasing. Four-wave mixing i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.4180v1-abstract-full').style.display = 'inline'; document.getElementById('1009.4180v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1009.4180v1-abstract-full" style="display: none;"> Entanglement of a 795 nm light polarization qubit and an atomic Rb spin wave qubit for a storage time of 0.1 s is observed by measuring the violation of Bell's inequality (S = 2.65 \pm 0.12). Long qubit storage times are achieved by pinning the spin wave in a 1064 nm wavelength optical lattice, with a magic-valued magnetic field superposed to eliminate lattice-induced dephasing. Four-wave mixing in a cold Rb gas is employed to perform light qubit conversion between near infra red (795 nm) and telecom (1367 nm) wavelengths, and after propagation in a telecom fiber, to invert the conversion process. Observed Bell inequality violation (S = 2.66 \pm 0.09), at 10 ms storage, confirms preservation of memory/light entanglement through the two stages of light qubit frequency conversion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.4180v1-abstract-full').style.display = 'none'; document.getElementById('1009.4180v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>