CINXE.COM
stalk in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> stalk in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> stalk </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/10981/#Item_1" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="topos_theory">Topos Theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/topos+theory">topos theory</a></strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Toposes">Toposes</a></li> </ul> <h2 id="background">Background</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category">category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/functor">functor</a></p> </li> </ul> </li> </ul> <h2 id="toposes">Toposes</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%280%2C1%29-topos">(0,1)-topos</a>, <a class="existingWikiWord" href="/nlab/show/Heyting+algebra">Heyting algebra</a>, <a class="existingWikiWord" href="/nlab/show/locale">locale</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pretopos">pretopos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topos">topos</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Grothendieck+topos">Grothendieck topos</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category+of+presheaves">category of presheaves</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/presheaf">presheaf</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/representable+functor">representable presheaf</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/category+of+sheaves">category of sheaves</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/site">site</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/sieve">sieve</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/coverage">coverage</a>, <a class="existingWikiWord" href="/nlab/show/Grothendieck+pretopology">pretopology</a>, <a class="existingWikiWord" href="/nlab/show/Grothendieck+topology">topology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sheaf">sheaf</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sheafification">sheafification</a></p> </li> </ul> </li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quasitopos">quasitopos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/base+topos">base topos</a>, <a class="existingWikiWord" href="/nlab/show/indexed+topos">indexed topos</a></p> </li> </ul> <h2 id="toc_internal_logic">Internal Logic</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/categorical+semantics">categorical semantics</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+logic">internal logic</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/subobject+classifier">subobject classifier</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/natural+numbers+object">natural numbers object</a></p> </li> </ul> </li> </ul> <h2 id="topos_morphisms">Topos morphisms</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/logical+morphism">logical morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/geometric+morphism">geometric morphism</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/direct+image">direct image</a>/<a class="existingWikiWord" href="/nlab/show/inverse+image">inverse image</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/global+section">global sections</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/geometric+embedding">geometric embedding</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/surjective+geometric+morphism">surjective geometric morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/essential+geometric+morphism">essential geometric morphism</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+connected+geometric+morphism">locally connected geometric morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/connected+geometric+morphism">connected geometric morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/totally+connected+geometric+morphism">totally connected geometric morphism</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%C3%A9tale+geometric+morphism">étale geometric morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/open+geometric+morphism">open geometric morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/proper+geometric+morphism">proper geometric morphism</a>, <a class="existingWikiWord" href="/nlab/show/compact+topos">compact topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/separated+geometric+morphism">separated geometric morphism</a>, <a class="existingWikiWord" href="/nlab/show/Hausdorff+topos">Hausdorff topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/local+geometric+morphism">local geometric morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/bounded+geometric+morphism">bounded geometric morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/base+change">base change</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/localic+geometric+morphism">localic geometric morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/hyperconnected+geometric+morphism">hyperconnected geometric morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/atomic+geometric+morphism">atomic geometric morphism</a></p> </li> </ul> </li> </ul> <h2 id="extra_stuff_structure_properties">Extra stuff, structure, properties</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+locale">topological locale</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/localic+topos">localic topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/petit+topos">petit topos/gros topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+connected+topos">locally connected topos</a>, <a class="existingWikiWord" href="/nlab/show/connected+topos">connected topos</a>, <a class="existingWikiWord" href="/nlab/show/totally+connected+topos">totally connected topos</a>, <a class="existingWikiWord" href="/nlab/show/strongly+connected+topos">strongly connected topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/local+topos">local topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cohesive+topos">cohesive topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/classifying+topos">classifying topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/smooth+topos">smooth topos</a></p> </li> </ul> <h2 id="cohomology_and_homotopy">Cohomology and homotopy</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cohomology">cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+groups+in+an+%28infinity%2C1%29-topos">homotopy</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+sheaf+cohomology">abelian sheaf cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/model+structure+on+simplicial+presheaves">model structure on simplicial presheaves</a></p> </li> </ul> <h2 id="in_higher_category_theory">In higher category theory</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+topos+theory">higher topos theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%280%2C1%29-topos">(0,1)-topos</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/%280%2C1%29-site">(0,1)-site</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/2-topos">2-topos</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-site">2-site</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/2-sheaf">2-sheaf</a>, <a class="existingWikiWord" href="/nlab/show/stack">stack</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-site">(∞,1)-site</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-sheaf">(∞,1)-sheaf</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-stack">∞-stack</a>, <a class="existingWikiWord" href="/nlab/show/derived+stack">derived stack</a></p> </li> </ul> </li> </ul> <h2 id="theorems">Theorems</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Diaconescu%27s+theorem">Diaconescu's theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Barr%27s+theorem">Barr's theorem</a></p> </li> </ul> <div> <p> <a href="/nlab/edit/topos+theory+-+contents">Edit this sidebar</a> </p> </div></div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#definition'>Definition</a></li> <ul> <li><a href='#special_case_of_sheaf_topoi'>Special case of sheaf topoi</a></li> <ul> <li><a href='#testing_sheaf_morphisms_on_stalks'>Testing sheaf morphisms on stalks</a></li> <li><a href='#example'>Example</a></li> </ul> </ul> <li><a href='#examples'>Examples</a></li> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="definition">Definition</h2> <p>Recall that a <a class="existingWikiWord" href="/nlab/show/point+of+a+topos">point</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math> of a <a class="existingWikiWord" href="/nlab/show/topos">topos</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/geometric+morphism">geometric morphism</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>:</mo><mi>Set</mi><mo>→</mo><mi>E</mi><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> x : Set \to E \,. </annotation></semantics></math></div> <p>The <strong>stalk</strong> at <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math> of an object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>e</mi><mo>∈</mo><mi>E</mi></mrow><annotation encoding="application/x-tex">e \in E</annotation></semantics></math> is the image of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>e</mi></mrow><annotation encoding="application/x-tex">e</annotation></semantics></math> under the corresponding <a class="existingWikiWord" href="/nlab/show/inverse+image">inverse image</a> morphism</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msup><mi>x</mi> <mo>*</mo></msup><mspace width="thinmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thinmathspace"></mspace><mi>E</mi><mo>→</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex"> x^* \,\colon\, E \to Set </annotation></semantics></math></div> <p>i.e.</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>stalk</mi> <mi>x</mi></msub><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>≔</mo><mspace width="thinmathspace"></mspace><msup><mi>x</mi> <mo>*</mo></msup><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> stalk_x(e) \,\coloneqq\, x^*(e) \,. </annotation></semantics></math></div> <h3 id="special_case_of_sheaf_topoi">Special case of sheaf topoi</h3> <p>If <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/category+of+sheaves">category of sheaves</a> on the <a class="existingWikiWord" href="/nlab/show/category+of+open+subsets">category of open subsets</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Op</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Op(X)</annotation></semantics></math> of a <a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>E</mi><mspace width="thinmathspace"></mspace><mo>=</mo><mspace width="thinmathspace"></mspace><mi>Sh</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> E \,=\, Sh(X) \,, </annotation></semantics></math></div> <p>then the <a class="existingWikiWord" href="/nlab/show/point+of+a+topos">topos points</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math> come precisely from the ordinary points</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo lspace="verythinmathspace">:</mo><mo>*</mo><mo>→</mo><mi>X</mi><mo stretchy="false">)</mo><mo>∈</mo><mi>Top</mi><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> (x \colon {*} \to X) \in Top \,, </annotation></semantics></math></div> <p>of the space <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>, where the <a class="existingWikiWord" href="/nlab/show/direct+image">direct image</a> morphism</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>x</mi> <mo>*</mo></msub><mo lspace="verythinmathspace">:</mo><mi>Set</mi><mo>→</mo><mi>Sh</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> x_* \colon Set \to Sh(X) </annotation></semantics></math></div> <p>sends every set to the <a class="existingWikiWord" href="/nlab/show/skyscraper+sheaf">skyscraper sheaf</a> at this point of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>. By the general <a class="existingWikiWord" href="/nlab/show/Kan+extension">Kan extension</a> formula for the <a class="existingWikiWord" href="/nlab/show/inverse+image">inverse image</a> (see there) one finds in this case for any <a class="existingWikiWord" href="/nlab/show/sheaf">sheaf</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo>∈</mo><mi>Sh</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">F \in Sh(X)</annotation></semantics></math> the stalk</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable displaystyle="true" columnalign="right left right left right left right left right left" columnspacing="0em"><mtr><mtd><msub><mi>stalk</mi> <mi>x</mi></msub><mo stretchy="false">(</mo><mi>F</mi><mo stretchy="false">)</mo></mtd> <mtd><mo>=</mo><munder><mi>colim</mi><mrow><mo stretchy="false">(</mo><mo>*</mo><mo>→</mo><msup><mi>x</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>∈</mo><mo stretchy="false">(</mo><msub><mi>const</mi> <mo>*</mo></msub><mo>,</mo><msup><mi>x</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">)</mo></mrow></munder><mi>F</mi><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>=</mo><munder><mi>colim</mi><mfrac linethickness="0"><mrow><mrow><mi>V</mi><mo>⊂</mo><mi>X</mi></mrow></mrow><mrow><mrow><mi>x</mi><mo>∈</mo><mi>V</mi></mrow></mrow></mfrac></munder><mi>F</mi><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \begin{aligned} stalk_x(F) & = \underset{ ({*} \to x^{-1}(V)) \in (const_{*}, x^{-1}) }{colim} F(V) \\ & = \underset{ { V \subset X } \atop { x \in V } }{ colim } F(V) \end{aligned} \,. </annotation></semantics></math></div> <p>So for sheaves on (open subsets of) topological spaces the stalk at a given point is the colimit over all values of the sheaf on open subsets containing this point.</p> <p>By the general definition of colimits in <a class="existingWikiWord" href="/nlab/show/Set">Set</a> described at <a class="existingWikiWord" href="/nlab/show/limits+and+colimits+by+example">limits and colimits by example</a>, the elements in this colimit can in turn be described as <a class="existingWikiWord" href="/nlab/show/equivalence+classes">equivalence classes</a> represented pairs <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>z</mi><mo>,</mo><mi>V</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(z, V)</annotation></semantics></math> with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>V</mi></mrow><annotation encoding="application/x-tex">x \in V</annotation></semantics></math> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>z</mi><mo>∈</mo><mi>F</mi><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">z \in F(V)</annotation></semantics></math>, where the equivalence relation says that two such pairs <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>z</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>V</mi> <mn>1</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(z_1, V_1)</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>z</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>V</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(z_2, V_2)</annotation></semantics></math> coincide if there is a third pair <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>z</mi><mo>,</mo><mi>U</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(z,U)</annotation></semantics></math> with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi><mo>⊂</mo><msub><mi>V</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">U \subset V_1</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi><mo>⊂</mo><msub><mi>V</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">U \subset V_2</annotation></semantics></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>z</mi><mo>=</mo><msub><mi>z</mi> <mn>1</mn></msub><msub><mo stretchy="false">|</mo> <mi>U</mi></msub><mo>=</mo><msub><mi>z</mi> <mn>2</mn></msub><msub><mo stretchy="false">|</mo> <mi>U</mi></msub></mrow><annotation encoding="application/x-tex">z = z_1|_U = z_2|_U</annotation></semantics></math>.</p> <p>for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo>=</mo><mi>C</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">F = C(-)</annotation></semantics></math> a sheaf of functions on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>, such an equivalence class, hence such an element in a stalk of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math> is called a function <strong>germ</strong>.</p> <h4 id="testing_sheaf_morphisms_on_stalks">Testing sheaf morphisms on stalks</h4> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math> a topos with <a class="existingWikiWord" href="/nlab/show/point+of+a+topos">enough points</a>, the behaviour of morphisms <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><mi>A</mi><mo>→</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">f : A \to B</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math> can be tested on stalks:</p> <div class="num_theorem"> <h6 id="theorem">Theorem</h6> <p>A morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><mi>A</mi><mo>→</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">f : A \to B</annotation></semantics></math> of sheaves on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is a</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/monomorphism">monomorphism</a></p> </li> <li> <p>resp. <a class="existingWikiWord" href="/nlab/show/epimorphism">epimorphism</a></p> </li> <li> <p>resp. <a class="existingWikiWord" href="/nlab/show/isomorphism">isomorphism</a></p> </li> </ul> <p>if and only if every induced map of stalk sets <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>stalk</mi> <mi>x</mi></msub><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo>:</mo><msub><mi>stalk</mi> <mi>x</mi></msub><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mo>→</mo><msub><mi>stalk</mi> <mi>x</mi></msub><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">stalk_x(f) : stalk_x(A) \to stalk_x(B)</annotation></semantics></math> is, for all <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">x \in X</annotation></semantics></math></p> </div> <div class="proof"> <h6 id="proof">Proof</h6> <p>The statement for isomorphisms follows from the identification of sheaves with <a class="existingWikiWord" href="/nlab/show/etale+space">etale space</a>s (e.g. section II, 6, corollary 3 in MacLane-Moerdijk, <a class="existingWikiWord" href="/nlab/show/Sheaves+in+Geometry+and+Logic">Sheaves in Geometry and Logic</a>). The statement for epimorphisms/monomorphisms is proposition 6 there.</p> </div> <h4 id="example">Example</h4> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> be a smooth manifold and let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>Ω</mi> <mi>n</mi></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\Omega^n(X)</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>Z</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Z^{n+1}(X)</annotation></semantics></math> be the sheaves of differential <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-forms and that of <em>closed</em> differential <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(n+1)</annotation></semantics></math>-forms on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>, respectively, for some <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">n \in \mathbb{N}</annotation></semantics></math>. Let</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>d</mi><mo>:</mo><msup><mi>Ω</mi> <mi>n</mi></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>→</mo><msup><mi>Z</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></mrow><annotation encoding="application/x-tex"> d : \Omega^n(X) \to Z^{n+1} </annotation></semantics></math></div> <p>be the morphism of sheaves that is given on each open subset by the deRham differential.</p> <p>Then:</p> <ul> <li> <p>for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi><mo>⊂</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">U \subset X</annotation></semantics></math> the map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>d</mi> <mi>U</mi></msub><mo>:</mo><msup><mi>Ω</mi> <mi>n</mi></msup><mo stretchy="false">(</mo><mi>U</mi><mo stretchy="false">)</mo><mo>→</mo><msup><mi>Z</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>U</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">d_U : \Omega^n(U) \to Z^{n+1}(U)</annotation></semantics></math> need not be <a class="existingWikiWord" href="/nlab/show/epimorphism">epi</a>, since not every closed form is exact;</p> </li> <li> <p>but by the <a class="existingWikiWord" href="/nlab/show/Poincare+lemma">Poincare lemma</a> every closed form is <em>locally</em> exact, so that for each <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">x \in X</annotation></semantics></math> the map of stalks <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>d</mi> <mi>x</mi></msub><mo>:</mo><msub><mi>stalk</mi> <mi>x</mi></msub><mo stretchy="false">(</mo><msup><mi>Ω</mi> <mi>n</mi></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>→</mo><msub><mi>stalk</mi> <mi>x</mi></msub><mo stretchy="false">(</mo><msup><mi>Z</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">d_x : stalk_x(\Omega^n(X)) \to stalk_x(Z^{n+1}(X))</annotation></semantics></math> is an epimorphism.</p> </li> </ul> <p>Accordingly, the morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>d</mi><mo>:</mo><msup><mi>Ω</mi> <mi>n</mi></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>→</mo><msup><mi>Z</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">d : \Omega^n(X) \to Z^{n+1}(X)</annotation></semantics></math> is an <a class="existingWikiWord" href="/nlab/show/epimorphism">epimorphism</a> of sheaves.</p> <p>This kind of example plays a crucial role in the computation of <a class="existingWikiWord" href="/nlab/show/abelian+sheaf+cohomology">abelian sheaf cohomology</a>, see the examples listed there.</p> <h2 id="examples">Examples</h2> <p>For a <a class="existingWikiWord" href="/nlab/show/locally+ringed+topos">locally ringed topos</a> with <a class="existingWikiWord" href="/nlab/show/structure+sheaf">structure sheaf</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒪</mi></mrow><annotation encoding="application/x-tex">\mathcal{O}</annotation></semantics></math>, the stalk of the <a class="existingWikiWord" href="/nlab/show/multiplicative+group">multiplicative group</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>𝔾</mi> <mi>m</mi></msub></mrow><annotation encoding="application/x-tex">\mathbb{G}_m</annotation></semantics></math> at a point <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math> is the multiplicative group <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msubsup><mi>𝒪</mi> <mi>x</mi> <mo>×</mo></msubsup></mrow><annotation encoding="application/x-tex">\mathcal{O}_x^\times</annotation></semantics></math> in the stalk <a class="existingWikiWord" href="/nlab/show/local+ring">local ring</a> of the structure sheaf. (e.g. <a href="#Milne">Milne, example 6.13</a>)</p> <h2 id="related_concepts">Related concepts</h2> <div> <p><strong>Examples of sequences of local structures</strong></p> <table><thead><tr><th><a class="existingWikiWord" href="/nlab/show/geometry">geometry</a></th><th>point</th><th>first order <a class="existingWikiWord" href="/nlab/show/infinitesimal+object">infinitesimal</a></th><th><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⊂</mo></mrow><annotation encoding="application/x-tex">\subset</annotation></semantics></math></th><th><a class="existingWikiWord" href="/nlab/show/formal+geometry">formal</a> = arbitrary order infinitesimal</th><th><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⊂</mo></mrow><annotation encoding="application/x-tex">\subset</annotation></semantics></math></th><th>local = <a class="existingWikiWord" href="/nlab/show/stalk">stalk</a>wise</th><th><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⊂</mo></mrow><annotation encoding="application/x-tex">\subset</annotation></semantics></math></th><th>finite</th></tr></thead><tbody><tr><td style="text-align: left;"></td><td style="text-align: left;"></td><td style="text-align: left;"></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>←</mo></mrow><annotation encoding="application/x-tex">\leftarrow</annotation></semantics></math> <strong><a class="existingWikiWord" href="/nlab/show/differentiation">differentiation</a></strong></td><td style="text-align: left;"></td><td style="text-align: left;"><strong><a class="existingWikiWord" href="/nlab/show/integration">integration</a></strong> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>→</mo></mrow><annotation encoding="application/x-tex">\to</annotation></semantics></math></td><td style="text-align: left;"></td><td style="text-align: left;"></td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/smooth+functions">smooth functions</a></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/derivative">derivative</a></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Taylor+series">Taylor series</a></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/germ">germ</a></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/smooth+function">smooth function</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/curve">curve</a> (path)</td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/tangent+vector">tangent vector</a></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/jet">jet</a></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/germ">germ</a> of <a class="existingWikiWord" href="/nlab/show/curve">curve</a></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/curve">curve</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/smooth+space">smooth space</a></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/infinitesimal+neighbourhood">infinitesimal neighbourhood</a></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/formal+neighbourhood">formal neighbourhood</a></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/germ+of+a+space">germ of a space</a></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/open+neighbourhood">open neighbourhood</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/function+algebra">function algebra</a></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/square-0+ring+extension">square-0 ring extension</a></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/nilpotent+ring+extension">nilpotent ring extension</a>/<a class="existingWikiWord" href="/nlab/show/formal+completion">formal completion</a></td><td style="text-align: left;"></td><td style="text-align: left;"></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/ring+extension">ring extension</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/arithmetic+geometry">arithmetic geometry</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>𝔽</mi> <mi>p</mi></msub></mrow><annotation encoding="application/x-tex">\mathbb{F}_p</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/finite+field">finite field</a></td><td style="text-align: left;"></td><td style="text-align: left;"></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>ℤ</mi> <mi>p</mi></msub></mrow><annotation encoding="application/x-tex">\mathbb{Z}_p</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/p-adic+integers">p-adic integers</a></td><td style="text-align: left;"></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>ℤ</mi> <mrow><mo stretchy="false">(</mo><mi>p</mi><mo stretchy="false">)</mo></mrow></msub></mrow><annotation encoding="application/x-tex">\mathbb{Z}_{(p)}</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/localization+of+a+ring">localization at (p)</a></td><td style="text-align: left;"></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℤ</mi></mrow><annotation encoding="application/x-tex">\mathbb{Z}</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/integers">integers</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Lie+theory">Lie theory</a></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Lie+algebra">Lie algebra</a></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/formal+group">formal group</a></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/local+Lie+group">local Lie group</a></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/symplectic+geometry">symplectic geometry</a></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Poisson+manifold">Poisson manifold</a></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/formal+deformation+quantization">formal deformation quantization</a></td><td style="text-align: left;"></td><td style="text-align: left;">local strict deformation quantization</td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/strict+deformation+quantization">strict deformation quantization</a></td></tr> </tbody></table> </div> <h2 id="references">References</h2> <ul id="Milne"> <li><a class="existingWikiWord" href="/nlab/show/James+Milne">James Milne</a>, section 6 of <em><a class="existingWikiWord" href="/nlab/show/Lectures+on+%C3%89tale+Cohomology">Lectures on Étale Cohomology</a></em></li> </ul> <ul> <li><a class="existingWikiWord" href="/nlab/show/Ofer+Gabber">Ofer Gabber</a>, Shane Kelly, <em>Points in algebraic geometry</em>, J. Pure App. Alg. <strong>219</strong>:10 (2015) 4667-4680 <a href="https://doi.org/10.1016/j.jpaa.2015.03.001">doi</a></li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on October 15, 2023 at 13:43:15. See the <a href="/nlab/history/stalk" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/stalk" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/10981/#Item_1">Discuss</a><span class="backintime"><a href="/nlab/revision/stalk/15" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/stalk" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/stalk" accesskey="S" class="navlink" id="history" rel="nofollow">History (15 revisions)</a> <a href="/nlab/show/stalk/cite" style="color: black">Cite</a> <a href="/nlab/print/stalk" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/stalk" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>