CINXE.COM
Search results for: olive mill pomace
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: olive mill pomace</title> <meta name="description" content="Search results for: olive mill pomace"> <meta name="keywords" content="olive mill pomace"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="olive mill pomace" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="olive mill pomace"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 430</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: olive mill pomace</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">430</span> Co-Pyrolysis of Olive Pomace with Plastic Wastes and Characterization of Pyrolysis Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merve%20Sogancioglu">Merve Sogancioglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Esra%20Yel"> Esra Yel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferda%20Tartar"> Ferda Tartar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nihan%20Canan%20Iskender"> Nihan Canan Iskender</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Waste polyethylene (PE) is classified as waste low density polyethylene (LDPE) and waste high density polyethylene (HDPE) according to their densities. Pyrolysis of plastic waste may have an important role in dealing with the enormous amounts of plastic waste produced all over the world, by decreasing their negative impact on the environment. This waste may be converted into economically valuable hydrocarbons, which can be used both as fuels and as feed stock in the petrochemical industry. End product yields and properties depend on the plastic waste composition. Pyrolytic biochar is one of the most important products of waste plastics pyrolysis. In this study, HDPE and LDPE plastic wastes were co-pyrolyzed together with waste olive pomace. Pyrolysis runs were performed at temperature 700°C with heating rates of 5°C/min. Higher pyrolysis oil and gas yields were observed by the using waste olive pomace. The biochar yields of HDPE- olive pomace and LDPEolive pomace were 6.37% and 7.26% respectively for 50% olive pomace doses. The calorific value of HDPE-olive pomace and LDPE-olive pomace of pyrolysis oil were 8350 and 8495 kCal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochar" title="biochar">biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=co-pyrolysis" title=" co-pyrolysis"> co-pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20plastic" title=" waste plastic"> waste plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20olive%20pomace" title=" waste olive pomace"> waste olive pomace</a> </p> <a href="https://publications.waset.org/abstracts/43077/co-pyrolysis-of-olive-pomace-with-plastic-wastes-and-characterization-of-pyrolysis-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">429</span> Application of Phenol Degrading Microorganisms for the Treatment of Olive Mill Waste (OMW)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20El-Khateeb">M. A. El-Khateeb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growth of the olive oil production in Saudi Arabia peculiarly in Al Jouf region in recent years has been accompanied by an increase in the discharge of associated processing waste. Olive mill waste is produced throughout the extraction of oil from the olive fruit using the traditional mill and press process. Deterioration of the environment due to olive mill disposal wastes is a serious problem. When olive mill waste disposed into the soil, it affects soil quality, soil micro flora, and also toxic to plants. The aim of this work is to isolate microorganism (bacterial or fungal strains) from OMW capable of degrading phenols. Olive mill wastewater, olive mill waste and soil (beside oil production mill) contaminated with olive waste were used for isolation of phenol tolerant microorganisms. Four strains (two fungal and two bacterial) were isolated from olive mill waste. The isolated strains were Candida tropicalis and Phanerochaete chrysosporium (fungal strains) and Bacillus sp. and Rhodococcus sp. (bacterial strains). These strains were able to degrade phenols and could be used for bioremediation of olive mill waste. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=fungi" title=" fungi"> fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakaka" title=" Sakaka"> Sakaka</a> </p> <a href="https://publications.waset.org/abstracts/15825/application-of-phenol-degrading-microorganisms-for-the-treatment-of-olive-mill-waste-omw" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">428</span> Strategies and Perceptions of Small Olive Oil Farmers of By-Product Valorization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Judit%20Manuel-i-Martin">Judit Manuel-i-Martin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mechthild%20Donner"> Mechthild Donner</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivana%20Radic"> Ivana Radic</a>, <a href="https://publications.waset.org/abstracts/search?q=Yamna%20Erraach"> Yamna Erraach</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Elhadad"> Fatima Elhadad</a>, <a href="https://publications.waset.org/abstracts/search?q=Taoufik%20Yatribi"> Taoufik Yatribi</a>, <a href="https://publications.waset.org/abstracts/search?q=Feliu%20Lopez-i-Gelats"> Feliu Lopez-i-Gelats</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates how small olive farmers and olive oil producers implement circular economy practices to manage olive related waste and how such strategies are perceived by the farmers themselves. While there is a lot of data and research about possible uses of olive oil by-products, the perceptions and related practices of olive oil farmers is a much less investigated domain. A total of 60 semi-structured interviews were conducted in one of the most relevant olive oil producing regions in the Iberian Peninsula -the region of Terres de Ponent (Catalonia – Spain) - to examine the different by-product valorization strategies the olive oil farms develop. We test the hypothesis that the strategies conducted depend on the nature and amount of resources available by the farm. The results obtained point that access to milling infrastructure is a determining factor. We also found that olive tree pruning biomass and olive pomace are the most common by-products valorized by farmers, the first one on-farm and the latter in mills. Results indicate that high value uses for olive oil by-products are rarely implemented by farmers. We conclude that olive farmers tend to perceive by-product valorization strategies as waste management practices rather than as additional sources of value for their farm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20economy" title="circular economy">circular economy</a>, <a href="https://publications.waset.org/abstracts/search?q=discourses" title=" discourses"> discourses</a>, <a href="https://publications.waset.org/abstracts/search?q=Mediterranean%20region" title=" Mediterranean region"> Mediterranean region</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20oil%20by-products" title=" olive oil by-products"> olive oil by-products</a>, <a href="https://publications.waset.org/abstracts/search?q=farmers%E2%80%99%20strategies" title=" farmers’ strategies"> farmers’ strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20pomace" title=" olive pomace"> olive pomace</a> </p> <a href="https://publications.waset.org/abstracts/138492/strategies-and-perceptions-of-small-olive-oil-farmers-of-by-product-valorization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">427</span> Green Extraction Processes for the Recovery of Polyphenols from Solid Wastes of Olive Oil Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Theodora-Venetia%20Missirli">Theodora-Venetia Missirli</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantina%20Kyriakopoulou"> Konstantina Kyriakopoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdalini%20Krokida"> Magdalini Krokida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Olive mill solid waste is an olive oil mill industry by-product with high phenolic, lipid and organic acid concentrations that can be used as a low cost source of natural antioxidants. In this study, extracts of Olea europaea (olive tree) solid olive mill waste (SOMW) were evaluated in terms of their antiradical activity and total phenolic compounds concentrations, such as oleuropein, hydroxytyrosol etc. SOMW samples were subjected to drying prior to extraction as a pretreatment step. Two drying processes, accelerated solar drying (ASD) and air-drying (AD) (at 35, 50, 70°C constant air velocity of 1 m/s), were applied. Subsequently, three different extraction methods were employed to recover extracts from untreated and dried SOMW samples. The methods include the green Microwave Assisted (MAE) and Ultrasound Assisted Extraction (UAE) and the conventional Soxhlet extraction (SE), using water and methanol as solvents. The efficiency and selectivity of the processes were evaluated in terms of extraction yield. The antioxidant activity (AAR) and the total phenolic content (TPC) of the extracts were evaluated using the DPPH assay and the Folin-Ciocalteu method, respectively. The results showed that bioactive content was significantly affected by the extraction technique and the solvent. Specifically, untreated SOMW samples showed higher performance in the yield for all solvents and higher antioxidant potential and phenolic content in the case of water. UAE extraction method showed greater extraction yields than the MAE method for both untreated and dried leaves regardless of the solvent used. The use of ultrasound and microwave assisted extraction in combination with industrially applied drying methods, such as air and solar drying, was feasible and effective for the recovery of bioactive compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20potential" title="antioxidant potential">antioxidant potential</a>, <a href="https://publications.waset.org/abstracts/search?q=drying%20treatment" title=" drying treatment"> drying treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20mill%20pomace" title=" olive mill pomace"> olive mill pomace</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20assisted%20extraction" title=" microwave assisted extraction"> microwave assisted extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20assisted%20extraction" title=" ultrasound assisted extraction"> ultrasound assisted extraction</a> </p> <a href="https://publications.waset.org/abstracts/48623/green-extraction-processes-for-the-recovery-of-polyphenols-from-solid-wastes-of-olive-oil-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">426</span> Investigation of the Usability of Biochars Obtained from Olive Pomace and Smashed Olive Seeds as Additives for Bituminous Binders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammed%20Ertugrul%20Celoglu">Muhammed Ertugrul Celoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Beyza%20Furtana"> Beyza Furtana</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Yilmaz"> Mehmet Yilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Baha%20Vural%20Kok"> Baha Vural Kok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biomass, which is considered to be one of the largest renewable energy sources in the world, has a potential to be utilized as a bitumen additive after it is processed by a wide variety of thermochemical methods. Furthermore, biomasses are renewable in short amounts of time, and they possess a hydrocarbon structure. These characteristics of biomass promote their usability as additives. One of the most common ways to create materials with significant economic values from biomasses is the processes of pyrolysis. Pyrolysis is defined as the process of an organic matter’s thermochemical degradation (carbonization) at a high temperature and in an anaerobic environment. The resultant liquid substance at the end of the pyrolysis is defined as bio-oil, whereas the resultant solid substance is defined as biochar. Olive pomace is the resultant mildly oily pulp with seeds after olive is pressed and its oil is extracted. It is a significant source of biomass as the waste of olive oil factories. Because olive pomace is waste material, it could create problems just as other waste unless there are appropriate and acceptable areas of utilization. The waste material, which is generated in large amounts, is generally used as fuel and fertilizer. Generally, additive materials are used in order to improve the properties of bituminous binders, and these are usually expensive materials, which are produced chemically. The aim of this study is to investigate the usability of biochars obtained after subjecting olive pomace and smashed olive seeds, which are considered as waste materials, to pyrolysis as additives in bitumen modification. In this way, various ways of use will be provided for waste material, providing both economic and environmental benefits. In this study, olive pomace and smashed olive seeds were used as sources of biomass. Initially, both materials were ground and processed through a No.50 sieve. Both of the sieved materials were subjected to pyrolysis (carbonization) at 400 ℃. Following the process of pyrolysis, bio-oil and biochar were obtained. The obtained biochars were added to B160/220 grade pure bitumen at 10% and 15% rates and modified bitumens were obtained by mixing them in high shear mixtures at 180 ℃ for 1 hour at 2000 rpm. Pure bitumen and four different types of bitumen obtained as a result of the modifications were tested with penetration, softening point, rotational viscometer, and dynamic shear rheometer, evaluating the effects of additives and the ratios of additives. According to the test results obtained, both biochar modifications at both ratios provided improvements in the performance of pure bitumen. In the comparison of the test results of the binders modified with the biochars of olive pomace and smashed olive seed, it was revealed that there was no notable difference in their performances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bituminous%20binders" title="bituminous binders">bituminous binders</a>, <a href="https://publications.waset.org/abstracts/search?q=biochar" title=" biochar"> biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20pomace" title=" olive pomace"> olive pomace</a>, <a href="https://publications.waset.org/abstracts/search?q=pomace" title=" pomace"> pomace</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a> </p> <a href="https://publications.waset.org/abstracts/111479/investigation-of-the-usability-of-biochars-obtained-from-olive-pomace-and-smashed-olive-seeds-as-additives-for-bituminous-binders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">425</span> LCA of Waste Disposal from Olive Oil Production: Anaerobic Digestion and Conventional Disposal on Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Tommasi">T. Tommasi</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Batuecas"> E. Batuecas</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Mancini"> G. Mancini</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Saracco"> G. Saracco</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Fino"> D. Fino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extra virgin olive-oil (EVO) production is an important economic activity for several countries, especially in the Mediterranean area such as Spain, Italy, Greece and Tunisia. The two major by-products from olive oil production, solid-liquid Olive Pomace (OP) and the Olive Mill Waste Waters (OMWW), are still mainly disposed on soil, in spite of the existence of legislation which already limits this practice. The present study compares the environmental impacts associated with two different scenarios for the management of waste from olive oil production through a comparative Life Cycle Assessment (LCA). The two alternative scenarios are: (I) Anaerobic Digestion and (II) current Disposal on soil. The analysis was performed through SimaPro software and the assessment of the impact categories was based on International Life Cycle Data and Cumulative Energy Demand methods. Both the scenarios are mostly related to the cultivation and harvesting phase and are highly dependent on the irrigation practice and related energy demand. Results from the present study clearly show that as the waste disposal on soil causes the worst environmental performance of all the impact categories here considered. Important environmental benefits have been identified when anaerobic digestion is instead chosen as the final treatment. It was consequently demonstrated that anaerobic digestion should be considered a feasible alternative for olive mills, to produce biogas from common olive oil residues, reducing the environmental burden and adding value to the olive oil production chain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=agro-food%20waste" title=" agro-food waste"> agro-food waste</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a> </p> <a href="https://publications.waset.org/abstracts/106861/lca-of-waste-disposal-from-olive-oil-production-anaerobic-digestion-and-conventional-disposal-on-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">424</span> Reducing Environmental Impact of Olive Oil Production in Sakaka City Using Combined Chemical, Physical, and Biological Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Alhajoj">Abdullah Alhajoj</a>, <a href="https://publications.waset.org/abstracts/search?q=Bassam%20Alowaiesh"> Bassam Alowaiesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to reduce the risks of discharging olive mill waste directly to the environment without treatment in Sakaka City, KSA. The organic loads expressed by chemical oxygen demand (COD) and biological oxygen demand (BOD) of the produced wastewater (OMWW) as well as the solid waste (OMW) were evaluated. The wastes emitted from the three-phase centrifuge decanters was found to be higher than that emitted from the two-phase centrifuge decanters. The olive mill wastewater (OMWW) was treated using advanced oxidation combined with filtration treatment. The results indicated that the concentration of COD, BOD, TSS, oil and grease and phenol was reduced by using complex sand filtration from 72150, 21660 10256, 36430, and 1470 mg/l to 980, 421, 58, 68, and 0.35 mg/l for three-phase OMWW and from 150562, 17955, 15325, 19658 and 2153 mg/l to 1050, 501, 29, 0.75, and 0.29 mg/l, respectively. While, by using modified trickling filter (packed with the neck of waste plastic bottles the concentration of the previously mentioned parameters was reduced to 1190, 570, 55, 0.85, and 0.3 mg/l, respectively. This work supports the application of such treatment technique for reducing the environmental threats of olive mill waste effluents in Saudi Arabia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-phase" title="two-phase">two-phase</a>, <a href="https://publications.waset.org/abstracts/search?q=three-phase" title=" three-phase"> three-phase</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20mill" title=" olive mill"> olive mill</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20oil" title=" olive oil"> olive oil</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20treatment" title=" waste treatment"> waste treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=filtration" title=" filtration"> filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20oxidation" title=" advanced oxidation"> advanced oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20plastic%20bottles" title=" waste plastic bottles"> waste plastic bottles</a> </p> <a href="https://publications.waset.org/abstracts/94956/reducing-environmental-impact-of-olive-oil-production-in-sakaka-city-using-combined-chemical-physical-and-biological-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">423</span> Antimicrobial Activity of Olive Mill Wastewater Fractions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chahinez%20Ait%20Si%20Said">Chahinez Ait Si Said</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouassila%20Touafek"> Ouassila Touafek</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Reda%20Zahi"> Mohamed Reda Zahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Smain%20Sabour"> Smain Sabour</a>, <a href="https://publications.waset.org/abstracts/search?q=%E2%80%8EMohamed%20El%20Hattab%20%E2%80%8E"> Mohamed El Hattab </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil mill wastewater (OMW) is a major effluent of the olive industry resulting from olive oil extraction which is a great source for the development of new drugs. The present study aimed to evaluate the antimicrobial activity of seven different fractions separated from OMW extract. The sample was recovered from an oil mill in the Blida region (Algeria). A crude ethyl acetate extract was prepared from OMW according to a well-established protocol; the yield of the extract obtained was 4%. From the extract, different fractions were prepared by fractionating the total extract with an open column chromatography. The obtained fractions were submitted to antimicrobial activity screening in a comparative purpose. All the fractions obtained show great antimicrobial potential. Phytochemical study of the different fractions was assessed by evaluating the total phenolic compounds for all fractions studied as the main compounds found in OMW were phenols like hydroxytyrosol, tyrosol, phenolic acids like caffeic, quinic and ferulic acids which show great therapeutic activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=olive%20mill%20wastewater" title="olive mill wastewater">olive mill wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=fractionation" title=" fractionation"> fractionation</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolic%20compound" title=" total phenolic compound"> total phenolic compound</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a> </p> <a href="https://publications.waset.org/abstracts/167613/antimicrobial-activity-of-olive-mill-wastewater-fractions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">422</span> Treatment of Olive Mill Wastewater by Electrocoagulation Processes and Water Resources Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Walid%20K.%20M.%20Bani%20Salameh">Walid K. M. Bani Salameh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hesham%20Ahmad"> Hesham Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Al-Shannag"> Mohammad Al-Shannag </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Jordan having deficit atmospheric precipitation, an increase in water demand during summer months . Jordan can be regarded with a relatively high potential for waste water recycling and reuse. The main purpose of this paper was to investigate the removal of Total suspended solids (TSS) and chemical oxygen demand (COD) for olive mill waste water (OMW) by the electrocoagulation (EC) process. In the combination of electrocoagulation by using coupled iron–aluminum electrodes the optimum working pH was found to be in range 6. The efficiency of the electrocoagulation process allowed removal of TSS and COD about 82.5% and 47.5% respectively at 45 mA/cm2 after 70 minutes by using coupled iron–aluminum electrodes. These results showed that the optimum TSS and COD removal was obtained at the optimum experimental parameters such as current density, pH, and reaction time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=olive%20mill%20wastewater" title="olive mill wastewater">olive mill wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode" title=" electrode"> electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocoagulation%20%28EC%29" title=" electrocoagulation (EC)"> electrocoagulation (EC)</a>, <a href="https://publications.waset.org/abstracts/search?q=TSS" title=" TSS"> TSS</a>, <a href="https://publications.waset.org/abstracts/search?q=COD" title=" COD"> COD</a> </p> <a href="https://publications.waset.org/abstracts/25362/treatment-of-olive-mill-wastewater-by-electrocoagulation-processes-and-water-resources-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">421</span> Modeling of a Pilot Installation for the Recovery of Residual Sludge from Olive Oil Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riad%20Benelmir">Riad Benelmir</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Shoaib%20Ahmed%20Khan"> Muhammad Shoaib Ahmed Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The socio-economic importance of the olive oil production is significant in the Mediterranean region, both in terms of wealth and tradition. However, the extraction of olive oil generates huge quantities of wastes that may have a great impact on land and water environment because of their high phytotoxicity. Especially olive mill wastewater (OMWW) is one of the major environmental pollutants in olive oil industry. This work projects to design a smart and sustainable integrated thermochemical catalytic processes of residues from olive mills by hydrothermal carbonization (HTC) of olive mill wastewater (OMWW) and fast pyrolysis of olive mill wastewater sludge (OMWS). The byproducts resulting from OMWW-HTC treatment are a solid phase enriched in carbon, called biochar and a liquid phase (residual water with less dissolved organic and phenolic compounds). HTC biochar can be tested as a fuel in combustion systems and will also be utilized in high-value applications, such as soil bio-fertilizer and as catalyst or/and catalyst support. The HTC residual water is characterized, treated and used in soil irrigation since the organic and the toxic compounds will be reduced under the permitted limits. This project’s concept includes also the conversion of OMWS to a green diesel through a catalytic pyrolysis process. The green diesel is then used as biofuel in an internal combustion engine (IC-Engine) for automotive application to be used for clean transportation. In this work, a theoretical study is considered for the use of heat from the pyrolysis non-condensable gases in a sorption-refrigeration machine for pyrolysis gases cooling and condensation of bio-oil vapors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20oil%20extraction" title=" olive oil extraction"> olive oil extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20cooling" title=" adsorption cooling"> adsorption cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolisis" title=" pyrolisis"> pyrolisis</a> </p> <a href="https://publications.waset.org/abstracts/160362/modeling-of-a-pilot-installation-for-the-recovery-of-residual-sludge-from-olive-oil-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">420</span> Autohydrolysis Treatment of Olive Cake to Extract Fructose and Sucrose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Bl%C3%A1zquez">G. Blázquez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20G%C3%A1lvez-P%C3%A9rez"> A. Gálvez-Pérez</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Calero"> M. Calero</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20I%C3%A1%C3%B1ez-Rodr%C3%ADguez"> I. Iáñez-Rodríguez</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Mart%C3%ADn-Lara"> M. A. Martín-Lara</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20P%C3%A9rez"> A. Pérez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The production of olive oil is considered as one of the most important agri-food industries. However, some of the by-products generated in the process are potential pollutants and cause environmental problems. Consequently, the management of these by-products is currently considered as a challenge for the olive oil industry. In this context, several technologies have been developed and tested. In this sense, the autohydrolysis of these by-products could be considered as a promising technique. Therefore, this study focused on autohydrolysis treatments of a solid residue from the olive oil industry denominated olive cake. This one comes from the olive pomace extraction with hexane. Firstly, a water washing was carried out to eliminate the water soluble compounds. Then, an experimental design was developed for the autohydrolysis experiments carried out in the hydrothermal pressure reactor. The studied variables were temperature (30, 60 and 90 ºC) and time (30, 60, 90 min). On the other hand, aliquots of liquid obtained fractions were analysed by HPLC to determine the fructose and sucrose contents present in the liquid fraction. Finally, the obtained results of sugars contents and the yields of the different experiments were fitted to a neuro-fuzzy and to a polynomial model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANFIS" title="ANFIS">ANFIS</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20cake" title=" olive cake"> olive cake</a>, <a href="https://publications.waset.org/abstracts/search?q=polyols" title=" polyols"> polyols</a>, <a href="https://publications.waset.org/abstracts/search?q=saccharides" title=" saccharides"> saccharides</a> </p> <a href="https://publications.waset.org/abstracts/98419/autohydrolysis-treatment-of-olive-cake-to-extract-fructose-and-sucrose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">419</span> Production of Biocomposites Using Chars Obtained by Co-Pyrolysis of Olive Pomace with Plastic Wastes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esra%20Yel">Esra Yel</a>, <a href="https://publications.waset.org/abstracts/search?q=Tabriz%20Aslanov"> Tabriz Aslanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Merve%20Sogancioglu"> Merve Sogancioglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Suheyla%20Kocaman"> Suheyla Kocaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulnare%20Ahmetli"> Gulnare Ahmetli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The disposal of waste plastics has become a major worldwide environmental problem. Pyrolysis of waste plastics is one of the routes to waste minimization and recycling that has been gaining interest. In pyrolysis, the pyrolysed material is separated into gas, liquid (both are fuel) and solid (char) products. All fractions have utilities and economical value depending upon their characteristics. The first objective of this study is to determine the co-pyrolysis product fractions of waste HDPE- (high density polyethylene) and LDPE (low density polyethylene)-olive pomace (OP) and to determine the qualities of the solid product char. Chars obtained at 700 °C pyrolysis were used in biocomposite preparation as additive. As the second objective, the effects of char on biocomposite quality were investigated. Pyrolysis runs were performed at temperature 700 °C with heating rates of 5 °C/min. Biocomposites were prepared by mixing of chars with bisphenol-F type epoxy resin in various wt%. Biocomposite properties were determined by measuring electrical conductivity, surface hardness, Young’s modulus and tensile strength of the composites. The best electrical conductivity results were obtained with HDPE-OP char. For HDPE-OP char and LDPE-OP char, compared to neat epoxy, the tensile strength values of the composites increased by 102% and 78%, respectively, at 10% char dose. The hardness measurements showed similar results to the tensile tests, since there is a correlation between the hardness and the tensile strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocomposite" title="biocomposite">biocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=char" title=" char"> char</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20pomace" title=" olive pomace"> olive pomace</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a> </p> <a href="https://publications.waset.org/abstracts/43071/production-of-biocomposites-using-chars-obtained-by-co-pyrolysis-of-olive-pomace-with-plastic-wastes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">418</span> Effects of Green Walnut Husk and Olive Pomace Extracts on Growth of Tomato Plants and Root-Knot Nematode (Meloidogyne incognita)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasemin%20Kavdir">Yasemin Kavdir</a>, <a href="https://publications.waset.org/abstracts/search?q=Ugur%20Gozel"> Ugur Gozel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to determine the nematicidal activity of green walnut husk (GWH) and olive pomace (OP) extracts against root-knot nematode (Meloidogyne incognita). Aqueous extracts of GWH and OP were mixed with sandy loam soil at the rates of 0, 6,12,18,24, 60 and 120 ml kg-1. All pots were arranged in a randomized complete block design and replicated four times under controlled atmosphere conditions. Tomato seedlings were grown in sterilized soil then they were transplanted to pots. Inoculation was done by pouring the 20 ml suspension including 1000 M. incognita juvenile pot-1 into 3 cm deep hole made around the base of the plant root. Tomato root and shoot growth and nematode populations have been determined. In general, both GWH and OP extracts resulted in better growth parameters compared to the control plants. However, GWH extract was the most effective in improving growth parameters. Applications of 24 ml kg-1 OP extract enhanced plant growth compared to other OP treatments while 60 ml kg-1 application rate had the lowest nematode number and root galling. In this study, applications of GWH and OP extracts reduced the number of Meloidogyne incognita and root galling compared to control soils. Additionally GWH and OP extracts can be used safely for tomato growth. It could be concluded that OP and GWH extracts used as organic amendments showed promising nematicidal activity in the control of M. incognita. This research was supported by TUBİTAK Grant Number 214O422. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=olive%20pomace" title="olive pomace">olive pomace</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20walnut%20husk" title=" green walnut husk"> green walnut husk</a>, <a href="https://publications.waset.org/abstracts/search?q=Meloidogyne%20incognita" title=" Meloidogyne incognita"> Meloidogyne incognita</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato" title=" tomato"> tomato</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=extract" title=" extract"> extract</a> </p> <a href="https://publications.waset.org/abstracts/74902/effects-of-green-walnut-husk-and-olive-pomace-extracts-on-growth-of-tomato-plants-and-root-knot-nematode-meloidogyne-incognita" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">417</span> Biological Activity of Bilberry Pomace</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gordana%20S.%20%C4%86etkovi%C4%87">Gordana S. Ćetković</a>, <a href="https://publications.waset.org/abstracts/search?q=Vesna%20T.%20Tumbas%20%C5%A0aponjac"> Vesna T. Tumbas Šaponjac</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonja%20M.%20Djilas"> Sonja M. Djilas</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasna%20M.%20%C4%8Canadanovi%C4%87-Brunet"> Jasna M. Čanadanović-Brunet</a>, <a href="https://publications.waset.org/abstracts/search?q=Sladjana%20M.%20Staj%C4%8Di%C4%87"> Sladjana M. Stajčić</a>, <a href="https://publications.waset.org/abstracts/search?q=Jelena%20J.%20Vuli%C4%87"> Jelena J. Vulić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bilberry is one of the most important dietary sources of phenolic compounds, including anthocyanins, phenolic acids, flavonol glycosides and flavan-3-ols. These phytochemicals have different biological activities and therefore may improve our health condition. Also, anthocyanins are interesting to the food industry as colourants. In the present study, bilberry pomace, a by-product of juice processing, was used as a potential source of bioactive compounds. The contents of total phenolic acids, flavonoids and anthocyanins in bilberry pomace were determined by HPLC/UV-Vis. The biological activities of bilberry pomace were evaluated by reducing power (RP) and α-glucosidase inhibitory potential (α-GIP), and expressed as RP0.5 value (the effective concentration of bilberry pomace extract assigned at 0.5 value of absorption) and IC50 value (the concentration of bilberry pomace extract necessary to inhibit 50% of α-glucosidase enzyme activity). Total phenolic acids content was 807.12 ± 25.16 mg/100 g pomace, flavonoids 54.36 ± 1.83mg/100 g pomace and anthocyanins 3426.18 ± 112.09 mg/100 g pomace. The RP0.5 value of bilberry pomace was 0.38 ± 0.02 mg/ml, while IC50 value was 1.82 ± 0.11 mg/ml. These results have revealed the potential for valorization of bilberry juice production by-products for further industrial use as a rich source of bioactive compounds and natural colourants (mainly anthocyanins). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bilberry%20pomace" title="bilberry pomace">bilberry pomace</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolics" title=" phenolics"> phenolics</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=reducing%20power" title=" reducing power"> reducing power</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-glucosidase%20enzyme%20activity" title=" α-glucosidase enzyme activity"> α-glucosidase enzyme activity</a> </p> <a href="https://publications.waset.org/abstracts/21890/biological-activity-of-bilberry-pomace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">599</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">416</span> Infestations of Olive Fruit Fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), in Different Olive Cultivars in Çanakkale, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanife%20Gen%C3%A7">Hanife Genç</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The olive fruit fly, <em>Bactrocera oleae</em> (Rossi), is an economically important and endemic pest in olive (<em>Oleae europae</em>) orchards in Turkey. The aim of this study was to determine olive fruit fly infestation in different olive cultivars in the laboratory. Olive fly infested fruits were collected in Çanakkale province to establish wild fly population. After having reproductive olive fly colonies, 14 olive cultivars were tested in the controlled laboratory conditions, at 23±2 °C, 65% RH and 16:8 h (light: dark) photoperiod. The olive samples from 14 different olive cultivars were collected in October 2015, in Campus of Dardanos, Çanakkale Onsekiz Mart University. Observations were carried out detecting some biological parameters such as the number of oviposition stings, active infestation, total infestation, the number of pupae and the adult emergence. The results indicated that oviposition stings were not associated with pupal yield. A few pupae were found within olive fruits which were not able to exit. Screening of the varieties suggested that less susceptible cultivar to olive fruit fly attacks was Arbequin while Gemlik-2M 2/3 showed significant susceptibility. Ovipositional preference of olive fly females and the success of larval development in different olive varieties are crucial for establishing new olive orchards to prevent high olive fruit fly infestation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infestation" title="infestation">infestation</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20fruit%20fly" title=" olive fruit fly"> olive fruit fly</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20cultivars" title=" olive cultivars"> olive cultivars</a>, <a href="https://publications.waset.org/abstracts/search?q=oviposition%20sting" title=" oviposition sting"> oviposition sting</a> </p> <a href="https://publications.waset.org/abstracts/48621/infestations-of-olive-fruit-fly-bactrocera-oleae-rossi-diptera-tephritidae-in-different-olive-cultivars-in-canakkale-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">415</span> Flocculation on the Treatment of Olive Oil Mill Wastewater: Pre-Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Hodaifa">G. Hodaifa</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20P%C3%A1ez"> J. A. Páez</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Agabo"> C. Agabo</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Ramos"> E. Ramos</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Guti%C3%A9rrez"> J. C. Gutiérrez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rosal"> A. Rosal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, the continuous two-phase decanter process used for olive oil production is the more internationally widespread. The wastewaters generated from this industry (OMW) is a real environmental problem because of its high organic load. Among proposed treatments for these wastewaters, the advanced oxidation technologies (Fenton process, ozone, photoFenton, etc.) are the most favourable. The direct application of these processes is somewhat expensive. Therefore, the application of a previous stage based on a flocculation-sedimentation operation is of high importance. In this research five commercial flocculants (three cationic, and two anionic) have been used to achieve the separation of phases (liquid clarified-sludge). For each flocculant, different concentrations (0-1000 mg/L) have been studied. In these experiments, sludge volume formed over time and the final water quality were determined. The final removal percentages of total phenols (11.3-25.1%), COD (5.6-20.4%), total carbon (2.3-26.5%), total organic carbon (1.50-23.8%), total nitrogen (1.45-24.8%), and turbidity (27.9-61.4%) were obtained. Also, the variation on the electric conductivity reduction percentage (1-8%) was determined. Finally, the best flocculants with highest removal percentages have been determined (QG2001 and Flocudex CS49). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flocculants" title="flocculants">flocculants</a>, <a href="https://publications.waset.org/abstracts/search?q=flocculation" title=" flocculation"> flocculation</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20oil%20mill%20wastewater" title=" olive oil mill wastewater"> olive oil mill wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/20372/flocculation-on-the-treatment-of-olive-oil-mill-wastewater-pre-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">539</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">414</span> Bio-Desalination and Bioremediation of Agroindustrial Wastewaters Using Yarrowia Lipolytica</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Selma%20Hamimed">Selma Hamimed</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelwaheb%20Chatti"> Abdelwaheb Chatti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current study deals with the biological treatment of saline wastewaters generated by various agro-food industries using Yarrowia lipolytica. The ability of this yeast was studied on the mixture of olive mill wastewater and tuna wash processing wastewater. Results showed that the high proportion of olive mill wastewater in the mixture about (75:25) is the suitable one for the highest Y. lipolytica biomass production, reaching 11.3 g L⁻¹ after seven days. In addition, results showed significant removal of chemical oxygen demand (COD) and phosphorous of 97.49 % and 98.90 %, respectively. On the other hand, Y. lipolytica was found to be effective to desalinate all mixtures reaching a removal of 92.21 %. Moreover, the analytical results using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) confirmed the biosorption of NaCl on the surface of the yeast as nanocrystals form with a size of 47.3 nm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocrystallization%20of%20NaCl" title="nanocrystallization of NaCl">nanocrystallization of NaCl</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination" title=" desalination"> desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=yarrowia%20lipolytica" title=" yarrowia lipolytica"> yarrowia lipolytica</a> </p> <a href="https://publications.waset.org/abstracts/139746/bio-desalination-and-bioremediation-of-agroindustrial-wastewaters-using-yarrowia-lipolytica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">413</span> Use of Apple Pomace as a Source of Dietary Fibre in Mutton Nuggets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aamina%20B.%20Hudaa">Aamina B. Hudaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Rehana%20Akhtera"> Rehana Akhtera</a>, <a href="https://publications.waset.org/abstracts/search?q=Massarat%20Hassana"> Massarat Hassana</a>, <a href="https://publications.waset.org/abstracts/search?q=Mir%20Monisab"> Mir Monisab </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mutton nuggets produced with the addition of apple pomace at the levels of 0% (Control), 5% (Treatment 1), 10% (Treatment 2), and 15% (Treatment 3) were evaluated for emulsion stability, cooking yield, pH, proximate composition, texture analysis and sensory properties. Apple pomace addition resulted in significantly higher (p ≤ 0.05) emulsion stability and cooking yield of treatments in comparison to control and pH values were significantly higher (p ≤ 0.05) for the control as compared to treatments. Among the treatments, the product with 15% apple pomace had significantly (p ≤ 0.05) highest moisture content, and protein, ash and fat contents were significantly (p ≤ 0.05) higher in control than treatment groups. Crude fiber content of control was found significantly (p ≤ 0.05) lower in comparison to nuggets formulated with 5%, 10% and 15% apple pomace and was found to increase significantly (p ≤ 0.05) with the increasing levels of apple pomace. Hardness of the products significantly (p ≤ 0.05) decreased with addition of apple pomace, whereas springiness, cohesiveness, chewiness and gumminess showed a non-significant (p ≥ 0.05) decrease with the levels of apple pomace. Sensory evaluation showed significant (p ≤ 0.05) reduction in texture, flavour and overall acceptability scores of treatment products; however the scores were in the range of acceptability and T-1 showed better acceptability among apple pomace incorporated treatments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mutton%20nuggets" title="Mutton nuggets">Mutton nuggets</a>, <a href="https://publications.waset.org/abstracts/search?q=apple%20pomace" title=" apple pomace"> apple pomace</a>, <a href="https://publications.waset.org/abstracts/search?q=textural%20properties" title=" textural properties"> textural properties</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20evaluation" title=" sensory evaluation"> sensory evaluation</a> </p> <a href="https://publications.waset.org/abstracts/17309/use-of-apple-pomace-as-a-source-of-dietary-fibre-in-mutton-nuggets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">412</span> Comprehensive Validation of High-Performance Liquid Chromatography-Diode Array Detection (HPLC-DAD) for Quantitative Assessment of Caffeic Acid in Phenolic Extracts from Olive Mill Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Layla%20El%20Gaini">Layla El Gaini</a>, <a href="https://publications.waset.org/abstracts/search?q=Majdouline%20Belaqziz"> Majdouline Belaqziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Meriem%20Outaki"> Meriem Outaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Minhaj"> Mariam Minhaj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, it introduce and validate a high-performance liquid chromatography method with diode-array detection (HPLC-DAD) specifically designed for the accurate quantification of caffeic acid in phenolic extracts obtained from olive mill wastewater. The separation process of caffeic acid was effectively achieved through the use of an Acclaim Polar Advantage column (5µm, 250x4.6mm). A meticulous multi-step gradient mobile phase was employed, comprising water acidified with phosphoric acid (pH 2.3) and acetonitrile, to ensure optimal separation. The diode-array detection was adeptly conducted within the UV–VIS spectrum, spanning a range of 200–800 nm, which facilitated precise analytical results. The method underwent comprehensive validation, addressing several essential analytical parameters, including specificity, repeatability, linearity, as well as the limits of detection and quantification, alongside measurement uncertainty. The generated linear standard curves displayed high correlation coefficients, underscoring the method's efficacy and consistency. This validated approach is not only robust but also demonstrates exceptional reliability for the focused analysis of caffeic acid within the intricate matrices of wastewater, thus offering significant potential for applications in environmental and analytical chemistry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-performance%20liquid%20chromatography%20%28HPLC-DAD%29" title="high-performance liquid chromatography (HPLC-DAD)">high-performance liquid chromatography (HPLC-DAD)</a>, <a href="https://publications.waset.org/abstracts/search?q=caffeic%20acid%20analysis" title=" caffeic acid analysis"> caffeic acid analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20mill%20wastewater%20phenolics" title=" olive mill wastewater phenolics"> olive mill wastewater phenolics</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20method%20validation" title=" analytical method validation"> analytical method validation</a> </p> <a href="https://publications.waset.org/abstracts/179112/comprehensive-validation-of-high-performance-liquid-chromatography-diode-array-detection-hplc-dad-for-quantitative-assessment-of-caffeic-acid-in-phenolic-extracts-from-olive-mill-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">411</span> Effects of the Tomato Pomace Oil Extract on Physical and Antioxidant Properties of Gelatin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Jirukkakul">N. Jirukkakul</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Sodtipinta"> J. Sodtipinta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tomatoes are widely consumed as fresh and processed products through the manufacturing industry. Therefore, tomato pomace is generated as a by-product accounting for about 5-13% of the whole tomato. Antioxidants still remain in tomato pomace and extraction of tomato oil may useful in edible film production. The edible film solution was prepared by mixing gelatin (2, 4 and 6%) with the distilled water and heating at 40oC for 30 min. Effect of tomato pomace oil was evaluated at 0, 0.5 and 1%. Film solution was poured in plate and dried overnight at 40oC before determining the physical properties, which are tensile strength, moisture content, color, solubility, and swelling power. The results showed that an increase gelatin concentration caused increasing of tensile strength, moisture content, solubility and swelling power. The edible film with tomato pomace oil extract appeared as the rough film with oil droplet dispersion. The addition of tomato pomace oil extract caused an increase in lightness, redness and yellowness, while tensile strength, moisture content, and solubility were decreased. Film with tomato pomace oil extract at 0.5 and 1% exhibited antioxidant properties but those properties were not significantly different (p<0.05) between film incorporated with tomato pomace oil extract 0.5 and 1%. The suitable condition for film production in this study, 4% of gelatin and 0.5% of tomato pomace oil extract, was selected for protecting oxidation of palm oil. At 15 days of the storage period, the palm oil which covered by gelatin film with tomato pomace oil extract had 22.45 milliequivalents/kg of peroxide value (PV), while, the palm oil which covered by polypropylene film and control had 24.79 and 26.67 milliequivalents/kg, respectively. Therefore, incorporation of tomato pomace oil extract in gelatin film was able to protect the oxidation of food products with high fat content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=gelatin%20films" title=" gelatin films"> gelatin films</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20properties" title=" physical properties"> physical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato%20oil%20extract" title=" tomato oil extract"> tomato oil extract</a> </p> <a href="https://publications.waset.org/abstracts/54916/effects-of-the-tomato-pomace-oil-extract-on-physical-and-antioxidant-properties-of-gelatin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">410</span> Evaluation of the Skid Resistance of Asphalt Concrete Made of Local Low-Performance Aggregates Based on New Accelerated Polishing Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saci%20Abdelhakim%20Ferkous">Saci Abdelhakim Ferkous</a>, <a href="https://publications.waset.org/abstracts/search?q=Khedoudja%20Soudani"> Khedoudja Soudani</a>, <a href="https://publications.waset.org/abstracts/search?q=Smail%20Haddadi"> Smail Haddadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the results of a laboratory experimental study that explores the skid resistance of asphalt concrete mixtures made of local low-performance aggregates by partially replacing sand with olive mill waste (OMW). OMW was mixed with aggregates using a dry process by replacing sand with contents of 5%, 7%, 10% and 15%. The mechanical performances of the mixtures were evaluated using the Marshall and Duriez tests. A modified accelerated polishing machine was used as polishing equipment, and a British pendulum tester (BPT) was used to test the skid resistance of the samples. Finally, texture parameter analysis was performed using scanning electron microscopy (SEM) and Mountains Map software to assess the effect of OMW on the friction coefficient evolution. Using a distinct road wheel for a modified version of an accelerated polishing machine, which is normally used to determine the polished stone value of aggregates, the results showed that the addition of OMW up to 10% conferred a better skid resistance in comparison to normal asphalt concrete. The presence of olive mill waste in the mixture until 15% guarantees a gain of 22%-29% in skid resistance after polishing compared with the reference mix. Indeed, from texture parameter analysis, it was observed that there was differential wear of the lightweight aggregates (OMW) compared to the other aggregates during the polishing process, which created a new surface microtexture that had new peaks and led to a good level of friction compared to the mixtures without OMW. In general, it was found that OMW is a promising modifier for asphalt mixtures with both engineering and economic merits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=skid%20resistance" title="skid resistance">skid resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20mill%20waste" title=" olive mill waste"> olive mill waste</a>, <a href="https://publications.waset.org/abstracts/search?q=polishing%20resistance" title=" polishing resistance"> polishing resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=accelerated%20polishing%20machine" title=" accelerated polishing machine"> accelerated polishing machine</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20materials" title=" local materials"> local materials</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development." title=" sustainable development."> sustainable development.</a> </p> <a href="https://publications.waset.org/abstracts/184593/evaluation-of-the-skid-resistance-of-asphalt-concrete-made-of-local-low-performance-aggregates-based-on-new-accelerated-polishing-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">409</span> The Extent of Virgin Olive-Oil Prices' Distribution Revealing the Behavior of Market Speculators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fathi%20Abid">Fathi Abid</a>, <a href="https://publications.waset.org/abstracts/search?q=Bilel%20Kaffel"> Bilel Kaffel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The olive tree, the olive harvest during winter season and the production of olive oil better known by professionals under the name of the crushing operation have interested institutional traders such as olive-oil offices and private companies such as food industry refining and extracting pomace olive oil as well as export-import public and private companies specializing in olive oil. The major problem facing producers of olive oil each winter campaign, contrary to what is expected, it is not whether the harvest will be good or not but whether the sale price will allow them to cover production costs and achieve a reasonable margin of profit or not. These questions are entirely legitimate if we judge by the importance of the issue and the heavy complexity of the uncertainty and competition made tougher by a high level of indebtedness and the experience and expertise of speculators and producers whose objectives are sometimes conflicting. The aim of this paper is to study the formation mechanism of olive oil prices in order to learn about speculators’ behavior and expectations in the market, how they contribute by their industry knowledge and their financial alliances and the size the financial challenge that may be involved for them to build private information hoses globally to take advantage. The methodology used in this paper is based on two stages, in the first stage we study econometrically the formation mechanisms of olive oil price in order to understand the market participant behavior by implementing ARMA, SARMA, GARCH and stochastic diffusion processes models, the second stage is devoted to prediction purposes, we use a combined wavelet- ANN approach. Our main findings indicate that olive oil market participants interact with each other in a way that they promote stylized facts formation. The unstable participant’s behaviors create the volatility clustering, non-linearity dependent and cyclicity phenomena. By imitating each other in some periods of the campaign, different participants contribute to the fat tails observed in the olive oil price distribution. The best prediction model for the olive oil price is based on a back propagation artificial neural network approach with input information based on wavelet decomposition and recent past history. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=olive%20oil%20price" title="olive oil price">olive oil price</a>, <a href="https://publications.waset.org/abstracts/search?q=stylized%20facts" title=" stylized facts"> stylized facts</a>, <a href="https://publications.waset.org/abstracts/search?q=ARMA%20model" title=" ARMA model"> ARMA model</a>, <a href="https://publications.waset.org/abstracts/search?q=SARMA%20model" title=" SARMA model"> SARMA model</a>, <a href="https://publications.waset.org/abstracts/search?q=GARCH%20model" title=" GARCH model"> GARCH model</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20wavelet-artificial%20neural%20network" title=" combined wavelet-artificial neural network"> combined wavelet-artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous-time%20stochastic%20volatility%20mode" title=" continuous-time stochastic volatility mode"> continuous-time stochastic volatility mode</a> </p> <a href="https://publications.waset.org/abstracts/43777/the-extent-of-virgin-olive-oil-prices-distribution-revealing-the-behavior-of-market-speculators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">408</span> Environmental Performance of Olive Oil Production in Greece</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Tsarouhas">P. Tsarouhas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ch.%20Achillas"> Ch. Achillas</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Aidonis"> D. Aidonis</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Folinas"> D. Folinas</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Maslis"> V. Maslis</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Moussiopoulos"> N. Moussiopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agricultural production is a sector with high socioeconomic significance and key implications on employment and nutritional security. However, the impacts of agrifood production and consumption patterns on the environment are considerable, mainly due to the demand of large inputs of resources. This paper presents a case study of olive oil production in Greece, an important agri-product especially for countries in the Mediterranean basin. Life Cycle Analysis has been used to quantify the environmental performance of olive oil production. All key parameters that are associated with the life cycle of olive oil production are studied and environmental “hotspots” are diagnosed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LCA" title="LCA">LCA</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20oil%20production" title=" olive oil production"> olive oil production</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a>, <a href="https://publications.waset.org/abstracts/search?q=case%20study" title=" case study"> case study</a>, <a href="https://publications.waset.org/abstracts/search?q=Greece" title=" Greece"> Greece</a> </p> <a href="https://publications.waset.org/abstracts/14486/environmental-performance-of-olive-oil-production-in-greece" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">407</span> Olive-Mill Wastewater and Organo-Mineral Fertlizers Application for the Control of Parasitic Weed Phelipanche ramosa L. Pomel in Tomato </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Grazia%20Disciglio">Grazia Disciglio</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesco%20Lops"> Francesco Lops</a>, <a href="https://publications.waset.org/abstracts/search?q=Annalisa%20Tarantino"> Annalisa Tarantino</a>, <a href="https://publications.waset.org/abstracts/search?q=Emanuele%20Tarantino"> Emanuele Tarantino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The parasitic weed specie Phelipanche ramosa (L) Pomel is one of the major constraints in tomato crop in Apulia region (southern Italy). The experimental was considered to investigate the effect of six organic compounds (Olive miller wastewater, Allil isothiocyanate®, Alfa plus K®, Radicon®, Rizosum Max®, Kendal Nem®) on the naturally infested field of tomato growing season in 2016. The randomized block design with 3 replicates was adopted. Tomato seedling were transplant on 19 May 2016. During the growing cycle of the tomato at 74, 81, 93 and 103 days after transplantation (DAT), the number of parasitic shoots (branched plants) that had emerged in each plot was determined. At harvesting on 13 September 2016 the major quanti-qualitative yield parameters were determined, including marketable yield, mean weight, dry matter, soluble solids, fruit colour, pH and titratable acidity. The treatments provided the results show that none of treatments provided complete control against P. ramosa. However, among the products tested Olive miller wastewater, Alfa plus K®, Rizosum Max® and Kendal Nem® products applied to the soil show the number of emerged shoots significantly lower than Radicon® and especially than the Allil isothiocyanate® treatment and the untreated control. Regarding the effect of different treatments on the tomato productive parameters, the marketable yield resulted significantly higher in the same mentioned treatments which gave the lower P. ramosa infestation. No significative differences for the other fruit characteristics were observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=processing%20tomato%20crop" title="processing tomato crop">processing tomato crop</a>, <a href="https://publications.waset.org/abstracts/search?q=Phelipanche%20ramosa" title=" Phelipanche ramosa"> Phelipanche ramosa</a>, <a href="https://publications.waset.org/abstracts/search?q=olive-mill%20wastewater" title=" olive-mill wastewater"> olive-mill wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20fertilizers" title=" organic fertilizers"> organic fertilizers</a> </p> <a href="https://publications.waset.org/abstracts/71099/olive-mill-wastewater-and-organo-mineral-fertlizers-application-for-the-control-of-parasitic-weed-phelipanche-ramosa-l-pomel-in-tomato" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">406</span> Physical Characteristics of Cookies Enriched with Microencapsulated Cherry Pomace Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jovana%20Petrovi%C4%87">Jovana Petrović</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivana%20Lon%C4%8Darevi%C4%87"> Ivana Lončarević</a>, <a href="https://publications.waset.org/abstracts/search?q=Vesna%20Tumbas%20%C5%A0aponjac"> Vesna Tumbas Šaponjac</a>, <a href="https://publications.waset.org/abstracts/search?q=Biljana%20Pajin"> Biljana Pajin</a>, <a href="https://publications.waset.org/abstracts/search?q=Danica%20Zari%C4%87"> Danica Zarić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pomace, a by-product from fruit processing industry is the potential source of valuable bioactive. Cookies are popular, ready to eat and low price foods; therefore, enrichment of these products is of great importance. In this work, bioactive compounds extracted from cherry pomace, encapsulated in soy and whey proteins, have been incorporated in cookies, replacing 10 (SP10 and WP10) and 15% of wheat flour (SP15 and WP15). Cookie geometry (diameter (D), thickness (T) and spread ratio (D/T)), cookie weight, cookie hardness and cookie surface colour were measured. Sensory characteristics are also examined. The results show that encapsulated cherry pomace bioactives have positively influenced the cookie mass. Diameter, redness (a* value) and cookie hardness increased. Sensory evaluation of cookies, revealed that up to 15% substitution of wheat flour with WP encapsulate produced acceptable cookies similar to the control (100% wheat flour) cookies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cherry%20pomace" title="cherry pomace">cherry pomace</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols"> polyphenols</a>, <a href="https://publications.waset.org/abstracts/search?q=microencapsulation" title=" microencapsulation"> microencapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=cookies" title=" cookies"> cookies</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20characteristics" title=" physical characteristics"> physical characteristics</a> </p> <a href="https://publications.waset.org/abstracts/42288/physical-characteristics-of-cookies-enriched-with-microencapsulated-cherry-pomace-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">405</span> Extraction of Squalene from Lebanese Olive Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Henri%20El%20Zakhem">Henri El Zakhem</a>, <a href="https://publications.waset.org/abstracts/search?q=Christina%20Romanos"> Christina Romanos</a>, <a href="https://publications.waset.org/abstracts/search?q=Charlie%20Bakhos"> Charlie Bakhos</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Chahal"> Hassan Chahal</a>, <a href="https://publications.waset.org/abstracts/search?q=Jessica%20Koura"> Jessica Koura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Squalene is a valuable component of the oil composed of 30 carbon atoms and is mainly used for cosmetic materials. The main concern of this article is to study the Squalene composition in the Lebanese olive oil and to compare it with foreign oil results. To our knowledge, extraction of Squalene from the Lebanese olive oil has not been conducted before. Three different techniques were studied and experiments were performed on three brands of olive oil, Al Wadi Al Akhdar, Virgo Bio and Boulos. The techniques performed are the Fractional Crystallization, the Soxhlet and the Esterification. By comparing the results, it is found that the Lebanese oil contains squalene and Soxhlet method is the most effective between the three methods extracting about 6.5E-04 grams of Squalene per grams of olive oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=squalene" title="squalene">squalene</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallization" title=" crystallization"> crystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=Soxhlet" title=" Soxhlet"> Soxhlet</a> </p> <a href="https://publications.waset.org/abstracts/15134/extraction-of-squalene-from-lebanese-olive-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">404</span> Utilization and Characterizations of Olive Oil Industry By-Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sawsan%20Dacrory">Sawsan Dacrory</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Abou-Yousef"> Hussein Abou-Yousef</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Kamel"> Samir Kamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ragab%20E.%20Abou-Zeid"> Ragab E. Abou-Zeid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20S.%20Abdel-Aziz"> Mohamed S. Abdel-Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Elbadry"> Mohamed Elbadry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A considerable amount of lignocellulosic by-product could be obtained from olive pulp during olive oil extraction industry. The major constituents of the olive pulp are husks and seeds. The separation of each portion of olive pulp (seeds and husks) was carried out by water flotation where seeds were sediment in the bottom. Both seeds and husks were dignified by 15% NaOH followed by complete lignin removal by using sodium chlorite in acidic medium. The isolated holocellulose, α-cellulose, hydrogel and CMC which prepared from cellulose of both seeds and husk fractions were characterized by FTIR and SEM. The present study focused on the investigation of the chemical components of the lignocellulosic fraction of olive pulp. Biofunctionlization of hydrogel was achieved through loading of silver nanoparticles AgNPs in to the prepared hydrogel. The antimicrobial activity of the loaded silver hydrogel against G-ve, and G+ve, and candida was demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose" title="cellulose">cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=carboxymethyle%20cellulose" title=" carboxymethyle cellulose"> carboxymethyle cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20pulp" title=" olive pulp"> olive pulp</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title=" hydrogel"> hydrogel</a> </p> <a href="https://publications.waset.org/abstracts/40837/utilization-and-characterizations-of-olive-oil-industry-by-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">403</span> Olive Seed Tannins as Bioadhesives for Manufacturing Wood-Based Panels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajith%20K.%20A.%20Gedara">Ajith K. A. Gedara</a>, <a href="https://publications.waset.org/abstracts/search?q=Iva%20Chianella"> Iva Chianella</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20L.%20Endrino"> Jose L. Endrino</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Zhang"> Qi Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The olive seed is a by-product of the olive oil production industry. Biuret test and ferric chloride test revealed that water or alkali NaOH extractions of olive seed flour are rich in proteins and tannins. Both protein and tannins are well-known bio-based wood adhesives in the wood-based panel industry. In general, tannins-based adhesives show better mechanical and physical properties than protein wood adhesives. This paper explores different methods of extracting tannins from olive seed flour against the tannins yield and their applications as bio-based adhesives in wood-based panels. Once investigated, the physical and the mechanical properties of wood-based panels made using bio-adhesives based tannins extracted from olive seed flour revealed that the resulting products seemed to satisfy the Japanese Industrial Standards JIS A 5908:2015. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-adhesives" title="bio-adhesives">bio-adhesives</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20seed%20flour" title=" olive seed flour"> olive seed flour</a>, <a href="https://publications.waset.org/abstracts/search?q=tannins" title=" tannins"> tannins</a>, <a href="https://publications.waset.org/abstracts/search?q=wood-based%20panels" title=" wood-based panels"> wood-based panels</a> </p> <a href="https://publications.waset.org/abstracts/137443/olive-seed-tannins-as-bioadhesives-for-manufacturing-wood-based-panels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">402</span> Polyphenol and Antimicrobial Activity in Olive Oil from Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Zemour">Kamel Zemour</a>, <a href="https://publications.waset.org/abstracts/search?q=Kada%20Mohamed%20Amine%20Chouhim"> Kada Mohamed Amine Chouhim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Mairif"> Mohamed Mairif</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadj%20Eddine%20Adda%20Ardjan"> Tadj Eddine Adda Ardjan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many recent studies show the positive effect of phenolic compounds in olive oil on health. They are known for their biological properties, where they have shown potential activity as an antioxidant, anti-inflammatory, and antimicrobial agents. However, this characteristic is rarely studied in olive oil from different regions of Algeria. Different samples collected from the western region of Algeria were evaluated for their polyphenol content, antioxidant activity, and antimicrobial effect. The obtained results demonstrated that this oil is rich in polyphenols and revealed high antimicrobial activity against Staphylococcus aureus and Escherichia coli. Finally, this study has highlighted the nutritional and pharmaceutical importance of olive oil grown in Algeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=olive%20oil" title="olive oil">olive oil</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols"> polyphenols</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a> </p> <a href="https://publications.waset.org/abstracts/159649/polyphenol-and-antimicrobial-activity-in-olive-oil-from-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">401</span> Modeling the Moment of Resistance Generated by an Ore-Grinding Mill</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marinka%20Baghdasaryan">Marinka Baghdasaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tigran%20Mnoyan"> Tigran Mnoyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The pertinence of modeling the moment of resistance generated by the ore-grinding mill is substantiated. Based on the ranking of technological indices obtained in the result of the survey among the specialists of several beneficiating plants, the factors determining the level of the moment of resistance generated by the mill are revealed. A priori diagram of the ranks is obtained in which the factors are arranged in the descending order of the impact degree on the level of the moment. The obtained model of the moment of resistance shows the technological character of the operation modes of the ore-grinding mill and can be used for improving the operation modes of the system motor-mill and preventing the abnormal mode of the drive synchronous motor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model" title="model">model</a>, <a href="https://publications.waset.org/abstracts/search?q=abnormal%20mode" title=" abnormal mode"> abnormal mode</a>, <a href="https://publications.waset.org/abstracts/search?q=mill" title=" mill"> mill</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation" title=" correlation"> correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20of%20resistance" title=" moment of resistance"> moment of resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=rotational%20speed" title=" rotational speed"> rotational speed</a> </p> <a href="https://publications.waset.org/abstracts/47772/modeling-the-moment-of-resistance-generated-by-an-ore-grinding-mill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive%20mill%20pomace&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive%20mill%20pomace&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive%20mill%20pomace&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive%20mill%20pomace&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive%20mill%20pomace&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive%20mill%20pomace&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive%20mill%20pomace&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive%20mill%20pomace&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive%20mill%20pomace&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive%20mill%20pomace&page=14">14</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive%20mill%20pomace&page=15">15</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=olive%20mill%20pomace&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>