CINXE.COM

Search results for: bi-directional splitting

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: bi-directional splitting</title> <meta name="description" content="Search results for: bi-directional splitting"> <meta name="keywords" content="bi-directional splitting"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="bi-directional splitting" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="bi-directional splitting"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 330</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: bi-directional splitting</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">330</span> A Forbidden-Minor Characterization for the Class of Co-Graphic Matroids Which Yield the Graphic Element-Splitting Matroids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prashant%20Malavadkar">Prashant Malavadkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Santosh%20Dhotre"> Santosh Dhotre</a>, <a href="https://publications.waset.org/abstracts/search?q=Maruti%20Shikare"> Maruti Shikare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The n-point splitting operation on graphs is used to characterize 4-connected graphs with some more operations. Element splitting operation on binary matroids is a natural generalization of the notion of n-point splitting operation on graphs. The element splitting operation on a graphic (cographic) matroid may not yield a graphic (cographic) matroid. Characterization of graphic (cographic) matroids whose element splitting matroids are graphic (cographic) is known. The element splitting operation on a co-graphic matroid, in general may not yield a graphic matroid. In this paper, we give a necessary and sufficient condition for the cographic matroid to yield a graphic matroid under the element splitting operation. In fact, we prove that the element splitting operation, by any pair of elements, on a cographic matroid yields a graphic matroid if and only if it has no minor isomorphic to M(K4); where K4 is the complete graph on 4 vertices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binary%20matroids" title="binary matroids">binary matroids</a>, <a href="https://publications.waset.org/abstracts/search?q=splitting" title=" splitting"> splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=element%20splitting" title=" element splitting"> element splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=forbidden%20minor" title=" forbidden minor"> forbidden minor</a> </p> <a href="https://publications.waset.org/abstracts/59445/a-forbidden-minor-characterization-for-the-class-of-co-graphic-matroids-which-yield-the-graphic-element-splitting-matroids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">329</span> Geometrical Based Unequal Droplet Splitting Using Microfluidic Y-Junction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahram%20Talebjedi">Bahram Talebjedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirmohammad%20Sattari"> Amirmohammad Sattari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Zoher%20Sihorwala"> Ahmed Zoher Sihorwala</a>, <a href="https://publications.waset.org/abstracts/search?q=Mina%20Hoorfar"> Mina Hoorfar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among different droplet manipulations, controlled droplet-splitting is of great significance due to its ability to increase throughput and operational capability. Furthermore, unequal droplet-splitting can provide greater flexibility and a wider range of dilution factors. In this study, we developed two-dimensional, time-dependent complex fluid dynamics simulations to model droplet formation in a flow focusing device, followed by splitting in a Y-shaped junction with sub-channels of unequal widths. From the results obtained from the numerical study, we correlated the diameters of the droplets in the sub-channels to the Weber number, thereby demarcating the droplet splitting and non-splitting regimes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title="microfluidics">microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=unequal%20droplet%20splitting" title=" unequal droplet splitting"> unequal droplet splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20phase%20flow" title=" two phase flow"> two phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20focusing%20device" title=" flow focusing device"> flow focusing device</a> </p> <a href="https://publications.waset.org/abstracts/133469/geometrical-based-unequal-droplet-splitting-using-microfluidic-y-junction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">328</span> Design of Photonic Crystal with Defect Layer to Eliminate Interface Corrugations for Obtaining Unidirectional and Bidirectional Beam Splitting under Normal Incidence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evrim%20Colak">Evrim Colak</a>, <a href="https://publications.waset.org/abstracts/search?q=Andriy%20E.%20Serebryannikov"> Andriy E. Serebryannikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20V.%20Usik"> Pavel V. Usik</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekmel%20Ozbay"> Ekmel Ozbay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Working with a dielectric photonic crystal (PC) structure which does not include surface corrugations, unidirectional transmission and dual-beam splitting are observed under normal incidence as a result of the strong diffractions caused by the embedded defect layer. The defect layer has twice the period of the regular PC segments which sandwich the defect layer. Although the PC has even number of rows, the structural symmetry is broken due to the asymmetric placement of the defect layer with respect to the symmetry axis of the regular PC. The simulations verify that efficient splitting and occurrence of strong diffractions are related to the dispersion properties of the Floquet-Bloch modes of the photonic crystal. Unidirectional and bi-directional splitting, which are associated with asymmetric transmission, arise due to the dominant contribution of the first positive and first negative diffraction orders. The effect of the depth of the defect layer is examined by placing single defect layer in varying rows, preserving the asymmetry of PC. Even for deeply buried defect layer, asymmetric transmission is still valid even if the zeroth order is not coupled. This transmission is due to evanescent waves which reach to the deeply embedded defect layer and couple to higher order modes. In an additional selected performance, whichever surface is illuminated, i.e., in both upper and lower surface illumination cases, incident beam is split into two beams of equal intensity at the output surface where the intensity of the out-going beams are equal for both illumination cases. That is, although the structure is asymmetric, symmetric bidirectional transmission with equal transmission values is demonstrated and the structure mimics the behavior of symmetric structures. Finally, simulation studies including the examination of a coupled-cavity defect for two different permittivity values (close to the permittivity values of GaAs or Si and alumina) reveal unidirectional splitting for a wider band of operation in comparison to the bandwidth obtained in the case of a single embedded defect layer. Since the dielectric materials that are utilized are low-loss and weakly dispersive in a wide frequency range including microwave and optical frequencies, the studied structures should be scalable to the mentioned ranges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20transmission" title="asymmetric transmission">asymmetric transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=beam%20deflection" title=" beam deflection"> beam deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=blazing" title=" blazing"> blazing</a>, <a href="https://publications.waset.org/abstracts/search?q=bi-directional%20splitting" title=" bi-directional splitting"> bi-directional splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=defect%20layer" title=" defect layer"> defect layer</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20beam%20splitting" title=" dual beam splitting"> dual beam splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=Floquet-Bloch%20modes" title=" Floquet-Bloch modes"> Floquet-Bloch modes</a>, <a href="https://publications.waset.org/abstracts/search?q=isofrequency%20contours" title=" isofrequency contours"> isofrequency contours</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20defect" title=" line defect"> line defect</a>, <a href="https://publications.waset.org/abstracts/search?q=oblique%20incidence" title=" oblique incidence"> oblique incidence</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystal" title=" photonic crystal"> photonic crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=unidirectionality" title=" unidirectionality"> unidirectionality</a> </p> <a href="https://publications.waset.org/abstracts/94548/design-of-photonic-crystal-with-defect-layer-to-eliminate-interface-corrugations-for-obtaining-unidirectional-and-bidirectional-beam-splitting-under-normal-incidence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">327</span> Evaluation Using a Bidirectional Microphone as a Pressure Pulse Wave Meter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shunsuke%20Fujiwara">Shunsuke Fujiwara</a>, <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Kaburagi"> Takashi Kaburagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuyuki%20Kobayashi"> Kazuyuki Kobayashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kajiro%20Watanabe"> Kajiro Watanabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Yosuke%20Kurihara"> Yosuke Kurihara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a novel sensor device, a pressure pulse wave meter, which uses a bidirectional condenser microphone. The microphone work as a microphone as well as a sensor with high gain over a wide frequency range; they are also highly reliable and economical. Currently aging is becoming a serious social issue in Japan causing increased medical expenses in the country. Hence, it is important for elderly citizens to check health condition at home, and to care the health conditions through daily monitoring. Given this circumstances, we developed a novel pressure pulse wave meter based on a bidirectional condenser microphone. This novel pressure pulse wave meter device is used as a measuring instrument of health conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bidirectional%20microphone" title="bidirectional microphone">bidirectional microphone</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20pulse%20wave%20meter" title=" pressure pulse wave meter"> pressure pulse wave meter</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20condition" title=" health condition"> health condition</a>, <a href="https://publications.waset.org/abstracts/search?q=novel%20sensor%20device" title=" novel sensor device"> novel sensor device</a> </p> <a href="https://publications.waset.org/abstracts/28575/evaluation-using-a-bidirectional-microphone-as-a-pressure-pulse-wave-meter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">554</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">326</span> Switched Uses of a Bidirectional Microphone as a Microphone and Sensors with High Gain and Wide Frequency Range</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Toru%20Shionoya">Toru Shionoya</a>, <a href="https://publications.waset.org/abstracts/search?q=Yosuke%20Kurihara"> Yosuke Kurihara</a>, <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Kaburagi"> Takashi Kaburagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kajiro%20Watanabe"> Kajiro Watanabe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mass-produced bidirectional microphones have attractive characteristics. They work as a microphone as well as a sensor with high gain over a wide frequency range; they are also highly reliable and economical. We present novel multiple functional uses of the microphones. A mathematical model for explaining the high-pass-filtering characteristics of bidirectional microphones was presented. Based on the model, the characteristics of the microphone were investigated, and a novel use for the microphone as a sensor with a wide frequency range was presented. In this study, applications for using the microphone as a security sensor and a human biosensor were introduced. The mathematical model was validated through experiments, and the feasibility of the abovementioned applications for security monitoring and the biosignal monitoring were examined through experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bidirectional%20microphone" title="bidirectional microphone">bidirectional microphone</a>, <a href="https://publications.waset.org/abstracts/search?q=low-frequency" title=" low-frequency"> low-frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20response" title=" frequency response"> frequency response</a> </p> <a href="https://publications.waset.org/abstracts/17138/switched-uses-of-a-bidirectional-microphone-as-a-microphone-and-sensors-with-high-gain-and-wide-frequency-range" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">325</span> A 3kW Grid Connected Residential Energy Storage System with PV and Li-Ion Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moiz%20Masood%20Syed">Moiz Masood Syed</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong-Jun%20Hong"> Seong-Jun Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Geun-Hie%20Rim"> Geun-Hie Rim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyung-Ae%20Cho"> Kyung-Ae Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyoung-Suk%20Kim"> Hyoung-Suk Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the near future, energy storage will play a vital role to enhance the present changing technology. Energy storage with power generation becomes necessary when renewable energy sources are connected to the grid which consequently adjoins to the total energy in the system since utilities require more power when peak demand occurs. This paper describes the operational function of a 3 kW grid-connected residential Energy Storage System (ESS) which is connected with Photovoltaic (PV) at its input side. The system can perform bidirectional functions of charging from the grid and discharging to the grid when power demand becomes high and low respectively. It consists of PV module, Power Conditioning System (PCS) containing a bidirectional DC/DC Converter and bidirectional DC/AC inverter and a Lithium-ion battery pack. ESS Configuration, specifications, and control are described. The bidirectional DC/DC converter tracks the maximum power point (MPPT) and maintains the stability of PV array in case of power deficiency to fulfill the load requirements. The bidirectional DC/AC inverter has good voltage regulation properties like low total harmonic distortion (THD), low electromagnetic interference (EMI), faster response and anti-islanding characteristics. Experimental results satisfy the effectiveness of the proposed system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20system" title="energy storage system">energy storage system</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title=" photovoltaic"> photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%2FDC%20converter" title=" DC/DC converter"> DC/DC converter</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%2FAC%20inverter" title=" DC/AC inverter"> DC/AC inverter</a> </p> <a href="https://publications.waset.org/abstracts/20075/a-3kw-grid-connected-residential-energy-storage-system-with-pv-and-li-ion-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">641</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">324</span> Topological Indices of Some Graph Operations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20Mary">U. Mary </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let be a graph with a finite, nonempty set of objects called vertices together with a set of unordered pairs of distinct vertices of called edges. The vertex set is denoted by and the edge set by. Given two graphs and the wiener index of, wiener index for the splitting graph of a graph, the first Zagreb index of and its splitting graph, the 3-steiner wiener index of, the 3-steiner wiener index of a special graph are explored in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complementary%20prism%20graph" title="complementary prism graph">complementary prism graph</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20Zagreb%20index" title=" first Zagreb index"> first Zagreb index</a>, <a href="https://publications.waset.org/abstracts/search?q=neighborhood%20corona%20graph" title=" neighborhood corona graph"> neighborhood corona graph</a>, <a href="https://publications.waset.org/abstracts/search?q=steiner%20distance" title=" steiner distance"> steiner distance</a>, <a href="https://publications.waset.org/abstracts/search?q=splitting%20graph" title=" splitting graph"> splitting graph</a>, <a href="https://publications.waset.org/abstracts/search?q=steiner%20wiener%20index" title=" steiner wiener index"> steiner wiener index</a>, <a href="https://publications.waset.org/abstracts/search?q=wiener%20index" title=" wiener index"> wiener index</a> </p> <a href="https://publications.waset.org/abstracts/16774/topological-indices-of-some-graph-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">570</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">323</span> Parallel Multisplitting Methods for DAE’s</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Machmoum">Ahmed Machmoum</a>, <a href="https://publications.waset.org/abstracts/search?q=Malika%20El%20Kyal"> Malika El Kyal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We consider iterative parallel multi-splitting method for differential algebraic equations. The main feature of the proposed idea is to use the asynchronous form. We prove that the multi-splitting technique can effectively accelerate the convergent performance of the iterative process. The main characteristic of an asynchronous mode is that the local algorithm not have to wait at predetermined messages to become available. We allow some processors to communicate more frequently than others, and we allow the communication delays tobe substantial and unpredictable. Note that synchronous algorithms in the computer science sense are particular cases of our formulation of asynchronous one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer" title="computer">computer</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-splitting%20methods" title=" multi-splitting methods"> multi-splitting methods</a>, <a href="https://publications.waset.org/abstracts/search?q=asynchronous%20mode" title=" asynchronous mode"> asynchronous mode</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20algebraic%20systems" title=" differential algebraic systems "> differential algebraic systems </a> </p> <a href="https://publications.waset.org/abstracts/23813/parallel-multisplitting-methods-for-daes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">322</span> Preparation on Sentimental Analysis on Social Media Comments with Bidirectional Long Short-Term Memory Gated Recurrent Unit and Model Glove in Portuguese</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leonardo%20Alfredo%20Mendoza">Leonardo Alfredo Mendoza</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristian%20Munoz"> Cristian Munoz</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20Aurelio%20Pacheco"> Marco Aurelio Pacheco</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoela%20Kohler"> Manoela Kohler</a>, <a href="https://publications.waset.org/abstracts/search?q=Evelyn%20%20Batista"> Evelyn Batista</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20Moura"> Rodrigo Moura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural Language Processing (NLP) techniques are increasingly more powerful to be able to interpret the feelings and reactions of a person to a product or service. Sentiment analysis has become a fundamental tool for this interpretation but has few applications in languages other than English. This paper presents a classification of sentiment analysis in Portuguese with a base of comments from social networks in Portuguese. A word embedding's representation was used with a 50-Dimension GloVe pre-trained model, generated through a corpus completely in Portuguese. To generate this classification, the bidirectional long short-term memory and bidirectional Gated Recurrent Unit (GRU) models are used, reaching results of 99.1%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20processing%20language" title="natural processing language">natural processing language</a>, <a href="https://publications.waset.org/abstracts/search?q=sentiment%20analysis" title=" sentiment analysis"> sentiment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=bidirectional%20long%20short-term%20memory" title=" bidirectional long short-term memory"> bidirectional long short-term memory</a>, <a href="https://publications.waset.org/abstracts/search?q=BI-LSTM" title=" BI-LSTM"> BI-LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=gated%20recurrent%20unit" title=" gated recurrent unit"> gated recurrent unit</a>, <a href="https://publications.waset.org/abstracts/search?q=GRU" title=" GRU"> GRU</a> </p> <a href="https://publications.waset.org/abstracts/131061/preparation-on-sentimental-analysis-on-social-media-comments-with-bidirectional-long-short-term-memory-gated-recurrent-unit-and-model-glove-in-portuguese" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">321</span> Copper/Nickel Sulfide Catalyst Electrodeposited on Nickel Foam for Efficient Water Splitting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamad%20Almohamadi">Hamad Almohamadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabeel%20Alharthi"> Nabeel Alharthi</a>, <a href="https://publications.waset.org/abstracts/search?q=Majed%20Alamoudi"> Majed Alamoudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biphasic electrodes featuring CuSx/NiSx electrodeposited on nickel foam have been investigated for their electrocatalytic activity in water splitting. The study investigates the impacts of an S-vacancy induced biphasic design on the overpotential and Tafel slope. According to the findings, the NiSx/CuSx/NF electrode with S-vacancy defects displays stronger oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) activity with lower overpotential and a steeper Tafel slope than the non-defect sample. NiSx/CuSx/NF exhibits the lowest overpotential value of 212 mV vs reversible hydrogen electrode (RHE) for OER and −109 mV vs RHE for HER at 10 mA cm−2. Tafel slope of 25.4 mV dec−1 for OER and −108 mV dec−1 for OER found of that electrode. The electrochemical surface area (ECSA) and diffusion impedance of the electrode is calculated. The maximum ECSA, lowest series resistance and lowest charge transfer resistance are found in the *NiSx/CuSx/NF sample with S-vacancy defects, showing increased electrical conductivity and quick charge transfer kinetics. The *NiSx/CuSx/NF electrode was found to be stable for 80 hours in pure water splitting and 20 hours in sea-water splitting. The investigation comes to the conclusion that the enhanced water splitting activity and electrical conductivity of the electrode are caused by S-vacancy defects resulting in improved water splitting performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20splitting" title="water splitting">water splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocatalyst" title=" electrocatalyst"> electrocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=biphasic%20design" title=" biphasic design"> biphasic design</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a> </p> <a href="https://publications.waset.org/abstracts/165992/coppernickel-sulfide-catalyst-electrodeposited-on-nickel-foam-for-efficient-water-splitting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">320</span> A Study on the Iterative Scheme for Stratified Shields Gamma Ray Buildup Factors Using Layer-Splitting Technique in Double-Layer Shields</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sari%20F.%20Alkhatib">Sari F. Alkhatib</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Je%20Park"> Chang Je Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyuhong%20Roh"> Gyuhong Roh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The iterative scheme which is used to treat buildup factors for stratified shields is being investigated here using the layer-splitting technique. A simple suggested formalism for the scheme based on the Kalos’ formula is introduced, based on which the implementation of the testing technique is carried out. The second layer in a double-layer shield was split into two equivalent layers and the scheme (with the suggested formalism) was implemented on the new “three-layer” shield configuration. The results of such manipulation on water-lead and water-iron shields combinations are presented here for 1 MeV photons. It was found that splitting the second layer introduces some deviation on the overall buildup factor value. This expected deviation appeared to be higher in the case of low Z layer followed by high Z. However, the overall performance of the iterative scheme showed a great consistency and strong coherence even with the introduced changes. The introduced layer-splitting testing technique shows the capability to be implemented in test the iterative scheme with a wide range of formalisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buildup%20factor" title="buildup factor">buildup factor</a>, <a href="https://publications.waset.org/abstracts/search?q=iterative%20scheme" title=" iterative scheme"> iterative scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=stratified%20shields" title=" stratified shields"> stratified shields</a>, <a href="https://publications.waset.org/abstracts/search?q=layer-splitting%20tecnique" title=" layer-splitting tecnique"> layer-splitting tecnique</a> </p> <a href="https://publications.waset.org/abstracts/8371/a-study-on-the-iterative-scheme-for-stratified-shields-gamma-ray-buildup-factors-using-layer-splitting-technique-in-double-layer-shields" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">319</span> Parallel Asynchronous Multi-Splitting Methods for Differential Algebraic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malika%20Elkyal">Malika Elkyal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We consider an iterative parallel multi-splitting method for differential algebraic equations. The main feature of the proposed idea is to use the asynchronous form. We prove that the multi-splitting technique can effectively accelerate the convergent performance of the iterative process. The main characteristic of an asynchronous mode is that the local algorithm does not have to wait at predetermined messages to become available. We allow some processors to communicate more frequently than others, and we allow the communication delays to be substantial and unpredictable. Accordingly, we note that synchronous algorithms in the computer science sense are particular cases of our formulation of asynchronous one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parallel%20methods" title="parallel methods">parallel methods</a>, <a href="https://publications.waset.org/abstracts/search?q=asynchronous%20mode" title=" asynchronous mode"> asynchronous mode</a>, <a href="https://publications.waset.org/abstracts/search?q=multisplitting" title=" multisplitting"> multisplitting</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20algebraic%20equations" title=" differential algebraic equations"> differential algebraic equations</a> </p> <a href="https://publications.waset.org/abstracts/20673/parallel-asynchronous-multi-splitting-methods-for-differential-algebraic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20673.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">558</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">318</span> Tensile Properties of 3D Printed PLA under Unidirectional and Bidirectional Raster Angle: A Comparative Study </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shilpesh%20R.%20Rajpurohit">Shilpesh R. Rajpurohit</a>, <a href="https://publications.waset.org/abstracts/search?q=Harshit%20K.%20Dave"> Harshit K. Dave</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fused deposition modeling (FDM) gains popularity in recent times, due to its capability to create prototype as well as functional end use product directly from CAD file. Parts fabricated using FDM process have mechanical properties comparable with those of injection-molded parts. However, performance of the FDM part is severally affected by the poor mechanical properties of the part due to nature of layered structure of printed part. Mechanical properties of the part can be improved by proper selection of process variables. In the present study, a comparative study between unidirectional and bidirectional raster angle has been carried out at a combination of different layer height and raster width. Unidirectional raster angle varied at five different levels, and bidirectional raster angle has been varied at three different levels. Fabrication of tensile specimen and tensile testing of specimen has been conducted according to ASTM D638 standard. From the results, it can be observed that higher tensile strength has been obtained at 0° raster angle followed by 45°/45° raster angle, while lower tensile strength has been obtained at 90° raster angle. Analysis of fractured surface revealed that failure takes place along with raster deposition direction for unidirectional and zigzag failure can be observed for bidirectional raster angle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling" title=" fused deposition modeling"> fused deposition modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=unidirectional" title=" unidirectional"> unidirectional</a>, <a href="https://publications.waset.org/abstracts/search?q=bidirectional" title=" bidirectional"> bidirectional</a>, <a href="https://publications.waset.org/abstracts/search?q=raster%20angle" title=" raster angle"> raster angle</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a> </p> <a href="https://publications.waset.org/abstracts/86885/tensile-properties-of-3d-printed-pla-under-unidirectional-and-bidirectional-raster-angle-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">317</span> The Grand Unified Theory of Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tory%20Erickson">Tory Erickson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The "Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow" (BST-SCWPDF) Model introduces a framework aimed at unifying general relativity (GR) and quantum mechanics (QM). By proposing a concept of bidirectional spacetime, this model suggests that time can flow in more than one direction, thus offering a perspective on temporal dynamics. Integrated with spatial covariance and wave-particle duality in spacetime flow, the BST-SCWPDF Model resolves long-standing discrepancies between GR and QM. This unified theory has profound implications for quantum gravity, potentially offering insights into quantum entanglement, the collapse of the wave function, and the fabric of spacetime itself. The Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow" (BST-SCWPDF) Model offers researchers a framework for a better understanding of theoretical physics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=astrophysics" title="astrophysics">astrophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20mechanics" title=" quantum mechanics"> quantum mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=general%20relativity" title=" general relativity"> general relativity</a>, <a href="https://publications.waset.org/abstracts/search?q=unification%20theory" title=" unification theory"> unification theory</a>, <a href="https://publications.waset.org/abstracts/search?q=theoretical%20physics" title=" theoretical physics"> theoretical physics</a> </p> <a href="https://publications.waset.org/abstracts/183765/the-grand-unified-theory-of-bidirectional-spacetime-with-spatial-covariance-and-wave-particle-duality-in-spacetime-flow-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">316</span> Operator Splitting Scheme for the Inverse Nagumo Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharon-Yasotha%20Veerayah-Mcgregor">Sharon-Yasotha Veerayah-Mcgregor</a>, <a href="https://publications.waset.org/abstracts/search?q=Valipuram%20Manoranjan"> Valipuram Manoranjan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A backward or inverse problem is known to be an ill-posed problem due to its instability that easily emerges with any slight change within the conditions of the problem. Therefore, only a limited number of numerical approaches are available to solve a backward problem. This paper considers the Nagumo equation, an equation that describes impulse propagation in nerve axons, which also models population growth with the Allee effect. A creative operator splitting numerical scheme is constructed to solve the inverse Nagumo equation. Computational simulations are used to verify that this scheme is stable, accurate, and efficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inverse%2Fbackward%20equation" title="inverse/backward equation">inverse/backward equation</a>, <a href="https://publications.waset.org/abstracts/search?q=operator-splitting" title=" operator-splitting"> operator-splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagumo%20equation" title=" Nagumo equation"> Nagumo equation</a>, <a href="https://publications.waset.org/abstracts/search?q=ill-posed" title=" ill-posed"> ill-posed</a>, <a href="https://publications.waset.org/abstracts/search?q=finite-difference" title=" finite-difference"> finite-difference</a> </p> <a href="https://publications.waset.org/abstracts/182287/operator-splitting-scheme-for-the-inverse-nagumo-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">315</span> Titania Assisted Metal-Organic Framework Matrix for Elevated Hydrogen Generation Combined with the Production of Graphene Sheets through Water-Splitting Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heba%20M.%20Gobara">Heba M. Gobara</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20M.%20El-Naggar"> Ahmed A. M. El-Naggar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rasha%20S.%20El-Sayed"> Rasha S. El-Sayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Amal%20A.%20AlKahlawy"> Amal A. AlKahlawy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, metal organic framework (Cr-MIL-101) and TiO₂ nanoparticles were utilized as two semiconductors for water splitting process. The coupling of both semiconductors in order to improve the photocatalytic reactivity for the hydrogen production in presence of methanol as a hole scavenger under visible light (sunlight) has been performed. The forementioned semiconductors and the collected samples after water splitting application are characterized by several techniques viz., XRD, N₂ adsorption-desorption, TEM, ED, EDX, Raman spectroscopy and the total content of carbon. The results revealed an efficient yield of H₂ production with maximum purity 99.3% with the in-situ formation of graphene oxide nanosheets and multiwalled carbon nanotubes coated over the surface of the physically mixed Cr-MIL-101–TiO₂ system. The amount of H₂ gas produced was stored when using Cr-MIL-101 catalyst individually. The obtained data in this work provides promising candidate materials for pure hydrogen production as a clean fuel acquired from the water splitting process. In addition, the in-situ production of graphene nanosheets and carbon nanotubes is counted as promising advances for the presented process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title="hydrogen production">hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20splitting" title=" water splitting"> water splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysts" title=" photocatalysts"> photocatalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=Graphene" title=" Graphene"> Graphene</a> </p> <a href="https://publications.waset.org/abstracts/89204/titania-assisted-metal-organic-framework-matrix-for-elevated-hydrogen-generation-combined-with-the-production-of-graphene-sheets-through-water-splitting-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">314</span> A Novel PSO Based Decision Tree Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Farzan">Ali Farzan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Classification of data objects or patterns is a major part in most of Decision making systems. One of the popular and commonly used classification methods is Decision Tree (DT). It is a hierarchical decision making system by which a binary tree is constructed and starting from root, at each node some of the classes is rejected until reaching the leaf nods. Each leaf node is a representative of one specific class. Finding the splitting criteria in each node for constructing or training the tree is a major problem. Particle Swarm Optimization (PSO) has been adopted as a metaheuristic searching method for finding the best splitting criteria. Result of evaluating the proposed method over benchmark datasets indicates the higher accuracy of the new PSO based decision tree. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title="decision tree">decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=splitting%20criteria" title=" splitting criteria"> splitting criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=metaheuristic" title=" metaheuristic"> metaheuristic</a> </p> <a href="https://publications.waset.org/abstracts/32425/a-novel-pso-based-decision-tree-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">313</span> Influence of Scrap Tyre Steel Fiber on Mechanical Properties of High Performance Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isyaka%20Abdulkadir">Isyaka Abdulkadir</a>, <a href="https://publications.waset.org/abstracts/search?q=Egbe%20Ngu-Ntui%20Ogork"> Egbe Ngu-Ntui Ogork</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to investigate the use of Scrap Tyre Steel Fibers (STSF) for the production of fiber reinforced high performance concrete. The Scrap Tyre Steel Fibers (STSF) were obtained from dealers that extracted the fibers by burning the scrap tyres and were characterized. The effect of STSF was investigated on grade 50 concrete of 1:1.28:1.92 with water cement ratio of 0.39 at additions of STSF of 0, 0.5, 1.0, 1.5, 2.0 and 2.5% by volume of concrete. The fresh concrete was tested for slump while the hardened concrete was tested for compressive and splitting tensile strengths, respectively at curing ages of 3, 7, 28 and 56 days in accordance with standard procedure. The results indicate that slump decreased with increase in STSF, while compressive and splitting tensile strengths increased with increase in STSF up to 1.5% and reduction in strength with increase in STSF above 1.5%. 1.5% STSF was considered as the optimum dosage with a 28 days increase in compressive strength and splitting tensile strength of 12.3% and 43.8% respectively, of control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20performance%20concrete" title=" high performance concrete"> high performance concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=scrap%20tyre%20steel%20fiber" title=" scrap tyre steel fiber"> scrap tyre steel fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=splitting%20tensile%20strength" title=" splitting tensile strength"> splitting tensile strength</a> </p> <a href="https://publications.waset.org/abstracts/36478/influence-of-scrap-tyre-steel-fiber-on-mechanical-properties-of-high-performance-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">312</span> A Context-Centric Chatbot for Cryptocurrency Using the Bidirectional Encoder Representations from Transformers Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qitao%20Xie">Qitao Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingquan%20Zhang"> Qingquan Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaofei%20Zhang"> Xiaofei Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Di%20Tian"> Di Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruixuan%20Wen"> Ruixuan Wen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ting%20Zhu"> Ting Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping%20Yi"> Ping Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Li"> Xin Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inspired by the recent movement of digital currency, we are building a question answering system concerning the subject of cryptocurrency using Bidirectional Encoder Representations from Transformers (BERT). The motivation behind this work is to properly assist digital currency investors by directing them to the corresponding knowledge bases that can offer them help and increase the querying speed. BERT, one of newest language models in natural language processing, was investigated to improve the quality of generated responses. We studied different combinations of hyperparameters of the BERT model to obtain the best fit responses. Further, we created an intelligent chatbot for cryptocurrency using BERT. A chatbot using BERT shows great potential for the further advancement of a cryptocurrency market tool. We show that the BERT neural networks generalize well to other tasks by applying it successfully to cryptocurrency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bidirectional%20encoder%20representations%20from%20transformers" title="bidirectional encoder representations from transformers">bidirectional encoder representations from transformers</a>, <a href="https://publications.waset.org/abstracts/search?q=BERT" title=" BERT"> BERT</a>, <a href="https://publications.waset.org/abstracts/search?q=chatbot" title=" chatbot"> chatbot</a>, <a href="https://publications.waset.org/abstracts/search?q=cryptocurrency" title=" cryptocurrency"> cryptocurrency</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a> </p> <a href="https://publications.waset.org/abstracts/129261/a-context-centric-chatbot-for-cryptocurrency-using-the-bidirectional-encoder-representations-from-transformers-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">311</span> A Study on the Iterative Scheme for Stratified Shields Gamma Ray Buildup Factor Using Layer-Splitting Technique in Double-Layer Shield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sari%20F.%20Alkhatib">Sari F. Alkhatib</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Je%20Park"> Chang Je Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyuhong%20Roh"> Gyuhong Roh</a>, <a href="https://publications.waset.org/abstracts/search?q=Daeseong%20Jo"> Daeseong Jo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The iterative scheme which is used to treat buildup factors for stratified shields of three-layers or more is being investigated here using the layer-splitting technique. The second layer in a double-layer shield was split into two equivalent layers and the scheme was implemented on the new 'three-layer' shield configuration. The results of such manipulation for water-lead and water-iron shields combinations are presented here for 1 MeV photons. It was found that splitting the second layer introduces some deviation on the overall buildup factor. This expected deviation appeared to be higher in the case of low Z layer followed by high Z. However, the iterative scheme showed a great consistency and strong coherence with the introduced changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=build-up%20factor" title="build-up factor">build-up factor</a>, <a href="https://publications.waset.org/abstracts/search?q=iterative%20scheme" title=" iterative scheme"> iterative scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=stratified%20shields" title=" stratified shields"> stratified shields</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20protection" title=" radiation protection"> radiation protection</a> </p> <a href="https://publications.waset.org/abstracts/8373/a-study-on-the-iterative-scheme-for-stratified-shields-gamma-ray-buildup-factor-using-layer-splitting-technique-in-double-layer-shield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">576</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">310</span> Estimating Lost Digital Video Frames Using Unidirectional and Bidirectional Estimation Based on Autoregressive Time Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navid%20Daryasafar">Navid Daryasafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nima%20Farshidfar"> Nima Farshidfar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, we make attempt to hide error in video with an emphasis on the time-wise use of autoregressive (AR) models. To resolve this problem, we assume that all information in one or more video frames is lost. Then, lost frames are estimated using analogous Pixels time information in successive frames. Accordingly, after presenting autoregressive models and how they are applied to estimate lost frames, two general methods are presented for using these models. The first method which is the same standard method of autoregressive models estimates lost frame in unidirectional form. Usually, in such condition, previous frames information is used for estimating lost frame. Yet, in the second method, information from the previous and next frames is used for estimating the lost frame. As a result, this method is known as bidirectional estimation. Then, carrying out a series of tests, performance of each method is assessed in different modes. And, results are compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=error%20steganography" title="error steganography">error steganography</a>, <a href="https://publications.waset.org/abstracts/search?q=unidirectional%20estimation" title=" unidirectional estimation"> unidirectional estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=bidirectional%20estimation" title=" bidirectional estimation"> bidirectional estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=AR%20linear%20estimation" title=" AR linear estimation"> AR linear estimation</a> </p> <a href="https://publications.waset.org/abstracts/14175/estimating-lost-digital-video-frames-using-unidirectional-and-bidirectional-estimation-based-on-autoregressive-time-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">540</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">309</span> Bidirectional Dynamic Time Warping Algorithm for the Recognition of Isolated Words Impacted by Transient Noise Pulses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Tamulevi%C4%8Dius">G. Tamulevičius</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Serackis"> A. Serackis</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Sledevi%C4%8D"> T. Sledevič</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Navakauskas"> D. Navakauskas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We consider the biggest challenge in speech recognition – noise reduction. Traditionally detected transient noise pulses are removed with the corrupted speech using pulse models. In this paper we propose to cope with the problem directly in Dynamic Time Warping domain. Bidirectional Dynamic Time Warping algorithm for the recognition of isolated words impacted by transient noise pulses is proposed. It uses simple transient noise pulse detector, employs bidirectional computation of dynamic time warping and directly manipulates with warping results. Experimental investigation with several alternative solutions confirms effectiveness of the proposed algorithm in the reduction of impact of noise on recognition process – 3.9% increase of the noisy speech recognition is achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transient%20noise%20pulses" title="transient noise pulses">transient noise pulses</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20reduction" title=" noise reduction"> noise reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20time%20warping" title=" dynamic time warping"> dynamic time warping</a>, <a href="https://publications.waset.org/abstracts/search?q=speech%20recognition" title=" speech recognition"> speech recognition</a> </p> <a href="https://publications.waset.org/abstracts/7831/bidirectional-dynamic-time-warping-algorithm-for-the-recognition-of-isolated-words-impacted-by-transient-noise-pulses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">559</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">308</span> Effect of Noise Reduction Algorithms on Temporal Splitting of Speech Signal to Improve Speech Perception for Binaural Hearing Aids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajani%20S.%20Pujar">Rajani S. Pujar</a>, <a href="https://publications.waset.org/abstracts/search?q=Pandurangarao%20N.%20Kulkarni"> Pandurangarao N. Kulkarni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increased temporal masking affects the speech perception in persons with sensorineural hearing impairment especially under adverse listening conditions. This paper presents a cascaded scheme, which employs a noise reduction algorithm as well as temporal splitting of the speech signal. Earlier investigations have shown that by splitting the speech temporally and presenting alternate segments to the two ears help in reducing the effect of temporal masking. In this technique, the speech signal is processed by two fading functions, complementary to each other, and presented to left and right ears for binaural dichotic presentation. In the present study, half cosine signal is used as a fading function with crossover gain of 6 dB for the perceptual balance of loudness. Temporal splitting is combined with noise reduction algorithm to improve speech perception in the background noise. Two noise reduction schemes, namely spectral subtraction and Wiener filter are used. Listening tests were conducted on six normal-hearing subjects, with sensorineural loss simulated by adding broadband noise to the speech signal at different signal-to-noise ratios (∞, 3, 0, and -3 dB). Objective evaluation using PESQ was also carried out. The MOS score for VCV syllable /asha/ for SNR values of ∞, 3, 0, and -3 dB were 5, 4.46, 4.4 and 4.05 respectively, while the corresponding MOS scores for unprocessed speech were 5, 1.2, 0.9 and 0.65, indicating significant improvement in the perceived speech quality for the proposed scheme compared to the unprocessed speech. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MOS" title="MOS">MOS</a>, <a href="https://publications.waset.org/abstracts/search?q=PESQ" title=" PESQ"> PESQ</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20subtraction" title=" spectral subtraction"> spectral subtraction</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20splitting" title=" temporal splitting"> temporal splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=wiener%20filter" title=" wiener filter"> wiener filter</a> </p> <a href="https://publications.waset.org/abstracts/94278/effect-of-noise-reduction-algorithms-on-temporal-splitting-of-speech-signal-to-improve-speech-perception-for-binaural-hearing-aids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">307</span> Polystyrene Paste as a Substitute for a Portland Cement: A Solution to the Nigerian Dilemma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lanre%20Oluwafemi%20Akinyemi">Lanre Oluwafemi Akinyemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reduction of limestone to cement in Nigeria is expensive and requires huge amounts of energy. This significantly affects the cost of cement. Concrete is heavy: a cubic foot of it weighs about 150 lbs. and a cubic yard is about 4000 lbs. Thus a ready-mix truck with 9 cubic yards is carrying 36,000 lbs excluding the weight of the truck itself, thereby accumulating cost for also manufacturers. Therein lies the need to find a substitute for cement by using the polystyrene paste that benefits both the manufactures and the consumers. Polystyrene Paste Constructional Cement (PPCC), a patented material obtained by dissolving Waste EPS in volatile organic solvent, has recently been identified as a suitable binder/cement for construction and building material production. This paper illustrates the procedures of a test experiment undertaken to determine the splitting tensile strength of PPCC mortar compared to that of OPC (Ordinary Portland Cement). Expanded polystyrene was dissolved in gasoline to form a paste referred to as Polystyrene Paste Constructional Cement (PPCC). Mortars of mix ratios 1:4, 1:5, 1:6, 1:7 (PPCC: fine aggregate) batched by volume were used to produce 50mm x 100mm cylindrical PPCC mortar splitting tensile strength specimens. The control experiment was done by creating another series of cylindrical OPC mortar splitting tensile strength specimens following the same mix ratio used earlier. The PPCC cylindrical splitting tensile strength specimens were left to air-set, and the ones made with Ordinary Portland Cement (OPC) were demoded after 24 hours and cured in water. The cylindrical PPCC splitting tensile strength specimens were tested at 28 days and compared with those of the Ordinary Portland cement splitting tensile strength specimens. The result shows that hence for this two mixes, PPCC exhibits a better binding property than the OPC. With this my new invention I recommend the use of PPCC as a substitute for a Portland cement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polystyrene%20paste" title="polystyrene paste">polystyrene paste</a>, <a href="https://publications.waset.org/abstracts/search?q=Portland%20cement" title=" Portland cement"> Portland cement</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a>, <a href="https://publications.waset.org/abstracts/search?q=mortar" title=" mortar"> mortar</a> </p> <a href="https://publications.waset.org/abstracts/82175/polystyrene-paste-as-a-substitute-for-a-portland-cement-a-solution-to-the-nigerian-dilemma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">306</span> Magnetic Field Effects on Parabolic Graphene Quantum Dots with Topological Defects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Defne%20Akay">Defne Akay</a>, <a href="https://publications.waset.org/abstracts/search?q=Bekir%20S.%20Kandemir"> Bekir S. Kandemir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we investigate the low-lying energy levels of the two-dimensional parabolic graphene quantum dots (GQDs) in the presence of topological defects with long range Coulomb impurity and subjected to an external uniform magnetic field. The low-lying energy levels of the system are obtained within the framework of the perturbation theory. We theoretically demonstrate that a valley splitting can be controlled by geometrical parameters of the graphene quantum dots and/or by tuning a uniform magnetic field, as well as topological defects. It is found that, for parabolic graphene dots, the valley splitting occurs due to the introduction of spatial confinement. The corresponding splitting is enhanced by the introduction of a uniform magnetic field and it increases by increasing the angle of the cone in subcritical regime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coulomb%20impurity" title="coulomb impurity">coulomb impurity</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20cones" title=" graphene cones"> graphene cones</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20quantum%20dots" title=" graphene quantum dots"> graphene quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20defects" title=" topological defects"> topological defects</a> </p> <a href="https://publications.waset.org/abstracts/43687/magnetic-field-effects-on-parabolic-graphene-quantum-dots-with-topological-defects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">305</span> The Role of Substrate-Nozzle Distance in Atomic Nebulizers in the Photoelectrochemical Water Splitting Performance of ZnO Nanorods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lukman%20Andi%20Priyatna">Lukman Andi Priyatna</a>, <a href="https://publications.waset.org/abstracts/search?q=Vivi%20Fauzia"> Vivi Fauzia</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferry%20Anggoro%20Ardy%20Nugroho"> Ferry Anggoro Ardy Nugroho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc oxide (ZnO) based nanostructures are ubiquitous in applications due to their favourable physicochemical properties and ease of fabrication. One widely accessible route to synthesize ZnO nanorods, which show promising performance in e.g. photoelectrochemical water splitting, is hydrothermal growth of ZnO seeds, obtained via an atomic nebulizer. Despite its popularity, study on the impact of the synthesis parameters in atomic nebulizer on the performance of the synthesized ZnO nanostructures is lacking. This study presents an investigation on the impact of the distance between substrates and atomic nebulizer nozzle on the photoelectrochemical water splitting performance of ZnO nanorods. Adjusting such a distance reveals an optimum separation which results in nanostructures with highest absorbance. Such high absorbance translates into improved photoelectrochemistry, as evaluated by higher photocurrent density, from 0.11 mA/cm² to 0.14 mA/cm² and higher Applied Bias Photon-to-Current Efficiency (ABPE) from 0.12% to 0.14%. These results underscore the importance of understanding and optimizing the experimental parameters during ZnO nanostructure synthesis. In a broader context, it advertises the need to carefully assess the corresponding fabrication parameters to optimize the performance of the obtained nanostructures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomic%20nebulizer" title="atomic nebulizer">atomic nebulizer</a>, <a href="https://publications.waset.org/abstracts/search?q=photocurrent%20density" title=" photocurrent density"> photocurrent density</a>, <a href="https://publications.waset.org/abstracts/search?q=photoelectrochemical%20water%20splitting" title=" photoelectrochemical water splitting"> photoelectrochemical water splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO%20nanorods" title=" ZnO nanorods"> ZnO nanorods</a> </p> <a href="https://publications.waset.org/abstracts/190248/the-role-of-substrate-nozzle-distance-in-atomic-nebulizers-in-the-photoelectrochemical-water-splitting-performance-of-zno-nanorods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">31</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">304</span> An Application of Bidirectional Option Contract to Coordinate a Dyadic Fashion Apparel Supply Chain </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Adhikari">Arnab Adhikari</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Bisi"> Arnab Bisi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the inception, the fashion apparel supply chain is facing the problem of high demand uncertainty. Often the demand volatility compels the corresponding supply chain member to incur substantial holding cost and opportunity cost in case of the overproduction and the underproduction scenario, respectively. It leads to an uncoordinated fashion apparel supply chain. There exist several scholarly works to achieve coordination in the fashion apparel supply chain by employing the different contracts such as the buyback contract, the revenue sharing contract, the option contract, and so on. Specially, the application of option contract in the apparel industry becomes prevalent with the changing global scenario. Exploration of existing literature related to the option contract reveals that most of the research works concentrate on the one direction demand adjustment i.e. either to match the demand upwards or downwards. Here, we present a holistic approach to coordinate a dyadic fashion apparel supply chain comprising one manufacturer and one retailer with the help of bidirectional option contract. We show a combination of wholesale price contract and bidirectional option contract can coordinate the under expanded supply chain. We also propose a framework that captures the variation of the apparel retailer’s order quantity and the apparel manufacturer’s production quantity with the changing exercise price for the different ranges of the option price. We analytically explore that corresponding cost parameters of the supply chain members along with the nature of demand distribution play an instrumental role in the coordination as well as the retailer’s ordering decision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fashion%20apparel%20supply%20chain" title="fashion apparel supply chain">fashion apparel supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20coordination" title=" supply chain coordination"> supply chain coordination</a>, <a href="https://publications.waset.org/abstracts/search?q=wholesale%20price%20contract" title=" wholesale price contract"> wholesale price contract</a>, <a href="https://publications.waset.org/abstracts/search?q=bidirectional%20option%20contract" title=" bidirectional option contract"> bidirectional option contract</a> </p> <a href="https://publications.waset.org/abstracts/38689/an-application-of-bidirectional-option-contract-to-coordinate-a-dyadic-fashion-apparel-supply-chain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">303</span> Global Mittag-Leffler Stability of Fractional-Order Bidirectional Associative Memory Neural Network with Discrete and Distributed Transmission Delays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swati%20Tyagi">Swati Tyagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Abbas"> Syed Abbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fractional-order Hopfield neural networks are generally used to model the information processing among the interacting neurons. To show the constancy of the processed information, it is required to analyze the stability of these systems. In this work, we perform Mittag-Leffler stability for the corresponding Caputo fractional-order bidirectional associative memory (BAM) neural networks with various time-delays. We derive sufficient conditions to ensure the existence and uniqueness of the equilibrium point by using the theory of topological degree theory. By applying the fractional Lyapunov method and Mittag-Leffler functions, we derive sufficient conditions for the global Mittag-Leffler stability, which further imply the global asymptotic stability of the network equilibrium. Finally, we present two suitable examples to show the effectiveness of the obtained results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bidirectional%20associative%20memory%20neural%20network" title="bidirectional associative memory neural network">bidirectional associative memory neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=existence%20and%20uniqueness" title=" existence and uniqueness"> existence and uniqueness</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional-order" title=" fractional-order"> fractional-order</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function" title=" Lyapunov function"> Lyapunov function</a>, <a href="https://publications.waset.org/abstracts/search?q=Mittag-Leffler%20stability" title=" Mittag-Leffler stability"> Mittag-Leffler stability</a> </p> <a href="https://publications.waset.org/abstracts/52374/global-mittag-leffler-stability-of-fractional-order-bidirectional-associative-memory-neural-network-with-discrete-and-distributed-transmission-delays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">302</span> Time Varying Crustal Anisotropy at Whakaari/White Island Volcano</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Dagim%20Yoseph">M. Dagim Yoseph</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Savage"> M. K. Savage</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20D.%20Jolly"> A. D. Jolly</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20J.%20Ebinger"> C. J. Ebinger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whakaari/White Island has been the most active New Zealand volcano in the 21st century, producing small phreatic and phreatomagmatic eruptions, which are hard to predict. The most recent eruption occurred in 2019, tragically claiming the lives of 22 individuals and causing numerous injuries. We employed shear-wave splitting analyses to investigate variations in anisotropy between 2018 and 2020, during quiescence, unrest, and the eruption. We examined spatial and temporal variations in 3499 shear-wave splitting and 2656 V_p/V_s ratio measurements. Comparing shear-wave splitting parameters from similar earthquake paths across different times indicates that the observed temporal changes are unlikely to result from variations in earthquake paths through media with spatial variability. Instead, these changes may stem from variations in anisotropy over time, likely caused by changes in crack alignment due to stress or varying fluid content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=background%20seismic%20waves" title="background seismic waves">background seismic waves</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20orientations" title=" fast orientations"> fast orientations</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20anisotropy" title=" seismic anisotropy"> seismic anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=V_p%2FV_s%20ratio" title=" V_p/V_s ratio"> V_p/V_s ratio</a> </p> <a href="https://publications.waset.org/abstracts/185200/time-varying-crustal-anisotropy-at-whakaariwhite-island-volcano" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">301</span> Evaluation of Fresh, Strength and Durability Properties of Self-Compacting Concrete Incorporating Bagasse Ash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Haseeb%20Wani">Abdul Haseeb Wani</a>, <a href="https://publications.waset.org/abstracts/search?q=Shruti%20Sharma"> Shruti Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafat%20Siddique"> Rafat Siddique</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Self-compacting concrete is an engineered concrete that flows and de-airs without additional energy input. Such concrete requires a high slump which can be achieved by the addition of superplasticizers to the concrete mix. In the present work, bagasse ash is utilised as a replacement of cement in self-compacting concrete. This serves the purpose of both land disposal and environmental concerns related to the disposal of bagasse ash. Further, an experimental program was carried out to study the fresh, strength, and durability properties of self-compacting concrete made with bagasse ash. The mixes were prepared with four percentages (0, 5, 10 and 15) of bagasse ash as partial replacement of cement. Properties investigated were; Slump-flow, V-funnel and L-box, Compressive strength, Splitting tensile strength, Chloride-ion penetration resistance and Water absorption. Compressive and splitting tensile strength tests were conducted at the age of 7 and 28 days. Rapid chloride-ion permeability test was carried at the age of 28 days and water absorption test was carried out at the age of 7 days after initial curing of 28 days. Test results showed that there is an increase in the compressive strength and splitting tensile strength of the concrete specimens having up to 10% replacement level, however, there is a slight decrease at 15% level of replacement. Resistance to chloride-ion penetration of the specimens increased as the percentage of replacement was increased. The charge passed in all the specimens containing bagasse ash was lower than that of the specimen without bagasse ash. Water absorption of the specimens decreased up to 10% replacement level and increased at 15% level of replacement. Hence, it can be concluded that optimum level of replacement of cement with bagasse ash in self-compacting concrete comes out to be 10%; at which the self-compacting concrete has satisfactory flow characteristics (as per the European guidelines), improved compressive and splitting tensile strength and better durability properties as compared to the control mix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bagasse%20ash" title="bagasse ash">bagasse ash</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=self-compacting%20concrete" title=" self-compacting concrete"> self-compacting concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=splitting%20tensile%20strength" title=" splitting tensile strength"> splitting tensile strength</a> </p> <a href="https://publications.waset.org/abstracts/80357/evaluation-of-fresh-strength-and-durability-properties-of-self-compacting-concrete-incorporating-bagasse-ash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bi-directional%20splitting&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bi-directional%20splitting&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bi-directional%20splitting&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bi-directional%20splitting&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bi-directional%20splitting&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bi-directional%20splitting&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bi-directional%20splitting&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bi-directional%20splitting&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bi-directional%20splitting&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bi-directional%20splitting&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bi-directional%20splitting&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10