CINXE.COM

Search results for: frequency selective surface (FSS)

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: frequency selective surface (FSS)</title> <meta name="description" content="Search results for: frequency selective surface (FSS)"> <meta name="keywords" content="frequency selective surface (FSS)"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="frequency selective surface (FSS)" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="frequency selective surface (FSS)"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10889</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: frequency selective surface (FSS)</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10889</span> Fabricating an Infrared-Radar Compatible Stealth Surface with Frequency Selective Surface and Structured Radar-Absorbing Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qingtao%20Yu">Qingtao Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Guojia%20Ma"> Guojia Ma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Approaches to microwave absorption and low infrared emissivity are often conflicting, as the low-emissivity layer, usually consisting of metals, increases the reflection of microwaves, especially in high frequency. In this study, an infrared-radar compatible stealth surface was fabricated by first depositing a layer of low-emissivity metal film on the surface of a layer of radar-absorbing material. Then, ultrafast laser was used to generate patterns on the metal film, forming a frequency selective surface. With proper pattern design, while the majority of the frequency selective surface is covered by the metal film, it has relatively little influence on the reflection of microwaves between 2 to 18 GHz. At last, structures on the radar-absorbing layer were fabricated by ultra-fast laser to further improve the absorbing bandwidth of the microwave. This study demonstrates that the compatibility between microwave absorption and low infrared emissivity can be achieved by properly designing patterns and structures on the metal film and the radar-absorbing layer accordingly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20selective%20surface" title="frequency selective surface">frequency selective surface</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared-radar%20compatible" title=" infrared-radar compatible"> infrared-radar compatible</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20infrared%20emissivity" title=" low infrared emissivity"> low infrared emissivity</a>, <a href="https://publications.waset.org/abstracts/search?q=radar-absorbing%20material" title=" radar-absorbing material"> radar-absorbing material</a>, <a href="https://publications.waset.org/abstracts/search?q=patterns" title=" patterns"> patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=structures" title=" structures"> structures</a> </p> <a href="https://publications.waset.org/abstracts/115550/fabricating-an-infrared-radar-compatible-stealth-surface-with-frequency-selective-surface-and-structured-radar-absorbing-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10888</span> A Dual Band Microstrip Patch Antenna for WLAN and WiMAX Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Krachodnok">P. Krachodnok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the design of a multiple U-slotted microstrip patch antenna with frequency selective surface (FSS) as a superstrate for WLAN and WiMAX applications is presented. The proposed antenna is designed by using substrate FR4 having permittivity of 4.4 and air substrate. The characteristics of the antenna are designed and evaluated the performance of modelled antenna using CST Microwave studio. The proposed antenna dual resonant frequency has been achieved in the band of 2.37-2.55 GHz and 3.4-3.6 GHz. Because of the impact of FSS superstrate, it is found that the bandwidths have been improved from 6.12% to 7.35 % and 3.7% to 5.7% at resonant frequencies 2.45 GHz and 3.5 GHz, respectively. The maximum gain at the resonant frequency of 2.45 and 3.5 GHz are 9.3 and 11.33 dBi, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-slotted%20antenna" title="multi-slotted antenna">multi-slotted antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=microstrip%20patch%20antenna" title=" microstrip patch antenna"> microstrip patch antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20selective%20surface" title=" frequency selective surface"> frequency selective surface</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20magnetic%20conduction" title=" artificial magnetic conduction"> artificial magnetic conduction</a> </p> <a href="https://publications.waset.org/abstracts/12024/a-dual-band-microstrip-patch-antenna-for-wlan-and-wimax-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10887</span> A Horn Antenna Loaded with FSS of Crossed Dipoles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Mostafa%20El-Mongy">Ibrahim Mostafa El-Mongy</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelmegid%20Allam"> Abdelmegid Allam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article analysis and investigation of the effect of loading a horn antenna with frequency selective surface (FSS) of crossed dipoles of finite size is presented. It is fabricated on Rogers RO4350 (lossy) of relative permittivity 3.33, thickness 1.524 mm and loss tangent 0.004. Basically it is applied for filtering and minimizing the interference and noise in the desired band. The filtration is carried out using a finite FSS of crossed dipoles of overall dimensions 98x58 mm2. The filtration is shown by limiting the transmission bandwidth from 4 GHz (8–12 GHz) to 0.25 GHz (10.75–11 GHz). It is simulated using CST MWS and measured using network analyzer. There is a good agreement between the simulated and measured results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna" title="antenna">antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=filtenna" title=" filtenna"> filtenna</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20selective%20surface%20%28FSS%29" title=" frequency selective surface (FSS)"> frequency selective surface (FSS)</a>, <a href="https://publications.waset.org/abstracts/search?q=horn" title=" horn"> horn</a> </p> <a href="https://publications.waset.org/abstracts/2804/a-horn-antenna-loaded-with-fss-of-crossed-dipoles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10886</span> A Horn Antenna Loaded with SIW FSS of Crossed Dipoles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Mostafa%20El-Mongy">Ibrahim Mostafa El-Mongy</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelmegid%20Allam"> Abdelmegid Allam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article analysis and investigation of the effect of loading a horn antenna with substrate integrated waveguide frequency selective surface (SIW FSS) of crossed dipoles of finite size is presented. It is fabricated on Rogers RO4350 (lossy) of relative permittivity 3.33, thickness 1.524mm and loss tangent 0.004. This structure is called a filtering antenna (filtenna). Basically it is applied for filtering and minimizing the interference and noise in the desired band. The filtration is carried out using a finite SIW FSS of crossed dipoles of overall dimensions 98x58 mm2. The filtration is shown by limiting the transmission bandwidth from 4 GHz (8–12 GHz) to 0.3 GHz (0.955–0.985 GHz). It is simulated using CST MWS and measured using network analyzer. There is a good agreement between the simulated and measured results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna" title="antenna">antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=filtenna" title=" filtenna"> filtenna</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency-selective%20surface%20%28FSS%29" title=" frequency-selective surface (FSS)"> frequency-selective surface (FSS)</a>, <a href="https://publications.waset.org/abstracts/search?q=horn%20antennas" title=" horn antennas"> horn antennas</a> </p> <a href="https://publications.waset.org/abstracts/3165/a-horn-antenna-loaded-with-siw-fss-of-crossed-dipoles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10885</span> The Role of Sodium Alginate in the Selective Flotation of Chalcopyrite Against Pyrite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yufan%20Mu">Yufan Mu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The selective depression of pyrite in the flotation of copper minerals is difficult due to the activation of pyrite surface by copper ions. Novel depressants for pyrite are needed to responsibly extract copper resources for a greener and cleaner future. In this paper, the non-toxic sodium alginate was employed as a depressant to selectively separate chalcopyrite from pyrite in flotation using potassium amyl xanthate as the collector. The results from flotation tests showed that sodium alginate significantly depressed pyrite flotation while had slight influence on chalcopyrite flotation. The adsorption tests showed that the adsorption amount of sodium alginate on pyrite surface was much higher than that on chalcopyrite surface. The pre-adsorbed sodium alginate could effectively hinder the subsequent adsorption of collector on pyrite surface, thereby inhibiting pyrite flotation. The selective adsorption of sodium alginate on pyrite surface was caused by the interactions between the activating cuprous ions on pyrite surface and the carboxyl groups in sodium alginate. The paper shows that sodium alginate is a promising depressant for pyrite in the flotation of chalcopyrite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chalcopyrite%20flotation" title="chalcopyrite flotation">chalcopyrite flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrite%20depression" title=" pyrite depression"> pyrite depression</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20alginate" title=" sodium alginate"> sodium alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=copper-activated%20pyrite" title=" copper-activated pyrite"> copper-activated pyrite</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/165954/the-role-of-sodium-alginate-in-the-selective-flotation-of-chalcopyrite-against-pyrite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10884</span> Influence of Selected Finishing Technologies on the Roughness Parameters of Stainless Steel Manufactured by Selective Laser Melting Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Hajnys">J. Hajnys</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Pagac"> M. Pagac</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Petru"> J. Petru</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Stefek"> P. Stefek</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Mesicek"> J. Mesicek</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Kratochvil"> J. Kratochvil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The new progressive method of 3D metal printing SLM (Selective Laser Melting) is increasingly expanded into the normal operation. As a result, greater demands are placed on the surface quality of the parts produced in this way. The article deals with research of selected finishing methods (tumbling, face milling, sandblasting, shot peening and brushing) and their impact on the final surface roughness. The 20 x 20 x 7 mm produced specimens using SLM additive technology on the Renishaw AM400 were subjected to testing of these finishing methods by adjusting various parameters. Surface parameters of roughness Sa, Sz were chosen as the evaluation criteria and profile parameters Ra, Rz were used as additional measurements. Optical measurement of surface roughness was performed on Alicona Infinite Focus 5. An experiment conducted to optimize the surface roughness revealed, as expected, that the best roughness parameters were achieved through a face milling operation. Tumbling is particularly suitable for 3D printing components, as tumbling media are able to reach even complex shapes and, after changing to polishing bodies, achieve a high surface gloss. Surface quality after tumbling depends on the process time. Other methods with satisfactory results are shot peening and tumbling, which should be the focus of further research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20laser%20melting" title=" selective laser melting"> selective laser melting</a>, <a href="https://publications.waset.org/abstracts/search?q=SLM" title=" SLM"> SLM</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a> </p> <a href="https://publications.waset.org/abstracts/115882/influence-of-selected-finishing-technologies-on-the-roughness-parameters-of-stainless-steel-manufactured-by-selective-laser-melting-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10883</span> Use of Metamaterials Structures to Reduce the SAR in the Human Head</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hafawa%20Messaoudi">Hafawa Messaoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Taoufik%20%0D%0AAguili"> Taoufik Aguili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the rapid growth in the use of wireless communication systems, there has been a recent increase in public concern regarding the exposure of humans to Radio Frequency (RF) electromagnetic radiation. This is particularly evident in the case of mobile telephone handsets. Previously, the insertion of a ferrite sheet between the antenna and the human head, the use of conductive materials (such as aluminum), the use of metamaterials (SRR), frequency selective surface (FSS), and electromagnetic band gap (EBG) structures to design high performance devices were proposed as methods of reducing the SAR value. This paper aims to provide an investigation of the effectiveness of various available Specific Absorption Rate (SAR) reduction solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EBG" title="EBG">EBG</a>, <a href="https://publications.waset.org/abstracts/search?q=HIS" title=" HIS"> HIS</a>, <a href="https://publications.waset.org/abstracts/search?q=metamaterials" title=" metamaterials"> metamaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=SAR%20reduction" title=" SAR reduction"> SAR reduction</a> </p> <a href="https://publications.waset.org/abstracts/23091/use-of-metamaterials-structures-to-reduce-the-sar-in-the-human-head" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23091.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">526</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10882</span> Surface Integrity Improvement for Selective Laser Melting (SLM) Additive Manufacturing of C300 Parts Using Ball Burnishing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adrian%20Travieso%20Disotuar">Adrian Travieso Disotuar</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Antonio%20Travieso%20Rodriguez"> J. Antonio Travieso Rodriguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramon%20Jerez%20Mesa"> Ramon Jerez Mesa</a>, <a href="https://publications.waset.org/abstracts/search?q=Montserrat%20Vilaseca"> Montserrat Vilaseca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of the non-vibration-assisted and vibration-assisted ball burnishing on both the surface and mechanical properties of C300 obtained by Selective Laser Melting additive manufacturing technology is studied in this paper. Different vibration amplitudes preloads, and burnishing strategies were tested. A topographical analysis was performed to determine the surface roughness of the different conditions. Besides, micro tensile tests were carried out in situ on Scanning Electron Microscopy to elucidate the post-treatment effects on damaging mechanisms. Experiments show that vibration-assisted ball burnishing significantly enhances mechanical properties compared to the non-vibration-assisted method. Moreover, it was found that the surface roughness was significantly improved with respect to the reference surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=ball%20burnishing" title=" ball burnishing"> ball burnishing</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=metals" title=" metals"> metals</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a> </p> <a href="https://publications.waset.org/abstracts/174860/surface-integrity-improvement-for-selective-laser-melting-slm-additive-manufacturing-of-c300-parts-using-ball-burnishing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10881</span> SPPO-Based Cation Exchange Membranes with a Positively Charged Layer for Cation Fractionation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noor%20Ul%20Afsar">Noor Ul Afsar</a>, <a href="https://publications.waset.org/abstracts/search?q=Wengen%20Ji"> Wengen Ji</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Wu"> Bin Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20A.%20Shehzad"> Muhammad A. Shehzad</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Ge"> Liang Ge</a>, <a href="https://publications.waset.org/abstracts/search?q=Tongwen%20Xu"> Tongwen Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The synthesis of monovalent cation perm-selective membranes (MCPMs) to efficiently discriminate amongst cations from seawater is of great importance for several industrial applications. However, a technical approach is highly desired to construct MCPMs to obtain a high ionic flux and sustain perm-selectivity simultaneously. In the present work, the thickness of the quaternized poly (2, 6-dimethyl-1, 4-phenylene oxide) (QPPO) layer on the surface of the SPPO-PVA (SPVA) composite membrane was adjusted using a facile procedure to achieve high permselectivity without scarifying the ionic flux. The thickness of the selective layer was precisely controlled using various concentrations of the QPPO solution. By the introduction of the cationic layer on the SPVA membrane, the monovalent cation can be separated from the divalent cation by their difference in charge density. The influence of the selective barrier (thickness) endows MCPMs with high perm-selectivity up to 12.7 for 0.1 mol L⁻¹ Li⁺/Mg²⁺ system, which is very satisfactory for polymeric membranes. The fabricated membranes have low electrical resistance and high limiting current density (iₗᵢₘ). Keeping in view the ED results, the prepared membranes with selective surface layers could be a viable candidate for Li⁺ selective separation from divalent cation Mg²⁺. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=monovalent%20cation%20perm-selective%20membranes" title="monovalent cation perm-selective membranes">monovalent cation perm-selective membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=cation%20fractionation" title=" cation fractionation"> cation fractionation</a>, <a href="https://publications.waset.org/abstracts/search?q=perm-selectivity" title=" perm-selectivity"> perm-selectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20flux" title=" ionic flux"> ionic flux</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodialysis" title=" electrodialysis"> electrodialysis</a> </p> <a href="https://publications.waset.org/abstracts/173307/sppo-based-cation-exchange-membranes-with-a-positively-charged-layer-for-cation-fractionation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10880</span> Channel Estimation for Orthogonal Frequency Division Multiplexing Systems over Doubly Selective Channels Base on DCS-DCSOMP Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Linyu%20Wang">Linyu Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Furui%20Huo"> Furui Huo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianhong%20Xiang"> Jianhong Xiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Doppler shift generated by high-speed movement and multipath effects in the channel are the main reasons for the generation of a time-frequency doubly-selective (DS) channel. There is severe inter-carrier interference (ICI) in the DS channel. Channel estimation for an orthogonal frequency division multiplexing (OFDM) system over a DS channel is very difficult. The simultaneous orthogonal matching pursuit algorithm under distributed compressive sensing theory (DCS-SOMP) has been used in channel estimation for OFDM systems over DS channels. However, the reconstruction accuracy of the DCS-SOMP algorithm is not high enough in the low SNR stage. To solve this problem, in this paper, we propose an improved DCS-SOMP algorithm based on the inner product difference comparison operation (DCS-DCSOMP). The reconstruction accuracy is improved by increasing the number of candidate indexes and designing the comparison conditions of inner product difference. We combine the DCS-DCSOMP algorithm with the basis expansion model (BEM) to reduce the complexity of channel estimation. Simulation results show the effectiveness of the proposed algorithm and its advantages over other algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=OFDM" title="OFDM">OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=doubly%20selective" title=" doubly selective"> doubly selective</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20estimation" title=" channel estimation"> channel estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=compressed%20sensing" title=" compressed sensing"> compressed sensing</a> </p> <a href="https://publications.waset.org/abstracts/162873/channel-estimation-for-orthogonal-frequency-division-multiplexing-systems-over-doubly-selective-channels-base-on-dcs-dcsomp-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10879</span> Terahertz Surface Plasmon in Carbon Nanotube Dielectric Interface via Amplitude Modulated Laser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monika%20Singh">Monika Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A carbon nanotube thin film coated on dielectric interface is employed to produce THz surface plasma wave (SPW). The carbon nanotube has its plasmon frequency in the THz range. The SPW field falls off away from the metal film both inside the dielectric as well as in free space. An amplitude modulated laser pulse normally incident, from free space on slow wave structure, exert a modulation frequency ponderomotive force on the free electrons of the CNT film and resonantly excite the THz surface plasma wave at the modulation frequency. Carbon nanotube based plasmonic nano-structure materials provides potentially more versatile approach to tightly confined surface modes in the THz range in comparison to noble metals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmons" title="surface plasmons">surface plasmons</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20waves" title=" surface waves"> surface waves</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=THz%20radiation" title=" THz radiation"> THz radiation</a> </p> <a href="https://publications.waset.org/abstracts/65604/terahertz-surface-plasmon-in-carbon-nanotube-dielectric-interface-via-amplitude-modulated-laser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10878</span> Selective Oxidation of 6Mn-2Si Advanced High Strength Steels during Intercritical Annealing Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maedeh%20Pourmajidian">Maedeh Pourmajidian</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20R.%20McDermid"> Joseph R. McDermid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advanced High Strength Steels are revolutionizing both the steel and automotive industries due to their high specific strength and ability to absorb energy during crash events. This allows manufacturers to design vehicles with significantly increased fuel efficiency without compromising passenger safety. To maintain the structural integrity of the fabricated parts, they must be protected from corrosion damage through continuous hot-dip galvanizing process, which is challenging due to selective oxidation of Mn and Si on the surface of this AHSSs. The effects of process atmosphere oxygen partial pressure and small additions of Sn on the selective oxidation of a medium-Mn C-6Mn-2Si advanced high strength steel was investigated. Intercritical annealing heat treatments were carried out at 690˚C in an N2-5%H2 process atmosphere under dew points ranging from –50˚C to +5˚C. Surface oxide chemistries, morphologies, and thicknesses were determined at a variety of length scales by several techniques, including SEM, TEM+EELS, and XPS. TEM observations of the sample cross-sections revealed the transition to internal oxidation at the +5˚C dew point. EELS results suggested that the internal oxides network was composed of a multi-layer oxide structure with varying chemistry from oxide core towards the outer part. The combined effect of employing a known surface active element as a function of process atmosphere on the surface structure development and the possible impact on reactive wetting of the steel substrates by the continuous galvanizing zinc bath will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3G%20AHSS" title="3G AHSS">3G AHSS</a>, <a href="https://publications.waset.org/abstracts/search?q=hot-dip%20galvanizing" title=" hot-dip galvanizing"> hot-dip galvanizing</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20partial%20pressure" title=" oxygen partial pressure"> oxygen partial pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20oxidation" title=" selective oxidation"> selective oxidation</a> </p> <a href="https://publications.waset.org/abstracts/58103/selective-oxidation-of-6mn-2si-advanced-high-strength-steels-during-intercritical-annealing-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10877</span> Selective Oxidation of Ammonia to Nitrogen over Nickel Oxide-hydroxide /Graphite Prepared with an Electro Deposition Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marzieh%20Joda">Marzieh Joda</a>, <a href="https://publications.waset.org/abstracts/search?q=Narges%20Fallah"> Narges Fallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Neda%20Afsham"> Neda Afsham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphite-supported two different of morphology α and β -Ni (OH)₂ electrodes were prepared by electrochemical deposition at appropriate potentials with regard to Ni (II)/Ni (III) redox couple under alkaline and acidic conditions, respectively, for selective oxidation of ammonia to nitrogen in the direct electro-oxidation process. Cyclic voltammetry (CV) of the electrolyte containing NH₃ indicated mediation of electron transfer by Ni (OH)₂ and the electrode surface was analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectrometer (RS), and X-ray photoelectron spectroscopy (XPS). Results of surface characterization indicated the presence of α polymorphs which is the stable phase of Ni (OH)₂ /Graphite. Cyclic voltammograms gave information on the nature of electron transfer between nitrogen species and working electrode and revealed that the potential has depended on both nature ammonia oxidation and that of concentration. The mechanism of selective ammonia conversion to nitrogen and byproducts, namely NO₂- and NO₃- was established by Cyclic voltammograms and current efficiency. The removal efficiency and selective conversion of ammonia (0.1 M KNO₃ + 0.01 M Ni(NO₃)₂, pH 11, 250°C) on Nickel Oxide-hydroxide /Graphite was determined based on potential controlled experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Electro%20deposition" title="Electro deposition">Electro deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=Nickel%20oxide-hydroxide" title=" Nickel oxide-hydroxide"> Nickel oxide-hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=Nitrogen%20selectivity" title=" Nitrogen selectivity"> Nitrogen selectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammonia%20oxidation" title=" Ammonia oxidation"> Ammonia oxidation</a> </p> <a href="https://publications.waset.org/abstracts/132084/selective-oxidation-of-ammonia-to-nitrogen-over-nickel-oxide-hydroxide-graphite-prepared-with-an-electro-deposition-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10876</span> The Need for Selective Credit Policy Implementation: Case of Croatia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Drago%20Jakovcevic">Drago Jakovcevic</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihovil%20Andelinovic"> Mihovil Andelinovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Igor%20Husak"> Igor Husak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to explore the economic circumstances in which the selective credit policy, the least used instrument of four types of instruments on disposal to central banks, should be used. The most significant example includes the use of selective credit policies in response to the emergence of the global financial crisis by the FED. Specifics of the potential use of selective credit policies as the instigator of economic growth in Croatia, a small open economy, are determined by high euroization of financial system, fixed exchange rate and long-term trend growth of external debt that is related to the need to maintain high levels of foreign reserves. In such conditions, the classic forms of selective credit policies are unsuitable for the introduction. Several alternative approaches to implement selective credit policies are examined in this paper. Also, thorough analysis of distribution of selective monetary policy loans among economic sectors in Croatia is conducted in order to minimize the risk of investing funds and maximize the return, in order to influence the GDP growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=global%20crisis" title="global crisis">global crisis</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20credit%20policy" title=" selective credit policy"> selective credit policy</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20open%20economy" title=" small open economy"> small open economy</a>, <a href="https://publications.waset.org/abstracts/search?q=Croatia" title=" Croatia"> Croatia</a> </p> <a href="https://publications.waset.org/abstracts/10529/the-need-for-selective-credit-policy-implementation-case-of-croatia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10875</span> TA6V Selective Laser Melting as an Innovative Method Produce Complex Shapes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Kami%C5%84ski">Rafał Kamiński</a>, <a href="https://publications.waset.org/abstracts/search?q=Joel%20Rech"> Joel Rech</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Bertrand"> Philippe Bertrand</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Desrayaud"> Christophe Desrayaud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing is a hot topic for industry. Among the additive techniques, Selective Laser Melting (SLM) becomes even more popular, especially for making parts for aerospace applications, thanks to its design freedom (customized and light structures) and its reduced time to market. However, some functional surfaces have to be machined to achieve small tolerances and low surface roughness to fulfill industry specifications. The complex shapes designed for SLM (ex: titanium turbine blades) necessitate the use of ball end milling operations like in the conventional process after forging. However, the metallurgical state of TA6V is very different from the one obtained usually from forging, because of the laser sintering layer by layer. So this paper aims to investigate the influence of new TA6V metallurgies produced by SLM on the machinability in ball end milling. Machinability is considered as the property of a material to obtain easily and by a cheap way a functional surface. This means, for instance, the property to limit cutting tool wear rate and to get smooth surfaces. So as to reach this objective, SLM parts have been produced and heat treated with various conditions leading to various metallurgies that are compared with a standard equiaxed α+β wrought microstructure. The machinability is analyzed by measuring surface roughness, tool wear and cutting forces for a range of cutting conditions (depth of cut 'ap', feed per tooth 'fz', spindle speed 'N') in accordance with industrial practices. This work has revealed that TA6V produced by SLM can lead to a better machinability that standard wrought alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ball%20milling" title="ball milling">ball milling</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20laser%20melting" title=" selective laser melting"> selective laser melting</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/59147/ta6v-selective-laser-melting-as-an-innovative-method-produce-complex-shapes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10874</span> Surface Modified Electrospun Expanded Polystyrene Fibre with Superhydrophobic/Superoleophillic Properties as Potential Oil Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Oluwagbemiga%20Alayande">S. Oluwagbemiga Alayande</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Olugbenga%20Dare"> E. Olugbenga Dare</a>, <a href="https://publications.waset.org/abstracts/search?q=Titus%20A.%20M.%20Msagati"> Titus A. M. Msagati</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kehinde%20Akinlabi"> A. Kehinde Akinlabi </a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20O.%20Aiyedun"> P. O. Aiyedun </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a cheap route procedure for the preparation of a potential oil membrane with superhydrophobic /superoleophillic properties for selective removal of crude oil from water. In these study, expanded polystyrene (EPS) was electrospun to produce beaded fibers in which zeolite was introduced to the polymer matrix in order to impart rough surface to non-beaded fiber. Films of the EPS and EPS/Zeolite solutions were also made for comparative study. The electrospun fibers EPS, EPS/Zeolite and resultant films were characterized using SEM, BET, FTIR and optical contact angle. The fibers exhibited superhydrophic and superoleophillic wetting properties with water and crude oil. The selective removal of crude oil presents new opportunity for the re-use of EPS as adsorbent in petroleum/petrochemical industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=expanded%20polystyrene" title="expanded polystyrene">expanded polystyrene</a>, <a href="https://publications.waset.org/abstracts/search?q=superhydrophobic" title=" superhydrophobic"> superhydrophobic</a>, <a href="https://publications.waset.org/abstracts/search?q=superoleophillic" title=" superoleophillic"> superoleophillic</a>, <a href="https://publications.waset.org/abstracts/search?q=oil-membrane" title=" oil-membrane"> oil-membrane</a> </p> <a href="https://publications.waset.org/abstracts/13690/surface-modified-electrospun-expanded-polystyrene-fibre-with-superhydrophobicsuperoleophillic-properties-as-potential-oil-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13690.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10873</span> Tailoring Polythiophene Nanocomposites with MnS/CoS Nanoparticles for Enhanced Surface-Enhanced Raman Spectroscopy (SERS) Detection of Mercury Ions in Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temesgen%20Geremew">Temesgen Geremew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The excessive emission of heavy metal ions from industrial processes poses a serious threat to both the environment and human health. This study presents a distinct approach utilizing (PTh-MnS/CoS NPs) for the highly selective and sensitive detection of Hg²⁺ ions in water. Such detection is crucial for safeguarding human health, protecting the environment, and accurately assessing toxicity. The fabrication method employs a simple and efficient chemical precipitation technique, harmoniously combining polythiophene, MnS, and CoS NPs to create highly active substrates for SERS. The MnS@Hg²⁺ exhibits a distinct Raman shift at 1666 cm⁻¹, enabling specific identification and demonstrating the highest responsiveness among the studied semiconductor substrates with a detection limit of only 1 nM. This investigation demonstrates reliable and practical SERS detection for Hg²⁺ ions. Relative standard deviation (RSD) ranged from 0.49% to 9.8%, and recovery rates varied from 96% to 102%, indicating selective adsorption of Hg²⁺ ions on the synthesized substrate. Furthermore, this research led to the development of a remarkable set of substrates, including (MnS, CoS, MnS/CoS, and PTh-MnS/CoS) nanoparticles were created right there on SiO₂/Si substrate, all exhibiting sensitive, robust, and selective SERS for Hg²⁺ ion detection. These platforms effectively monitor Hg²⁺ concentrations in real environmental samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface-enhanced%20raman%20spectroscopy%20%28SERS%29" title="surface-enhanced raman spectroscopy (SERS)">surface-enhanced raman spectroscopy (SERS)</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=mercury%20ions" title=" mercury ions"> mercury ions</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20polythiophene." title=" and polythiophene."> and polythiophene.</a> </p> <a href="https://publications.waset.org/abstracts/184145/tailoring-polythiophene-nanocomposites-with-mnscos-nanoparticles-for-enhanced-surface-enhanced-raman-spectroscopy-sers-detection-of-mercury-ions-in-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10872</span> Parameters Estimation of Power Function Distribution Based on Selective Order Statistics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moh%27d%20Alodat">Moh&#039;d Alodat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we discuss the power function distribution and derive the maximum likelihood estimator of its parameter as well as the reliability parameter. We derive the large sample properties of the estimators based on the selective order statistic scheme. We conduct simulation studies to investigate the significance of the selective order statistic scheme in our setup and to compare the efficiency of the new proposed estimators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fisher%20information" title="fisher information">fisher information</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20likelihood%20estimator" title=" maximum likelihood estimator"> maximum likelihood estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20function%20distribution" title=" power function distribution"> power function distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=ranked%20set%20sampling" title=" ranked set sampling"> ranked set sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20order%20statistics%20sampling" title=" selective order statistics sampling"> selective order statistics sampling</a> </p> <a href="https://publications.waset.org/abstracts/40094/parameters-estimation-of-power-function-distribution-based-on-selective-order-statistics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10871</span> Circular Polarized and Surface Compatible Microstrip Array Antenna Design for Image and Telemetric Data Transfer in UAV and Armed UAV Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K%C3%BCbra%20Ta%C5%9Fk%C4%B1ran">Kübra Taşkıran</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahattin%20T%C3%BCretken"> Bahattin Türetken</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a microstrip array antenna with circular polarization at 2.4 GHz frequency has been designed using the in order to provide image and telemetric data transmission in Unmanned Aerial Vehicle and Armed Unmanned Aerial Vehicle Systems. In addition to the antenna design, the power divider design was made and the antennas were fed in phase. As a result of the analysis, it was observed that the antenna operates at a frequency of 2.4016 GHz with 12.2 dBi directing gain. In addition, this designed array antenna was transformed into a form compatible with the rocket surface used in A-UAV Systems, and analyzes were made. As a result of these analyzes, it has been observed that the antenna operates on the surface of the missile at a frequency of 2.372 GHz with a directivity gain of 10.2 dBi. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cicrostrip%20array%20antenna" title="cicrostrip array antenna">cicrostrip array antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20polarization" title=" circular polarization"> circular polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=2.4%20GHz" title=" 2.4 GHz"> 2.4 GHz</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20and%20telemetric%20data" title=" image and telemetric data"> image and telemetric data</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission" title=" transmission"> transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20compatible" title=" surface compatible"> surface compatible</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV%20and%20armed%20UAV" title=" UAV and armed UAV"> UAV and armed UAV</a> </p> <a href="https://publications.waset.org/abstracts/163799/circular-polarized-and-surface-compatible-microstrip-array-antenna-design-for-image-and-telemetric-data-transfer-in-uav-and-armed-uav-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10870</span> Investigation on the Cooling Performance of Cooling Channels Fabricated via Selective Laser Melting for Injection Molding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Changyong%20Liu">Changyong Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Junda%20Tong"> Junda Tong</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Xu"> Feng Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ninggui%20Huang"> Ninggui Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the injection molding process, the performance of cooling channels is crucial to the part quality. Through the application of conformal cooling channels fabricated via metal additive manufacturing, part distortion, warpage can be greatly reduced and cycle time can be greatly shortened. However, the properties of additively manufactured conformal cooling channels are quite different from conventional drilling processes such as the poorer dimensional accuracy and larger surface roughness. These features have significant influences on its cooling performance. In this study, test molds with the cooling channel diameters of φ2 mm, φ3 mm and φ4 mm were fabricated via selective laser melting and conventional drilling process respectively. A test system was designed and manufactured to measure the pressure difference between the channel inlet and outlet, the coolant flow rate and the temperature variation during the heating process. It was found that the cooling performance of SLM-fabricated channels was poorer than drilled cooling channels due to the smaller sectional area of cooling channels resulted from the low dimensional accuracy and the unmolten particles adhered to the channel surface. Theoretical models were established to determine the friction factor and heat transfer coefficient of SLM-fabricated cooling channels. These findings may provide guidance to the design of conformal cooling channels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conformal%20cooling%20channels" title="conformal cooling channels">conformal cooling channels</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20laser%20melting" title=" selective laser melting"> selective laser melting</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20performance" title=" cooling performance"> cooling performance</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20molding" title=" injection molding"> injection molding</a> </p> <a href="https://publications.waset.org/abstracts/102200/investigation-on-the-cooling-performance-of-cooling-channels-fabricated-via-selective-laser-melting-for-injection-molding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10869</span> Mapping Protein Selectivity Landscapes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Niv%20Papo">Niv Papo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Characterizing the binding selectivity landscape of interacting proteins is crucial both for elucidating the underlying mechanisms of their interaction and for developing selective inhibitors. However, current mapping methods are laborious and cannot provide a sufficiently comprehensive description of the landscape. Here, we introduce a distinct and efficient strategy for comprehensively mapping the binding landscape of proteins using a combination of experimental multi-target selective library screening and in silico next-generation sequencing analysis. We map the binding landscape of a non-selective trypsin inhibitor, the amyloid protein precursor inhibitor (APPI), to each of four human serine proteases (kallikrein-6, mesotrypsin, and anionic and cationic trypsins). We then use this map to dissect and improve the affinity and selectivity of APPI variants toward each of the four proteases. Our strategy can be used as a platform for the development of a new generation of target-selective probes and therapeutic agents based on selective protein–protein interactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20design" title="drug design">drug design</a>, <a href="https://publications.waset.org/abstracts/search?q=directed%20evolution" title=" directed evolution"> directed evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20engineering" title=" protein engineering"> protein engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=protease%20inhibition." title=" protease inhibition."> protease inhibition.</a> </p> <a href="https://publications.waset.org/abstracts/191315/mapping-protein-selectivity-landscapes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10868</span> Analysis of Some Produced Inhibitors for Corrosion of J55 Steel in NaCl Solution Saturated with CO₂</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ambrish%20Singh">Ambrish Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The corrosion inhibition performance of pyran (AP) and benzimidazole (BI) derivatives on J55 steel in 3.5% NaCl solution saturated with CO₂ was investigated by electrochemical, weight loss, surface characterization, and theoretical studies. The electrochemical studies included electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), electrochemical frequency modulation (EFM), and electrochemical frequency modulation trend (EFMT). Surface characterization was done using contact angle, scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques. DFT and molecular dynamics (MD) studies were done using Gaussian and Materials Studio softwares. All the studies suggested the good inhibition by the synthesized inhibitors on J55 steel in 3.5% NaCl solution saturated with CO₂ due to the formation of a protective film on the surface. Molecular dynamic simulation was applied to search for the most stable configuration and adsorption energies for the interaction of the inhibitors with Fe (110) surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibitor" title=" inhibitor"> inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=EFM" title=" EFM"> EFM</a>, <a href="https://publications.waset.org/abstracts/search?q=AFM" title=" AFM"> AFM</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=MD" title=" MD"> MD</a> </p> <a href="https://publications.waset.org/abstracts/115086/analysis-of-some-produced-inhibitors-for-corrosion-of-j55-steel-in-nacl-solution-saturated-with-co2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10867</span> Estimation of Opc, Fly Ash and Slag Contents in Blended and Composite Cements by Selective Dissolution Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Palla">Suresh Palla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research paper presents the results of the study on the estimation of fly ash, slag and cement contents in blended and composite cements by novel selective dissolution method. Types of cement samples investigated include OPC with fly ash as performance improver, OPC with slag as performance improver, PPC, PSC and Composite cement confirming to respective Indian Standards. Slag and OPC contents in PSC were estimated by selectively dissolving OPC in stage 1 and selectively dissolving slag in stage 2. In the case of composite cement sample, the percentage of cement, slag and fly ash were estimated systematically by selective dissolution of cement, slag and fly ash in three stages. In the first stage, cement dissolved and separated by leaving the residue of slag and fly ash, designated as R1. The second stage involves gravimetric estimation of fractions of OPC, residue and selective dissolution of fly ash and slag contents. Fly ash content, R2 was estimated through gravimetric analysis. Thereafter, the difference between the R1 and R2 is considered as slag content. The obtained results of cement, fly ash and slag using selective dissolution method showed 10% of standard deviation with the corresponding percentage of respective constituents. The results suggest that this novel selective dissolution method can be successfully used for estimation of OPC and SCMs contents in different types of cements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=selective%20dissolution%20method" title="selective dissolution method ">selective dissolution method </a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=ggbfs%20slag" title=" ggbfs slag"> ggbfs slag</a>, <a href="https://publications.waset.org/abstracts/search?q=edta" title=" edta"> edta</a> </p> <a href="https://publications.waset.org/abstracts/134765/estimation-of-opc-fly-ash-and-slag-contents-in-blended-and-composite-cements-by-selective-dissolution-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10866</span> Frequency Selective Filters for Estimating the Equivalent Circuit Parameters of Li-Ion Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arpita%20Mondal">Arpita Mondal</a>, <a href="https://publications.waset.org/abstracts/search?q=Aurobinda%20Routray"> Aurobinda Routray</a>, <a href="https://publications.waset.org/abstracts/search?q=Sreeraj%20Puravankara"> Sreeraj Puravankara</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajashree%20Biswas"> Rajashree Biswas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most difficult part of designing a battery management system (BMS) is battery modeling. A good battery model can capture the dynamics which helps in energy management, by accurate model-based state estimation algorithms. So far the most suitable and fruitful model is the equivalent circuit model (ECM). However, in real-time applications, the model parameters are time-varying, changes with current, temperature, state of charge (SOC), and aging of the battery and this make a great impact on the performance of the model. Therefore, to increase the equivalent circuit model performance, the parameter estimation has been carried out in the frequency domain. The battery is a very complex system, which is associated with various chemical reactions and heat generation. Therefore, it’s very difficult to select the optimal model structure. As we know, if the model order is increased, the model accuracy will be improved automatically. However, the higher order model will face the tendency of over-parameterization and unfavorable prediction capability, while the model complexity will increase enormously. In the time domain, it becomes difficult to solve higher order differential equations as the model order increases. This problem can be resolved by frequency domain analysis, where the overall computational problems due to ill-conditioning reduce. In the frequency domain, several dominating frequencies can be found in the input as well as output data. The selective frequency domain estimation has been carried out, first by estimating the frequencies of the input and output by subspace decomposition, then by choosing the specific bands from the most dominating to the least, while carrying out the least-square, recursive least square and Kalman Filter based parameter estimation. In this paper, a second order battery model consisting of three resistors, two capacitors, and one SOC controlled voltage source has been chosen. For model identification and validation hybrid pulse power characterization (HPPC) tests have been carried out on a 2.6 Ah LiFePO₄ battery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equivalent%20circuit%20model" title="equivalent circuit model">equivalent circuit model</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20estimation" title=" frequency estimation"> frequency estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20estimation" title=" parameter estimation"> parameter estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=subspace%20decomposition" title=" subspace decomposition"> subspace decomposition</a> </p> <a href="https://publications.waset.org/abstracts/108720/frequency-selective-filters-for-estimating-the-equivalent-circuit-parameters-of-li-ion-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10865</span> Fear of Isolation, Online Efficacy, and Selective Exposure in Online Political Discourse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyujin%20Shim">Kyujin Shim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explores how individual motivations in political psychology will lead to political expression and online discourse, and how those online political discourses result in individuals’ exposure to extreme/ personally-entertaining/ disinhibiting content. This study argues that a new framework beyond the conventional paradigm (e.g., selective exposure based on partisanship/ ideology) is needed for better grasp of non-ideological/ anarchic, and/or of nonpartisan yet anonymity-/ extremity-/ disinhibition-related online behaviors regarding political conversations. Further, this study proposes a new definition of ‘selective exposure,’ with special attention to online efficacy and psychological motivations/gratifications sought in the online sphere. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=selective%20exposure" title="selective exposure">selective exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=fear%20of%20isolation" title=" fear of isolation"> fear of isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=political%20psychology" title=" political psychology"> political psychology</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20discourse" title=" online discourse"> online discourse</a> </p> <a href="https://publications.waset.org/abstracts/57638/fear-of-isolation-online-efficacy-and-selective-exposure-in-online-political-discourse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10864</span> Understanding Inhibitory Mechanism of the Selective Inhibitors of Cdk5/p25 Complex by Molecular Modeling Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Zeb">Amir Zeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Shailima%20Rampogu"> Shailima Rampogu</a>, <a href="https://publications.waset.org/abstracts/search?q=Minky%20Son"> Minky Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayoung%20Baek"> Ayoung Baek</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20H.%20Yoon"> Sang H. Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Keun%20W.%20Lee"> Keun W. Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neurotoxic insults activate calpain, which in turn produces truncated p25 from p35. p25 forms hyperactivated Cdk5/p25 complex, and thereby induces severe neuropathological aberrations including hyperphosphorylated tau, neuroinflammation, apoptosis, and neuronal death. Inhibition of Cdk5/p25 complex alleviates aberrant phosphorylation of tau to mitigate AD pathology. PHA-793887 and Roscovitine have been investigated as selective inhibitors of Cdk5/p25 with IC50 values 5nM and 160nM, respectively, but their mechanistic studies remain unknown. Herein, computational simulations have explored the binding mode and interaction mechanism of PHA-793887 and Roscovitine with Cdk5/p25. Docking results suggested that PHA-793887 and Rsocovitine have occupied the ATP-binding site of Cdk5 and obtained highest docking (GOLD) score of 66.54 and 84.03, respectively. Furthermore, molecular dynamics (MD) simulation demonstrated that PHA-793887 and Roscovitine established stable RMSD of 1.09 Å and 1.48 Å with Cdk5/p25, respectively. Profiling of polar interactions suggested that each inhibitor formed hydrogen bonds (H-bond) with catalytic residues of Cdk5 and could remain stable throughout the molecular dynamics simulation. Additionally, binding free energy calculation by molecular mechanics/Poisson–Boltzmann surface area (MM/PBSA) suggested that PHA-793887 and Roscovitine had lowest binding free energies of -150.05 kJ/mol and -113.14 kJ/mol, respectively with Cdk5/p25. Free energy decomposition demonstrated that polar energy by H-bond between the Glu81 of Cdk5 and PHA-793887 is the essential factor to make PHA-793887 highly selective towards Cdk5/p25. Overall, this study provided substantial evidences to explore mechanistic interactions of the selective inhibitors of Cdk5/p25 and could be used as fundamental considerations in the development of structure-based selective inhibitors of Cdk5/p25. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cdk5%2Fp25%20inhibition" title="Cdk5/p25 inhibition">Cdk5/p25 inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20modeling%20of%20Cdk5%2Fp25" title=" molecular modeling of Cdk5/p25"> molecular modeling of Cdk5/p25</a>, <a href="https://publications.waset.org/abstracts/search?q=PHA-793887%20and%20roscovitine" title=" PHA-793887 and roscovitine"> PHA-793887 and roscovitine</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20inhibition%20of%20Cdk5%2Fp25" title=" selective inhibition of Cdk5/p25"> selective inhibition of Cdk5/p25</a> </p> <a href="https://publications.waset.org/abstracts/104750/understanding-inhibitory-mechanism-of-the-selective-inhibitors-of-cdk5p25-complex-by-molecular-modeling-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10863</span> Photocatalytic Packed‐Bed Flow Reactor for Continuous Room‐Temperature Hydrogen Release from Liquid Organic Carriers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malek%20Y.%20S.%20Ibrahim">Malek Y. S. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeffrey%20A.%20Bennett"> Jeffrey A. Bennett</a>, <a href="https://publications.waset.org/abstracts/search?q=Milad%20Abolhasani"> Milad Abolhasani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite the potential of hydrogen (H2) storage in liquid organic carriers to achieve carbon neutrality, the energy required for H2 release and the cost of catalyst recycling has hindered its large-scale adoption. In response, a photo flow reactor packed with rhodium (Rh)/titania (TiO2) photocatalyst was reported for the continuous and selective acceptorless dehydrogenation of 1,2,3,4-tetrahydroquinoline to H2 gas and quinoline under visible light irradiation at room temperature. The tradeoff between the reactor pressure drop and its photocatalytic surface area was resolved by selective in-situ photodeposition of Rh in the photo flow reactor post-packing on the outer surface of the TiO2 microparticles available to photon flux, thereby reducing the optimal Rh loading by 10 times compared to a batch reactor, while facilitating catalyst reuse and regeneration. An example of using quinoline as a hydrogen acceptor to lower the energy of the hydrogen production step was demonstrated via the water-gas shift reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20storage" title="hydrogen storage">hydrogen storage</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20chemistry" title=" flow chemistry"> flow chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20hydrogen" title=" solar hydrogen"> solar hydrogen</a> </p> <a href="https://publications.waset.org/abstracts/154600/photocatalytic-packedbed-flow-reactor-for-continuous-roomtemperature-hydrogen-release-from-liquid-organic-carriers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10862</span> Synthesis of Iso-Amyl, Benzyl and Cinnamyl Esters over Active, Selective, Reusable and Eco-Friendly Natural Silica Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abd%20El-Aziz%20Said">Abd El-Aziz Said</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, natural silica was used as an active, selective, reusable and eco-friendly catalyst for the liquid phase synthesis of iso-amyl, benzyl and cinnamyl esters. The original and calcined natural silica were characterized by TG-DTA, XRF, XRD, FTIR, SEM, and N2-sorption analysis. The surface acidity of the catalysts was determined using isopropanol dehydration and the strength of available acid sites was measured using chemisorption of pyridine (PY) and dimethyl pyridine (DMPY). The results of acidity specified that the acidic sites are of Brönsted type, while PY-TPD demonstrated that almost of the acidic sites over the surface of natural silica are of weak and intermediate strength. The catalytic activity of natural silica towards esterification of acetic acid with alcohols was extensively studied. The results revealed that natural silica had high catalytic activity with 100% selectivity to all targeted esters. In addition, the yields obtained in batch methods were 83, 81, and 80%, respectively, whereas these yields after simple distillation were improved 97, 99.5, and 90%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid-phase%20esterification" title="liquid-phase esterification">liquid-phase esterification</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20silica" title=" natural silica"> natural silica</a>, <a href="https://publications.waset.org/abstracts/search?q=acidity%20esters" title=" acidity esters"> acidity esters</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a> </p> <a href="https://publications.waset.org/abstracts/120099/synthesis-of-iso-amyl-benzyl-and-cinnamyl-esters-over-active-selective-reusable-and-eco-friendly-natural-silica-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10861</span> Heterogeneity of Genes Encoding the Structural Proteins of Avian Infectious Bronchitis Virus </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahid%20Hussain%20Abro">Shahid Hussain Abro</a>, <a href="https://publications.waset.org/abstracts/search?q=Siamak%20Zohari"> Siamak Zohari</a>, <a href="https://publications.waset.org/abstracts/search?q=Lena%20H.%20M.%20Renstr%C3%B6m"> Lena H. M. Renström</a>, <a href="https://publications.waset.org/abstracts/search?q=D%C3%A9sir%C3%A9e%20S.%20Jansson"> Désirée S. Jansson</a>, <a href="https://publications.waset.org/abstracts/search?q=Faruk%20Otman"> Faruk Otman</a>, <a href="https://publications.waset.org/abstracts/search?q=Karin%20Ullman"> Karin Ullman</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudia%20Baule"> Claudia Baule</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Infectious bronchitis is an acute, highly contagious respiratory, nephropathogenic and reproductive disease of poultry that is caused by infectious bronchitis virus (IBV). The present study used a large data set of structural gene sequences, including newly generated ones and sequences available in the GenBank database to further analyze the diversity and to identify selective pressures and recombination spots. There were some deletions or insertions in the analyzed regions in isolates of the Italy-02 and D274 genotypes. Whereas, there were no insertions or deletions observed in the isolates of the Massachusetts and 4/91 genotype. The hypervariable nucleotide sequence regions spanned positions 152–239, 554–582, 686–737 and 802–912 in the S1 sub-unit of the all analyzed genotypes. The nucleotide sequence data of the E gene showed that this gene was comparatively unstable and subjected to a high frequency of mutations. The M gene showed substitutions consistently distributed except for a region between nucleotide positions 250–680 that remained conserved. The lowest variation in the nucleotide sequences of ORF5a was observed in the isolates of the D274 genotype. While, ORF5b and N gene sequences showed highly conserved regions and were less subjected to variation. Genes ORF3a, ORF3b, M, ORF5a, ORF5b and N presented negative selective pressure among the analyzed isolates. However, some regions of the ORFs showed favorable selective pressure(s). The S1 and E proteins were subjected to a high rate of mutational substitutions and non-synonymous amino acids. Strong signals of recombination breakpoints and ending break point were observed in the S and N genes. Overall, the results of this study revealed that very likely the strong selective pressures in E, M and the high frequency of substitutions in the S gene can probably be considered the main determinants in the evolution of IBV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IBV" title="IBV">IBV</a>, <a href="https://publications.waset.org/abstracts/search?q=avian%20infectious%20bronchitis" title=" avian infectious bronchitis"> avian infectious bronchitis</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20genes" title=" structural genes"> structural genes</a>, <a href="https://publications.waset.org/abstracts/search?q=genotypes" title=" genotypes"> genotypes</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20diversity" title=" genetic diversity"> genetic diversity</a> </p> <a href="https://publications.waset.org/abstracts/24427/heterogeneity-of-genes-encoding-the-structural-proteins-of-avian-infectious-bronchitis-virus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10860</span> Mechanical Properties of Selective Laser Sintered 304L Stainless Steel Powders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shijie%20Liu">Shijie Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jehnming%20Lin"> Jehnming Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study mainly discussed the mechanical properties of selective laser sintered 304L stainless steel powder specimen. According to a single layer specimen sintering, the microstructure and porosity were observed to find out the proper sintering parameters. A multi-layer sintering experiment was conducted. Based on the microstructure and the integration between layers, the suitable parameters were found out. Finally, the sintered specimens were examined by metallographical inspection, hardness test, tensile test, and surface morphology measurement. The structure of the molten powder coated with unmelted powder was found in metallographic test. The hardness of the sintered stainless steel powder is greater than the raw material. The tensile strength is less than the raw material, and it is corresponding to different scanning paths. The specimen will have different patterns of cracking. It was found that the helical scanning path specimen will have a warpage deformation at the edge of the specimen. The S-scan path specimen surface is relatively flat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20sintering" title="laser sintering">laser sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering%20path" title=" sintering path"> sintering path</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/100033/mechanical-properties-of-selective-laser-sintered-304l-stainless-steel-powders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20selective%20surface%20%28FSS%29&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20selective%20surface%20%28FSS%29&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20selective%20surface%20%28FSS%29&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20selective%20surface%20%28FSS%29&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20selective%20surface%20%28FSS%29&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20selective%20surface%20%28FSS%29&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20selective%20surface%20%28FSS%29&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20selective%20surface%20%28FSS%29&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20selective%20surface%20%28FSS%29&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20selective%20surface%20%28FSS%29&amp;page=362">362</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20selective%20surface%20%28FSS%29&amp;page=363">363</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20selective%20surface%20%28FSS%29&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10