CINXE.COM
Search results for: source amplitude
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: source amplitude</title> <meta name="description" content="Search results for: source amplitude"> <meta name="keywords" content="source amplitude"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="source amplitude" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="source amplitude"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5193</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: source amplitude</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5193</span> Pulse Generator with Constant Pulse Width</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rozita%20Borhan">Rozita Borhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanif%20Che%20Lah"> Hanif Che Lah</a>, <a href="https://publications.waset.org/abstracts/search?q=Wee%20Leong%20Son"> Wee Leong Son</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is about method to produce a stable and accurate constant output pulse width regardless of the amplitude, period and pulse width variation of the input signal source. The pulse generated is usually being used in numerous applications as the reference input source to other circuits in the system. Therefore, it is crucial to produce a clean and constant pulse width to make sure the system is working accurately as expected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amplitude" title="amplitude">amplitude</a>, <a href="https://publications.waset.org/abstracts/search?q=Constant%20Pulse%20Width" title=" Constant Pulse Width"> Constant Pulse Width</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20divider" title=" frequency divider"> frequency divider</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20generator" title=" pulse generator"> pulse generator</a> </p> <a href="https://publications.waset.org/abstracts/12784/pulse-generator-with-constant-pulse-width" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5192</span> Estimating 3D-Position of a Stationary Random Acoustic Source Using Bispectral Analysis of 4-Point Detected Signals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katsumi%20Hirata">Katsumi Hirata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To develop the useful acoustic environmental recognition system, the method of estimating 3D-position of a stationary random acoustic source using bispectral analysis of 4-point detected signals is proposed. The method uses information about amplitude attenuation and propagation delay extracted from amplitude ratios and angles of auto- and cross-bispectra of the detected signals. It is expected that using bispectral analysis affects less influence of Gaussian noises than using conventional power spectral one. In this paper, the basic principle of the method is mentioned first, and its validity and features are considered from results of the fundamental experiments assumed ideal circumstances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=4-point%20detection" title="4-point detection">4-point detection</a>, <a href="https://publications.waset.org/abstracts/search?q=a%20stationary%20random%20acoustic%20source" title=" a stationary random acoustic source"> a stationary random acoustic source</a>, <a href="https://publications.waset.org/abstracts/search?q=auto-%20and%20cross-bispectra" title=" auto- and cross-bispectra"> auto- and cross-bispectra</a>, <a href="https://publications.waset.org/abstracts/search?q=estimation%20of%203D-position" title=" estimation of 3D-position"> estimation of 3D-position</a> </p> <a href="https://publications.waset.org/abstracts/7391/estimating-3d-position-of-a-stationary-random-acoustic-source-using-bispectral-analysis-of-4-point-detected-signals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5191</span> Influence of Vibration Amplitude on Reaction Time and Drowsiness Level </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20A.%20Azizan">Mohd A. Azizan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Z.%20Zali"> Mohd Z. Zali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well established that exposure to vibration has an adverse effect on human health, comfort, and performance. However, there is little quantitative knowledge on performance combined with drowsiness level during vibration exposure. This paper reports a study investigating the influence of vibration amplitude on seated occupant reaction time and drowsiness level. Eighteen male volunteers were recruited for this experiment. Before commencing the experiment, total transmitted acceleration measured at interfaces between the seat pan and seatback to human body was adjusted to become 0.2 ms-2 r.m.s and 0.4 ms-2 r.m.s for each volunteer. Seated volunteers were exposed to Gaussian random vibration with frequency band 1-15 Hz at two level of amplitude (low vibration amplitude and medium vibration amplitude) for 20-minutes in separate days. For the purpose of drowsiness measurement, volunteers were asked to complete 10-minutes PVT test before and after vibration exposure and rate their subjective drowsiness by giving score using Karolinska Sleepiness Scale (KSS) before vibration, every 5-minutes interval and following 20-minutes of vibration exposure. Strong evidence of drowsiness was found as there was a significant increase in reaction time and number of lapse following exposure to vibration in both conditions. However, the effect is more apparent in medium vibration amplitude. A steady increase of drowsiness level can also be observed in KSS in all volunteers. However, no significant differences were found in KSS between low vibration amplitude and medium vibration amplitude. It is concluded that exposure to vibration has an adverse effect on human alertness level and more pronounced at higher vibration amplitude. Taken together, these findings suggest a role of vibration in promoting drowsiness, especially at higher vibration amplitude. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drowsiness" title="drowsiness">drowsiness</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20vibration" title=" human vibration"> human vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=karolinska%20sleepiness%20scale" title=" karolinska sleepiness scale"> karolinska sleepiness scale</a>, <a href="https://publications.waset.org/abstracts/search?q=psychomotor%20vigilance%20test" title=" psychomotor vigilance test"> psychomotor vigilance test</a> </p> <a href="https://publications.waset.org/abstracts/66811/influence-of-vibration-amplitude-on-reaction-time-and-drowsiness-level" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5190</span> Wireless Integrated Switched Oscillator Impulse Generator with Application in Wireless Passive Electric Field Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Mohammadzamani">S. Mohammadzamani</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Kordi"> B. Kordi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wireless electric field sensors are in high demand in the number of applications that requires measuring electric field such as investigations of high power systems and testing the high voltage apparatus. Passive wireless electric field sensors are most desired since they do not require a source of power and are interrogated wirelessly. A passive wireless electric field sensor has been designed and fabricated by our research group. In the wireless interrogation system of the sensor, a wireless radio frequency impulse generator needs to be employed. A compact wireless impulse generator composed of an integrated resonant switched oscillator (SWO) and a pulse-radiating antenna has been designed and fabricated in this research. The fundamental of Switched Oscillators was introduced by C.E.Baum. A Switched Oscillator consists of a low impedance transmission line charged by a DC source, through large impedance at desired frequencies and terminated to a high impedance antenna at one end and a fast closing switch at the other end. Once the line is charged, the switch will close and short-circuit the transmission line. Therefore, a fast transient wave will be generated and travels along the transmission line. Because of the mismatch between the antenna and the transmission line, only a part of fast transient wave will be radiated, and a portion of the fast-transient wave will reflect back. At the other end of the transmission line, there is a closed switch. Consequently, a second reflection with a reversed sign will propagate towards the antenna and the wave continues back and forth. hence, at the terminal of the antenna, there will be a series of positive and negative pulses with descending amplitude. In this research a single ended quarter wavelength Switched Oscillator has been designed and simulated at 800MHz. The simulation results show that the designed Switched Oscillator generates pulses with decreasing amplitude at the frequency of 800MHz with the maximum amplitude of 10V and bandwidth of about 10MHz at the antenna end. The switched oscillator has been fabricated using a 6cm long coaxial cable transmission line which is charged by a DC source and an 8cm monopole antenna as the pulse radiating antenna. A 90V gas discharge switch has been employed as the fast closing switch. The Switched oscillator sends a series of pulses with decreasing amplitude at the frequency of 790MHz with the maximum amplitude of 0.3V in the distance of 30 cm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20field%20measurement" title="electric field measurement">electric field measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=impulse%20radiating%20antenna" title=" impulse radiating antenna"> impulse radiating antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=switched%20oscillator" title=" switched oscillator"> switched oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20impulse%20generator" title=" wireless impulse generator"> wireless impulse generator</a> </p> <a href="https://publications.waset.org/abstracts/105070/wireless-integrated-switched-oscillator-impulse-generator-with-application-in-wireless-passive-electric-field-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5189</span> Application Research of Stilbene Crystal for the Measurement of Accelerator Neutron Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Kuo">Zhao Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Liang"> Chen Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Zhongbing"> Zhang Zhongbing</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruan%20Jinlu.%20He%20Shiyi"> Ruan Jinlu. He Shiyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Mengxuan"> Xu Mengxuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stilbene, C₁₄H₁₂, is well known as one of the most useful organic scintillators for pulse shape discrimination (PSD) technique for its good scintillation properties. An on-line acquisition system and an off-line acquisition system were developed with several CAMAC standard plug-ins, NIM plug-ins, neutron/γ discriminating plug-in named 2160A and a digital oscilloscope with high sampling rate respectively for which stilbene crystals and photomultiplier tube detectors (PMT) as detector for accelerator neutron sources measurement carried out in China Institute of Atomic Energy. Pulse amplitude spectrums and charge amplitude spectrums were real-time recorded after good neutron/γ discrimination whose best PSD figure-of-merits (FoMs) are 1.756 for D-D accelerator neutron source and 1.393 for D-T accelerator neutron source. The probability of neutron events in total events was 80%, and neutron detection efficiency was 5.21% for D-D accelerator neutron sources, which were 50% and 1.44% for D-T accelerator neutron sources after subtracting the background of scattering observed by the on-line acquisition system. Pulse waveform signals were acquired by the off-line acquisition system randomly while the on-line acquisition system working. The PSD FoMs obtained by the off-line acquisition system were 2.158 for D-D accelerator neutron sources and 1.802 for D-T accelerator neutron sources after waveform digitization off-line processing named charge integration method for just 1000 pulses. In addition, the probabilities of neutron events in total events obtained by the off-line acquisition system matched very well with the probabilities of the on-line acquisition system. The pulse information recorded by the off-line acquisition system could be repetitively used to adjust the parameters or methods of PSD research and obtain neutron charge amplitude spectrums or pulse amplitude spectrums after digital analysis with a limited number of pulses. The off-line acquisition system showed equivalent or better measurement effects compared with the online system with a limited number of pulses which indicated a feasible method based on stilbene crystals detectors for the measurement of prompt neutrons neutron sources like prompt accelerator neutron sources emit a number of neutrons in a short time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stilbene%20crystal" title="stilbene crystal">stilbene crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=accelerator%20neutron%20source" title=" accelerator neutron source"> accelerator neutron source</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20%2F%20%CE%B3%20discrimination" title=" neutron / γ discrimination"> neutron / γ discrimination</a>, <a href="https://publications.waset.org/abstracts/search?q=figure-of-merits" title=" figure-of-merits"> figure-of-merits</a>, <a href="https://publications.waset.org/abstracts/search?q=CAMAC" title=" CAMAC"> CAMAC</a>, <a href="https://publications.waset.org/abstracts/search?q=waveform%20digitization" title=" waveform digitization"> waveform digitization</a> </p> <a href="https://publications.waset.org/abstracts/86807/application-research-of-stilbene-crystal-for-the-measurement-of-accelerator-neutron-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5188</span> The Effect of Dark energy on Amplitude of Gravitational Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jafar%20Khodagholizadeh">Jafar Khodagholizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this talk, we study the tensor mode equation of perturbation in the presence of nonzero $-\Lambda$ as dark energy, whose dynamic nature depends on the Hubble parameter $ H$ and/or its time derivative. Dark energy, according to the total vacuum contribution, has little effect during the radiation-dominated era, but it reduces the squared amplitude of gravitational waves (GWs) up to $60\%$ for the wavelengths that enter the horizon during the matter-dominated era. Moreover, the observations bound on dark energy models, such as running vacuum model (RVM), generalized running vacuum model (GRVM), and generalized running vacuum subcase (GRVS), are effective in reducing the GWs’ amplitude. Although this effect is less for the wavelengths that enter the horizon at later times, this reduction is stable and permanent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gravitational%20waves" title="gravitational waves">gravitational waves</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20energy" title=" dark energy"> dark energy</a>, <a href="https://publications.waset.org/abstracts/search?q=GW%27s%20amplitude" title=" GW's amplitude"> GW's amplitude</a>, <a href="https://publications.waset.org/abstracts/search?q=all%20stage%20universe" title=" all stage universe"> all stage universe</a> </p> <a href="https://publications.waset.org/abstracts/144763/the-effect-of-dark-energy-on-amplitude-of-gravitational-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5187</span> Large Amplitude Free Vibration of a Very Sag Marine Cable</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Punjarat">O. Punjarat</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chucheepsakul"> S. Chucheepsakul</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Phanyasahachart"> T. Phanyasahachart</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on a variational formulation of large amplitude free vibration behavior of a very sag marine cable. In the static equilibrium state, the marine cable has a very large sag configuration. In the motion state, the marine cable is assumed to vibrate in in-plane motion with large amplitude from the static equilibrium position. The total virtual work-energy of the marine cable at the dynamic state is formulated which involves the virtual strain energy due to axial deformation, the virtual work done by effective weight, and the inertia forces. The equations of motion for the large amplitude free vibration of marine cable are obtained by taking into account the difference between the Euler’s equation in the static state and the displaced state. Based on the Galerkin finite element procedure, the linear and nonlinear stiffness matrices, and mass matrices of the marine cable are obtained and the eigenvalue problem is solved. The natural frequency spectrum and the large amplitude free vibration behavior of marine cable are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20deformation" title="axial deformation">axial deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20vibration" title=" free vibration"> free vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=Galerkin%20finite%20element%20method" title=" Galerkin finite element method"> Galerkin finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20amplitude" title=" large amplitude"> large amplitude</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20method" title=" variational method"> variational method</a> </p> <a href="https://publications.waset.org/abstracts/114132/large-amplitude-free-vibration-of-a-very-sag-marine-cable" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5186</span> 1D PIC Simulation of Cold Plasma Electrostatic Waves beyond Wave-Breaking Limit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prabal%20Singh%20Verma">Prabal Singh Verma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrostatic Waves in plasma have emerged as a new source for the acceleration of charged particles. The accelerated particles have a wide range of applications, for example in cancer therapy to cutting and melting of hard materials. The maximum acceleration can only be achieved when the amplitude of the plasma wave stays below a critical limit known as wave-breaking amplitude. Beyond this limit amplitude of the wave diminishes dramatically as the coherent energy of the wave starts to convert into random kinetic energy. In this work, spatiotemporal evolution of non-relativistic electrostatic waves in a cold plasma has been studied in the wave-breaking regime using a 1D particle-in-cell simulation (PIC). It is found that plasma gets heated after the wave-breaking but a fraction of initial energy always remains with the remnant wave in the form of Bernstein-Greene-Kruskal (BGK) mode in warm plasma. Another interesting finding of this work is that the frequency of the resultant BGK wave is found be below electron plasma frequency which decreases with increasing initial amplitude and the acceleration mechanism after the wave-breaking is also found to be different from the previous work. In order to explain the results observed in the numerical experiments, a simplified theoretical model is constructed which exhibits a good agreement with the simulation. In conclusion, it is shown in this work that electrostatic waves get shower after the wave-breaking and a fraction of initial coherent energy always remains with remnant wave. These investigations have direct relevance in wakefield acceleration experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20plasma%20waves" title="nonlinear plasma waves">nonlinear plasma waves</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal" title=" longitudinal"> longitudinal</a>, <a href="https://publications.waset.org/abstracts/search?q=wave-breaking" title=" wave-breaking"> wave-breaking</a>, <a href="https://publications.waset.org/abstracts/search?q=wake-field%20acceleration" title=" wake-field acceleration"> wake-field acceleration</a> </p> <a href="https://publications.waset.org/abstracts/77921/1d-pic-simulation-of-cold-plasma-electrostatic-waves-beyond-wave-breaking-limit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5185</span> Effects of Positron Concentration and Temperature on Ion-Acoustic Solitons in Magnetized Electron-Positron-Ion Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Jain">S. K. Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Mishra"> M. K. Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oblique propagation of ion-acoustic solitons in magnetized electron-positron-ion (EPI) plasma with warm adiabatic ions and isothermal electrons has been studied. Korteweg-de Vries (KdV) equation using reductive perturbation method has been derived for the system, which admits an obliquely propagating soliton solution. It is found that for the selected set of parameter values, the system supports only compressive solitons. Investigations reveal that an increase in positron concentration diminishes the amplitude as well as the width of the soliton. It is also found that the temperature ratio of electron to positron (γ) affects the amplitude of the solitary wave. An external magnetic field do not affect the amplitude of ion-acoustic solitons, but obliqueness angle (θ), the angle between wave vector and magnetic field affects the amplitude. The amplitude of the ion-acoustic solitons increases with increase in angle of obliqueness. Magnetization and obliqueness drastically affect the width of the soliton. An increase in ionic temperature decreases the amplitude and width. For the fixed set of parameters, profiles have been drawn to study the combined effect with variation of two parameters on the characteristics of the ion-acoustic solitons (i.e., amplitude and width). The result may be applicable to plasma in the laboratory as well as in the magnetospheric region of the earth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ion-acoustic%20solitons" title="ion-acoustic solitons">ion-acoustic solitons</a>, <a href="https://publications.waset.org/abstracts/search?q=Korteweg-de%20Vries%20%28KdV%29%20equation" title=" Korteweg-de Vries (KdV) equation"> Korteweg-de Vries (KdV) equation</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetized%20electron-positron-ion%20%28EPI%29%20plasma" title=" magnetized electron-positron-ion (EPI) plasma"> magnetized electron-positron-ion (EPI) plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=reductive%20perturbation%20method" title=" reductive perturbation method"> reductive perturbation method</a> </p> <a href="https://publications.waset.org/abstracts/48847/effects-of-positron-concentration-and-temperature-on-ion-acoustic-solitons-in-magnetized-electron-positron-ion-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5184</span> Two Dimensional Finite Element Model to Study Calcium Dynamics in Fibroblast Cell with Excess Buffer Approximation Involving ER Flux and SERCA Pump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mansha%20Kotwani">Mansha Kotwani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The specific spatio-temporal calcium concentration patterns are required by the fibroblasts to maintain its structure and functions. Thus, calcium concentration is regulated in cell at different levels in various activities of the cell. The variations in cytosolic calcium concentration largely depend on the buffers present in cytosol and influx of calcium into cytosol from ER through IP3Rs or Raynodine receptors followed by reuptake of calcium into ER through sarcoplasmic/endoplasmic reticulum ATPs (SERCA) pump. In order to understand the mechanisms of wound repair, tissue remodeling and growth performed by fibroblasts, it is of crucial importance to understand the mechanisms of calcium concentration regulation in fibroblasts. In this paper, a model has been developed to study calcium distribution in NRK fibroblast in the presence of buffers and ER flux with SERCA pump. The model has been developed for two dimensional unsteady state case. Appropriate initial and boundary conditions have been framed along with physiology of the cell. Finite element technique has been employed to obtain the solution. The numerical results have been used to study the effect of buffers, ER flux and source amplitude on calcium distribution in fibroblast cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buffers" title="buffers">buffers</a>, <a href="https://publications.waset.org/abstracts/search?q=IP3R" title=" IP3R"> IP3R</a>, <a href="https://publications.waset.org/abstracts/search?q=ER%20flux" title=" ER flux"> ER flux</a>, <a href="https://publications.waset.org/abstracts/search?q=SERCA%20pump" title=" SERCA pump"> SERCA pump</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20amplitude" title=" source amplitude"> source amplitude</a> </p> <a href="https://publications.waset.org/abstracts/19236/two-dimensional-finite-element-model-to-study-calcium-dynamics-in-fibroblast-cell-with-excess-buffer-approximation-involving-er-flux-and-serca-pump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5183</span> Heat Transfer Correlations for Exhaust Gas Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatih%20Kantas">Fatih Kantas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exhaust systems are key contributors to ground vehicles as a heat source. Understanding heat transfer in exhaust systems is related to defining effective parameter on heat transfer in exhaust system. In this journal, over 20 Nusselt numbers are investigated. This study shows advantages and disadvantages of various Nusselt numbers in different range Re, Pr and pulsating flow amplitude and frequency. Also (CAF) Convective Augmentation Factors are defined to correct standard Nusselt number for geometry and location of exhaust system. Finally, optimum Nusselt number and Convective Augmentation Factors are recommended according to Re, Pr and pulsating flow amplitude and frequency, geometry and location effect of exhaust system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exhaust%20gas%20flow" title="exhaust gas flow">exhaust gas flow</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20correlation" title=" heat transfer correlation"> heat transfer correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusselt" title=" Nusselt"> Nusselt</a>, <a href="https://publications.waset.org/abstracts/search?q=Prandtl" title=" Prandtl"> Prandtl</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsating%20flow" title=" pulsating flow"> pulsating flow</a> </p> <a href="https://publications.waset.org/abstracts/83895/heat-transfer-correlations-for-exhaust-gas-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5182</span> Jump-Like Deformation of Ultrafinegrained AZ31 at Temperature 4,2 - 0,5 K</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Zabrodin">Pavel Zabrodin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The drawback of magnesium alloys is poor plasticity, which complicates the forming. Effective way of improving the properties of the cast magnesium alloy AZ31 (3 wt. % Al, 0.8 wt. % Zn, 0.2 wt. % Mn)) is to combine hot extrusion at 350°C and equal-channel angular pressing (ECAP) at 180°C. Because of reduced grain sizes, changes in the nature of the grain boundaries, and enhancement of a texture that favors basal dislocation glide, after this kind of processing, increase yield stress and ductility. For study of the effect of microstructure on the mechanisms for plastic deformation, there is some interest in investigating the mechanical properties of the ultrafinegrained (UFG) Mg alloy at low temperatures, before and after annealing. It found that the amplitude and statistics at the low-temperature jump-like deformation the Mg alloy of dependent on microstructure. Reduction of the average density of dislocations and grain growth during annealing causing a reduction in the amplitude of the jump-like deformation and changes in the distribution of surges in amplitude. It found that the amplitude and statistics at the low-temperature jump-like deformation UFG alloy dependent on temperature of deformation. Plastic deformation of UFG alloy at a temperature of 10 K occurs uniformly - peculiarities is not observed. Increasing of the temperature of deformation from 4,2 to 0,5 K is causing a reduction in the amplitude and increasing the frequency of the jump-like deformation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jump-like%20deformation" title="jump-like deformation">jump-like deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20temperature" title=" low temperature"> low temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20alloy" title=" magnesium alloy"> magnesium alloy</a> </p> <a href="https://publications.waset.org/abstracts/53749/jump-like-deformation-of-ultrafinegrained-az31-at-temperature-42-05-k" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5181</span> Optimizing Quantum Machine Learning with Amplitude and Phase Encoding Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Om%20Viroje">Om Viroje</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum machine learning represents a frontier in computational technology, promising significant advancements in data processing capabilities. This study explores the significance of data encoding techniques, specifically amplitude and phase encoding, in this emerging field. By employing a comparative analysis methodology, the research evaluates how these encoding techniques affect the accuracy, efficiency, and noise resilience of quantum algorithms. Our findings reveal that amplitude encoding enhances algorithmic accuracy and noise tolerance, whereas phase encoding significantly boosts computational efficiency. These insights are crucial for developing robust quantum frameworks that can be effectively applied in real-world scenarios. In conclusion, optimizing encoding strategies is essential for advancing quantum machine learning, potentially transforming various industries through improved data processing and analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20machine%20learning" title="quantum machine learning">quantum machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20encoding" title=" data encoding"> data encoding</a>, <a href="https://publications.waset.org/abstracts/search?q=amplitude%20encoding" title=" amplitude encoding"> amplitude encoding</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20encoding" title=" phase encoding"> phase encoding</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20resilience" title=" noise resilience"> noise resilience</a> </p> <a href="https://publications.waset.org/abstracts/193480/optimizing-quantum-machine-learning-with-amplitude-and-phase-encoding-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">13</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5180</span> Frontal Oscillatory Activity and Phase–Amplitude Coupling during Chan Meditation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arthur%20C.%20Tsai">Arthur C. Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Chii-Shyang%20Kuo"> Chii-Shyang Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincent%20S.%20C.%20Chien"> Vincent S. C. Chien</a>, <a href="https://publications.waset.org/abstracts/search?q=Michelle%20Liou"> Michelle Liou</a>, <a href="https://publications.waset.org/abstracts/search?q=Philip%20E.%20Cheng"> Philip E. Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Meditation enhances mental abilities and it is an antidote to anxiety. However, very little is known about brain mechanisms and cortico-subcortical interactions underlying meditation-induced anxiety relief. In this study, the changes of phase-amplitude coupling (PAC) in which the amplitude of the beta frequency band were modulated in phase with delta rhythm were investigated after eight-week of meditation training. The study hypothesized that through a concentrate but relaxed mental training the delta-beta coupling in the frontal regions is attenuated. The delta-beta coupling analysis was applied to within and between maximally-independent component sources returned from the extended infomax independent components analysis (ICA) algorithm on the continuous EEG data during mediation. A unique meditative concentration task through relaxing body and mind was used with a constant level of moderate mental effort, so as to approach an ‘emptiness’ meditative state. A pre-test/post-test control group design was used in this study. To evaluate cross-frequency phase-amplitude coupling of component sources, the modulation index (MI) with statistics to calculate circular phase statistics were estimated. Our findings reveal that a significant delta-beta decoupling was observed in a set of frontal regions bilaterally. In addition, beta frequency band of prefrontal component were amplitude modulated in phase with the delta rhythm of medial frontal component. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phase-amplitude%20coupling" title="phase-amplitude coupling">phase-amplitude coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=ICA" title=" ICA"> ICA</a>, <a href="https://publications.waset.org/abstracts/search?q=meditation" title=" meditation"> meditation</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG" title=" EEG"> EEG</a> </p> <a href="https://publications.waset.org/abstracts/71520/frontal-oscillatory-activity-and-phase-amplitude-coupling-during-chan-meditation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5179</span> Bit Error Rate Monitoring for Automatic Bias Control of Quadrature Amplitude Modulators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naji%20Ali%20Albakay">Naji Ali Albakay</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Alothaim"> Abdulrahman Alothaim</a>, <a href="https://publications.waset.org/abstracts/search?q=Isa%20Barshushi"> Isa Barshushi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most common quadrature amplitude modulator (QAM) applies two Mach-Zehnder Modulators (MZM) and one phase shifter to generate high order modulation format. The bias of MZM changes over time due to temperature, vibration, and aging factors. The change in the biasing causes distortion to the generated QAM signal which leads to deterioration of bit error rate (BER) performance. Therefore, it is critical to be able to lock MZM’s Q point to the required operating point for good performance. We propose a technique for automatic bias control (ABC) of QAM transmitter using BER measurements and gradient descent optimization algorithm. The proposed technique is attractive because it uses the pertinent metric, BER, which compensates for bias drifting independently from other system variations such as laser source output power. The proposed scheme performance and its operating principles are simulated using OptiSystem simulation software for 4-QAM and 16-QAM transmitters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automatic%20bias%20control" title="automatic bias control">automatic bias control</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20fiber%20communication" title=" optical fiber communication"> optical fiber communication</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20modulation" title=" optical modulation"> optical modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20devices" title=" optical devices"> optical devices</a> </p> <a href="https://publications.waset.org/abstracts/137442/bit-error-rate-monitoring-for-automatic-bias-control-of-quadrature-amplitude-modulators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5178</span> Mathematical Properties of the Resonance of the Inner Waves in Rotating Stratified Three-Dimensional Fluids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Giniatoulline">A. Giniatoulline</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We consider the internal oscillations of the ocean which are caused by the gravity force and the Coriolis force, for different models with changeable density, heat transfer, and salinity. Traditionally, the mathematical description of the resonance effect is related to the growing amplitude as a result of input vibrations. We offer a different approach: the study of the relation between the spectrum of the internal oscillations and the properties of the limiting amplitude of the solution for the harmonic input vibrations of the external forces. Using the results of the spectral theory of self-adjoint operators in Hilbert functional spaces, we prove that there exists an explicit relation between the localization of the frequency of the external input vibrations with respect to the essential spectrum of proper inner oscillations and the non-uniqueness of the limiting amplitude. The results may find their application in various problems concerning mathematical modeling of turbulent flows in the ocean. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20spectrum" title=" essential spectrum"> essential spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=limiting%20amplitude" title=" limiting amplitude"> limiting amplitude</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20fluid" title=" rotating fluid"> rotating fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20theory" title=" spectral theory"> spectral theory</a>, <a href="https://publications.waset.org/abstracts/search?q=stratified%20fluid" title=" stratified fluid"> stratified fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20uniqueness%20of%20solutions%20of%20PDE%20equations" title=" the uniqueness of solutions of PDE equations"> the uniqueness of solutions of PDE equations</a> </p> <a href="https://publications.waset.org/abstracts/90400/mathematical-properties-of-the-resonance-of-the-inner-waves-in-rotating-stratified-three-dimensional-fluids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5177</span> Seismic Data Scaling: Uncertainties, Potential and Applications in Workstation Interpretation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankur%20Mundhra">Ankur Mundhra</a>, <a href="https://publications.waset.org/abstracts/search?q=Shubhadeep%20Chakraborty"> Shubhadeep Chakraborty</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20R.%20Singh"> Y. R. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Vishal%20Das"> Vishal Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic data scaling affects the dynamic range of a data and with present day lower costs of storage and higher reliability of Hard Disk data, scaling is not suggested. However, in dealing with data of different vintages, which perhaps were processed in 16 bits or even 8 bits and are need to be processed with 32 bit available data, scaling is performed. Also, scaling amplifies low amplitude events in deeper region which disappear due to high amplitude shallow events that saturate amplitude scale. We have focused on significance of scaling data to aid interpretation. This study elucidates a proper seismic loading procedure in workstations without using default preset parameters as available in most software suites. Differences and distribution of amplitude values at different depth for seismic data are probed in this exercise. Proper loading parameters are identified and associated steps are explained that needs to be taken care of while loading data. Finally, the exercise interprets the un-certainties which might arise when correlating scaled and unscaled versions of seismic data with synthetics. As, seismic well tie correlates the seismic reflection events with well markers, for our study it is used to identify regions which are enhanced and/or affected by scaling parameter(s). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clipping" title="clipping">clipping</a>, <a href="https://publications.waset.org/abstracts/search?q=compression" title=" compression"> compression</a>, <a href="https://publications.waset.org/abstracts/search?q=resolution" title=" resolution"> resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20scaling" title=" seismic scaling"> seismic scaling</a> </p> <a href="https://publications.waset.org/abstracts/24110/seismic-data-scaling-uncertainties-potential-and-applications-in-workstation-interpretation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5176</span> Amplitude and Latency of P300 Component from Auditory Stimulus in Different Types of Personality: An Event Related Potential Study </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasir%20Yusoff">Nasir Yusoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Adamu%20Adamu"> Ahmad Adamu Adamu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahamina%20Begum"> Tahamina Begum</a>, <a href="https://publications.waset.org/abstracts/search?q=Faruque%20Reza"> Faruque Reza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The P300 from Event related potential (ERP) explains the psycho-physiological phenomenon in human body. The present study aims to identify the differences of amplitude and latency of P300 component from auditory stimuli, between ambiversion and extraversion types of personality. Ambivert (N=20) and extravert (N=20) undergoing ERP recording at the Hospital Universiti Sains Malaysia (HUSM) laboratory. Electroencephalogram data was recorded with oddball paradigm, counting auditory standard and target tones, from nine electrode sites (Fz, Cz, Pz, T3, T4, T5, T6, P3 and P4) by using the 128 HydroCel Geodesic Sensor Net. The P300 latency of the target tones at all electrodes were insignificant. Similarly, the P300 latency of the standard tones were also insignificant except at Fz and T3 electrode. Likewise, the P300 amplitude of the target and standard tone in all electrode sites were insignificant. Extravert and ambivert indicate similar characteristic in cognition processing from auditory task. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amplitude" title="amplitude">amplitude</a>, <a href="https://publications.waset.org/abstracts/search?q=event%20related%20potential" title=" event related potential"> event related potential</a>, <a href="https://publications.waset.org/abstracts/search?q=p300%20component" title=" p300 component"> p300 component</a>, <a href="https://publications.waset.org/abstracts/search?q=latency" title=" latency"> latency</a> </p> <a href="https://publications.waset.org/abstracts/44995/amplitude-and-latency-of-p300-component-from-auditory-stimulus-in-different-types-of-personality-an-event-related-potential-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5175</span> Enhancing Oscillation Amplitude Response Generated by Vortex Induced Vibrations Through Experimental Identification of Optimum Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20F.%20Alhaddad">Mohammed F. Alhaddad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vortex induced Vibrations (VIV) is a phenomenon that occurs as a result of a flow passing by a bluff body. This phenomenon has been mainly studied to be suppressed to prevent fatigue and instability in offshore platforms. In 2006, some studies were conducted to maximize VIV instead of suppressing it, as these studies claimed that VIV is a potential method of generating energy. The aim of this paper is to identify factors for maximizing oscillation amplitude generated by VIV in order to enhance the energy harnessed through this method. The experimental study in this paper will examine the effect of oscillating cylinder diameter, surface roughness, the location of surface roughness with respect to the centerline of the oscillating cylinder and the velocity on the oscillation amplitude of the used module. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy" title="energy">energy</a>, <a href="https://publications.waset.org/abstracts/search?q=generation" title=" generation"> generation</a>, <a href="https://publications.waset.org/abstracts/search?q=generating" title=" generating"> generating</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex." title=" vortex."> vortex.</a> </p> <a href="https://publications.waset.org/abstracts/187303/enhancing-oscillation-amplitude-response-generated-by-vortex-induced-vibrations-through-experimental-identification-of-optimum-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5174</span> Plastic Strain Accumulation Due to Asymmetric Cyclic Loading of Zircaloy-2 at 400°C</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Rajpurohit">R. S. Rajpurohit</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20C.%20Santhi%20Srinivas"> N. C. Santhi Srinivas</a>, <a href="https://publications.waset.org/abstracts/search?q=Vakil%20Singh"> Vakil Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Asymmetric stress cycling leads to accumulation of plastic strain which is called as ratcheting strain. The problem is generally associated with nuclear fuel cladding materials used in nuclear power plants and pressurized pipelines. In the present investigation, asymmetric stress controlled fatigue tests were conducted with three different parameters namely, mean stress, stress amplitude and stress rate (keeping two parameters constant and varying third parameter) to see the plastic strain accumulation and its effect on fatigue life and deformation behavior of Zircaloy-2 at 400°C. The tests were conducted with variable mean stress (45-70 MPa), stress amplitude (95-120 MPa) and stress rate (30-750 MPa/s) and tested specimens were characterized using transmission and scanning electron microscopy. The experimental results show that with the increase in mean stress and stress amplitude, the ratcheting strain accumulation increases with reduction in fatigue life. However, increase in stress rate leads to improvement in fatigue life of the material due to small ratcheting strain accumulation. Fractographs showed a decrease in area fraction of fatigue failed region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20cyclic%20loading" title="asymmetric cyclic loading">asymmetric cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=ratcheting%20fatigue" title=" ratcheting fatigue"> ratcheting fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20stress" title=" mean stress"> mean stress</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20amplitude" title=" stress amplitude"> stress amplitude</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20rate" title=" stress rate"> stress rate</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20strain" title=" plastic strain"> plastic strain</a> </p> <a href="https://publications.waset.org/abstracts/70722/plastic-strain-accumulation-due-to-asymmetric-cyclic-loading-of-zircaloy-2-at-400c" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5173</span> Analysis of Reflection of Elastic Waves in Three Dimensional Model Comprised with Viscoelastic Anisotropic Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amares%20Chattopadhyay">Amares Chattopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Akanksha%20Srivastava"> Akanksha Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A unified approach to study the reflection of a plane wave in three-dimensional model comprised of the triclinic viscoelastic medium. The phase velocities of reflected qP, qSV and qSH wave have been calculated for the concerned medium by using the eigenvalue approach. The generalized method has been implemented to compute the complex form of amplitude ratios. Further, we discussed the nature of reflection coefficients of qP, qSV and qSH wave. The viscoelastic parameter, polar angle and azimuthal angle are found to be strongly influenced by amplitude ratios. The research article is particularly focused to study the effect of viscoelasticity associated with highly anisotropic media which exhibits the notable information about the reflection coefficients of qP, qSV, and qSH wave. The outcomes may further useful to the better exploration of all types of hydrocarbon reservoir and advancement in the field of reflection seismology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amplitude%20ratios" title="amplitude ratios">amplitude ratios</a>, <a href="https://publications.waset.org/abstracts/search?q=three%20dimensional" title=" three dimensional"> three dimensional</a>, <a href="https://publications.waset.org/abstracts/search?q=triclinic" title=" triclinic"> triclinic</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic" title=" viscoelastic"> viscoelastic</a> </p> <a href="https://publications.waset.org/abstracts/95419/analysis-of-reflection-of-elastic-waves-in-three-dimensional-model-comprised-with-viscoelastic-anisotropic-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5172</span> 4D Monitoring of Subsurface Conditions in Concrete Infrastructure Prior to Failure Using Ground Penetrating Radar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lee%20Tasker">Lee Tasker</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Karrech"> Ali Karrech</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeffrey%20Shragge"> Jeffrey Shragge</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Josh"> Matthew Josh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monitoring for the deterioration of concrete infrastructure is an important assessment tool for an engineer and difficulties can be experienced with monitoring for deterioration within an infrastructure. If a failure crack, or fluid seepage through such a crack, is observed from the surface often the source location of the deterioration is not known. Geophysical methods are used to assist engineers with assessing the subsurface conditions of materials. Techniques such as Ground Penetrating Radar (GPR) provide information on the location of buried infrastructure such as pipes and conduits, positions of reinforcements within concrete blocks, and regions of voids/cavities behind tunnel lining. This experiment underlines the application of GPR as an infrastructure-monitoring tool to highlight and monitor regions of possible deterioration within a concrete test wall due to an increase in the generation of fractures; in particular, during a time period of applied load to a concrete wall up to and including structural failure. A three-point load was applied to a concrete test wall of dimensions 1700 x 600 x 300 mm³ in increments of 10 kN, until the wall structurally failed at 107.6 kN. At each increment of applied load, the load was kept constant and the wall was scanned using GPR along profile lines across the wall surface. The measured radar amplitude responses of the GPR profiles, at each applied load interval, were reconstructed into depth-slice grids and presented at fixed depth-slice intervals. The corresponding depth-slices were subtracted from each data set to compare the radar amplitude response between datasets and monitor for changes in the radar amplitude response. At lower values of applied load (i.e., 0-60 kN), few changes were observed in the difference of radar amplitude responses between data sets. At higher values of applied load (i.e., 100 kN), closer to structural failure, larger differences in radar amplitude response between data sets were highlighted in the GPR data; up to 300% increase in radar amplitude response at some locations between the 0 kN and 100 kN radar datasets. Distinct regions were observed in the 100 kN difference dataset (i.e., 100 kN-0 kN) close to the location of the final failure crack. The key regions observed were a conical feature located between approximately 3.0-12.0 cm depth from surface and a vertical linear feature located approximately 12.1-21.0 cm depth from surface. These key regions have been interpreted as locations exhibiting an increased change in pore-space due to increased mechanical loading, or locations displaying an increase in volume of micro-cracks, or locations showing the development of a larger macro-crack. The experiment showed that GPR is a useful geophysical monitoring tool to assist engineers with highlighting and monitoring regions of large changes of radar amplitude response that may be associated with locations of significant internal structural change (e.g. crack development). GPR is a non-destructive technique that is fast to deploy in a production setting. GPR can assist with reducing risk and costs in future infrastructure maintenance programs by highlighting and monitoring locations within the structure exhibiting large changes in radar amplitude over calendar-time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=4D%20GPR" title="4D GPR">4D GPR</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20geophysics" title=" engineering geophysics"> engineering geophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20penetrating%20radar" title=" ground penetrating radar"> ground penetrating radar</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure%20monitoring" title=" infrastructure monitoring"> infrastructure monitoring</a> </p> <a href="https://publications.waset.org/abstracts/77533/4d-monitoring-of-subsurface-conditions-in-concrete-infrastructure-prior-to-failure-using-ground-penetrating-radar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5171</span> Spectral Analysis Approaches for Simultaneous Determination of Binary Mixtures with Overlapping Spectra: An Application on Pseudoephedrine Sulphate and Loratadine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20El-Hanboushy">Sara El-Hanboushy</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayam%20Lotfy"> Hayam Lotfy</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasmin%20Fayez"> Yasmin Fayez</a>, <a href="https://publications.waset.org/abstracts/search?q=Engy%20Shokry"> Engy Shokry</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20%20Abdelkawy"> Mohammed Abdelkawy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Simple, specific, accurate and precise spectrophotometric methods are developed and validated for simultaneous determination of pseudoephedrine sulphate (PSE) and loratadine (LOR) in combined dosage form based on spectral analysis technique. Pseudoephedrine (PSE) in binary mixture could be analyzed either by using its resolved zero order absorption spectrum at its λ max 256.8 nm after subtraction of LOR spectrum or in presence of LOR spectrum by absorption correction method at 256.8 nm, dual wavelength (DWL) method at 254nm and 273nm, induced dual wavelength (IDWL) method at 256nm and 272nm and ratio difference (RD) method at 256nm and 262 nm. Loratadine (LOR) in the mixture could be analyzed directly at 280nm without any interference of PSE spectrum or at 250 nm using its recovered zero order absorption spectrum using constant multiplication(CM).In addition, simultaneous determination for PSE and LOR in their mixture could be applied by induced amplitude modulation method (IAM) coupled with amplitude multiplication (PM). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dual%20wavelength%20%28DW%29" title="dual wavelength (DW)">dual wavelength (DW)</a>, <a href="https://publications.waset.org/abstracts/search?q=induced%20amplitude%20modulation%20method%20%28IAM%29%20coupled%20with%20amplitude%20multiplication%20%28PM%29" title=" induced amplitude modulation method (IAM) coupled with amplitude multiplication (PM)"> induced amplitude modulation method (IAM) coupled with amplitude multiplication (PM)</a>, <a href="https://publications.waset.org/abstracts/search?q=loratadine" title=" loratadine"> loratadine</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudoephedrine%20sulphate" title=" pseudoephedrine sulphate"> pseudoephedrine sulphate</a>, <a href="https://publications.waset.org/abstracts/search?q=ratio%20difference%20%28RD%29" title=" ratio difference (RD)"> ratio difference (RD)</a> </p> <a href="https://publications.waset.org/abstracts/53587/spectral-analysis-approaches-for-simultaneous-determination-of-binary-mixtures-with-overlapping-spectra-an-application-on-pseudoephedrine-sulphate-and-loratadine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5170</span> Design and Optimization of an Electromagnetic Vibration Energy Converter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Slim%20Naifar">Slim Naifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Bradai"> Sonia Bradai</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Viehweger"> Christian Viehweger</a>, <a href="https://publications.waset.org/abstracts/search?q=Olfa%20Kanoun"> Olfa Kanoun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vibration provides an interesting source of energy since it is available in many indoor and outdoor applications. Nevertheless, in order to have an efficient design of the harvesting system, vibration converters have to satisfy some criterion in terms of robustness, compactness and energy outcome. In this work, an electromagnetic converter based on mechanical spring principle is proposed. The designed harvester is formed by a coil oscillating around ten ring magnets using a mechanical spring. The proposed design overcomes one of the main limitation of the moving coil by avoiding the contact between the coil wires with the mechanical spring which leads to a better robustness for the converter. In addition, the whole system can be implemented in a cavity of a screw. Different parameters in the harvester were investigated by finite element method including the magnet size, the coil winding number and diameter and the excitation frequency and amplitude. A prototype was realized and tested. Experiments were performed for 0.5 g to 1 g acceleration. The used experimental setup consists of an electrodynamic shaker as an external artificial vibration source controlled by a laser sensor to measure the applied displacement and frequency excitation. Together with the laser sensor, a controller unit, and an amplifier, the shaker is operated in a closed loop which allows controlling the vibration amplitude. The resonance frequency of the proposed designs is in the range of 24 Hz. Results indicate that the harvester can generate 612 mV and 1150 mV maximum open circuit peak to peak voltage at resonance for 0.5 g and 1 g acceleration respectively which correspond to 4.75 mW and 1.34 mW output power. Tuning the frequency to other values is also possible due to the possibility to add mass to the moving part of the or by changing the mechanical spring stiffness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20harvesting" title="energy harvesting">energy harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20principle" title=" electromagnetic principle"> electromagnetic principle</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20converter" title=" vibration converter"> vibration converter</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20coil" title=" moving coil"> moving coil</a> </p> <a href="https://publications.waset.org/abstracts/78340/design-and-optimization-of-an-electromagnetic-vibration-energy-converter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5169</span> Mooring Analysis of Duct-Type Tidal Current Power System in Shallow Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chul%20H.%20Jo">Chul H. Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Do%20Y.%20Kim"> Do Y. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Bong%20K.%20Cho"> Bong K. Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Myeong%20J.%20Kim"> Myeong J. Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The exhaustion of oil and the environmental pollution from the use of fossil fuel are increasing. Tidal current power (TCP) has been proposed as an alternative energy source because of its predictability and reliability. By applying a duct and single point mooring (SPM) system, a TCP device can amplify the generating power and keep its position properly. Because the generating power is proportional to cube of the current stream velocity, amplifying the current speed by applying a duct to a TCP system is an effective way to improve the efficiency of the power device. An SPM system can be applied at any water depth and is highly cost effective. Simple installation and maintenance procedures are also merits of an SPM system. In this study, we designed an SPM system for a duct-type TCP device for use in shallow water. Motions of the duct are investigated to obtain the response amplitude operator (RAO) as the magnitude of the transfer function. Parameters affecting the stability of the SPM system such as the fairlead departure angle, current velocity, and the number of clamp weights are analyzed and/or optimized. Wadam and OrcaFlex commercial software is used to design the mooring line. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mooring%20design" title="mooring design">mooring design</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20analysis" title=" parametric analysis"> parametric analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=RAO%20%28Response%20Amplitude%20Operator%29" title=" RAO (Response Amplitude Operator)"> RAO (Response Amplitude Operator)</a>, <a href="https://publications.waset.org/abstracts/search?q=SPM%20%28Single%20Point%20Mooring%29" title=" SPM (Single Point Mooring)"> SPM (Single Point Mooring)</a> </p> <a href="https://publications.waset.org/abstracts/42998/mooring-analysis-of-duct-type-tidal-current-power-system-in-shallow-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5168</span> Expanding the Evaluation Criteria for a Wind Turbine Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Balachin">Ivan Balachin</a>, <a href="https://publications.waset.org/abstracts/search?q=Geanette%20Polanco"> Geanette Polanco</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiang%20%20Xingliang"> Jiang Xingliang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hu%20Qin"> Hu Qin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of global warming raised up interest towards renewable energy sources. To reduce cost of wind energy is a challenge. Before building of wind park conditions such as: average wind speed, direction, time for each wind, probability of icing, must be considered in the design phase. Operation values used on the setting of control systems also will depend on mentioned variables. Here it is proposed a procedure to be include in the evaluation of the performance of a wind turbine, based on the amplitude of wind changes, the number of changes and their duration. A generic study case based on actual data is presented. Data analysing techniques were applied to model the power required for yaw system based on amplitude and data amount of wind changes. A theoretical model between time, amplitude of wind changes and angular speed of nacelle rotation was identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=field%20data%20processing" title="field data processing">field data processing</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20determination" title=" regression determination"> regression determination</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20performance" title=" wind turbine performance"> wind turbine performance</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20placing" title=" wind turbine placing"> wind turbine placing</a>, <a href="https://publications.waset.org/abstracts/search?q=yaw%20system%20losses" title=" yaw system losses"> yaw system losses</a> </p> <a href="https://publications.waset.org/abstracts/81619/expanding-the-evaluation-criteria-for-a-wind-turbine-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5167</span> A Case Study of Open Source Development Practices within a Large Company Setting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alma%20Orucevic-Alagic">Alma Orucevic-Alagic</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20H%C3%B6st"> Martin Höst</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Open source communities have demonstrated that complex and enterprise grade software can be produced, supported, and maintained by self-organizing groups of developers using primarily electronic form of communication. Due to the inherent nature of open source development, a specific set of open source software development practices has evolved. While there is an ongoing research on the topic of applicability of open source development practices within a company setting, still little is known about their benefits and challenges. The objective of this research is to understand if and to what degree open source development practices observed within a mature open source community are aligned with development practices within a large software and hardware company setting. For the purpose of this case study a set of open source development practices that are present in a mature open source community has been identified. Then, development practices of a large, international, hardware and software company based in Sweden were assessed and compared to the identified open source community practices. It is shown that there are many similarities between a mature open source community and a large company setting in regard to software development practices. We also identify practices that exist in open source communities and that are not standard within a company setting, but whose implementation can result in an improved software development efficiency within the company setting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=development%20practices" title="development practices">development practices</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20source%20software" title=" open source software"> open source software</a>, <a href="https://publications.waset.org/abstracts/search?q=innersource" title=" innersource"> innersource</a>, <a href="https://publications.waset.org/abstracts/search?q=closed%20open%20source" title=" closed open source"> closed open source</a> </p> <a href="https://publications.waset.org/abstracts/13154/a-case-study-of-open-source-development-practices-within-a-large-company-setting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">558</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5166</span> Analysis of Injection-Lock in Oscillators versus Phase Variation of Injected Signal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Yousefi">M. Yousefi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Nasirzadeh"> N. Nasirzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, behavior of an oscillator under injection of another signal has been investigated. Also, variation of output signal amplitude versus injected signal phase variation, the effect of varying the amplitude of injected signal and quality factor of the oscillator has been investigated. The results show that the locking time depends on phase and the best locking time happens at 180-degrees phase. Also, the effect of injected lock has been discussed. Simulations show that the locking time decreases with signal injection to bulk. Locking time has been investigated versus various phase differences. The effect of phase and amplitude changes on locking time of a typical LC oscillator in 180 nm technology has been investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analysis" title="analysis">analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillator" title=" oscillator"> oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=injection-lock%20oscillator" title=" injection-lock oscillator"> injection-lock oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20modulation" title=" phase modulation"> phase modulation</a> </p> <a href="https://publications.waset.org/abstracts/53354/analysis-of-injection-lock-in-oscillators-versus-phase-variation-of-injected-signal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5165</span> Effects of Whole-Body Vibration Training on Fibrinolytic and Coagulative Factors in Healthy Young Man</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farshad%20Ghazalian">Farshad Ghazalian</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Hossein%20Alavi"> Seyed Hossein Alavi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Use of whole body vibration (WBV) as an exercise method has rapidly increased over the last decade. The aim of this study was to evaluate effects of five week whole-body vibration training with different amplitudes and progressive frequencies on fibrinolytic and coagulative factors. Methods: Twenty five healthy male students were divided randomly in three groups: high amplitude vibration group (n=10), low amplitude vibration group (n=10), and control group (n=5). The vibration training consisted of 5 week whole-body vibration 3 times a week with amplitudes 4 and 2 mm and progressive frequencies from 25Hz with increments of 5Hz weekly. Concentrations of fibrinogen, plasminogen, tPA, and PAI-1 before and after 5 weeks of training were measured in plasma samples. Statistical analysis was done using one way analysis of variance. In order to compare pre-test with post test we used Wilcoxon signed ranked test .P<0.05 was considered statistically significant. Results: The 5 week high amplitude vibration training caused a significant improvement in tissue plasminogen activator (tPA) (p=0.028), and PAI-1 (p=0.033), fibrinogen showed decrease albeit not significantly (p=0.052). Plasminogen showed decrease not significantly (p=0.508). Low-amplitude vibration training caused a significant improvement in tissue plasminogen activator (tPA) (p=0.006) and and PAI-1 showed decrease not significantly (p=0.907). Fibrinogen showed decrease albeit not significantly (p=0.19). Plasminogen showed decrease not significantly (p=0.095). However, between groups there was no significant effect on tissue plasminogen activator (tPA) (p = 0.50), PAI-1 (p=0.249), Plasminogen (p=0.742), and fibrinogen (p=0.299). Conclusion: Amplitude of vibrations training is a important variable that effect on fibrino lytic factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vibration" title="vibration">vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=fibrinolysis" title=" fibrinolysis"> fibrinolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20coagulation" title=" blood coagulation"> blood coagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=plasminogen" title=" plasminogen "> plasminogen </a> </p> <a href="https://publications.waset.org/abstracts/10514/effects-of-whole-body-vibration-training-on-fibrinolytic-and-coagulative-factors-in-healthy-young-man" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5164</span> Priority of Goal Over Source in Persian Directional Motion Verbs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahereh%20Samenian">Tahereh Samenian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is ample evidence that source and goal are disproportionately expressed in languages, and goal usually plays a more prominent role than source. The results show that the mismatch between the goal and the source is not entirely rooted in non-linguistic behaviors, i.e. that linguistic descriptions also show the focus of the goal on the source in events; Non-verbal memory for events, on the other hand, indicates that the focus of the goal is only on events that are purposefully moving and the actor is alive. In the present study, an attempt is made to examine the principle of priority of the goal over the source by focusing on Persian directional motion verbs. For this purpose, 117 Persian directional motion verbs have been selected from the dictionary and data for them have been collected from the body of Bijan Khan and the components of goal and source have been identified in sentences and the prominence of the components of goal and source has been shown in the form of diagrams. As it was obtained from the data, Persian motion-directional verbs also showed the bias of the goal over source in motion events. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=motion-directional%20verbs" title="motion-directional verbs">motion-directional verbs</a>, <a href="https://publications.waset.org/abstracts/search?q=priority%20of%20goal%20over%20source%20principle" title=" priority of goal over source principle"> priority of goal over source principle</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20factors" title=" cognitive factors"> cognitive factors</a>, <a href="https://publications.waset.org/abstracts/search?q=linguistic%20factors" title=" linguistic factors"> linguistic factors</a> </p> <a href="https://publications.waset.org/abstracts/156958/priority-of-goal-over-source-in-persian-directional-motion-verbs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156958.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=source%20amplitude&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=source%20amplitude&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=source%20amplitude&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=source%20amplitude&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=source%20amplitude&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=source%20amplitude&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=source%20amplitude&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=source%20amplitude&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=source%20amplitude&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=source%20amplitude&page=173">173</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=source%20amplitude&page=174">174</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=source%20amplitude&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>