CINXE.COM
Search results for: vertical component
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: vertical component</title> <meta name="description" content="Search results for: vertical component"> <meta name="keywords" content="vertical component"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="vertical component" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="vertical component"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3669</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: vertical component</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3669</span> Studying Frame-Resistant Steel Structures under Near Field Ground Motion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Hashemi">S. A. Hashemi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Khoshraftar"> A. Khoshraftar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the influence of the vertical seismic component on the non-linear dynamics analysis of three different structures. The subject structures were analyzed and designed according to recent codes. This paper considers three types of buildings: 5-, 10-, and 15-story buildings. The non-linear dynamics analysis of the structures with assuming elastic-perfectly-plastic behavior was performed using Ram Perform-3D software; the horizontal component was taken into consideration with and without the incorporation of the corresponding vertical component. Dynamic responses obtained for the horizontal component acting alone were compared with those obtained from the simultaneous application of both seismic components. The results show that the effect of the vertical component of the ground motion may increase the axial load significantly in the interior columns and consequently, the stories. The plastic mechanisms would be changed. The P-Delta effect is expected to increase. The punching base plate shear of the columns should be considered. Moreover, the vertical component increases the input energy when the structures exhibit inelastic behavior and are taller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inelastic%20behavior" title="inelastic behavior">inelastic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20dynamic%20analysis" title=" non-linear dynamic analysis"> non-linear dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20structure" title=" steel structure"> steel structure</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20component" title=" vertical component"> vertical component</a> </p> <a href="https://publications.waset.org/abstracts/30902/studying-frame-resistant-steel-structures-under-near-field-ground-motion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3668</span> The Simultaneous Effect of Horizontal and Vertical Earthquake Components on the Seismic Response of Buckling-Restrained Braced Frame</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Shokrollahi">Mahdi Shokrollahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the past years, much research has been conducted on the vulnerability of structures to earthquakes, which only horizontal components of the earthquake were considered in their seismic analysis and vertical earthquake acceleration especially in near-fault area was less considered. The investigation of the mappings shows that vertical earthquake acceleration can be significantly closer to the maximum horizontal earthquake acceleration, and even exceeds it in some cases. This study has compared the behavior of different members of three steel moment frame with a buckling-restrained brace (BRB), one time only by considering the horizontal component and again by considering simultaneously the horizontal and vertical components under the three mappings of the near-fault area and the effect of vertical acceleration on structural responses is investigated. Finally, according to the results, the vertical component of the earthquake has a greater effect on the axial force of the columns and the vertical displacement of the middle of the beams of the different classes and less on the lateral displacement of the classes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20earthquake%20acceleration" title="vertical earthquake acceleration">vertical earthquake acceleration</a>, <a href="https://publications.waset.org/abstracts/search?q=near-fault%20area" title=" near-fault area"> near-fault area</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20frame" title=" steel frame"> steel frame</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20and%20vertical%20component%20of%20earthquake" title=" horizontal and vertical component of earthquake"> horizontal and vertical component of earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=buckling-restrained%20brace" title=" buckling-restrained brace"> buckling-restrained brace</a> </p> <a href="https://publications.waset.org/abstracts/91326/the-simultaneous-effect-of-horizontal-and-vertical-earthquake-components-on-the-seismic-response-of-buckling-restrained-braced-frame" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3667</span> Human Walking Vertical Force and Vertical Vibration of Pedestrian Bridge Induced by Its Higher Components</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masahiro%20Yoneda">Masahiro Yoneda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to identify human walking vertical force by using FFT power spectrum density from the experimental acceleration data of the human body. An experiment on human walking is carried out on a stationary floor especially paying attention to higher components of dynamic vertical walking force. Based on measured acceleration data of the human lumbar part, not only in-phase component with frequency of 2 fw, 3 fw, but also in-opposite-phase component with frequency of 0.5 fw, 1.5 fw, 2.5 fw where fw is the walking rate is observed. The vertical vibration of pedestrian bridge induced by higher components of human walking vertical force is also discussed in this paper. A full scale measurement for the existing pedestrian bridge with center span length of 33 m is carried out focusing on the resonance phenomenon due to higher components of human walking vertical force. Dynamic response characteristics excited by these vertical higher components of human walking are revealed from the dynamic design viewpoint of pedestrian bridge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simplified%20method" title="simplified method">simplified method</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20walking%20vertical%20force" title=" human walking vertical force"> human walking vertical force</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20component" title=" higher component"> higher component</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20bridge%20vibration" title=" pedestrian bridge vibration"> pedestrian bridge vibration</a> </p> <a href="https://publications.waset.org/abstracts/28100/human-walking-vertical-force-and-vertical-vibration-of-pedestrian-bridge-induced-by-its-higher-components" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28100.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3666</span> Analysis of Building Response from Vertical Ground Motions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=George%20C.%20Yao">George C. Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao-Yu%20Tu"> Chao-Yu Tu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Chung%20Chen"> Wei-Chung Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Fung-Wen%20Kuo"> Fung-Wen Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Shan%20Chang"> Yu-Shan Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building structures are subjected to both horizontal and vertical ground motions during earthquakes, but only the horizontal ground motion has been extensively studied and considered in design. Most of the prevailing seismic codes assume the vertical component to be 1/2 to 2/3 of the horizontal one. In order to understand the building responses from vertical ground motions, many earthquakes records are studied in this paper. System identification methods (ARX Model) are used to analyze the strong motions and to find out the characteristics of the vertical amplification factors and the natural frequencies of buildings. Analysis results show that the vertical amplification factors for high-rise buildings and low-rise building are 1.78 and 2.52 respectively, and the average vertical amplification factor of all buildings is about 2. The relationship between the vertical natural frequency and building height was regressed to a suggested formula in this study. The result points out an important message; the taller the building is, the greater chance of resonance of vertical vibration on the building will be. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20ground%20motion" title="vertical ground motion">vertical ground motion</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20amplification%20factor" title=" vertical amplification factor"> vertical amplification factor</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=component" title=" component"> component</a> </p> <a href="https://publications.waset.org/abstracts/73421/analysis-of-building-response-from-vertical-ground-motions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3665</span> Determining Components of Deflection of the Vertical in Owerri West Local Government, Imo State Nigeria Using Least Square Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chukwu%20Fidelis%20Ndubuisi">Chukwu Fidelis Ndubuisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Madufor%20Michael%20Ozims"> Madufor Michael Ozims</a>, <a href="https://publications.waset.org/abstracts/search?q=Asogwa%20Vivian%20Ndidiamaka"> Asogwa Vivian Ndidiamaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Egenamba%20Juliet%20Ngozi"> Egenamba Juliet Ngozi</a>, <a href="https://publications.waset.org/abstracts/search?q=Okonkwo%20Stephen%20C."> Okonkwo Stephen C.</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamah%20Chukwudi%20David"> Kamah Chukwudi David</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deflection of the vertical is a quantity used in reducing geodetic measurements related to geoidal networks to the ellipsoidal plane; and it is essential in Geoid modeling processes. Computing the deflection of the vertical component of a point in a given area is necessary in evaluating the standard errors along north-south and east-west direction. Using combined approach for the determination of deflection of the vertical component provides improved result but labor intensive without appropriate method. Least square method is a method that makes use of redundant observation in modeling a given sets of problem that obeys certain geometric condition. This research work is aimed to computing the deflection of vertical component of Owerri West local government area of Imo State using geometric method as field technique. In this method combination of Global Positioning System on static mode and precise leveling observation were utilized in determination of geodetic coordinate of points established within the study area by GPS observation and the orthometric heights through precise leveling. By least square using Matlab programme; the estimated deflections of vertical component parameters for the common station were -0.0286 and -0.0001 arc seconds for the north-south and east-west components respectively. The associated standard errors of the processed vectors of the network were computed. The computed standard errors of the North-south and East-west components were 5.5911e-005 and 1.4965e-004 arc seconds, respectively. Therefore, including the derived component of deflection of the vertical to the ellipsoidal model will yield high observational accuracy since an ellipsoidal model is not tenable due to its far observational error in the determination of high quality job. It is important to include the determined deflection of the vertical component for Owerri West Local Government in Imo State, Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deflection%20of%20vertical" title="deflection of vertical">deflection of vertical</a>, <a href="https://publications.waset.org/abstracts/search?q=ellipsoidal%20height" title=" ellipsoidal height"> ellipsoidal height</a>, <a href="https://publications.waset.org/abstracts/search?q=least%20square" title=" least square"> least square</a>, <a href="https://publications.waset.org/abstracts/search?q=orthometric%20height" title=" orthometric height"> orthometric height</a> </p> <a href="https://publications.waset.org/abstracts/99755/determining-components-of-deflection-of-the-vertical-in-owerri-west-local-government-imo-state-nigeria-using-least-square-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3664</span> A Comprehensive Approach in Calculating the Impact of the Ground on Radiated Electromagnetic Fields Due to Lightning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lahcene%20Boukelkoul">Lahcene Boukelkoul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of finite ground conductivity is of great importance in calculating the induced voltages from the radiated electromagnetic fields due to lightning. In this paper, we try to give a comprehensive approach to calculate the impact of the ground on the radiated electromagnetic fields to lightning. The vertical component of lightning electric field is calculated with a reasonable approximation assuming a perfectly conducting ground in case the observation point does not exceed a few kilometres from the lightning channel. However, for distant observation points the radiated vertical component of lightning electric field is attenuated due finitely conducting ground. The attenuation is calculated using the expression elaborated for both low and high frequencies. The horizontal component of the electric field, however, is more affected by a finite conductivity of a ground. Besides, the contribution of the horizontal component of the electric field, to induced voltages on an overhead transmission line, is greater than that of the vertical component. Therefore, the calculation of the horizontal electric field is great concern for the simulation of lightning-induced voltages. For field to transmission lines coupling the ground impedance is calculated for early time behaviour and for low frequency range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20engineering" title="power engineering">power engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=radiated%20electromagnetic%20fields" title=" radiated electromagnetic fields"> radiated electromagnetic fields</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning-induced%20voltages" title=" lightning-induced voltages"> lightning-induced voltages</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20electric%20field" title=" lightning electric field"> lightning electric field</a> </p> <a href="https://publications.waset.org/abstracts/7041/a-comprehensive-approach-in-calculating-the-impact-of-the-ground-on-radiated-electromagnetic-fields-due-to-lightning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3663</span> Behavior of a Vertical Pile under the Effect of an Inclined Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fathi%20Mohamed%20Abdrabbo">Fathi Mohamed Abdrabbo</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Elsayed%20Gaaver"> Khaled Elsayed Gaaver</a>, <a href="https://publications.waset.org/abstracts/search?q=Musab%20Musa%20Eldooma"> Musab Musa Eldooma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an attempt made to investigate the behavior of a single vertical steel hollow pile embedded in sand subjected to compressive inclined load at various inclination angles α through FEM package MIDAS GTS/NX 2019. The effect of the inclination angle and slenderness ratio on the performance of the pile was investigated. Inclined load caring capacity and pile stiffness, as well as lateral deformation profiles along with the pile, were presented. The global, vertical, and horizontal load displacements, as well as the deformation profiles along with the pile and the pile stiffness, are significantly affected by α. Whereas P-Y curves of the pile are independent of α., also the slenderness ratios are markedly affecting the behavior of the pile. In addition, there was a noticeable effect of the horizontal component on the vertical behavior of the pile, whereas there was no influence of the presence of vertical load on the horizontal behavior of the pile. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20foundations" title="deep foundations">deep foundations</a>, <a href="https://publications.waset.org/abstracts/search?q=piles" title=" piles"> piles</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20load" title=" inclined load"> inclined load</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20deformations" title=" pile deformations"> pile deformations</a> </p> <a href="https://publications.waset.org/abstracts/145253/behavior-of-a-vertical-pile-under-the-effect-of-an-inclined-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3662</span> On the Seismic Response of Collided Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=George%20D.%20Hatzigeorgiou">George D. Hatzigeorgiou</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikos%20G.%20Pnevmatikos"> Nikos G. Pnevmatikos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines the inelastic behavior of adjacent planar reinforced concrete (R.C.) frames subjected to strong ground motions. The investigation focuses on the effects of vertical ground motion on the seismic pounding. The examined structures are modeled and analyzed by RUAUMOKO dynamic nonlinear analysis program using reliable hysteretic models for both structural members and contact elements. It is found that the vertical ground motion mildly affects the seismic response of adjacent buildings subjected to structural pounding and, for this reason, it can be ignored from the displacement and interstorey drifts assessment. However, the structural damage is moderately affected by the vertical component of earthquakes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20seismic%20behavior" title="nonlinear seismic behavior">nonlinear seismic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20structures" title=" reinforced concrete structures"> reinforced concrete structures</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20pounding" title=" structural pounding"> structural pounding</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20ground%20motions" title=" vertical ground motions"> vertical ground motions</a> </p> <a href="https://publications.waset.org/abstracts/7892/on-the-seismic-response-of-collided-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">593</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3661</span> Behavior of A Vertical Pile Under the Effect of an Inclined Load in Loose Sand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fathi%20Mohamed%20Abdrabbo">Fathi Mohamed Abdrabbo</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Esayed%20Gaaver"> Khaled Esayed Gaaver</a>, <a href="https://publications.waset.org/abstracts/search?q=Musab%20Musa%20Eldooma"> Musab Musa Eldooma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an attempt made to investigate the behavior of a single vertical steel hollow pile embedded in sand subjected to compressive inclined load at various inclination angles α through FEM package MIDAS GTS/NX 2019. The effect of the inclination angle and slenderness ratio on the performance of the pile was investigated. Inclined load caring capacity and pile stiffness, as well as lateral deformation profiles along with the pile, were presented. The global, vertical, and horizontal load displacements of pile head, as well as the deformation profiles along the pile and the pile stiffness, are significantly affected by α. It was observed that the P-Y curves of the pile-soil system are independent of α. Also, the slenderness ratios are markedly affecting the behavior of the pile. In addition, there was a noticeable effect of the horizontal load component of the applied load on the vertical behavior of the pile, whereas there was no influence of the presence of vertical load on the horizontal behavior of the pile. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20foundation" title="deep foundation">deep foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=piles" title=" piles"> piles</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20load" title=" inclined load"> inclined load</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20deformations" title=" pile deformations"> pile deformations</a> </p> <a href="https://publications.waset.org/abstracts/145277/behavior-of-a-vertical-pile-under-the-effect-of-an-inclined-load-in-loose-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3660</span> Effect of Scarp Topography on Seismic Ground Motion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haiping%20Ding">Haiping Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Rongchu%20Zhu"> Rongchu Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenxia%20Song"> Zhenxia Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Local irregular topography has a great impact on earthquake ground motion. For scarp topography, using numerical simulation method, the influence extent and scope of the scarp terrain on scarp's upside and downside ground motion are discussed in case of different vertical incident SV waves. The results show that: (1) The amplification factor of scarp's upside region is greater than that of the free surface, while the amplification factor of scarp's downside part is less than that of the free surface; (2) When the slope angle increases, for x component, amplification factors of the scarp upside also increase, while the downside part decrease with it. For z component, both of the upside and downside amplification factors will increase; (3) When the slope angle changes, the influence scope of scarp's downside part is almost unchanged, but for the upside part, it slightly becomes greater with the increase of slope angle; (4) Due to the existence of the scarp, the z component ground motion appears at the surface. Its amplification factor increases for larger slope angle, and the peaks of the surface responses are related with incident waves. However, the input wave has little effects on the x component amplification factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scarp%20topography" title="scarp topography">scarp topography</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20motion" title=" ground motion"> ground motion</a>, <a href="https://publications.waset.org/abstracts/search?q=amplification%20factor" title=" amplification factor"> amplification factor</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20incident%20wave" title=" vertical incident wave"> vertical incident wave</a> </p> <a href="https://publications.waset.org/abstracts/73482/effect-of-scarp-topography-on-seismic-ground-motion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3659</span> Residents’ Perceptions towards the Application of Vertical Landscape in Cairo, Egypt </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yomna%20Amr%20Ahmed%20Lotfi%20Koraim">Yomna Amr Ahmed Lotfi Koraim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dalia%20Moati%20Rasmi%20Elkhateeb"> Dalia Moati Rasmi Elkhateeb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vertical landscape is introduced in this study as an alternative innovative technology for urban sustainable developments for its diverse environmental, economic, and psycho-social advantages. The main aim is to investigate the social acceptance of vertical landscape in Cairo, Egypt. The study objectives were to explore the perceptions of residents concerning this certain phenomenon and their opinions about its implementation. Survey questionnaires were administrated to 60 male and female residents from the Greater Cairo area. Despite the various concerns expressed about the application of vertical landscape, there was a clear majority of approval about its suitability. This is quite encouraging for the prospect of vertical landscape implementation in Cairo, Egypt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20landscape" title="vertical landscape">vertical landscape</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20facades" title=" green facades"> green facades</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20greening" title=" vertical greening"> vertical greening</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20acceptance" title=" social acceptance"> social acceptance</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20urban%20development" title=" sustainable urban development"> sustainable urban development</a> </p> <a href="https://publications.waset.org/abstracts/72224/residents-perceptions-towards-the-application-of-vertical-landscape-in-cairo-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3658</span> Study of the Vertical Handoff in Heterogeneous Networks and Implement Based on Opnet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wafa%20Benaatou">Wafa Benaatou</a>, <a href="https://publications.waset.org/abstracts/search?q=Adnane%20Latif"> Adnane Latif </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this document we studied more in detail the Performances of the vertical handover in the networks WLAN, WiMAX, UMTS before studying of it the Procedure of Handoff Vertical, the whole buckled by simulations putting forward the performances of the handover in the heterogeneous networks. The goal of Vertical Handover is to carry out several accesses in real-time in the heterogeneous networks. This makes it possible a user to use several networks (such as WLAN UMTS and WiMAX) in parallel, and the system to commutate automatically at another basic station, without disconnecting itself, as if there were no cut and with little loss of data as possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20handoff" title="vertical handoff">vertical handoff</a>, <a href="https://publications.waset.org/abstracts/search?q=WLAN" title=" WLAN"> WLAN</a>, <a href="https://publications.waset.org/abstracts/search?q=UMTS" title=" UMTS"> UMTS</a>, <a href="https://publications.waset.org/abstracts/search?q=WIMAX" title=" WIMAX"> WIMAX</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous" title=" heterogeneous"> heterogeneous</a> </p> <a href="https://publications.waset.org/abstracts/12140/study-of-the-vertical-handoff-in-heterogeneous-networks-and-implement-based-on-opnet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3657</span> A Vertical-Axis Unidirectional Rotor with Nested Blades for Wave Energy Conversion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yingchen%20Yang">Yingchen Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, development of a new vertical-axis unidirectional wave rotor is reported. The wave rotor is a key component of a wave energy converter (WEC), which harvests energy from ocean waves. Differing from the huge majority of WEC designs that perform reciprocating motions (heaving up and down, swaying back and forth, etc.), our wave rotor performs unidirectional rotation about a vertical axis when directly exposed in waves. The unidirectional feature of the rotor makes the rotor respond well in a wide range of the wave frequency. The vertical axis arrangement of the rotor makes the rotor insensitive to the wave propagation direction. The rotor employs blades with a cross-section in an airfoil shape and a span curled into a semi-oval shape. Two sets of blades, with one nested inside the other, constitute the rotor. In waves, water particles perform an omnidirectional motion that constantly changes in both spatial and temporal domains. The blade nesting permits a compact rotor configuration that ‘sees’ a relatively uniform local flow in the spatial domain. The rotor was experimentally tested in simulated waves in a wave flume under various conditions. The testing results show a promising unidirectional rotor that is capable of extracting energy from waves at a capture width ratio of 0.08 to 0.15, depending on detailed wave conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unidirectional" title="unidirectional">unidirectional</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20axis" title=" vertical axis"> vertical axis</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20energy%20converter" title=" wave energy converter"> wave energy converter</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20rotor" title=" wave rotor"> wave rotor</a> </p> <a href="https://publications.waset.org/abstracts/94935/a-vertical-axis-unidirectional-rotor-with-nested-blades-for-wave-energy-conversion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3656</span> Quantification of Effects of Structure-Soil-Structure Interactions on Urban Environment under Rayleigh Wave Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Kumar">Neeraj Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20Narayan"> J. P. Narayan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of multiple Structure-Soil-Structure Interactions (SSSI) on the seismic wave-field is generally disregarded by earthquake engineers, particularly the surface waves which cause more damage to buildings. Closely built high rise buildings exchange substantial seismic energy with each other and act as a full-coupled dynamic system. In this paper, SSI effects on the building responses and the free field motion due to a small city consisting 25- homogenous buildings blocks of 10-storey are quantified. The rocking and translational behavior of building under Rayleigh wave loading is studied for different dimensions of the building. The obtained dynamic parameters of buildings revealed a reduction in building roof drift with an increase in number of buildings ahead of the considered building. The strain developed by vertical component of Rayleigh may cause tension in structural components of building. A matching of fundamental frequency of building for the horizontal component of Rayleigh wave with that for vertically incident SV-wave is obtained. Further, the fundamental frequency of building for the vertical vibration is approximately twice to that for horizontal vibration. The city insulation has caused a reduction of amplitude of Rayleigh wave up to 19.3% and 21.6% in the horizontal and vertical components, respectively just outside the city. Further, the insulating effect of city was very large at fundamental frequency of buildings for both the horizontal and vertical components. Therefore, it is recommended to consider the insulating effects of city falling in the path of Rayleigh wave propagation in seismic hazard assessment for an area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structure-soil-structure%20interactions" title="structure-soil-structure interactions">structure-soil-structure interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayleigh%20wave%20propagation" title=" Rayleigh wave propagation"> Rayleigh wave propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20simulation" title=" finite difference simulation"> finite difference simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20response%20of%20buildings" title=" dynamic response of buildings"> dynamic response of buildings</a> </p> <a href="https://publications.waset.org/abstracts/75186/quantification-of-effects-of-structure-soil-structure-interactions-on-urban-environment-under-rayleigh-wave-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3655</span> Social Sustainability Quotient of Vertical Habitats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Mohamed">Abdullah Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Raipat%20Vaidehi"> Raipat Vaidehi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> With increasing immigration to urban areas, every city is experiencing shortage of housing. Vertical habitats are the only solution to this problem, it is hence important to make sure that these habitats are environmentally, socially and economically sustainable. A lot of work on vertical habitats has already been carried out in terms of environmental and economic sustainability, hence this research aims to study the aspects of social sustainability of the vertical habitats. It being the least studied topic, opens many reals of novelty and uniqueness. In this Research, user perception survey and various mapping methods have been used to study the social sustainability of the existing vertical habitats in the selected cities. The various aspects that can be used to define social sustainability of any place include; safety, equity, accessibility, legibility, imagibility, readability, memorability and ease of movement. This research would help to evolve new strategies in form of design and/or guidelines to make the existing vertical habitats socially sustainable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=user%20lifestyle" title="user lifestyle">user lifestyle</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20perception" title=" user perception"> user perception</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20sustainability" title=" social sustainability"> social sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20habitats" title=" vertical habitats"> vertical habitats</a> </p> <a href="https://publications.waset.org/abstracts/74022/social-sustainability-quotient-of-vertical-habitats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3654</span> Experimental Investigation of Flow Structure around a Rectangular Cylinder in Different Configurations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cemre%20Polat">Cemre Polat</a>, <a href="https://publications.waset.org/abstracts/search?q=Dogan%20B.%20Saydam"> Dogan B. Saydam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Soyler"> Mustafa Soyler</a>, <a href="https://publications.waset.org/abstracts/search?q=Coskun%20Ozalp"> Coskun Ozalp</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the flow structure was investigated by particle imaging velocimetry (PIV) method at Re = 26000 for two different rectangular cylinders placed perpendicular and parallel to the flow direction. After obtaining streamwise and spanwise velocity data, average vorticity, streamlines, velocity magnitude, turbulence kinetic energy, root mean square of streamwise and spanwise velocity fluctuations are calculated, and critical points of flow structure are explained. As a result of the study, it was seen that the vertical configuration has less effect on the flow structure in the back region of the body compared to the horizontal configuration. When the streamwise velocity component is examined in both configurations, it is seen that the negative velocity component is stronger on the long sides compared to the short sides. It has been observed that the vertically positioned cylinder expands the flow separation point compared to the horizontally positioned cylinder; also the vertical cylinder creates an increase in turbulence kinetic energy compared to the horizontal cylinder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bluff%20body" title="bluff body">bluff body</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20characteristics" title=" flow characteristics"> flow characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=PIV" title=" PIV"> PIV</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20cylinder" title=" rectangular cylinder"> rectangular cylinder</a> </p> <a href="https://publications.waset.org/abstracts/130636/experimental-investigation-of-flow-structure-around-a-rectangular-cylinder-in-different-configurations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3653</span> Influence of Security Attributes in Component-Based Software Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somayeh%20Zeinali">Somayeh Zeinali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A component is generally defined as a piece of executable software with a published interface. Component-based software engineering (CBSE) has become recognized as a new sub-discipline of software engineering. In the component-based software development, components cannot be completely secure and thus easily become vulnerable. Some researchers have investigated this issue and proposed approaches to detect component intrusions or protect distributed components. Software security also refers to the process of creating software that is considered secure.The terms “dependability”, “trustworthiness”, and “survivability” are used interchangeably to describe the properties of software security. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=component-based%20software%20development" title="component-based software development">component-based software development</a>, <a href="https://publications.waset.org/abstracts/search?q=component-based%20software%20engineering" title=" component-based software engineering "> component-based software engineering </a>, <a href="https://publications.waset.org/abstracts/search?q=software%20security%20attributes" title="software security attributes">software security attributes</a>, <a href="https://publications.waset.org/abstracts/search?q=dependability" title=" dependability"> dependability</a>, <a href="https://publications.waset.org/abstracts/search?q=component" title=" component"> component</a> </p> <a href="https://publications.waset.org/abstracts/26037/influence-of-security-attributes-in-component-based-software-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">559</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3652</span> Material Fracture Dynamic of Vertical Axis Wind Turbine Blade</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samir%20Lecheb">Samir Lecheb</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Chellil"> Ahmed Chellil</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Mechakra"> Hamza Mechakra</a>, <a href="https://publications.waset.org/abstracts/search?q=Brahim%20Safi"> Brahim Safi</a>, <a href="https://publications.waset.org/abstracts/search?q=Houcine%20Kebir"> Houcine Kebir </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we studied fracture and dynamic behavior of vertical axis wind turbine blade, the VAWT is a historical machine, it has many properties, structure, advantage, component to be able to produce the electricity. We modeled the blade design then imported to Abaqus software for analysis the modes shapes, frequencies, stress, strain, displacement and stress intensity factor SIF, after comparison we chose the idol material. Finally, the CTS test of glass epoxy reinforced polymer plates to obtain the material fracture toughness Kc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blade" title="blade">blade</a>, <a href="https://publications.waset.org/abstracts/search?q=crack" title=" crack"> crack</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency" title=" frequency"> frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=material" title=" material"> material</a>, <a href="https://publications.waset.org/abstracts/search?q=SIF" title=" SIF"> SIF</a> </p> <a href="https://publications.waset.org/abstracts/86134/material-fracture-dynamic-of-vertical-axis-wind-turbine-blade" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">550</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3651</span> Adaptation of Projection Profile Algorithm for Skewed Handwritten Text Line Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kayode%20A.%20Olaniyi">Kayode A. Olaniyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tola.%20M.%20Osifeko"> Tola. M. Osifeko</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeola%20A.%20Ogunleye"> Adeola A. Ogunleye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Text line segmentation is an important step in document image processing. It represents a labeling process that assigns the same label using distance metric probability to spatially aligned units. Text line detection techniques have successfully been implemented mainly in printed documents. However, processing of the handwritten texts especially unconstrained documents has remained a key problem. This is because the unconstrained hand-written text lines are often not uniformly skewed. The spaces between text lines may not be obvious, complicated by the nature of handwriting and, overlapping ascenders and/or descenders of some characters. Hence, text lines detection and segmentation represents a leading challenge in handwritten document image processing. Text line detection methods that rely on the traditional global projection profile of the text document cannot efficiently confront with the problem of variable skew angles between different text lines. Hence, the formulation of a horizontal line as a separator is often not efficient. This paper presents a technique to segment a handwritten document into distinct lines of text. The proposed algorithm starts, by partitioning the initial text image into columns, across its width into chunks of about 5% each. At each vertical strip of 5%, the histogram of horizontal runs is projected. We have worked with the assumption that text appearing in a single strip is almost parallel to each other. The algorithm developed provides a sliding window through the first vertical strip on the left side of the page. It runs through to identify the new minimum corresponding to a valley in the projection profile. Each valley would represent the starting point of the orientation line and the ending point is the minimum point on the projection profile of the next vertical strip. The derived text-lines traverse around any obstructing handwritten vertical strips of connected component by associating it to either the line above or below. A decision of associating such connected component is made by the probability obtained from a distance metric decision. The technique outperforms the global projection profile for text line segmentation and it is robust to handle skewed documents and those with lines running into each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=connected-component" title="connected-component">connected-component</a>, <a href="https://publications.waset.org/abstracts/search?q=projection-profile" title=" projection-profile"> projection-profile</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=text-line" title=" text-line"> text-line</a> </p> <a href="https://publications.waset.org/abstracts/102464/adaptation-of-projection-profile-algorithm-for-skewed-handwritten-text-line-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3650</span> Random Vertical Seismic Vibrations of the Long Span Cantilever Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergo%20Esadze">Sergo Esadze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic resistance norms require calculation of cantilevers on vertical components of the base seismic acceleration. Long span cantilevers, as a rule, must be calculated as a separate construction element. According to the architectural-planning solution, functional purposes and environmental condition of a designing buildings/structures, long span cantilever construction may be of very different types: both by main bearing element (beam, truss, slab), and by material (reinforced concrete, steel). A choice from these is always linked with bearing construction system of the building. Research of vertical seismic vibration of these constructions requires individual approach for each (which is not specified in the norms) in correlation with model of seismic load. The latest may be given both as deterministic load and as a random process. Loading model as a random process is more adequate to this problem. In presented paper, two types of long span (from 6m – up to 12m) reinforcement concrete cantilever beams have been considered: a) bearing elements of cantilevers, i.e., elements in which they fixed, have cross-sections with large sizes and cantilevers are made with haunch; b) cantilever beam with load-bearing rod element. Calculation models are suggested, separately for a) and b) types. They are presented as systems with finite quantity degree (concentrated masses) of freedom. Conditions for fixing ends are corresponding with its types. Vertical acceleration and vertical component of the angular acceleration affect masses. Model is based on assumption translator-rotational motion of the building in the vertical plane, caused by vertical seismic acceleration. Seismic accelerations are considered as random processes and presented by multiplication of the deterministic envelope function on stationary random process. Problem is solved within the framework of the correlation theory of random process. Solved numerical examples are given. The method is effective for solving the specific problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cantilever" title="cantilever">cantilever</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20process" title=" random process"> random process</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20load" title=" seismic load"> seismic load</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20acceleration" title=" vertical acceleration"> vertical acceleration</a> </p> <a href="https://publications.waset.org/abstracts/88080/random-vertical-seismic-vibrations-of-the-long-span-cantilever-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3649</span> Thermal Hydraulic Analysis of Sub-Channels of Pressurized Water Reactors with Hexagonal Array: A Numerical Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Asif%20Ullah">Md. Asif Ullah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20R.%20Sarkar"> M. A. R. Sarkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper illustrates 2-D and 3-D simulations of sub-channels of a Pressurized Water Reactor (PWR) having hexagonal array of fuel rods. At a steady state, the temperature of outer surface of the cladding of fuel rod is kept about 1200°C. The temperature of this isothermal surface is taken as boundary condition for simulation. Water with temperature of 290°C is given as a coolant inlet to the primary water circuit which is pressurized upto 157 bar. Turbulent flow of pressurized water is used for heat removal. In 2-D model, temperature, velocity, pressure and Nusselt number distributions are simulated in a vertical sectional plane through the sub-channels of a hexagonal fuel rod assembly. Temperature, Nusselt number and Y-component of convective heat flux along a line in this plane near the end of fuel rods are plotted for different Reynold’s number. A comparison between X-component and Y-component of convective heat flux in this vertical plane is analyzed. Hexagonal fuel rod assembly has three types of sub-channels according to geometrical shape whose boundary conditions are different too. In 3-D model, temperature, velocity, pressure, Nusselt number, total heat flux magnitude distributions for all the three sub-channels are studied for a suitable Reynold’s number. A horizontal sectional plane is taken from each of the three sub-channels to study temperature, velocity, pressure, Nusselt number and convective heat flux distribution in it. Greater values of temperature, Nusselt number and Y-component of convective heat flux are found for greater Reynold’s number. X-component of convective heat flux is found to be non-zero near the bottom of fuel rod and zero near the end of fuel rod. This indicates that the convective heat transfer occurs totally along the direction of flow near the outlet. As, length to radius ratio of sub-channels is very high, simulation for a short length of the sub-channels are done for graphical interface advantage. For the simulations, Turbulent Flow (K-Є ) module and Heat Transfer in Fluids (ht) module of COMSOL MULTIPHYSICS 5.0 are used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sub-channels" title="sub-channels">sub-channels</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynold%E2%80%99s%20number" title=" Reynold’s number"> Reynold’s number</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a>, <a href="https://publications.waset.org/abstracts/search?q=convective%20heat%20transfer" title=" convective heat transfer"> convective heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/40384/thermal-hydraulic-analysis-of-sub-channels-of-pressurized-water-reactors-with-hexagonal-array-a-numerical-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3648</span> Horizontal and Vertical Illuminance Correlations in a Case Study for Shaded South Facing Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Matour">S. Matour</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mahdavinejad"> M. Mahdavinejad</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Fayaz"> R. Fayaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Daylight utilization is a key factor in achieving visual and thermal comfort, and energy savings in integrated building design. However, lack of measured data related to this topic has become a major challenge with the increasing need for integrating lighting concepts and simulations in the early stages of design procedures. The current paper deals with the values of daylight illuminance on horizontal and south facing vertical surfaces; the data are estimated using IESNA model and measured values of the horizontal and vertical illuminance, and a regression model with an acceptable linear correlation is obtained. The resultant illuminance frequency curves are useful for estimating daylight availability on south facing surfaces in Tehran. In addition, the relationship between indirect vertical illuminance and the corresponding global horizontal illuminance is analyzed. A simple parametric equation is proposed in order to predict the vertical illumination on a shaded south facing surface. The equation correlates the ratio between the vertical and horizontal illuminance to the solar altitude and is used with another relationship for prediction of the vertical illuminance. Both equations show good agreement, which allows for calculation of indirect vertical illuminance on a south facing surface at any time throughout the year. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tehran%20daylight%20availability" title="Tehran daylight availability">Tehran daylight availability</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20illuminance" title=" horizontal illuminance"> horizontal illuminance</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20illuminance" title=" vertical illuminance"> vertical illuminance</a>, <a href="https://publications.waset.org/abstracts/search?q=diffuse%20illuminance" title=" diffuse illuminance"> diffuse illuminance</a> </p> <a href="https://publications.waset.org/abstracts/73872/horizontal-and-vertical-illuminance-correlations-in-a-case-study-for-shaded-south-facing-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3647</span> Wind Turbine Powered Car Uses 3 Single Big C-Section Blades</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Youssef">K. Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%87.%20H%C3%BCseyin"> Ç. Hüseyin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The blades of a wind turbine have the most important job of any wind turbine component; they must capture the wind and convert it into usable mechanical energy. The objective of this work is to determine the mechanical power of single big C-section of vertical wind turbine for wind car in a two-dimensional model. The wind car has a vertical axis with 3 single big C-section blades mounted at an angle of 120°. Moreover, the three single big C-section blades are directly connected to wheels by using various kinds of links. Gears are used to convert the wind energy to mechanical energy to overcome the load exercised on the main shaft under low speed. This work allowed a comparison of drag characteristics and the mechanical power between the single big C-section blades with the previous work on 3 C-section and 3 double C-section blades for wind car. As a result obtained from the flow chart the torque and power curves of each case study are illustrated and compared with each other. In particular, drag force and torque acting on each types of blade was taken at an airflow speed of 4 m/s, and an angular velocity of 13.056 rad/s. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blade" title="blade">blade</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20wind%20turbine" title=" vertical wind turbine"> vertical wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20characteristics" title=" drag characteristics"> drag characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20power" title=" mechanical power"> mechanical power</a> </p> <a href="https://publications.waset.org/abstracts/16229/wind-turbine-powered-car-uses-3-single-big-c-section-blades" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3646</span> Behaviour of Laterally Loaded Pile Groups in Cohesionless Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20K.%20Arora">V. K. Arora</a>, <a href="https://publications.waset.org/abstracts/search?q=Suraj%20Prakash"> Suraj Prakash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pile foundations are provided to transfer the vertical and horizontal loads of superstructures like high rise buildings, bridges, offshore structures etc. to the deep strata in the soil. These vertical and horizontal loads are due to the loads coming from the superstructure and wind, water thrust, earthquake, and earth pressure, respectively. In a pile foundation, piles are used in groups. Vertical piles in a group of piles are more efficient to take vertical loads as compared to horizontal loads and when the horizontal load per pile exceeds the bearing capacity of the vertical piles in that case batter piles are used with vertical piles because batter piles can take more lateral loads than vertical piles. In this paper, a model study was conducted on three vertical pile group with single positive and negative battered pile subjected to lateral loads. The batter angle for battered piles was ±35◦ with the vertical axis. Piles were spaced at 2.5d (d=diameter of pile) to each other. The soil used for model test was cohesionless soil. Lateral loads were applied in three stages on all the pile groups individually and it was found that under the repeated action of lateral loading, the deflection of the piles increased under the same loading. After comparing the results, it was found that the pile group with positive batter pile fails at 28 kgf and the pile group with negative batter pile fails at 24 kgf so it shows that positive battered piles are stronger than the negative battered piles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20piles" title="vertical piles">vertical piles</a>, <a href="https://publications.waset.org/abstracts/search?q=positive%20battered%20piles" title=" positive battered piles"> positive battered piles</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20battered%20piles" title=" negative battered piles"> negative battered piles</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesionless%20soil" title=" cohesionless soil"> cohesionless soil</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20loads" title=" lateral loads"> lateral loads</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20test" title=" model test"> model test</a> </p> <a href="https://publications.waset.org/abstracts/8428/behaviour-of-laterally-loaded-pile-groups-in-cohesionless-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3645</span> Effect of Fault Depth on Near-Fault Peak Ground Velocity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanyan%20Yu">Yanyan Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Haiping%20Ding"> Haiping Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Pengjun%20Chen"> Pengjun Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yiou%20Sun"> Yiou Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fault depth is an important parameter to be determined in ground motion simulation, and peak ground velocity (PGV) demonstrates good application prospect. Using numerical simulation method, the variations of distribution and peak value of near-fault PGV with different fault depth were studied in detail, and the reason of some phenomena were discussed. The simulation results show that the distribution characteristics of PGV of fault-parallel (FP) component and fault-normal (FN) component are distinctly different; the value of PGV FN component is much larger than that of FP component. With the increase of fault depth, the distribution region of the FN component strong PGV moves forward along the rupture direction, while the strong PGV zone of FP component becomes gradually far away from the fault trace along the direction perpendicular to the strike. However, no matter FN component or FP component, the strong PGV distribution area and its value are both quickly reduced with increased fault depth. The results above suggest that the fault depth have significant effect on both FN component and FP component of near-fault PGV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20depth" title="fault depth">fault depth</a>, <a href="https://publications.waset.org/abstracts/search?q=near-fault" title=" near-fault"> near-fault</a>, <a href="https://publications.waset.org/abstracts/search?q=PGV" title=" PGV"> PGV</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/73475/effect-of-fault-depth-on-near-fault-peak-ground-velocity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3644</span> Analyzing Time Lag in Seismic Waves and Its Effects on Isolated Structures </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faizan%20Ahmad">Faizan Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Jenna%20Wong"> Jenna Wong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Time lag between peak values of horizontal and vertical seismic waves is a well-known phenomenon. Horizontal and vertical seismic waves, secondary and primary waves in nature respectively, travel through different layers of soil and the travel time is dependent upon the medium of wave transmission. In seismic analysis, many standardized codes do not require the actual vertical acceleration to be part of the analysis procedure. Instead, a factor load addition for a particular site is used to capture strength demands in case of vertical excitation. This study reviews the effects of vertical accelerations to analyze the behavior of a linearly rubber isolated structure in different time lag situations and frequency content by application of historical and simulated ground motions using SAP2000. The response of the structure is reviewed under multiple sets of ground motions and trends based on time lag and frequency variations are drawn. The accuracy of these results is discussed and evaluated to provide reasoning for use of real vertical excitations in seismic analysis procedures, especially for isolated structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20analysis" title="seismic analysis">seismic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20accelerations" title=" vertical accelerations"> vertical accelerations</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20lag" title=" time lag"> time lag</a>, <a href="https://publications.waset.org/abstracts/search?q=isolated%20structures" title=" isolated structures"> isolated structures</a> </p> <a href="https://publications.waset.org/abstracts/77961/analyzing-time-lag-in-seismic-waves-and-its-effects-on-isolated-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3643</span> Proposed Framework based on Classification of Vertical Handover Decision Strategies in Heterogeneous Wireless Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shidrokh%20Goudarzi">Shidrokh Goudarzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan%20Haslina%20Hassan"> Wan Haslina Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heterogeneous wireless networks are converging towards an all-IP network as part of the so-called next-generation network. In this paradigm, different access technologies need to be interconnected; thus, vertical handovers or vertical handoffs are necessary for seamless mobility. In this paper, we conduct a review of existing vertical handover decision-making mechanisms that aim to provide ubiquitous connectivity to mobile users. To offer a systematic comparison, we categorize these vertical handover measurement and decision structures based on their respective methodology and parameters. Subsequently, we analyze several vertical handover approaches in the literature and compare them according to their advantages and weaknesses. The paper compares the algorithms based on the network selection methods, complexity of the technologies used and efficiency in order to introduce our vertical handover decision framework. We find that vertical handovers on heterogeneous wireless networks suffer from the lack of a standard and efficient method to satisfy both user and network quality of service requirements at different levels including architectural, decision-making and protocols. Also, the consolidation of network terminal, cross-layer information, multi packet casting and intelligent network selection algorithm appears to be an optimum solution for achieving seamless service continuity in order to facilitate seamless connectivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20wireless%20networks" title="heterogeneous wireless networks">heterogeneous wireless networks</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20handovers" title=" vertical handovers"> vertical handovers</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20handover%20metric" title=" vertical handover metric"> vertical handover metric</a>, <a href="https://publications.waset.org/abstracts/search?q=decision-making%20algorithms" title=" decision-making algorithms"> decision-making algorithms</a> </p> <a href="https://publications.waset.org/abstracts/19433/proposed-framework-based-on-classification-of-vertical-handover-decision-strategies-in-heterogeneous-wireless-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3642</span> Optimal Number and Placement of Vertical Links in 3D Network-On-Chip</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nesrine%20Toubaline">Nesrine Toubaline</a>, <a href="https://publications.waset.org/abstracts/search?q=Djamel%20Bennouar"> Djamel Bennouar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mahdoum"> Ali Mahdoum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 3D technology can lead to a significant reduction in power and average hop-count in Networks on Chip (NoCs). It offers short and fast vertical links which copes with the long wire problem in 2D NoCs. This work proposes heuristic-based method to optimize number and placement of vertical links to achieve specified performance goals. Experiments show that significant improvement can be achieved by using a specific number of vertical interconnect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interconnect%20optimization" title="interconnect optimization">interconnect optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=monolithic%20inter-tier%20vias" title=" monolithic inter-tier vias"> monolithic inter-tier vias</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20on%20chip" title=" network on chip"> network on chip</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20on%20chip" title=" system on chip"> system on chip</a>, <a href="https://publications.waset.org/abstracts/search?q=through%20silicon%20vias" title=" through silicon vias"> through silicon vias</a>, <a href="https://publications.waset.org/abstracts/search?q=three%20dimensional%20integration%20circuits" title=" three dimensional integration circuits"> three dimensional integration circuits</a> </p> <a href="https://publications.waset.org/abstracts/60164/optimal-number-and-placement-of-vertical-links-in-3d-network-on-chip" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3641</span> Responding of Vertical Gardens and Green Facades in Urban Design to the Global Environmental Impacts and the Call for Greening in Urban Spaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esraa%20Mohamed%20Ezzat%20Ramadan%20Elkhaiary">Esraa Mohamed Ezzat Ramadan Elkhaiary</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayah%20Mohamed%20Ezzat%20Ramadan%20Elkhaiary"> Ayah Mohamed Ezzat Ramadan Elkhaiary</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Yehia%20Ismaiel"> Ahmed Yehia Ismaiel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vertical lawn is crucial for the development of the constructed surroundings’ sustainability. Their implementation is also ecologically and aesthetically ideal as a good enough architectural characteristic that enhancements facades. Furthermore, their exploitation ends in a power-conscious design that prevents densely populated city areas in Cairo from transforming right into a deteriorated natural environment. After collaborative studies and analysis, it concluded that installing the vertical garden will not simply enhance urban spaces and informal settlements’ homes aesthetically but also offer an excellent role version to the metropolis in how future buildings can be constructed with vertical gardens established. Most significantly, it will enhance the general public consciousness of the inexperienced functions of the vertical garden to the constructing customers and visitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20gardens" title="vertical gardens">vertical gardens</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20facades" title=" green facades"> green facades</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20rehabilitation" title=" urban rehabilitation"> urban rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20spaces" title=" urban spaces"> urban spaces</a> </p> <a href="https://publications.waset.org/abstracts/173737/responding-of-vertical-gardens-and-green-facades-in-urban-design-to-the-global-environmental-impacts-and-the-call-for-greening-in-urban-spaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3640</span> Effect of Prefabricated Vertical Drain System Properties on Embankment Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abolhasan%20Naeini">Seyed Abolhasan Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Namaei"> Ali Namaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the effect of prefabricated vertical drain system properties on embankment behavior by calculating the settlement, lateral displacement and induced excess pore pressure by numerical method. In order to investigate this behavior, three different prefabricated vertical drains have been simulated under an embankment. The finite element software PLAXIS has been carried out for analyzing the displacements and excess pore pressures. The results showed that the consolidation time and induced excess pore pressure are highly depended to the discharge capacity of the prefabricated vertical drain. The increase in the discharge capacity leads to decrease the consolidation process and the induced excess pore pressure. Moreover, it was seen that the vertical drains spacing does not have any significant effect on the consolidation time. However, the increase in the drains spacing would decrease the system stiffness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20drain" title="vertical drain">vertical drain</a>, <a href="https://publications.waset.org/abstracts/search?q=prefabricated" title=" prefabricated"> prefabricated</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidation" title=" consolidation"> consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=embankment" title=" embankment"> embankment</a> </p> <a href="https://publications.waset.org/abstracts/109050/effect-of-prefabricated-vertical-drain-system-properties-on-embankment-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20component&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20component&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20component&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20component&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20component&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20component&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20component&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20component&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20component&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20component&page=122">122</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20component&page=123">123</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20component&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>