CINXE.COM

CS231n Convolutional Neural Networks for Visual Recognition

<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <title>CS231n Convolutional Neural Networks for Visual Recognition</title> <meta name="viewport" content="width=device-width"> <meta name="description" content="Course materials and notes for Stanford class CS231n: Convolutional Neural Networks for Visual Recognition."> <link rel="canonical" href="https://cs231n.github.io/"> <!-- Custom CSS --> <link rel="stylesheet" href="/css/main.css"> <!-- Google fonts --> <link href='https://fonts.googleapis.com/css?family=Roboto:400,300' rel='stylesheet' type='text/css'> <!-- Google tracking --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-46895817-2', 'auto'); ga('send', 'pageview'); </script> </head> <body> <script src="https://unpkg.com/vanilla-back-to-top@7.2.1/dist/vanilla-back-to-top.min.js"></script> <script>addBackToTop({ backgroundColor: '#fff', innerHTML: 'Back to Top', textColor: '#333' })</script> <style> #back-to-top { border: 1px solid #ccc; border-radius: 0; font-family: sans-serif; font-size: 14px; width: 100px; text-align: center; line-height: 30px; height: 30px; } </style> <header class="site-header"> <a class="site-title" href="https://cs231n.github.io">CS231n Convolutional Neural Networks for Visual Recognition</a> <a class="site-link" href="http://cs231n.stanford.edu/">Course Website</a> </header> <div class="page-content"> <div class="wrap"> <div> These notes accompany the Stanford CS class <a href="http://cs231n.stanford.edu/">CS231n: Convolutional Neural Networks for Visual Recognition</a>. For questions/concerns/bug reports, please submit a pull request directly to our <a href="https://github.com/cs231n/cs231n.github.io">git repo</a>. <br> <!-- For questions/concerns/bug reports contact <a href="http://cs.stanford.edu/people/jcjohns/">Justin Johnson</a> regarding the assignments, or contact <a href="http://cs.stanford.edu/people/karpathy/">Andrej Karpathy</a> regarding the course notes. You can also submit a pull request directly to our <a href="https://github.com/cs231n/cs231n.github.io">git repo</a>. --> <!-- <br> --> <!-- We encourage the use of the <a href="https://hypothes.is/">hypothes.is</a> extension to annote comments and discuss these notes inline. --> </div> <div class="home"> <div class="materials-wrap"> <div class="module-header">Spring 2024 Assignments</div> <div class="materials-item"> <a href="assignments2024/assignment1/">Assignment #1: Image Classification, kNN, SVM, Softmax, Fully Connected Neural Network</a> </div> <div class="materials-item"> <a href="assignments2024/assignment2/">Assignment #2: Fully Connected and Convolutional Nets, Batch Normalization, Dropout, Pytorch & Network Visualization</a> </div> <div class="materials-item"> <a href="assignments2024/assignment3/">Assignment #3: Network Visualization, Image Captioning with RNNs and Transformers, Generative Adversarial Networks, Self-Supervised Contrastive Learning</a> </div> </div> <!-- <div class="materials-wrap"> <div class="module-header">Spring 2021 Assignments</div> <div class="materials-item"> <a href="assignments2021/assignment1/">Assignment #1: Image Classification, kNN, SVM, Softmax, Fully Connected Neural Network</a> </div> <div class="materials-item"> <a href="assignments2021/assignment2/">Assignment #2: Fully Connected and Convolutional Nets, Batch Normalization, Dropout, Frameworks</a> </div> <div class="materials-item"> <a href="assignments2021/assignment3/">Assignment #3: Image Captioning with RNNs and Transformers, Network Visualization, Generative Adversarial Networks, Self-Supervised Contrastive Learning</a> </div> </div> --> <!-- <div class="materials-item"> <a href="assignments2019/assignment2/"> Assignment #2: Fully Connected Nets, Batch Normalization, Dropout, Convolutional Nets </a> </div> <div class="materials-item"> <a href="assignments2019/assignment3/"> Assignment #3: Image Captioning with Vanilla RNNs, Image Captioning with LSTMs, Network Visualization, Style Transfer, Generative Adversarial Networks </a> </div> --> <!-- <div class="module-header">Spring 2018 Assignments</div> <div class="materials-item"> <a href="assignments2018/assignment1/"> Assignment #1: Image Classification, kNN, SVM, Softmax, Neural Network </a> </div> <div class="materials-item"> <a href="assignments2018/assignment2/"> Assignment #2: Fully-Connected Nets, Batch Normalization, Dropout, Convolutional Nets </a> </div> <div class="materials-item"> <a href="assignments2018/assignment3/"> Assignment #3: Image Captioning with Vanilla RNNs, Image Captioning with LSTMs, Network Visualization, Style Transfer, Generative Adversarial Networks </a> </div> --> <!-- <div class="module-header">Winter 2016 Assignments</div> <div class="materials-item"> <a href="assignments2016/assignment1/"> Assignment #1: Image Classification, kNN, SVM, Softmax, Neural Network </a> </div> <div class="materials-item"> <a href="assignments2016/assignment2/"> Assignment #2: Fully-Connected Nets, Batch Normalization, Dropout, Convolutional Nets </a> </div> <div class="materials-item"> <a href="assignments2016/assignment3/"> Assignment #3: Recurrent Neural Networks, Image Captioning, Image Gradients, DeepDream </a> </div> --> <!-- <div class="module-header">Winter 2015 Assignments</div> <div class="materials-item"> <a href="assignment1/"> Assignment #1: Image Classification, kNN, SVM, Softmax </a> </div> <div class="materials-item"> <a href="assignment2/"> Assignment #2: Neural Networks, ConvNets I </a> </div> <div class="materials-item"> <a href="assignment3/"> Assignment #3: ConvNets II, Transfer Learning, Visualization </a> </div> --> <div class="module-header">Module 0: Preparation</div> <div class="materials-item"> <a href="setup-instructions/"> Software Setup </a> </div> <div class="materials-item"> <a href="python-numpy-tutorial/"> Python / Numpy Tutorial (with Jupyter and Colab) </a> </div> <!-- <div class="materials-item"> <a href="terminal-tutorial/"> Terminal.com Tutorial </a> </div> --> <!-- <div class="materials-item"> <a href="https://github.com/cs231n/gcloud"> Google Cloud Tutorial </a> </div> --> <!-- <div class="materials-item"> <a href="aws-tutorial/"> AWS Tutorial </a> </div> --> <!-- hardcoding items here to force a specific order --> <div class="module-header">Module 1: Neural Networks</div> <div class="materials-item"> <a href="classification/"> Image Classification: Data-driven Approach, k-Nearest Neighbor, train/val/test splits </a> <div class="kw"> L1/L2 distances, hyperparameter search, cross-validation </div> </div> <div class="materials-item"> <a href="linear-classify/"> Linear classification: Support Vector Machine, Softmax </a> <div class="kw"> parameteric approach, bias trick, hinge loss, cross-entropy loss, L2 regularization, web demo </div> </div> <div class="materials-item"> <a href="optimization-1/"> Optimization: Stochastic Gradient Descent </a> <div class="kw"> optimization landscapes, local search, learning rate, analytic/numerical gradient </div> </div> <div class="materials-item"> <a href="optimization-2/"> Backpropagation, Intuitions </a> <div class="kw"> chain rule interpretation, real-valued circuits, patterns in gradient flow </div> </div> <div class="materials-item"> <a href="neural-networks-1/"> Neural Networks Part 1: Setting up the Architecture </a> <div class="kw"> model of a biological neuron, activation functions, neural net architecture, representational power </div> </div> <div class="materials-item"> <a href="neural-networks-2/"> Neural Networks Part 2: Setting up the Data and the Loss </a> <div class="kw"> preprocessing, weight initialization, batch normalization, regularization (L2/dropout), loss functions </div> </div> <div class="materials-item"> <a href="neural-networks-3/"> Neural Networks Part 3: Learning and Evaluation </a> <div class="kw"> gradient checks, sanity checks, babysitting the learning process, momentum (+nesterov), second-order methods, Adagrad/RMSprop, hyperparameter optimization, model ensembles </div> </div> <div class="materials-item"> <a href="neural-networks-case-study/"> Putting it together: Minimal Neural Network Case Study </a> <div class="kw"> minimal 2D toy data example </div> </div> <div class="module-header">Module 2: Convolutional Neural Networks</div> <div class="materials-item"> <a href="convolutional-networks/"> Convolutional Neural Networks: Architectures, Convolution / Pooling Layers </a> <div class="kw"> layers, spatial arrangement, layer patterns, layer sizing patterns, AlexNet/ZFNet/VGGNet case studies, computational considerations </div> </div> <div class="materials-item"> <a href="understanding-cnn/"> Understanding and Visualizing Convolutional Neural Networks </a> <div class="kw"> tSNE embeddings, deconvnets, data gradients, fooling ConvNets, human comparisons </div> </div> <div class="materials-item"> <a href="transfer-learning/"> Transfer Learning and Fine-tuning Convolutional Neural Networks </a> </div> <div class="module-header">Student-Contributed Posts</div> <div class="materials-item"> <a href="choose-project/"> Taking a Course Project to Publication </a> <a href="rnn/"> Recurrent Neural Networks </a> </div> </div> </div> </div> </div> <footer class="site-footer"> <div class="wrap"> <div class="footer-col-1 column"> <ul> <li> <a href="https://github.com/cs231n"> <span class="icon github"> <svg version="1.1" class="github-icon-svg" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" viewBox="0 0 16 16" enable-background="new 0 0 16 16" xml:space="preserve"> <path fill-rule="evenodd" clip-rule="evenodd" fill="#C2C2C2" d="M7.999,0.431c-4.285,0-7.76,3.474-7.76,7.761 c0,3.428,2.223,6.337,5.307,7.363c0.388,0.071,0.53-0.168,0.53-0.374c0-0.184-0.007-0.672-0.01-1.32 c-2.159,0.469-2.614-1.04-2.614-1.04c-0.353-0.896-0.862-1.135-0.862-1.135c-0.705-0.481,0.053-0.472,0.053-0.472 c0.779,0.055,1.189,0.8,1.189,0.8c0.692,1.186,1.816,0.843,2.258,0.645c0.071-0.502,0.271-0.843,0.493-1.037 C4.86,11.425,3.049,10.76,3.049,7.786c0-0.847,0.302-1.54,0.799-2.082C3.768,5.507,3.501,4.718,3.924,3.65 c0,0,0.652-0.209,2.134,0.796C6.677,4.273,7.34,4.187,8,4.184c0.659,0.003,1.323,0.089,1.943,0.261 c1.482-1.004,2.132-0.796,2.132-0.796c0.423,1.068,0.157,1.857,0.077,2.054c0.497,0.542,0.798,1.235,0.798,2.082 c0,2.981-1.814,3.637-3.543,3.829c0.279,0.24,0.527,0.713,0.527,1.437c0,1.037-0.01,1.874-0.01,2.129 c0,0.208,0.14,0.449,0.534,0.373c3.081-1.028,5.302-3.935,5.302-7.362C15.76,3.906,12.285,0.431,7.999,0.431z"/> </svg> </span> <span class="username">cs231n</span> </a> </li> <li> <a href="https://twitter.com/cs231n"> <span class="icon twitter"> <svg version="1.1" class="twitter-icon-svg" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" viewBox="0 0 16 16" enable-background="new 0 0 16 16" xml:space="preserve"> <path fill="#C2C2C2" d="M15.969,3.058c-0.586,0.26-1.217,0.436-1.878,0.515c0.675-0.405,1.194-1.045,1.438-1.809 c-0.632,0.375-1.332,0.647-2.076,0.793c-0.596-0.636-1.446-1.033-2.387-1.033c-1.806,0-3.27,1.464-3.27,3.27 c0,0.256,0.029,0.506,0.085,0.745C5.163,5.404,2.753,4.102,1.14,2.124C0.859,2.607,0.698,3.168,0.698,3.767 c0,1.134,0.577,2.135,1.455,2.722C1.616,6.472,1.112,6.325,0.671,6.08c0,0.014,0,0.027,0,0.041c0,1.584,1.127,2.906,2.623,3.206 C3.02,9.402,2.731,9.442,2.433,9.442c-0.211,0-0.416-0.021-0.615-0.059c0.416,1.299,1.624,2.245,3.055,2.271 c-1.119,0.877-2.529,1.4-4.061,1.4c-0.264,0-0.524-0.015-0.78-0.046c1.447,0.928,3.166,1.469,5.013,1.469 c6.015,0,9.304-4.983,9.304-9.304c0-0.142-0.003-0.283-0.009-0.423C14.976,4.29,15.531,3.714,15.969,3.058z"/> </svg> </span> <span class="username">cs231n</span> </a> </li> <!-- <li> <a href="mailto:cgokmen@stanford.edu">cgokmen@stanford.edu</a> </li> --> </ul> </div> <div class="footer-col-2 column"> </div> <div class="footer-col-3 column"> </div> </div> </footer> <!-- mathjax --> <script type="text/javascript" src="//cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> <script type="text/x-mathjax-config"> // Make responsive MathJax.Hub.Config({ "HTML-CSS": { linebreaks: { automatic: true } }, "SVG": { linebreaks: { automatic: true } }, }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10