CINXE.COM

Search results for: sole cropping

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: sole cropping</title> <meta name="description" content="Search results for: sole cropping"> <meta name="keywords" content="sole cropping"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="sole cropping" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="sole cropping"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 384</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: sole cropping</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">384</span> Land Equivalent Ration of Chickpea - Barley as Affected by Mixed Cropping System and Vermicompost in Water Stress Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Rafiee">Masoud Rafiee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Study of the effect of vermin compost on yield, and Land equivalent ration (LER) of chickpea-barley mixed cropping under normal dry land condition can be useful in order to increase qualitative and quantitative performance. In this case, two factors include fertilizer (vermicompost biological fertilizer, ammonium phosphate chemical fertilizer, vermicompost + %75 chemical fertilizer) and chickpea + barley mixed cropping (sole chickpea, %75 chickpea: %25 barley, %50 chickpea: %50 barley, %25 chickpea: %75 barley, and sole barley) in RCBD in three replications in two experiments include normal and dry land conditions were studied. Result showed that total LER base on dry matter was affected by environment and mixed cropping interaction and was more than 1 in all mixed cropping treatments. In different mixed cropping rates, wet forage yield decreased by decreasing chickpea ratio as well as increasing barley ratio. Total LER mean in base on forage dry matter in mixed-, chemical-, and vermicompost fertilizer treatments were 1.12, 1.05 and 1.10 in normal condition and 1.15, 1.08 and 1.14 in dry land condition, respectively, represented the important of biological fertilizer in mixed cropping systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20equivalent%20ration" title="land equivalent ration">land equivalent ration</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20fertilizer" title=" biological fertilizer"> biological fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20cropping%20systems" title=" mixed cropping systems"> mixed cropping systems</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20stress" title=" water stress"> water stress</a> </p> <a href="https://publications.waset.org/abstracts/37487/land-equivalent-ration-of-chickpea-barley-as-affected-by-mixed-cropping-system-and-vermicompost-in-water-stress-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">383</span> Potentiality of Litchi-Fodder Based Agroforestry System in Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Zaman">M. R. Zaman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Bari"> M. S. Bari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kajal"> M. Kajal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A field experiment was conducted at the Agroforestry and Environment Research Field, Hajee Mohammad Danesh Science and Technology University, Dinajpur during 2013 to investigate the potentiality of three napier fodder varieties under Litchi orchard. The experiment was consisted of 2 factors RCBD with 3 replications. Among the two factors, factor A was two production systems; S1= Litchi + fodder and S2 = Fodder (sole crop); another factor B was three napier varieties: V1= BARI Napier -1 (Bazra), V2= BARI Napier - 2 (Arusha) and V3= BARI Napier -3 (Hybrid). The experimental results revealed that there were significant variation among the varieties in terms of leaf growth and yield. The maximum number of leaf plant -1 was recorded in variety Bazra (V1) whereas the minimum number was recorded in hybrid variety (V3).Significantly the highest (13.75, 14.53 and14.84 tha-1 at 1st, 2nd and 3rd harvest respectively) yield was also recorded in variety Bazra whereas the lowest (5.89, 6.36 and 9.11 tha-1 at 1st, 2nd v and 3rd harvest respectively) yield was in hybrid variety. Again, in case of production systems, there were also significant differences between the two production systems were founded. The maximum number of leaf plant -1 was recorded under Litchi based AGF system (T1) whereas the minimum was recorded in open condition (T2). Similarly, significantly the highest (12.00, 12.35 and 13.31 tha-1 at 1st, 2nd and 3rd harvest respectively) yield of napier was recorded under Litchi based AGF system where as the lowest (9.73, 10.47 and 11.66 tha-1 at 1st, 2nd and 3rd harvest respectively) yield was recorded in open condition i.e. napier in sole cropping. Furthermore, the interaction effect of napier variety and production systems were also gave significant deviation result in terms of growth and yield. The maximum number of leaf plant -1 was recorded under Litchi based AGF systems with Bazra variety whereas the minimum was recorded in open condition with hybrid variety. The highest yield (14.42, 16.14 and 16.15 tha-1 at 1st, 2nd and 3rd harvest respectively) of napier was found under Litchi based AGF systems with Bazra variety. Significantly the lowest (5.33, 5.79 and 8.48 tha-1 at 1st, 2nd and 3rd harvest respectively) yield was found in open condition i.e. sole cropping with hybrid variety. In case of the quality perspective, the highest nutritive value (DM, ASH, CP, CF, EE, and NFE) was found in Bazra (V1) and the lowest value was found in hybrid variety (V3). Therefore, the suitability of napier production under Litchi based AGF system may be ranked as Bazra > Arusha > Hybrid variety. Finally, the economic analysis showed that maximum BCR (5.20) was found in the Litchi based AGF systems over sole cropping (BCR=4.38). From the findings of the taken investigation, it may be concluded that the cultivation of Bazra napier varieties in the floor of Litchi orchard ensures higher revenue to the farmers compared to its sole cropping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=potentiality" title="potentiality">potentiality</a>, <a href="https://publications.waset.org/abstracts/search?q=Litchi" title=" Litchi"> Litchi</a>, <a href="https://publications.waset.org/abstracts/search?q=fodder" title=" fodder"> fodder</a>, <a href="https://publications.waset.org/abstracts/search?q=agroforestry" title=" agroforestry"> agroforestry</a> </p> <a href="https://publications.waset.org/abstracts/36521/potentiality-of-litchi-fodder-based-agroforestry-system-in-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">382</span> Evaluation of Different Cropping Systems under Organic, Inorganic and Integrated Production Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sidramappa%20Gaddnakeri">Sidramappa Gaddnakeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Lokanath%20Malligawad"> Lokanath Malligawad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Any kind of research on production technology of individual crop / commodity /breed has not brought sustainability or stability in crop production. The sustainability of the system over years depends on the maintenance of the soil health. Organic production system includes use of organic manures, biofertilizers, green manuring for nutrient supply and biopesticides for plant protection helps to sustain the productivity even under adverse climatic condition. The study was initiated to evaluate the performance of different cropping systems under organic, inorganic and integrated production systems at The Institute of Organic Farming, University of Agricultural Sciences, Dharwad (Karnataka-India) under ICAR Network Project on Organic Farming. The trial was conducted for four years (2013-14 to 2016-17) on fixed site. Five cropping systems viz., sequence cropping of cowpea – safflower, greengram– rabi sorghum, maize-bengalgram, sole cropping of pigeonpea and intercropping of groundnut + cotton were evaluated under six nutrient management practices. The nutrient management practices are NM1 (100% Organic farming (Organic manures equivalent to 100% N (Cereals/cotton) or 100% P2O5 (Legumes), NM2 (75% Organic farming (Organic manures equivalent to 75% N (Cereals/cotton) or 100% P2O5 (Legumes) + Cow urine and Vermi-wash application), NM3 (Integrated farming (50% Organic + 50% Inorganic nutrients, NM4 (Integrated farming (75% Organic + 25% Inorganic nutrients, NM5 (100% Inorganic farming (Recommended dose of inorganic fertilizers)) and NM6 (Recommended dose of inorganic fertilizers + Recommended rate of farm yard manure (FYM). Among the cropping systems evaluated for different production systems indicated that the Groundnut + Hybrid cotton (2:1) intercropping system found more remunerative as compared to Sole pigeonpea cropping system, Greengram-Sorghum sequence cropping system, Maize-Chickpea sequence cropping system and Cowpea-Safflower sequence cropping system irrespective of the production systems. Production practices involving application of recommended rates of fertilizers + recommended rates of organic manures (Farmyard manure) produced higher net monetary returns and higher B:C ratio as compared to integrated production system involving application of 50 % organics + 50 % inorganic and application of 75 % organics + 25 % inorganic and organic production system only Both the two organic production systems viz., 100 % Organic production system (Organic manures equivalent to 100 % N (Cereals/cotton) or 100 % P2O5 (Legumes) and 75 % Organic production system (Organic manures equivalent to 75 % N (Cereals) or 100 % P2O5 (Legumes) + Cow urine and Vermi-wash application) are found to be on par. Further, integrated production system involving application of organic manures and inorganic fertilizers found more beneficial over organic production systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cropping%20systems" title="cropping systems">cropping systems</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20systems" title=" production systems"> production systems</a>, <a href="https://publications.waset.org/abstracts/search?q=cowpea" title=" cowpea"> cowpea</a>, <a href="https://publications.waset.org/abstracts/search?q=safflower" title=" safflower"> safflower</a>, <a href="https://publications.waset.org/abstracts/search?q=greengram" title=" greengram"> greengram</a>, <a href="https://publications.waset.org/abstracts/search?q=pigeonpea" title=" pigeonpea"> pigeonpea</a>, <a href="https://publications.waset.org/abstracts/search?q=groundnut" title=" groundnut"> groundnut</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a> </p> <a href="https://publications.waset.org/abstracts/81225/evaluation-of-different-cropping-systems-under-organic-inorganic-and-integrated-production-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">381</span> Effects of Intercropping Maize (Zea mays L.) with Jack Beans (Canavalia ensiformis L.) at Different Spacing and Weeding Regimes on Crops Productivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oluseun%20S.%20Oyelakin">Oluseun S. Oyelakin</a>, <a href="https://publications.waset.org/abstracts/search?q=Olalekan%20W.%20Olaniyi"> Olalekan W. Olaniyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A field experiment was conducted at Ido town in Ido Local Government Area of Oyo state, Nigeria to determine the effects of intercropping maize (<em>Zea</em> <em>mays</em> L.) with Jack bean (<em>Canavalia</em> <em>ensiformis</em> L.) at different spacing and weeding regimes on crops productivity. The treatments were 2 x 2 x 3 factorial arrangement involving two spatial crop arrangements. Spacing of 75 cm x 50 cm and 90 cm x 42 cm (41.667 cm) with two plants per stand resulted in plant population of approximately 53,000 plants/hectare. Also, Randomized Complete Block Design (RCBD) with two cropping patterns (sole and intercrop), three weeding regimes (weedy check, weeds once, and weed twice) with three replicates was used. Data were analyzed with SAS (Statistical Analysis System) and statistical means separated using Least Significant Difference (LSD) (P &le; 0.05). Intercropping and crop spacing did not have significant influence on the growth parameters and yield parameters. The maize grain yield of 1.11 t/ha obtained under sole maize was comparable to 1.05 t/ha from maize/jack beans. Weeding regime significantly influenced growth and yields of maize in intercropping with Jack beans. Weeding twice resulted in significantly higher growth than that of the other weeding regimes. Plant height at 6 Weeks After Sowing (WAS) under weeding twice regime (3 and 6 WAS) was 83.9 cm which was significantly different from 67.75 cm and 53.47 cm for weeding once (3 WAS) and no weeding regimes respectively. Moreover, maize grain yield of 1.3 t/ha obtained from plots weeded twice was comparable to that of 1.23 t/ha from single weeding and both were significantly higher than 0.71 t/ha maize grain yield obtained from the no weeding control. The dry matter production of Jack beans reduced at some growth stages due to intercropping of maize with Jack beans though with no significance effect on the other growth parameters of the crop. There was no effect on the growth parameters of Jack beans in maize/jack beans intercrop based on cropping spacing while comparable growth and dry matter production in Jack beans were produced in maize/Jack beans mixture with single weeding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crop%20spacing" title="crop spacing">crop spacing</a>, <a href="https://publications.waset.org/abstracts/search?q=intercropping" title=" intercropping"> intercropping</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20parameter" title=" growth parameter"> growth parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=weeding%20regime" title=" weeding regime"> weeding regime</a>, <a href="https://publications.waset.org/abstracts/search?q=sole%20cropping" title=" sole cropping"> sole cropping</a>, <a href="https://publications.waset.org/abstracts/search?q=WAS" title=" WAS"> WAS</a>, <a href="https://publications.waset.org/abstracts/search?q=week%20after%20sowing" title=" week after sowing"> week after sowing</a> </p> <a href="https://publications.waset.org/abstracts/105218/effects-of-intercropping-maize-zea-mays-l-with-jack-beans-canavalia-ensiformis-l-at-different-spacing-and-weeding-regimes-on-crops-productivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">380</span> Effects of Sole and Integrated Application of Cocoa Pod Ash and Poultry Manure on Soil Properties and Leaf Nutrient Composition and Performance of White Yam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20M.%20Agbede">T. M. Agbede</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Adekiya"> A. O. Adekiya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Field experiments were conducted during 2013, 2014 and 2015 cropping seasons at Rufus Giwa Polytechnic, Owo, Ondo State, southwest Nigeria. The objective of the investigation was to determine the effect of Cocoa Pod Ash (CPA) and Poultry Manure (PM) applied solely and their combined form, as sources of fertilizers on soil properties, leaf nutrient composition, growth and yield of yam. Three soil amendments: CPA, PM (sole forms), CPA and PM (mixture), were applied at 20 t ha<sup>-1</sup> with an inorganic fertilizer (NPK 15-15-15) at 400 kg ha<sup>-1 </sup>as a reference and a natural soil fertility, NSF (control). The five treatments were arranged in a randomized complete block design with three replications. The test soil was slightly acidic, low in organic carbon (OC), N, P, K, Ca and Mg. Results showed that soil amendments significantly increased (p = 0.05) tuber weights and growth of yam, soil and leaf N, P, K, Ca and Mg, soil pH and OC concentrations compared with the NSF (control). The mixture of CPA+PM treatment increased tuber weights of yam by 36%, compared with inorganic fertilizer (NPK) and 19%, compared with PM alone. Sole PM increased tuber weight of yam by 15%, compared with NPK. Sole or mixed forms of soil amendments showed remarkable improvement in soil physical properties, nutrient availability, compared with NPK and the NSF (control). Integrated application of CPA at 10 t ha<sup>-1</sup> + PM at 10 t ha<sup>-1</sup> was the most effective treatment in improving soil physical properties, increasing nutrient availability and yam performance than sole application of any of the fertilizer materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cocoa%20pod%20ash" title="cocoa pod ash">cocoa pod ash</a>, <a href="https://publications.waset.org/abstracts/search?q=leaf%20nutrient%20composition" title=" leaf nutrient composition"> leaf nutrient composition</a>, <a href="https://publications.waset.org/abstracts/search?q=poultry%20manure" title=" poultry manure"> poultry manure</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20properties" title=" soil properties"> soil properties</a>, <a href="https://publications.waset.org/abstracts/search?q=yam" title=" yam"> yam</a> </p> <a href="https://publications.waset.org/abstracts/50710/effects-of-sole-and-integrated-application-of-cocoa-pod-ash-and-poultry-manure-on-soil-properties-and-leaf-nutrient-composition-and-performance-of-white-yam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">379</span> Potential Risk Factors Associated with Sole Hemorrhages Causing Lameness in Egyptian Water Buffaloes and Native Breed Cows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waleed%20El-Said%20Abou%20El-Amaiem">Waleed El-Said Abou El-Amaiem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sole hemorrhages are considered as a main cause for sub clinical laminitis. In this study we aimed at discussing the most prominent risk factors associated with sole hemorrhages causing lameness in Egyptian water buffaloes and native breed cows. The final multivariate logistic regression model showed, a significant association between sub acute ruminal acidosis (P< 0.05), limb affected (P< 0.05) and weight (P< 0.05) and sole hemorrhages causing lameness in Egyptian water buffaloes and native breed cows. According to our knowledge, this is the first paper to discuss the risk factors associated with sole hemorrhages causing lameness in Egyptian water buffaloes and native breed cows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lameness" title="lameness">lameness</a>, <a href="https://publications.waset.org/abstracts/search?q=buffalo" title=" buffalo"> buffalo</a>, <a href="https://publications.waset.org/abstracts/search?q=sole%20hemorrhages" title=" sole hemorrhages"> sole hemorrhages</a>, <a href="https://publications.waset.org/abstracts/search?q=breed%20cows" title=" breed cows"> breed cows</a> </p> <a href="https://publications.waset.org/abstracts/28867/potential-risk-factors-associated-with-sole-hemorrhages-causing-lameness-in-egyptian-water-buffaloes-and-native-breed-cows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">378</span> System Productivity Enhancement by Inclusion of Mungbean in Potato-Jute -T. Aman Rice Cropping Pattern</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Apurba%20Kanti%20Chowdhury"> Apurba Kanti Chowdhury</a>, <a href="https://publications.waset.org/abstracts/search?q=Taslima%20Zahan"> Taslima Zahan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inclusion of mungbean in a cropping pattern not only increases the cropping intensity but also enriches soil health as well as ensures nutrition for the fast-growing population of Bangladesh. A study was conducted in the farmers’ field during 2013-14 and 2014-15 to observe the performance of four-crop based improve cropping pattern Potato-Mungbean-Jute -t.aman rice against the existing cropping pattern Potato-Jute -t.aman rice at Domar, Nilphamari followed by randomized complete block design with three replications. Two years study revealed that inclusion of mungbean and better management practices in improved cropping pattern provided higher economic benefit over the existing pattern by 73.1%. Moreover, the average yield of potato increased in the improved pattern by 64.3% compared to the existing pattern; however yield of jute and t.aman rice in improved pattern declined by 5.6% and 10.7% than the existing pattern, respectively. Nevertheless, the additional yield of mungbean in the improved pattern helped to increase rice equivalent yield of the whole pattern by 38.7% over the existing pattern. Thus, the addition of mungbean in the existing pattern Potato-Jute -t.aman rice seems to be profitable for the farmers and also might be sustainable if the market channel of mungbean developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crop%20diversity" title="crop diversity">crop diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20nutrition" title=" food nutrition"> food nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20efficiency" title=" production efficiency"> production efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20improvement" title=" yield improvement"> yield improvement</a> </p> <a href="https://publications.waset.org/abstracts/84711/system-productivity-enhancement-by-inclusion-of-mungbean-in-potato-jute-t-aman-rice-cropping-pattern" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">377</span> Integration of Agroforestry Shrub for Diversification and Improved Smallholder Production: A Case of Cajanus cajan-Zea Mays (Pigeonpea-Maize) Production in Ghana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20O.%20Danquah">F. O. Danquah</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Frimpong"> F. Frimpong</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Owusu%20Danquah"> E. Owusu Danquah</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Frimpong"> T. Frimpong</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Adu"> J. Adu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Amposah"> S. K. Amposah</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Amankwaa-Yeboah"> P. Amankwaa-Yeboah</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20E.%20Amengor"> N. E. Amengor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the face of global concerns such as population increase, climate change, and limited natural resources, sustainable agriculture practices are critical for ensuring food security and environmental stewardship. The study was conducted in the Forest zones of Ghana during the major and minor seasons of 2023 cropping seasons to evaluate maize yield productivity improvement and profitability of integrating Cajanus cajan (pigeonpea) into a maize production system described as a pigeonpea-maize cropping system. This is towards an integrated soil fertility management (ISFM) with a legume shrub pigeonpea for sustainable maize production while improving smallholder farmers' resilience to climate change. A split-plot design with maize-pigeonpea (Pigeonpea-Maize intercrop – MPP and No pigeonpea/ Sole maize – NPP) and inorganic fertilizer rate (250 kg/ha of 15-15-15 N-P2O5-K2O + 250 kg/ha Sulphate of Ammonia (SoA) – Full rate (FR), 125 kg/ha of 15-15-15 N-P2O5-K2O + 125 kg/ha Sulphate of Ammonia (SoA) – Half rate (HR) and no inorganic fertilizer (NF) as control) was used as the main plot and subplot treatments respectively. The results indicated a significant interaction of the pigeonpea-maize cropping system and inorganic fertilizer rate on the growth and yield of the maize with better and similar maize productivity when HR and FR were used with pigeonpea biomass. Thus, the integration of pigeonpea and its biomass would result in the reduction of recommended fertiliser rate to half. This would improve farmers’ income and profitability for sustainable maize production in the face of climate change. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agroforestry%20tree" title="agroforestry tree">agroforestry tree</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20soil%20fertility%20management" title=" integrated soil fertility management"> integrated soil fertility management</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20use%20efficiency" title=" resource use efficiency"> resource use efficiency</a> </p> <a href="https://publications.waset.org/abstracts/182972/integration-of-agroforestry-shrub-for-diversification-and-improved-smallholder-production-a-case-of-cajanus-cajan-zea-mays-pigeonpea-maize-production-in-ghana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">57</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">376</span> The Dynamic of Nₘᵢₙ in Clay Loam Cambisol in Alternative Farming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danute%20Jablonskyte-Rasce">Danute Jablonskyte-Rasce</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Masilionyte"> Laura Masilionyte</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The field experiments of different farming systems were conducted at Joniškėlis Experimental Station of the Lithuanian Research Centre for Agriculture and Forestry in 2006–2016. The soil of the experimental site was Endocalcari-Endohypogleyic Cambisol (CMg-n-w-can). The research was designed to identify the effects of dry matter and nitrogen accumulated in the above-ground biomass of various catch crops grown after winter wheat on soil mineral nitrogen variation during the autumn and spring period in the presence of intensive leaching complex. Research was done in the soil differing in humus status in the organic and sustainable cropping systems by growing various plant mixtures as catch crops: narrow-leafed lupine (Lupinus angustifolius L.) and oil radish (Raphanus sativus var. Oleifera L.), white mustard (Sinapis alba L.) and buckwheat (Fagopyrum exculentum Moench.) and white mustard as a sole crop. All crop and soil management practices have shown optimal efficiency in late autumn – stubble breaking, catch crops and straw used during the post-harvest period of the main crops, reduced Nmin migration into deeper (40–80 cm) soil layer. The greatest Nmin reduction in the 0–40 cm soil layer during the period from late autumn to early spring was identified in the sustainable cropping system having applied N30 for the promotion of straw mineralization and with no catch crops cultivation. The sustainable cropping system, having applied N30 for straw mineralization and growing white mustard in combination with buckwheat as catch crops, Nmin difference in the spring compared with its status in the autumn in the soil low and moderate in humus was lower by 70.1% and 34.2%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20nitrogen" title="soil nitrogen">soil nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=catch%20crops" title=" catch crops"> catch crops</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20and%20sustainable%20farming%20systems" title=" ecological and sustainable farming systems"> ecological and sustainable farming systems</a>, <a href="https://publications.waset.org/abstracts/search?q=Cambisol" title=" Cambisol"> Cambisol</a> </p> <a href="https://publications.waset.org/abstracts/84386/the-dynamic-of-n-in-clay-loam-cambisol-in-alternative-farming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">375</span> Land Use Changes and Impact around Maladumba Lake and Forest Reserve, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20B.%20Abdullahi">M. B. Abdullahi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Gumel"> S. M. Gumel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was carried out to analyze and describe biodiversity changes in representative communities around Maladumba Lake and Forest Reserve (MLFR), Bauchi, Nigeria. Primary and secondary data were collected through formal and informal interviews of key informants and survey of local communities and government records. There has been a change in biodiversity; some of the cropping systems have become nonexistent whereas others have developed. The main aspect of the changes has been the decline of species diversity due to degradation and over utilization. The changes have also been positive through the introduction and intensification of cropping system. Options have been open for people to manipulate the cropping systems in order to efficiently use the limited resources. Farmers have opted not only to intensify agricultural practices but also to deliberately restore some of the lost species. Reduction in the number of animals per household, adoption of new techniques of land management, changes in the type of crops cultivated and intensive use of the available resources are some of the indicators describing farmers’ efforts to cope with the changes. Sustainability of the farming system and biodiversity has been enhanced through peoples’ efforts that include planting trees and use of fertilizers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cropping%20systems" title="cropping systems">cropping systems</a>, <a href="https://publications.waset.org/abstracts/search?q=historical%20trends" title=" historical trends"> historical trends</a>, <a href="https://publications.waset.org/abstracts/search?q=household" title=" household"> household</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20management" title=" land management"> land management</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/10911/land-use-changes-and-impact-around-maladumba-lake-and-forest-reserve-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">374</span> Analysing Trends in Rice Cropping Intensity and Seasonality across the Philippines Using 14 Years of Moderate Resolution Remote Sensing Imagery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhogendra%20Mishra">Bhogendra Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Andy%20Nelson"> Andy Nelson</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirco%20Boschetti"> Mirco Boschetti</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorenzo%20Busetto"> Lorenzo Busetto</a>, <a href="https://publications.waset.org/abstracts/search?q=Alice%20Laborte"> Alice Laborte</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice is grown on over 100 million hectares in almost every country of Asia. It is the most important staple crop for food security and has high economic and cultural importance in Asian societies. The combination of genetic diversity and management options, coupled with the large geographic extent means that there is a large variation in seasonality (when it is grown) and cropping intensity (how often it is grown per year on the same plot of land), even over relatively small distances. Seasonality and intensity can and do change over time depending on climatic, environmental and economic factors. Detecting where and when these changes happen can provide information to better understand trends in regional and even global rice production. Remote sensing offers a unique opportunity to estimate these trends. We apply the recently published PhenoRice algorithm to 14 years of moderate resolution remote sensing (MODIS) data (utilizing 250m resolution 16 day composites from Terra and Aqua) to estimate seasonality and cropping intensity per year and changes over time. We compare the results to the surveyed data collected by International Rice Research Institute (IRRI). The study results in a unique and validated dataset on the extent and change of extent, the seasonality and change in seasonality and the cropping intensity and change in cropping intensity between 2003 and 2016 for the Philippines. Observed trends and their implications for food security and trade policies are also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice" title="rice">rice</a>, <a href="https://publications.waset.org/abstracts/search?q=cropping%20intensity" title=" cropping intensity"> cropping intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=moderate%20resolution%20remote%20sensing%20%28MODIS%29" title=" moderate resolution remote sensing (MODIS)"> moderate resolution remote sensing (MODIS)</a>, <a href="https://publications.waset.org/abstracts/search?q=phenology" title=" phenology"> phenology</a>, <a href="https://publications.waset.org/abstracts/search?q=seasonality" title=" seasonality"> seasonality</a> </p> <a href="https://publications.waset.org/abstracts/73734/analysing-trends-in-rice-cropping-intensity-and-seasonality-across-the-philippines-using-14-years-of-moderate-resolution-remote-sensing-imagery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">373</span> Using Genetic Algorithms to Outline Crop Rotations and a Cropping-System Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicolae%20Bold">Nicolae Bold</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Nijloveanu"> Daniel Nijloveanu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The idea of cropping-system is a method used by farmers. It is an environmentally-friendly method, protecting the natural resources (soil, water, air, nutritive substances) and increase the production at the same time, taking into account some crop particularities. The combination of this powerful method with the concepts of genetic algorithms results into a possibility of generating sequences of crops in order to form a rotation. The usage of this type of algorithms has been efficient in solving problems related to optimization and their polynomial complexity allows them to be used at solving more difficult and various problems. In our case, the optimization consists in finding the most profitable rotation of cultures. One of the expected results is to optimize the usage of the resources, in order to minimize the costs and maximize the profit. In order to achieve these goals, a genetic algorithm was designed. This algorithm ensures the finding of several optimized solutions of cropping-systems possibilities which have the highest profit and, thus, which minimize the costs. The algorithm uses genetic-based methods (mutation, crossover) and structures (genes, chromosomes). A cropping-system possibility will be considered a chromosome and a crop within the rotation is a gene within a chromosome. Results about the efficiency of this method will be presented in a special section. The implementation of this method would bring benefits into the activity of the farmers by giving them hints and helping them to use the resources efficiently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromosomes" title="chromosomes">chromosomes</a>, <a href="https://publications.waset.org/abstracts/search?q=cropping" title=" cropping"> cropping</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=genes" title=" genes"> genes</a> </p> <a href="https://publications.waset.org/abstracts/50461/using-genetic-algorithms-to-outline-crop-rotations-and-a-cropping-system-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">372</span> Forage Quality of Chickpea - Barley as Affected by Mixed Cropping System in Water Stress Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Rafiee">Masoud Rafiee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To study the quality response of forage to chickpea-barley mixed cropping under drought stress and vermicompost consumption, an experiment was carried out under well watered and %70 water requirement (stress condition) in RCBD as split plot with four replications in temperate condition of Khorramabad in 2013. Chickpea-barley mix cropping (%100 chickpea, %75:25 chickpea:barley, %50:50 chickpea:barley, %25:75 chickpea:barley, and %100 barley) was studied. Results showed that wet and dry forage yield were significantly affected by environment and decreased in stress condition. Also, crude protein content decreased from %26.2 in well watered to %17.3 in stress condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20protein" title="crude protein">crude protein</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20forage%20yield" title=" wet forage yield"> wet forage yield</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20forage%20yield" title=" dry forage yield"> dry forage yield</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20stress%20condition" title=" water stress condition"> water stress condition</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20watered" title=" well watered"> well watered</a> </p> <a href="https://publications.waset.org/abstracts/31169/forage-quality-of-chickpea-barley-as-affected-by-mixed-cropping-system-in-water-stress-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">371</span> Reduction of Chemical Fertilizer in Rice-Rice Cropping Pattern Using Different Vermicompost</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azizul%20Haque">Azizul Haque</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamrun%20Nahar"> Kamrun Nahar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Field experiments were conducted to reduce the chemical fertilizers with the integrated use of straight and phospho- vermicompost with chemical fertilizers in T. aman-Boro rice cropping pattern at the BINA farm, Mymensingh during 2019-20. Six treatments were used in the experiment for both the crops. The treatments used for T. aman rice (Binadhan 17) with straight vermicompost were as follows: T1: Native soil fertility, T2: 100% N from Chemical Fertilizer (CF), T3:70%N from CF, T4: 30% N from vermicompost-3 + 70% N from CF and T5:30% N from vermicompost-4 + 70% N from CF and T6: 100% PKS only. The treatments of Boro rice (var. Binadhan -10) with phospho-vermicompost were: T1: Native soil fertility, T2: 100% NPKS from chemical fertilizer (CF), T3:75% NKS from CF (Non IPNS) with 1 t ha-1 Phospho-vermicompost (P-Vermicom), T4: 100% NKS (IPNS) with 2 t ha-1 P-Vermicom, T5: 100% NKS from CF (Non IPNS) with 2 t ha-1 P-Vermicom and T6: 100% NKS. The experiments were conducted in a Randomized Complete Block Design with three replications. The treatment T5 (5.5 t ha-1) gave maximum grain yield of T.aman rice followed by the treatment T4 (5.4 t ha-1). But the treatmentsT5, T4, and T2 gave identical grain yields of T. aman rice. Similar results were observed in case of straw yields of T. Aman rice. The result indicated that 70% N from CF with 30% N from either straight vermicompost-3 or straight vermicompost-4 gave comparable yield to the sole application of 100% N from CF alone. Therefore, 30% chemical fertilizers (N, P, K and S) could be saved with the integrated (IPNS) use of vermicompost-3 or vermicompost-4 in the cultivation of T. aman rice. Application of Phospho-vermicompost significantly influenced the yield and yield contributing characters of Boro rice (Binadhan-10). The treatment T4 (7.23.0 t ha-1) gave maximum grain yield of Boro rice followed by the treatments T2 and T5. But the treatments T2 and T5 produced statistically similar grain yields. The results from the treatment T4 (100% NKS (IPNS) with 2.0 t ha-1P-Vermicom) indicated that full demand of P could be met up from 2 t ha-1 Phospho-vermicompost with IPNS chemical fertilizers (NKS) which was sufficient for attaining the highest grain yield of Boro rice than that of the treatment T2 (100% NPKS from CF) and the treatmentT5 (100% NKS from CF (Non IPNS) + 2 t ha-1 Phospho-vermicompost). The results revealed that 100% P and substantial amount of N (21%), K (44.6%) and S (53.7%) fertilizers could be saved with the integrated use of Phospho-vermicompost in the cultivation of Boro rice. In case of Boro rice partial cost benefit analysis showed that the application of Phospho-vermicompost (@2 tha--1) with IPNS chemical fertilizes (NKS) gave higher return of Tk. 18,213 / - than that of only 100% chemical fertilizer. Therefore, use of Phospho-vermicompost was beneficial for the cultivation of Boro rice in combination with suitable dose of chemical fertilizers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phosphovermicompost" title="phosphovermicompost">phosphovermicompost</a>, <a href="https://publications.waset.org/abstracts/search?q=cropping%20pattern" title=" cropping pattern"> cropping pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20yield" title=" rice yield"> rice yield</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20fertilizer" title=" chemical fertilizer"> chemical fertilizer</a> </p> <a href="https://publications.waset.org/abstracts/153965/reduction-of-chemical-fertilizer-in-rice-rice-cropping-pattern-using-different-vermicompost" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">370</span> Combined Application of Rice-Straw Biochar and Poultry Manure Promotes Nutrient Uptake and Yield of Capsicum Frutescens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fawibe%20O.%20O.">Fawibe O. O.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20A.%20A."> Mustafa A. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Oyelakin%20A.%20S."> Oyelakin A. S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Dada%20O.%20A."> Dada O. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ojo%20E.%20S."> Ojo E. S.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Field experiment was carried out during the cropping season of 2021 to examine the influence of the sole or combined application of rice-straw biochar and poultry manure on yield, nutrient uptake, and physiological attributes of Capsicum frutescens. The experiment was a randomized complete block design with five replicates. Treatments were 10 t/ha biochar (BC), 5 t/ha biochar + 5 t/ha poultry manure (BC+PM), 10 t/ha poultry manure (PM), and no amendment as the control (NA ). Parameters determined were fruit yield, aboveground biomass, macro and micro nutrients in leaves, antinutrients content, and pigments (chlorophyll a, chlorophyll b, and carotenoids) concentration. Data were analysed with one-way analysis of variance, while means were separated using Duncan’s Multiple Range Test at p<0.05. Soil amended with PM increased the nitrogen content of C. frutescens leaves by 40.9%, while polyphenol and phytic acid were reduced by 20.5% and 29.2%, respectively, compared with NA. Moreover, PM increased chlorophyll a and chlorophyll b by 91.9% and 16.4%, whereas proline was reduced by 31.3% compared with NA. However, PM and BC+PM had comparable influence on pigments, nutrients and antinutrients contents of C. frutescens. BC+PM significantly increased yield and aboveground biomass of C. frutescens by 52.9% and 99.2%, respectively, compared with NA. BC had no significant influence on the yield and nutrient uptake of C. frutescens compared with NA. In conclusion, sole application of poultry manure or combined with rice-straw biochar increased yield and nutrients availability in the leaves of C. frutescens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capsicum%20frutescens" title="capsicum frutescens">capsicum frutescens</a>, <a href="https://publications.waset.org/abstracts/search?q=biochar" title=" biochar"> biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20uptake" title=" nutrient uptake"> nutrient uptake</a>, <a href="https://publications.waset.org/abstracts/search?q=poultry%20manure" title=" poultry manure"> poultry manure</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20amendment" title=" organic amendment"> organic amendment</a> </p> <a href="https://publications.waset.org/abstracts/164922/combined-application-of-rice-straw-biochar-and-poultry-manure-promotes-nutrient-uptake-and-yield-of-capsicum-frutescens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">369</span> Evaluation of Dry Matter Yield of Panicum maximum Intercropped with Pigeonpea and Sesbania Sesban</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Misheck%20Musokwa">Misheck Musokwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Paramu%20Mafongoya"> Paramu Mafongoya</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20Lorentz"> Simon Lorentz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seasonal shortages of fodder during the dry season is a major constraint to smallholder livestock farmers in South Africa. To mitigate the shortage of fodder, legume trees can be intercropped with pastures which can diversify the sources of feed and increase the amount of protein for grazing animals. The objective was to evaluate dry matter yield of Panicum maximum and land productivity under different fodder production systems during 2016/17-2017/18 seasons at Empangeni (28.6391° S and 31.9400° E). A randomized complete block design, replicated three times was used, the treatments were sole Panicum maximum, Panicum maximum + Sesbania sesban, Panicum maximum + pigeonpea, sole Sesbania sesban, Sole pigeonpea. Three months S.sesbania seedlings were transplanted whilst pigeonpea was direct seeded at spacing of 1m x 1m. P. maximum seeds were drilled at a respective rate of 7.5 kg/ha having an inter-row spacing of 0.25 m apart. In between rows of trees P. maximum seeds were drilled. The dry matter yield harvesting times were separated by six months’ timeframe. A 0.25 m² quadrant randomly placed on 3 points on the plot was used as sampling area during harvesting P. maximum. There was significant difference P < 0.05 across 3 harvests and total dry matter. P. maximum had higher dry matter yield as compared to both intercrops at first harvest and total. The second and third harvest had no significant difference with pigeonpea intercrop. The results was in this order for all 3 harvest: P. maximum (541.2c, 1209.3b and 1557b) kg ha¹ ≥ P. maximum + pigeonpea (157.2b, 926.7b and 1129b) kg ha¹ > P. maximum + S. sesban (36.3a, 282a and 555a) kg ha¹. Total accumulation of dry matter yield of P. maximum (3307c kg ha¹) > P. maximum + pigeonpea (2212 kg ha¹) ≥ P. maximum + S. sesban (874 kg ha¹). There was a significant difference (P< 0.05) on seed yield for trees. Pigeonpea (1240.3 kg ha¹) ≥ Pigeonpea + P. maximum (862.7 kg ha¹) > S.sesbania (391.9 kg ha¹) ≥ S.sesbania + P. maximum. The Land Equivalent Ratio (LER) was in the following order P. maximum + pigeonpea (1.37) > P. maximum + S. sesban (0.84) > Pigeonpea (0.59) ≥ S. Sesbania (0.57) > P. maximum (0.26). Results indicates that it is beneficial to have P. maximum intercropped with pigeonpea because of higher land productivity. Planting grass with pigeonpea was more beneficial than S. sesban with grass or sole cropping in terms of saving the shortage of arable land. P. maximum + pigeonpea saves a substantial (37%) land which can be subsequently be used for other crop production. Pigeonpea is recommended as an intercrop with P. maximum due to its higher LER and combined production of livestock feed, human food, and firewood. Panicum grass is low in crude protein though high in carbohydrates, there is a need for intercropping it with legume trees. A farmer who buys concentrates can reduce costs by combining P. maximum with pigeonpea this will provide a balanced diet at low cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fodder" title="fodder">fodder</a>, <a href="https://publications.waset.org/abstracts/search?q=livestock" title=" livestock"> livestock</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=smallholder%20farmers" title=" smallholder farmers"> smallholder farmers</a> </p> <a href="https://publications.waset.org/abstracts/96330/evaluation-of-dry-matter-yield-of-panicum-maximum-intercropped-with-pigeonpea-and-sesbania-sesban" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">368</span> Pruning Residue Effects on Symbiotic N₂ Fixation and δ¹³C Isotopic Composition of Sesbania sesban and Cajanus cajan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20T.%20Makhubedu">I. T. Makhubedu</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20A.%20Letty"> B. A. Letty</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20F.%20Scogings"> P. F. Scogings</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20L.%20Mafongoya"> P. L. Mafongoya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite their potential importance in recycling dinitrogen (N2) fixed in alley cropping systems, the effects of tree pruning residues on symbiotic N2 fixation are poorly studied. A 2 x 2 x 2 factorial experiment was conducted to evaluate the effects of pruning residue management and pruning date on symbiotic performance and <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alley%20cropping" title="alley cropping">alley cropping</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=N%E2%82%82%20fixed" title=" N₂ fixed"> N₂ fixed</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20abundance" title=" natural abundance"> natural abundance</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a> </p> <a href="https://publications.waset.org/abstracts/99673/pruning-residue-effects-on-symbiotic-n2-fixation-and-d13c-isotopic-composition-of-sesbania-sesban-and-cajanus-cajan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99673.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">367</span> Optimal Cropping Pattern in an Irrigation Project: A Hybrid Model of Artificial Neural Network and Modified Simplex Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Safayat%20Ali%20Shaikh">Safayat Ali Shaikh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Software has been developed for optimal cropping pattern in an irrigation project considering land constraint, water availability constraint and pick up flow constraint using modified Simplex Algorithm. Artificial Neural Network Models (ANN) have been developed to predict rainfall. AR (1) model used to generate 1000 years rainfall data to train the ANN. Simulation has been done with expected rainfall data. Eight number crops and three types of soil class have been considered for optimization model. Area under each crop and each soil class have been quantified using Modified Simplex Algorithm to get optimum net return. Efficacy of the software has been tested using data of large irrigation project in India. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20irrigation%20project" title=" large irrigation project"> large irrigation project</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20simplex%20algorithm" title=" modified simplex algorithm"> modified simplex algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20cropping%20pattern" title=" optimal cropping pattern"> optimal cropping pattern</a> </p> <a href="https://publications.waset.org/abstracts/71956/optimal-cropping-pattern-in-an-irrigation-project-a-hybrid-model-of-artificial-neural-network-and-modified-simplex-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">366</span> Diversification of Rice-Based Cropping Systems under Irrigated Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Nanher">A. H. Nanher</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20P.%20Singh"> N. P. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In India, Agriculture is largely in rice- based cropping system. It has indicated decline in factor productivity along with emergence of multi - nutrient deficiency, buildup of soil pathogen and weed flora because it operates and removes nutrients from the same rooting depth. In designing alternative cropping systems, the common approaches are crop intensification, crop diversification and cultivar options. The intensification leads to the diversification of the cropping system. Intensification is achieved by introducing an additional component crop in a pre-dominant sequential system by desirable adjustments in cultivars of one or all the component crops. Invariably, this results in higher land use efficiency and productivity per unit time Crop Diversification through such crop and inclusion of fodder crops help to improve the economic situation of small and marginal farmers because of higher income. Inclusion of crops in sequential and intercropping systems reduces some obnoxious weeds through formation of canopies due to competitive planting pattern and thus provides an opportunity to utilize cropping systems as a tool of weed management with non-chemical means. Use of organic source not only acts as supplement for fertilizer (nitrogen) but also improve the physico-chemical properties of soils. Production and use of nitrogen rich biomass offer better prospect for supplementing chemical fertilizers on regular basis. Such biological diversity brings yield and economic stability because of its potential for compensation among components of the system. In a particular agro-climatic and resource condition, the identification of most suitable crop sequence is based on its productivity, stability, land use efficiency as well as production efficiency and its performance is chiefly judged in terms of productivity and net return. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integrated%20farming%20systems" title="integrated farming systems">integrated farming systems</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20intensification" title=" sustainable intensification"> sustainable intensification</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20of%20crop%20intensification" title=" system of crop intensification"> system of crop intensification</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a> </p> <a href="https://publications.waset.org/abstracts/23291/diversification-of-rice-based-cropping-systems-under-irrigated-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">365</span> Effects of Ophiocordyceps dipterigena BCC 2073 β-Glucan as a Prebiotic on the in vitro Growth of Probiotic and Pathogenic Bacteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wai%20Prathumpai">Wai Prathumpai</a>, <a href="https://publications.waset.org/abstracts/search?q=Pranee%20Rachtawee"> Pranee Rachtawee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sutamat%20Khajeeram"> Sutamat Khajeeram</a>, <a href="https://publications.waset.org/abstracts/search?q=Pariya%20Na%20Nakorn"> Pariya Na Nakorn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The &nbsp;&beta;-glucan produced by <em>Ophiocordyceps dipterigena</em> BCC 2073 is a (1, 3)-&beta;-D-glucan with highly branching O-6-linkedside chains that is resistant to acid hydrolysis (by hydrochloric acid and porcine pancreatic alpha-amylase). This &beta;-glucan can be utilized as a prebiotic due to its advantageous structural and biological properties. The effects of using this &beta;-glucan as the sole carbon source for the <em>in vitro</em> growth of two probiotic bacteria (<em>L. acidophilus</em> BCC 13938 and <em>B. animalis</em> ATCC 25527) were investigated. Compared with the effect of using 1% glucose or fructo-oligosaccharide (FOS) as the sole carbon source, using 1% &beta;-glucan for this purpose showed that this prebiotic supported and stimulated the growth of both types of probiotic bacteria and induced them to produce the highest levels of metabolites during their growth. The highest levels of lactic and acetic acid, 10.04 g&middot;L<sup>-1</sup> and 2.82 g&middot;L<sup>-1</sup>, respectively, were observed at 2 h of cultivation using glucose as the sole carbon source. Furthermore, the fermentation broth obtained using 1% &beta;-glucan as the sole carbon source had greater antibacterial activity against selected pathogenic bacteria (<em>B. subtilis </em>TISTR 008, <em>E. coli </em>TISTR 780, and <em>S. typhimurium</em> TISTR 292) than did the broths prepared using glucose or FOS as the sole carbon source. The fermentation broth obtained by growing <em>L. acidophilus</em> BCC 13938 in the presence of &beta;-glucan inhibited the growth of <em>B. subtilis </em>TISTR 008 by more than 70% and inhibited the growth of both <em>S. typhimurium</em> TISTR 292 and <em>E. coli </em>TISTR 780 by more than 90%. In conclusion, <em>O. dipterigena</em> BCC 2073 is a potential source of a &beta;-glucan prebiotic that could be used for commercial production in the near future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beta-glucan" title="beta-glucan">beta-glucan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ophiocordyceps%20dipterigena" title=" Ophiocordyceps dipterigena"> Ophiocordyceps dipterigena</a>, <a href="https://publications.waset.org/abstracts/search?q=prebiotic" title=" prebiotic"> prebiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotic" title=" probiotic"> probiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a> </p> <a href="https://publications.waset.org/abstracts/93585/effects-of-ophiocordyceps-dipterigena-bcc-2073-v-glucan-as-a-prebiotic-on-the-in-vitro-growth-of-probiotic-and-pathogenic-bacteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">364</span> Brevicoryne brassicae Compatibility with Maize in Multiple Cropping System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zunnu%20Raen%20Akhtar">Zunnu Raen Akhtar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brevicoryne brassicae, aphid feeds on cabbage and Brassica sp. as preferred host. Brassica plants usually ripen when maize starts growing in multiple cropping systems. Experiment was conducted to observe suitability of B. brassicae by rearing it on maize as host. In a tritrophic eco-system, predator coccinellids can be found in the fields of brassica and maize. This experiment emphasized on issue of aphids growing incidence in a cropping system. Brassica is sown and harvested earlier than maize and is attacked by aphids, while maize is also attacked by aphids. Five mortality tests were conducted of B. brassicae fed on maize. Out of five mortality tests, 3 tests were conducted using 1st instar, while in two mortality tests, 2nd instars of aphids were used. Mortality tests revealed that first instar mortality was quite high on the second day, while in second instar larvae mortality was delayed up to third to the fourth day. These experiments reveal that aphids can use maize as substitute host at later instars as compared to young ones. These experiments can be foundation for studying further crop-insect interaction and sampling techniques used for this purpose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=host%20suitability" title="host suitability">host suitability</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20brassicae" title=" B. brassicae"> B. brassicae</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=tritrophic%20interaction" title=" tritrophic interaction"> tritrophic interaction</a> </p> <a href="https://publications.waset.org/abstracts/74393/brevicoryne-brassicae-compatibility-with-maize-in-multiple-cropping-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">363</span> Optimized Cropping Calendar and Land Suitability for Maize through GIS and Crop Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marilyn%20S.%20Painagan">Marilyn S. Painagan</a>, <a href="https://publications.waset.org/abstracts/search?q=Willie%20Jones%20B.%20Saliling"> Willie Jones B. Saliling</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports an optimized cropping calendar and land suitability for maize in North Cotabato derived from modeling crop productivity over time and space. Using Quantum GIS, eight representative soil types and 0.3o x 0.3o climate grids shapefiles were intersected to form thirty two pedoclimatic zones within the boundaries of the province. Surveys were done to ascertain crop performance and phenological properties on field. Based on these surveys, crop parameters were calibrated specific for a variety of maize. Soil properties and climatic data (daily precipitation, maximum and minimum temperatures) from pedoclimatic zones were loaded to the FAO Aquacrop Water Productivity Model along with the crop properties from field surveys to simulate yield from 1980 to 2010. The average yield per month was computed to come up with the month of planting having the highest and lowest probable yield in a year assuming that all lands were planted with maize. The yield attributes were visualized in the Quantum GIS environment. The study revealed that optimal cropping patterns varied across North Cotabato. Highest probable yield (8000 kg/ha) can be obtained when maize is planted on May and September (sandy clay-loam soils) in the northern part of the province while the lowest probable yield (1000 kg/ha) can be obtained when maize is planted on January, February and March (clay loam soils) at the northern part of the province. Yields are simulated on the basis of varieties currently planted by farmers of North Cotabato. The resulting maps suggest where and when maize is most suitable to achieve high yields. There is a need to ground truth and validate the cropping calendar on field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquacrop" title="aquacrop">aquacrop</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20GIS" title=" quantum GIS"> quantum GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=cropping%20calendar" title=" cropping calendar"> cropping calendar</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20productivity" title=" water productivity"> water productivity</a> </p> <a href="https://publications.waset.org/abstracts/49265/optimized-cropping-calendar-and-land-suitability-for-maize-through-gis-and-crop-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">362</span> Effect of Green Manuring Jantar (Sesbania acculata. L.) on the Growth and Yield of Crops Grown in Wheat-Based Cropping Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javed%20Kamal">Javed Kamal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A proposed field study of wheat-based cropping systems was conducted at Faisalabad (Post-Graduate Research Station). We used 7 treatments and Jantar as a green manuring crop to increase the fertility status of soil; after the vegetative phases of wheat, rice, sorghum, and mungbean, the agronomic parameters of these crops were recorded. Hopefully, all increased with jantar treatment when compared with controls. The benefit: cost ratio and physicochemical characteristics of the soil before and after the crop harvest were also calculated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benifit%20cost%20ratio" title="benifit cost ratio">benifit cost ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=jantar" title=" jantar"> jantar</a>, <a href="https://publications.waset.org/abstracts/search?q=sunflower" title=" sunflower"> sunflower</a>, <a href="https://publications.waset.org/abstracts/search?q=rice" title=" rice"> rice</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a> </p> <a href="https://publications.waset.org/abstracts/1683/effect-of-green-manuring-jantar-sesbania-acculata-l-on-the-growth-and-yield-of-crops-grown-in-wheat-based-cropping-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">361</span> Heavy Metal Distribution in Tissues of Two Commercially Important Fish Species, Euryglossa orientalis and Psettodes erumei</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Khoshnood">Reza Khoshnood</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Khoshnood"> Zahra Khoshnood</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Hajinajaf"> Ali Hajinajaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Fahim"> Farzad Fahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Behdokht%20Hajinajaf"> Behdokht Hajinajaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Fahim"> Farhad Fahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 2013, 24 fish samples were taken from two fishery regions in Bandar-Abbas and Bandar-Lengeh, the fishing grounds north of Hormoz Strait (Persian Gulf) near the Iranian coastline. The two flat fishes were oriental sole (Euryglossa orientalis) and deep flounder (Psettodes erumei). Using the ROPME method (MOOPAM) for chemical digestion, Cd concentration was measured with a nonflame atomic absorption spectrophotometry technique. The average concentration of Cd in the edible muscle tissue of deep flounder was measured in Bandar-Abbas and was found to be 0.15±.06 µg g-1. It was 0.1±.05 µg.g-1 in Bandar-Lengeh. The corresponding values for oriental sole were 0.2±0.13 and 0.13±0.11 µg.g-1. The average concentration of Cd in the liver tissue of deep flounder in Bandar-Abbas was 0.22±.05 µg g-1 and that in Bandar-Lengeh was 0.2±0.04 µg.g-1. The values for oriental sole were 0.31±0.09 and 0.24±0.13 µg g-1 in Bandar-Abbas and Bandar-Lengeh, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trace%20metal" title="trace metal">trace metal</a>, <a href="https://publications.waset.org/abstracts/search?q=Euryglossa%20orientalis" title=" Euryglossa orientalis"> Euryglossa orientalis</a>, <a href="https://publications.waset.org/abstracts/search?q=Psettodes%20erumei" title=" Psettodes erumei"> Psettodes erumei</a>, <a href="https://publications.waset.org/abstracts/search?q=Persian%20Gulf" title=" Persian Gulf"> Persian Gulf</a> </p> <a href="https://publications.waset.org/abstracts/13876/heavy-metal-distribution-in-tissues-of-two-commercially-important-fish-species-euryglossa-orientalis-and-psettodes-erumei" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">669</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">360</span> Impact of Tillage and Crop Establishment on Fertility and Sustainability of the Rice-Wheat Cropping System in Inceptisols of Varanasi, Up, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pramod%20Kumar%20Sharma">Pramod Kumar Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Pratibha%20Kumari"> Pratibha Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=Udai%20Pratap%20Singh"> Udai Pratap Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sustainability"> Sustainability</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the Indo-Gangetic Plains of South-East Asia, the rice-wheat cropping system (RWCS) is dominant with conventional tillage (CT) without residue management, which shows depletion of soil fertility and non-sustainable crop productivity. Hence, this investigation was planned to identify suitable natural resource management practices involving different tillage and crop establishment (TCE) methods along with crop residue and their effects, on the sustainability of dominant cropping systems through enhancing soil fertility and productivity. This study was conducted for two consecutive years 2018-19 and 2019-20 on a long-term field experiment that was started in the year 2015-16 taking six different combinations of TCE methods viz. CT, partial conservation agriculture (PCA) i.e. anchored residue of rice and full conservation agriculture (FCA)] i.e. anchored residue of rice and wheat under RWCS in terms of crop productivity, sustainability of soil health, and crop nutrition by the crops. Results showed that zero tillage direct-seeded rice (ZTDSR) - zero tillage wheat (ZTW) [FCA + green gram residue retention (RR)] recorded the highest yield attributes and yield during both the crops. Compared to conventional tillage rice (CTR)-conventional tillage wheat (CTW) [residue removal (R 0 )], the soil quality parameters were improved significantly with ZTDSR-ZTW (FCA+RR). Overall, ZTDSR-ZTW (FCA+RR) had higher nutrient uptake by the crops than CT-based treatment CTR-CTW (R 0 ) and CTR-CTW (RI).These results showed that there is significant profitability of yield and resource utilization by the adoption of FCA it may be a better alternative to the dominant tillage system i.e. CT in RWSC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tillage%20and%20crop%20establishment" title="tillage and crop establishment">tillage and crop establishment</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20fertility" title=" soil fertility"> soil fertility</a>, <a href="https://publications.waset.org/abstracts/search?q=rice-wheat%20cropping%20system" title=" rice-wheat cropping system"> rice-wheat cropping system</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/155340/impact-of-tillage-and-crop-establishment-on-fertility-and-sustainability-of-the-rice-wheat-cropping-system-in-inceptisols-of-varanasi-up-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">359</span> Production Potential and Economic Returns of Bed Planted Chickpea (Cicer arietinum L.) As Influenced by Different Intercropping Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priya%20M.%20V.">Priya M. V.</a>, <a href="https://publications.waset.org/abstracts/search?q=Thakar%20Singh"> Thakar Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A field experiment was carried out during the rabi season of 2017 and 2018 to evaluate the productivity and economic viability of bed-planted chickpea-based intercropping systems. The experiment was laid out in a randomized block design consisting of four replications with thirteen treatments. Results showed that sole chickpea recorded the highest seed yield, and it was statistically at par with seed yield obtained under chickpea + oats fodder (2:1), chickpea + oats fodder (4:1), and chickpea + linseed (4:1) intercropping systems. However, oilseed rape and barley as intercrops showed an adverse effect on yield and yield attributes of chickpea. Chickpea + oats fodder in 2:1 row ratio recorded the highest chickpea equivalent yield of 24.07 and 24.77 q/ha during 2017 and 2018, respectively. Higher net returns (Rs. 63098 and 70924/ha) and benefit-cost ratio (1.47 and 1.63) were also recorded in chickpea + oats fodder (2:1) intercropping system over sole chickpea (Rs. 44862 and 53769/ha and 1.21 and 1.41) during both the years. Chickpea + oats fodder (4:1), chickpea + linseed (2:1), and chickpea + linseed (4:1) also recorded significantly higher chickpea equivalent yield, net returns, and benefit-cost ratio as compared to sole chickpea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bed%20planted%20chickpea" title="bed planted chickpea">bed planted chickpea</a>, <a href="https://publications.waset.org/abstracts/search?q=chickpea%20equivalent%20yield" title=" chickpea equivalent yield"> chickpea equivalent yield</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20returns" title=" economic returns"> economic returns</a>, <a href="https://publications.waset.org/abstracts/search?q=intercropping%20system" title=" intercropping system"> intercropping system</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a> </p> <a href="https://publications.waset.org/abstracts/139366/production-potential-and-economic-returns-of-bed-planted-chickpea-cicer-arietinum-l-as-influenced-by-different-intercropping-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">358</span> Prediction of SOC Stock using ROTH-C Model and Mapping in Different Agroclimatic Zones of Tamil Nadu</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Rajeswari">R. Rajeswari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An investigation was carried out to know the SOC stock and its change over time in benchmark soils of different agroclimatic zones of Tamil Nadu. Roth.C model was used to assess SOC stock under existing and alternate cropping pattern. Soil map prepared on 1:50,000 scale from Natural Resources Information System (NRIS) employed under satellite data (IRS-1C/1D-PAN sharpened LISS-III image) was used to estimate SOC stock in different agroclimatic zones of Tamil Nadu. Fifteen benchmark soils were selected in different agroclimatic zones of Tamil Nadu based on their land use and the areal extent to assess SOC level and its change overtime. This revealed that, between eleven years of period (1997 - 2007). SOC buildup was higher in soils under horticulture system, followed by soils under rice cultivation. Among different agroclimatic zones of Tamil Nadu hilly zone have the highest SOC stock, followed by north eastern, southern, western, cauvery delta, north western, and high rainfall zone. Although organic carbon content in the soils of North eastern, southern, western, North western, Cauvery delta were less than high rainfall zone, the SOC stock was high. SOC density was higher in high rainfall and hilly zone than other agroclimatic zones of Tamil Nadu. Among low rainfall regions of Tamil Nadu cauvery delta zone recorded higher SOC density. Roth.C model was used to assess SOC stock under existing and alternate cropping pattern in viz., Periyanaickenpalayam series (western zone), Peelamedu series (southern zone), Vallam series (north eastern zone), Vannappatti series (north western zone) and Padugai series (cauvery delta zone). Padugai series recorded higher TOC, BIO, and HUM, followed by Periyanaickenpalayam series, Peelamedu series, Vallam series, and Vannappatti series. Vannappatti and Padugai series develop high TOC, BIO, and HUM under existing cropping pattern. Periyanaickenpalayam, Peelamedu, and Vallam series develop high TOC, BIO, and HUM under alternate cropping pattern. Among five selected soil series, Periyanaickenpalayam, Peelamedu, and Padugai series recorded 0.75 per cent TOC during 2025 and 2018, 2100 and 2035, 2013 and 2014 under existing and alternate cropping pattern, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agro%20climatic%20zones" title="agro climatic zones">agro climatic zones</a>, <a href="https://publications.waset.org/abstracts/search?q=benchmark%20soil" title=" benchmark soil"> benchmark soil</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use" title=" land use"> land use</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20organic%20carbon" title=" soil organic carbon"> soil organic carbon</a> </p> <a href="https://publications.waset.org/abstracts/164415/prediction-of-soc-stock-using-roth-c-model-and-mapping-in-different-agroclimatic-zones-of-tamil-nadu" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">357</span> Crop Productivity, Nutrient Uptake and Apparent Balance for Rice Based Cropping Systems under Improved Crop Varieties and Nutrient Management Practices in Previous Enclaves of Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Samim%20Hossain%20Molla">Md. Samim Hossain Molla</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Mazharul%20Anwar"> Md. Mazharul Anwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Akkas%20Ali"> Md. Akkas Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mian%20Sayeed%20Hassan"> Mian Sayeed Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Being detached about 68 years from the mainland, the previous enclaves’ (Chhitmohal) farmers were engaged only in subsistence farming with low agricultural productivity and restricted access to inputs technology. To increase crop productivity for attaining food security by addressing soil status, the experiments were undertaken in 2017 and 2018 in three previous enclaves of Northern Bangladesh i.e. Dasiarchhara of Kurigram district; Dahalakhagrabari of Panchagarh district and Banskata of Lalmonirhat district under On-Farm Research Division, Bangladesh Agricultural Research Institute, Rangpur. The Mustard (var. BARI Sarisha-14)-Boro rice (var. BRRI dhan58)-T. Aman rice (var. BRRI dhan49) cropping pattern using soil test based (STB) fertilizer with cowdung (T1) or recommended fertilizer dose (T2) were tested against existing cropping pattern Fallow-Boro rice (var. BRRI dhan28)-T. Aman rice (var. Swarna) using farmers’ practices fertilizer dose (T3) in six disperse replications at each location maintaining Randomized Complete Block design. Almost all crops yields were relatively higher in T1 followed by T2. Farmers existing pattern with local varieties and imbalance fertilizer (T3) use may be decreased the crop yield. The rice equivalent yield of T1 was 109, 103 and 95% higher than T3 and the gross margin was 164, 153 and 133% higher in T1 than T3 at Dasiarchhara, Dahalakhagrabari and Banskata, respectively. The Benefit Cost Ratio for T1, T2 and T3 were 1.99, 1.78 and 1.28 in Dasiarchhara; 1.93, 1.81 and 1.27 in Dahalakhagrabari and 1.78, 1.71 and 1.25 in Banskata, respectively. There was a remarkable decrease in mineral N, P and K in the topsoil (0–15 cm) of T3 and T2 treatments at Dasiarchhara and Dahalakhagrabari, and a generally less marked decline under the same treatments at Banskata. The same practices (T1) exhibited the greatest nutrients uptake by the test crops. The apparent balance of N, P and K was negative in most cases, where it was less negative in T1 treatment. However, from the experimentation, it is revealed that balanced fertilization (STB) and inclusion of National Agricultural Research Institutes developed improved crops varieties in cropping pattern may increase the crop productivity, farm efficiency and farmer’s income in a remarkable level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cropping%20pattern" title="cropping pattern">cropping pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizer%20management" title=" fertilizer management"> fertilizer management</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20balance" title=" nutrient balance"> nutrient balance</a>, <a href="https://publications.waset.org/abstracts/search?q=previous%20enclaves" title=" previous enclaves"> previous enclaves</a> </p> <a href="https://publications.waset.org/abstracts/120215/crop-productivity-nutrient-uptake-and-apparent-balance-for-rice-based-cropping-systems-under-improved-crop-varieties-and-nutrient-management-practices-in-previous-enclaves-of-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">356</span> Variation in N₂ Fixation and N Contribution by 30 Groundnut (Arachis hypogaea L.) Varieties Grown in Blesbokfontein Mpumalanga Province, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Titus%20Y.%20Ngmenzuma">Titus Y. Ngmenzuma</a>, <a href="https://publications.waset.org/abstracts/search?q=Cherian.%20Mathews"> Cherian. Mathews</a>, <a href="https://publications.waset.org/abstracts/search?q=Feilx%20D.%20Dakora"> Feilx D. Dakora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Africa, poor nutrient availability, particularly N and P, coupled with low soil moisture due to erratic rainfall, constitutes the major crop production constraints. Although inorganic fertilizers are an option for meeting crop nutrient requirements for increased grain yield, the high cost and scarcity of inorganic inputs make them inaccessible to resource-poor farmers in Africa. Because crops grown on such nutrient-poor soils are micronutrient deficient, incorporating N₂-fixing legumes into cropping systems can sustainably improve crop yield and nutrient accumulation in the grain. In Africa, groundnut can easily form an effective symbiosis with native soil rhizobia, leading to marked N contribution in cropping systems. In this study, field experiments were conducted at Blesbokfontein in Mpumalanga Province to assess N₂ fixation and N contribution by 30 groundnut varieties during the 2018/2019 planting season using the ¹⁵N natural abundance technique. The results revealed marked differences in shoot dry matter yield, symbiotic N contribution, soil N uptake and grain yield among the groundnut varieties. The percent N derived from fixation ranged from 37 to 44% for varieties ICGV131051 and ICGV13984. The amount of N-fixed ranged from 21 to 58 kg/ha for varieties Chinese and IS-07273, soil N uptake from 31 to 80 kg/ha for varieties IS-07947 and IS-07273, and grain yield from 193 to 393 kg/ha for varieties ICGV15033 and ICGV131096, respectively. Compared to earlier studies on groundnut in South Africa, this study has shown low N₂ fixation and N contribution to the cropping systems, possibly due to environmental factors such as low soil moisture. Because the groundnut varieties differed in their growth, symbiotic performance and grain yield, more field testing is required over a range of differing agro-ecologies to identify genotypes suitable for different cropping environments <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C2%B9%E2%81%B5N%20natural%20abundance" title="¹⁵N natural abundance">¹⁵N natural abundance</a>, <a href="https://publications.waset.org/abstracts/search?q=percent%20N%20derived%20from%20fixation" title=" percent N derived from fixation"> percent N derived from fixation</a>, <a href="https://publications.waset.org/abstracts/search?q=amount%20of%20N-fixed" title=" amount of N-fixed"> amount of N-fixed</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20yield" title=" grain yield"> grain yield</a> </p> <a href="https://publications.waset.org/abstracts/140599/variation-in-n2-fixation-and-n-contribution-by-30-groundnut-arachis-hypogaea-l-varieties-grown-in-blesbokfontein-mpumalanga-province-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">355</span> Selection of Soil Quality Indicators of Rice Cropping Systems Using Minimum Data Set Influenced by Imbalanced Fertilization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Theresa%20K.">Theresa K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanmugasundaram%20R."> Shanmugasundaram R.</a>, <a href="https://publications.waset.org/abstracts/search?q=Kennedy%20J.%20S."> Kennedy J. S.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nutrient supplements are indispensable for raising crops and to reap determining productivity. The nutrient imbalance between replenishment and crop uptake is attempted through the input of inorganic fertilizers. Excessive dumping of inorganic nutrients in soil cause stagnant and decline in yield. Imbalanced N-P-K ratio in the soil exacerbates and agitates the soil ecosystems. The study evaluated the fertilization practices of conventional (CFs), organic and Integrated Nutrient Management system (INM) on soil quality using key indicators and soil quality indices. Twelve rice farming fields of which, ten fields were having conventional cultivation practices, one field each was organic farming based and INM based cultivated under monocropping sequence in the Thondamuthur block of Coimbatore district were fixed and properties viz., physical, chemical and biological were studied for four cropping seasons to determine soil quality index (SQI). SQI was computed for conventional, organic and INM fields. Comparing conventional farming (CF) with organic and INM, CF was recorded with a lower soil quality index. While in organic and INM fields, the higher SQI value of 0.99 and 0.88 respectively were registered. CF₄ received with a super-optimal dose of N (250%) showed a lesser SQI value (0.573) as well as the yield (3.20 t ha⁻¹) and the CF6 which received 125 % N recorded the highest SQI (0.715) and yield (6.20 t ha⁻¹). Likewise, most of the CFs received higher N beyond the level of 125 % except CF₃ and CF₉, which recorded lower yields. CFs which received super-optimal P in the order of CF₆&CF₇>CF₁&CF₁₀ recorded lesser yields except for CF₆. Super-optimal K application also recorded lesser yield in CF₄, CF₇ and CF₉. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice%20cropping%20system" title="rice cropping system">rice cropping system</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20quality%20indicators" title=" soil quality indicators"> soil quality indicators</a>, <a href="https://publications.waset.org/abstracts/search?q=imbalanced%20fertilization" title=" imbalanced fertilization"> imbalanced fertilization</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/144949/selection-of-soil-quality-indicators-of-rice-cropping-systems-using-minimum-data-set-influenced-by-imbalanced-fertilization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sole%20cropping&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sole%20cropping&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sole%20cropping&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sole%20cropping&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sole%20cropping&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sole%20cropping&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sole%20cropping&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sole%20cropping&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sole%20cropping&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sole%20cropping&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sole%20cropping&amp;page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sole%20cropping&amp;page=13">13</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sole%20cropping&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10