CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 92 results for author: <span class="mathjax">Wittig, H</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-ph" aria-role="search"> Searching in archive <strong>hep-ph</strong>. <a href="/search/?searchtype=author&query=Wittig%2C+H">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Wittig, H"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Wittig%2C+H&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Wittig, H"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Wittig%2C+H&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Wittig%2C+H&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Wittig%2C+H&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07969">arXiv:2411.07969</a> <span> [<a href="https://arxiv.org/pdf/2411.07969">pdf</a>, <a href="https://arxiv.org/format/2411.07969">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> The hadronic vacuum polarization contribution to the muon $g-2$ at long distances </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Djukanovic%2C+D">Dalibor Djukanovic</a>, <a href="/search/hep-ph?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-ph?searchtype=author&query=Kuberski%2C+S">Simon Kuberski</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Miller%2C+N">Nolan Miller</a>, <a href="/search/hep-ph?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-ph?searchtype=author&query=Parrino%2C+J">Julian Parrino</a>, <a href="/search/hep-ph?searchtype=author&query=Risch%2C+A">Andreas Risch</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07969v1-abstract-short" style="display: inline;"> We present our lattice QCD result for the long-distance part of the hadronic vacuum polarization contribution, $(a_渭^{\rm hvp})^{\rm LD}$, to the muon $g-2$ in the time-momentum representation. This is the numerically dominant, and at the same time the most challenging part regarding statistical precision. Our calculation is based on ensembles with dynamical up, down and strange quarks, employing… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07969v1-abstract-full').style.display = 'inline'; document.getElementById('2411.07969v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07969v1-abstract-full" style="display: none;"> We present our lattice QCD result for the long-distance part of the hadronic vacuum polarization contribution, $(a_渭^{\rm hvp})^{\rm LD}$, to the muon $g-2$ in the time-momentum representation. This is the numerically dominant, and at the same time the most challenging part regarding statistical precision. Our calculation is based on ensembles with dynamical up, down and strange quarks, employing the O($a$)-improved Wilson fermion action with lattice spacings ranging from $0.035-0.099$ fm. In order to reduce statistical noise in the long-distance part of the correlator to the per-mille level, we apply low-mode averaging and combine it with an explicit spectral reconstruction. Our result is $(a_渭^{\rm hvp})^{\rm LD} = 423.2(4.2)_{\rm stat}(3.4)_{\rm syst}\times 10^{-10}$ in isospin-symmetric QCD, where the pion decay constant is used to set the energy scale. When combined with our previous results for the short- and intermediate-distance window observables and after including all sub-dominant contributions as well as isospin-breaking corrections, we obtain the total leading-order hadronic vacuum polarization contribution as $a_渭^{\rm hvp} = 724.9(5.0)_{\rm stat}(4.9)_{\rm syst}\times 10^{-10}$. Our result displays a tension of 3.9 standard deviations with the data-driven estimate published in the 2020 White Paper, but leads to a SM prediction for the total muon anomalous magnetic moment that agrees with the current experimental average. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07969v1-abstract-full').style.display = 'none'; document.getElementById('2411.07969v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">55 pages, 14 figures, 8 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2024-196, MITP-24-080 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04268">arXiv:2411.04268</a> <span> [<a href="https://arxiv.org/pdf/2411.04268">pdf</a>, <a href="https://arxiv.org/format/2411.04268">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> FLAG Review 2024 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Aoki%2C+Y">Y. Aoki</a>, <a href="/search/hep-ph?searchtype=author&query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-ph?searchtype=author&query=Collins%2C+S">S. Collins</a>, <a href="/search/hep-ph?searchtype=author&query=Del+Debbio%2C+L">L. Del Debbio</a>, <a href="/search/hep-ph?searchtype=author&query=Della+Morte%2C+M">M. Della Morte</a>, <a href="/search/hep-ph?searchtype=author&query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-ph?searchtype=author&query=Feng%2C+X">X. Feng</a>, <a href="/search/hep-ph?searchtype=author&query=Golterman%2C+M">M. Golterman</a>, <a href="/search/hep-ph?searchtype=author&query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-ph?searchtype=author&query=Gupta%2C+R">R. Gupta</a>, <a href="/search/hep-ph?searchtype=author&query=Herdoiza%2C+G">G. Herdoiza</a>, <a href="/search/hep-ph?searchtype=author&query=Hernandez%2C+P">P. Hernandez</a>, <a href="/search/hep-ph?searchtype=author&query=J%C3%BCttner%2C+A">A. J眉ttner</a>, <a href="/search/hep-ph?searchtype=author&query=Kaneko%2C+T">T. Kaneko</a>, <a href="/search/hep-ph?searchtype=author&query=Lunghi%2C+E">E. Lunghi</a>, <a href="/search/hep-ph?searchtype=author&query=Meinel%2C+S">S. Meinel</a>, <a href="/search/hep-ph?searchtype=author&query=Monahan%2C+C">C. Monahan</a>, <a href="/search/hep-ph?searchtype=author&query=Nicholson%2C+A">A. Nicholson</a>, <a href="/search/hep-ph?searchtype=author&query=Onogi%2C+T">T. Onogi</a>, <a href="/search/hep-ph?searchtype=author&query=Petreczky%2C+P">P. Petreczky</a>, <a href="/search/hep-ph?searchtype=author&query=Portelli%2C+A">A. Portelli</a>, <a href="/search/hep-ph?searchtype=author&query=Ramos%2C+A">A. Ramos</a>, <a href="/search/hep-ph?searchtype=author&query=Sharpe%2C+S+R">S. R. Sharpe</a>, <a href="/search/hep-ph?searchtype=author&query=Simone%2C+J+N">J. N. Simone</a>, <a href="/search/hep-ph?searchtype=author&query=Sint%2C+S">S. Sint</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04268v2-abstract-short" style="display: inline;"> We review lattice results related to pion, kaon, $D$-meson, $B$-meson, and nucleon physics with the aim of making them easily accessible to the nuclear and particle physics communities. More specifically, we report on the determination of the light-quark masses, the form factor $f_+(0)$ arising in the semileptonic $K \to 蟺$ transition at zero momentum transfer, as well as the decay-constant ratio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04268v2-abstract-full').style.display = 'inline'; document.getElementById('2411.04268v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04268v2-abstract-full" style="display: none;"> We review lattice results related to pion, kaon, $D$-meson, $B$-meson, and nucleon physics with the aim of making them easily accessible to the nuclear and particle physics communities. More specifically, we report on the determination of the light-quark masses, the form factor $f_+(0)$ arising in the semileptonic $K \to 蟺$ transition at zero momentum transfer, as well as the decay-constant ratio $f_K/f_蟺$ and its consequences for the CKM matrix elements $V_{us}$ and $V_{ud}$. We review the determination of the $B_K$ parameter of neutral kaon mixing as well as the additional four $B$ parameters that arise in theories of physics beyond the Standard Model. For the heavy-quark sector, we provide results for $m_c$ and $m_b$ as well as those for the decay constants, form factors, and mixing parameters of charmed and bottom mesons and baryons. These are the heavy-quark quantities most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. We review the status of lattice determinations of the strong coupling constant $伪_s$. We review the determinations of nucleon charges from the matrix elements of both isovector and flavour-diagonal axial, scalar and tensor local quark bilinears, and momentum fraction, helicity moment and the transversity moment from one-link quark bilinears. We also review determinations of scale-setting quantities. Finally, in this review we have added a new section on the general definition of the low-energy limit of the Standard Model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04268v2-abstract-full').style.display = 'none'; document.getElementById('2411.04268v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">435 pages, 53 Figures, 190 tables. arXiv admin note: substantial text overlap with arXiv:2111.09849, arXiv:1902.08191, some corrections and updated references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2024-192 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.03024">arXiv:2402.03024</a> <span> [<a href="https://arxiv.org/pdf/2402.03024">pdf</a>, <a href="https://arxiv.org/format/2402.03024">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Improved analysis of isovector nucleon matrix elements with $N_f=2+1$ flavors of $\mathcal{O}(a)$ improved Wilson fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Djukanovic%2C+D">Dalibor Djukanovic</a>, <a href="/search/hep-ph?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.03024v1-abstract-short" style="display: inline;"> We present an update of our determination of the isovector charges $g_A^{u-d}$, $g_S^{u-d}$ and $g_T^{u-d}$, and the isovector twist-2 forward matrix elements $\langle x\rangle_{u-d}$, $\langle x\rangle_{螖u-螖d}$ and $\langle x\rangle_{未u-未d}$ on the $N_\mathrm{f}=2+1$ gauge ensembles generated by the Coordinated Lattice Simulations (CLS) effort. We have significantly extended our coverage of the p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.03024v1-abstract-full').style.display = 'inline'; document.getElementById('2402.03024v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.03024v1-abstract-full" style="display: none;"> We present an update of our determination of the isovector charges $g_A^{u-d}$, $g_S^{u-d}$ and $g_T^{u-d}$, and the isovector twist-2 forward matrix elements $\langle x\rangle_{u-d}$, $\langle x\rangle_{螖u-螖d}$ and $\langle x\rangle_{未u-未d}$ on the $N_\mathrm{f}=2+1$ gauge ensembles generated by the Coordinated Lattice Simulations (CLS) effort. We have significantly extended our coverage of the parameter space by adding ensembles at the physical pion mass and fine lattice spacing, at nearly-physical pion masses and very fine lattice spacings, and at very large physical lattice volumes, enabling a well-controlled extrapolation to the physical point. Another major improvement is achieved owing to the extended range of source-sink separations, which allows us to perform two-state fits to summed correlator ratios, leading to a much higher level of control over excited-state effects. Systematic uncertainties from the chiral, continuum and infinite-volume extrapolations are incorporated via model averages based on the Akaike Information Criterion. Our final results at the physical point are $g_A^{u-d} = 1.254(19)_\mathrm{stat}(15)_\mathrm{sys}[24]_\mathrm{total}$, $g_S^{u-d} = 1.203(77)_\mathrm{stat}(81)_\mathrm{sys}[112]_\mathrm{total}$, $g_T^{u-d} = 0.993(15)_\mathrm{stat}(05)_\mathrm{sys}[16]_\mathrm{total}$, $\langle x\rangle_{u-d} = 0.153(15)_\mathrm{stat}(10)_\mathrm{sys}[17]_\mathrm{total}$, $\langle x\rangle_{螖u - 螖d} = 0.207(15)_\mathrm{stat}(06)_\mathrm{sys}[16]_\mathrm{total}$, and $\langle x\rangle_{未u - 未d} = 0.195(17)_\mathrm{stat}(15)_\mathrm{sys}[23]_\mathrm{total}$. While our results for the isovector charges are in excellent agreement with the FLAG\,21 averages, we note that our error for the tensor charge $g_T^{u-d}$ is considerably smaller. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.03024v1-abstract-full').style.display = 'none'; document.getElementById('2402.03024v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP-24-014 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.11895">arXiv:2401.11895</a> <span> [<a href="https://arxiv.org/pdf/2401.11895">pdf</a>, <a href="https://arxiv.org/format/2401.11895">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Hadronic vacuum polarization in the muon $g-2$: The short-distance contribution from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Kuberski%2C+S">Simon Kuberski</a>, <a href="/search/hep-ph?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-ph?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-ph?searchtype=author&query=Risch%2C+A">Andreas Risch</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.11895v1-abstract-short" style="display: inline;"> We present results for the short-distance window observable of the hadronic vacuum polarization contribution to the muon $g-2$, computed via the time-momentum representation (TMR) in lattice QCD. A key novelty of our calculation is the reduction of discretization effects by a suitable subtraction applied to the TMR kernel function, which cancels the leading $x_0^4$-behaviour at short distances. To… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11895v1-abstract-full').style.display = 'inline'; document.getElementById('2401.11895v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.11895v1-abstract-full" style="display: none;"> We present results for the short-distance window observable of the hadronic vacuum polarization contribution to the muon $g-2$, computed via the time-momentum representation (TMR) in lattice QCD. A key novelty of our calculation is the reduction of discretization effects by a suitable subtraction applied to the TMR kernel function, which cancels the leading $x_0^4$-behaviour at short distances. To compensate for the subtraction, one must substitute a term that can be reliably computed in perturbative QCD. We apply this strategy to our data for the vector current collected on ensembles generated with $2+1$ flavours of O($a$)-improved Wilson quarks at six values of the lattice spacing and pion masses in the range $130-420\,$MeV. Our estimate at the physical point contains a full error budget and reads $(a_渭^{\rm hvp})^{\rm SD}=68.85(14)_{\rm stat}\,(42)_{\rm syst}\cdot10^{-10}$, which corresponds to a relative precision of 0.7\%. We discuss the implications of our result for the observed tensions between lattice and data-driven evaluations of the hadronic vacuum polarization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11895v1-abstract-full').style.display = 'none'; document.getElementById('2401.11895v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 10 figures, 9 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP-24-011, CERN-TH-2024-011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.09440">arXiv:2401.09440</a> <span> [<a href="https://arxiv.org/pdf/2401.09440">pdf</a>, <a href="https://arxiv.org/format/2401.09440">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/202430302002">10.1051/epjconf/202430302002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Proton and neutron electromagnetic radii and magnetic moments from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Salg%2C+M">Miguel Salg</a>, <a href="/search/hep-ph?searchtype=author&query=Djukanovic%2C+D">Dalibor Djukanovic</a>, <a href="/search/hep-ph?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.09440v1-abstract-short" style="display: inline;"> We present results for the electromagnetic form factors of the proton and neutron computed on the $(2 + 1)$-flavor Coordinated Lattice Simulations (CLS) ensembles including both quark-connected and -disconnected contributions. The $Q^2$-, pion-mass, lattice-spacing, and finite-volume dependence of our form factor data is fitted simultaneously to the expressions resulting from covariant chiral pert… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09440v1-abstract-full').style.display = 'inline'; document.getElementById('2401.09440v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.09440v1-abstract-full" style="display: none;"> We present results for the electromagnetic form factors of the proton and neutron computed on the $(2 + 1)$-flavor Coordinated Lattice Simulations (CLS) ensembles including both quark-connected and -disconnected contributions. The $Q^2$-, pion-mass, lattice-spacing, and finite-volume dependence of our form factor data is fitted simultaneously to the expressions resulting from covariant chiral perturbation theory including vector mesons amended by models for lattice artefacts. From these fits, we determine the electric and magnetic radii and the magnetic moments of the proton and neutron, as well as the Zemach radius of the proton. To assess the influence of systematic effects, we average over various cuts in the pion mass and the momentum transfer, as well as over different models for the lattice-spacing and finite-volume dependence, using weights derived from the Akaike Information Criterion (AIC). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09440v1-abstract-full').style.display = 'none'; document.getElementById('2401.09440v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures, contribution to the 16th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU 2023), October 15th-20th, 2023, Mainz, Germany. arXiv admin note: substantial text overlap with arXiv:2401.05404</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP-23-078 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EPJ Web Conf. 303 (2024), 02002 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.17232">arXiv:2309.17232</a> <span> [<a href="https://arxiv.org/pdf/2309.17232">pdf</a>, <a href="https://arxiv.org/format/2309.17232">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.L011503">10.1103/PhysRevD.110.L011503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Zemach and Friar radii of the proton and neutron from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Djukanovic%2C+D">Dalibor Djukanovic</a>, <a href="/search/hep-ph?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-ph?searchtype=author&query=Salg%2C+M">Miguel Salg</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.17232v3-abstract-short" style="display: inline;"> We present the first lattice-QCD result for the Zemach and Friar radii of the proton and neutron. Our calculation includes both quark-connected and -disconnected diagrams and assesses all sources of systematic uncertainties arising from excited-state contributions, finite-volume effects and the continuum extrapolation. At the physical point, we obtain for the proton… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.17232v3-abstract-full').style.display = 'inline'; document.getElementById('2309.17232v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.17232v3-abstract-full" style="display: none;"> We present the first lattice-QCD result for the Zemach and Friar radii of the proton and neutron. Our calculation includes both quark-connected and -disconnected diagrams and assesses all sources of systematic uncertainties arising from excited-state contributions, finite-volume effects and the continuum extrapolation. At the physical point, we obtain for the proton $r_Z^p = ( 1.013 \pm 0.010\ (\mathrm{stat}) \pm 0.012\ (\mathrm{syst}) )~\mathrm{fm}$ and $r_F^p = ( 1.301 \pm 0.012\ (\mathrm{stat}) \pm 0.014\ (\mathrm{syst}) )~\mathrm{fm}$. These numbers suggest small values of the Zemach and Friar radii of the proton, but are compatible with most of the experimental studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.17232v3-abstract-full').style.display = 'none'; document.getElementById('2309.17232v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 2 figures; v2: significantly extended version including, in addition to the Zemach radius of the proton, results for the Friar radius of the proton as well as for the Zemach and Friar radii of the neutron; v3: typos fixed, matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP-23-055 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 110 (2024) 1, L011503 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.04165">arXiv:2306.04165</a> <span> [<a href="https://arxiv.org/pdf/2306.04165">pdf</a>, <a href="https://arxiv.org/format/2306.04165">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Progress on $(g-2)_渭$ from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.04165v2-abstract-short" style="display: inline;"> I review the status of lattice QCD calculations of the hadronic contributions to the muon's anomalous magnetic moment, focussing on the hadronic vacuum polarisation contribution which dominates the uncertainty of the Standard Model prediction.This quantity exhibits a tension between recent lattice QCD results and the traditional data-driven dispersive method. I discuss the implications for the run… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.04165v2-abstract-full').style.display = 'inline'; document.getElementById('2306.04165v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.04165v2-abstract-full" style="display: none;"> I review the status of lattice QCD calculations of the hadronic contributions to the muon's anomalous magnetic moment, focussing on the hadronic vacuum polarisation contribution which dominates the uncertainty of the Standard Model prediction.This quantity exhibits a tension between recent lattice QCD results and the traditional data-driven dispersive method. I discuss the implications for the running of the electromagnetic coupling and the consistency of global fits using electroweak precision data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.04165v2-abstract-full').style.display = 'none'; document.getElementById('2306.04165v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">typos corrected; 9 pages, Contribution to the 2023 Electroweak Session of the 57th Rencontres de Moriond</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/23-025 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.08741">arXiv:2303.08741</a> <span> [<a href="https://arxiv.org/pdf/2303.08741">pdf</a>, <a href="https://arxiv.org/format/2303.08741">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.261902">10.1103/PhysRevLett.131.261902 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nucleon Sigma Terms with $N_f = 2 + 1$ O($a$)-improved Wilson fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Agadjanov%2C+A">Andria Agadjanov</a>, <a href="/search/hep-ph?searchtype=author&query=Djukanovic%2C+D">Dalibor Djukanovic</a>, <a href="/search/hep-ph?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.08741v2-abstract-short" style="display: inline;"> We present a lattice-QCD based analysis of the nucleon sigma terms using gauge ensembles with $N_f = 2 + 1$ flavors of ${\cal O}(a)$-improved Wilson fermions, with a complete error budget concerning excited-state contaminations, the chiral interpolation as well as finite-size and lattice spacing effects. We compute the sigma terms determined directly from the matrix elements of the scalar currents… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08741v2-abstract-full').style.display = 'inline'; document.getElementById('2303.08741v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.08741v2-abstract-full" style="display: none;"> We present a lattice-QCD based analysis of the nucleon sigma terms using gauge ensembles with $N_f = 2 + 1$ flavors of ${\cal O}(a)$-improved Wilson fermions, with a complete error budget concerning excited-state contaminations, the chiral interpolation as well as finite-size and lattice spacing effects. We compute the sigma terms determined directly from the matrix elements of the scalar currents. The chiral interpolation is based on SU(3) baryon chiral perturbation theory using the extended on-mass shell renormalization scheme. For the pion nucleon sigma term, we obtain $蟽_{蟺N} = (43.7\pm3.6)$ MeV, where the error includes our estimate of the aforementioned systematics. The tension with extractions based on dispersion theory persists at the 2.4-$蟽$ level. For the strange sigma term, we obtain a non-zero value, $蟽_s=(28.6\pm9.3)$ MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08741v2-abstract-full').style.display = 'none'; document.getElementById('2303.08741v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.Lett. 131 (2023) 26, 261902 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.02366">arXiv:2212.02366</a> <span> [<a href="https://arxiv.org/pdf/2212.02366">pdf</a>, <a href="https://arxiv.org/format/2212.02366">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> The hadronic running of the electromagnetic coupling and electroweak mixing angle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Jos%C3%A9%2C+T+S">Teseo San Jos茅</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a>, <a href="/search/hep-ph?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-ph?searchtype=author&query=G%C3%A9rardin%2C+A">Antoine G茅rardin</a>, <a href="/search/hep-ph?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Miura%2C+K">Kohtaroh Miura</a>, <a href="/search/hep-ph?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-ph?searchtype=author&query=Risch%2C+A">Andreas Risch</a>, <a href="/search/hep-ph?searchtype=author&query=Wilhelm%2C+J">Jonas Wilhelm</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.02366v1-abstract-short" style="display: inline;"> We present results for the hadronic running of the electromagnetic coupling and the weak mixing angle from simulations of lattice QCD with $N_f=2+1$ flavours of $O(a)$-improved Wilson fermions. Using two different discretisations of the vector current, we compute the quark-connected and -disconnected contributions to the hadronic vacuum polarisation (HVP) functions $\bar螤^{纬纬}$ and $\bar螤^{Z纬}$ fo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02366v1-abstract-full').style.display = 'inline'; document.getElementById('2212.02366v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.02366v1-abstract-full" style="display: none;"> We present results for the hadronic running of the electromagnetic coupling and the weak mixing angle from simulations of lattice QCD with $N_f=2+1$ flavours of $O(a)$-improved Wilson fermions. Using two different discretisations of the vector current, we compute the quark-connected and -disconnected contributions to the hadronic vacuum polarisation (HVP) functions $\bar螤^{纬纬}$ and $\bar螤^{Z纬}$ for spacelike squared momenta $Q^2\leq 7$ $\mathrm{GeV}^2$. Our results are extrapolated to the physical point using ensembles at four lattice spacings, with pion masses ranging from 130 to 420 MeV. We observe a tension of up to 3.5 standard deviations between our lattice results for $螖伪_{\rm had}^{(5)}(-Q^2)$ and estimates based on the $\textit{R}$-ratio for space-like momenta in the range $Q^2=3-7\,\rm GeV^2$. To obtain an estimate for $螖伪_\mathrm{had}^{(5)}(M_Z^2)$, we employ the Euclidean split technique. The implications for comparison with global electroweak fits are assessed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02366v1-abstract-full').style.display = 'none'; document.getElementById('2212.02366v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 7 figures, proceedings of the 39th International Symposium on Lattice Field Theory, 8th-13th August 2022, Bonn, Germany</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY-22-194, MITP-22-099 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE2022)328 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.01208">arXiv:2212.01208</a> <span> [<a href="https://arxiv.org/pdf/2212.01208">pdf</a>, <a href="https://arxiv.org/format/2212.01208">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Isovector Axial Form Factor of the Nucleon from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Koponen%2C+J">Jonna Koponen</a>, <a href="/search/hep-ph?searchtype=author&query=Djukanovic%2C+D">Dalibor Djukanovic</a>, <a href="/search/hep-ph?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-ph?searchtype=author&query=Schulz%2C+T">Tobias Schulz</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.01208v1-abstract-short" style="display: inline;"> The isovector axial form factor of the nucleon plays a key role in interpreting data from long-baseline neutrino oscillation experiments. We present a lattice QCD calculation of this form factor, introducing a new method to directly extract its z-expansion from lattice correlators. Our final parameterization of the form factor, which extends up to spacelike virtualities of 0.7 GeV^2 with fully qua… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01208v1-abstract-full').style.display = 'inline'; document.getElementById('2212.01208v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.01208v1-abstract-full" style="display: none;"> The isovector axial form factor of the nucleon plays a key role in interpreting data from long-baseline neutrino oscillation experiments. We present a lattice QCD calculation of this form factor, introducing a new method to directly extract its z-expansion from lattice correlators. Our final parameterization of the form factor, which extends up to spacelike virtualities of 0.7 GeV^2 with fully quantified uncertainties, agrees with previous lattice calculations but is significantly less steep than neutrino-deuterium scattering data suggests. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01208v1-abstract-full').style.display = 'none'; document.getElementById('2212.01208v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceeding for the 39th International Symposium on Lattice Field Theory (Lattice2022), 8th-13th August 2022, Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.17083">arXiv:2211.17083</a> <span> [<a href="https://arxiv.org/pdf/2211.17083">pdf</a>, <a href="https://arxiv.org/format/2211.17083">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Intermediate window observable for the hadronic vacuum polarization contribution to the muon $g-2$ from O$(a)$ improved Wilson quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-ph?searchtype=author&query=G%C3%A9rardin%2C+A">Antoine G茅rardin</a>, <a href="/search/hep-ph?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-ph?searchtype=author&query=Hudspith%2C+R+J">Renwick J. Hudspith</a>, <a href="/search/hep-ph?searchtype=author&query=Kuberski%2C+S">Simon Kuberski</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Miura%2C+K">Kohtaroh Miura</a>, <a href="/search/hep-ph?searchtype=author&query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-ph?searchtype=author&query=Paul%2C+S">Srijit Paul</a>, <a href="/search/hep-ph?searchtype=author&query=Risch%2C+A">Andreas Risch</a>, <a href="/search/hep-ph?searchtype=author&query=Jos%C3%A9%2C+T+S">Teseo San Jos茅</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.17083v1-abstract-short" style="display: inline;"> Following the publication of the new measurement of the anomalous magnetic moment of the muon, the discrepancy between experiment and the theory prediction from the $g-2$ theory initiative has increased to $4.2\,蟽$. Recent lattice QCD calculations predict values for the hadronic vacuum polarization contribution that are larger than the data-driven estimates, bringing the Standard Model prediction… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.17083v1-abstract-full').style.display = 'inline'; document.getElementById('2211.17083v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.17083v1-abstract-full" style="display: none;"> Following the publication of the new measurement of the anomalous magnetic moment of the muon, the discrepancy between experiment and the theory prediction from the $g-2$ theory initiative has increased to $4.2\,蟽$. Recent lattice QCD calculations predict values for the hadronic vacuum polarization contribution that are larger than the data-driven estimates, bringing the Standard Model prediction closer to the experimental measurement. Euclidean time windows in the time-momentum representation of the hadronic vacuum polarization contribution to the muon $g-2$ can help clarify the discrepancy between the phenomenological and lattice predictions. We present our calculation of the intermediate distance window contribution using $N_\mathrm{f}=2+1$ flavors of O$(a)$ improved Wilson quarks. We employ ensembles at six lattice spacings below $0.1\,$fm and pion masses down to the physical value. We present a detailed study of the continuum limit, using two discretizations of the vector current and two independent sets of improvement coefficients. Our result at the physical point displays a tension of $3.9\,蟽$ with a recent evaluation of the intermediate window based on the data-driven method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.17083v1-abstract-full').style.display = 'none'; document.getElementById('2211.17083v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures, Proceedings of the 39th International Symposium on Lattice Field Theory, 8th-13th August 2022, Bonn, Germany</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP-22-102, DESY-22-193 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.11401">arXiv:2211.11401</a> <span> [<a href="https://arxiv.org/pdf/2211.11401">pdf</a>, <a href="https://arxiv.org/format/2211.11401">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> The hadronic running of the electroweak couplings from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-ph?searchtype=author&query=G%C3%A9rardin%2C+A">Antoine G茅rardin</a>, <a href="/search/hep-ph?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Miura%2C+K">Kohtaroh Miura</a>, <a href="/search/hep-ph?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-ph?searchtype=author&query=Risch%2C+A">Andreas Risch</a>, <a href="/search/hep-ph?searchtype=author&query=Jos%C3%A9%2C+T+S">Teseo San Jos茅</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.11401v2-abstract-short" style="display: inline;"> The energy dependency (running) of the strength of electromagnetic interactions $伪$ plays an important role in precision tests of the Standard Model. The running of the former to the $Z$ pole is an input quantity for global electroweak fits, while the running of the mixing angle is susceptible to the effects of Beyond Standard Model physics, particularly at low energies. We present a computation o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.11401v2-abstract-full').style.display = 'inline'; document.getElementById('2211.11401v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.11401v2-abstract-full" style="display: none;"> The energy dependency (running) of the strength of electromagnetic interactions $伪$ plays an important role in precision tests of the Standard Model. The running of the former to the $Z$ pole is an input quantity for global electroweak fits, while the running of the mixing angle is susceptible to the effects of Beyond Standard Model physics, particularly at low energies. We present a computation of the hadronic vacuum polarization (HVP) contribution to the running of these electroweak couplings at the non-perturbative level in lattice QCD, in the space-like regime up to $Q^2$ momentum transfers of $7\,\mathrm{GeV}^2$. This quantity is also closely related to the HVP contribution to the muon $g-2$. We observe a tension of up to $3.5$ standard deviation between our lattice results for $螖伪^{(5)}_{\mathrm{had}}(-Q^2)$ and estimates based on the $R$-ratio for $Q^2$ in the $3$ to $7\,\mathrm{GeV}^2$ range. The tension is, however, strongly diminished when translating our result to the $Z$ pole, by employing the Euclidean split technique and perturbative QCD, which yields $螖伪^{(5)}_{\mathrm{had}}(M_Z^2)=0.027\,73(15)$. This value agrees with results based on the $R$-ratio within the quoted uncertainties, and can be used as an alternative to the latter in global electroweak fits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.11401v2-abstract-full').style.display = 'none'; document.getElementById('2211.11401v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures, v2: accepted version with minor changes, talk presented at the 41st International Conference on High Energy physics - ICHEP2022</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY-22-183 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(ICHEP2022)823 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.03440">arXiv:2207.03440</a> <span> [<a href="https://arxiv.org/pdf/2207.03440">pdf</a>, <a href="https://arxiv.org/format/2207.03440">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> The isovector axial form factor of the nucleon from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Djukanovic%2C+D">Dalibor Djukanovic</a>, <a href="/search/hep-ph?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-ph?searchtype=author&query=Koponen%2C+J">Jonna Koponen</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-ph?searchtype=author&query=Schulz%2C+T">Tobias Schulz</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.03440v1-abstract-short" style="display: inline;"> The isovector axial form factor of the nucleon plays a key role in interpreting data from long-baseline neutrino oscillation experiments. We perform a lattice-QCD based calculation of this form factor, introducing a new method to directly extract its $z$-expansion from lattice correlators. Our final parametrization of the form factor, which extends up to spacelike virtualities of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.03440v1-abstract-full').style.display = 'inline'; document.getElementById('2207.03440v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.03440v1-abstract-full" style="display: none;"> The isovector axial form factor of the nucleon plays a key role in interpreting data from long-baseline neutrino oscillation experiments. We perform a lattice-QCD based calculation of this form factor, introducing a new method to directly extract its $z$-expansion from lattice correlators. Our final parametrization of the form factor, which extends up to spacelike virtualities of $0.7\,{\rm GeV}^2$ with fully quantified uncertainties, agrees with previous lattice calculations but is significantly less steep than neutrino-deuterium scattering data suggests. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.03440v1-abstract-full').style.display = 'none'; document.getElementById('2207.03440v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages + 6 pages supplementary material; (3+6) figures; 2 tables in suppl.mat</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP-22-053 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.06582">arXiv:2206.06582</a> <span> [<a href="https://arxiv.org/pdf/2206.06582">pdf</a>, <a href="https://arxiv.org/format/2206.06582">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.114502">10.1103/PhysRevD.106.114502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Window observable for the hadronic vacuum polarization contribution to the muon $g-2$ from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-ph?searchtype=author&query=G%C3%A9rardin%2C+A">Antoine G茅rardin</a>, <a href="/search/hep-ph?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-ph?searchtype=author&query=Hudspith%2C+R+J">Renwick J. Hudspith</a>, <a href="/search/hep-ph?searchtype=author&query=Kuberski%2C+S">Simon Kuberski</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Miura%2C+K">Kohtaroh Miura</a>, <a href="/search/hep-ph?searchtype=author&query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-ph?searchtype=author&query=Paul%2C+S">Srijit Paul</a>, <a href="/search/hep-ph?searchtype=author&query=Risch%2C+A">Andreas Risch</a>, <a href="/search/hep-ph?searchtype=author&query=Jos%C3%A9%2C+T+S">Teseo San Jos茅</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.06582v2-abstract-short" style="display: inline;"> Euclidean time windows in the integral representation of the hadronic vacuum polarization contribution to the muon $g-2$ serve to test the consistency of lattice calculations and may help in tracing the origins of a potential tension between lattice and data-driven evaluations. In this paper, we present results for the intermediate time window observable computed using O($a$) improved Wilson fermi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.06582v2-abstract-full').style.display = 'inline'; document.getElementById('2206.06582v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.06582v2-abstract-full" style="display: none;"> Euclidean time windows in the integral representation of the hadronic vacuum polarization contribution to the muon $g-2$ serve to test the consistency of lattice calculations and may help in tracing the origins of a potential tension between lattice and data-driven evaluations. In this paper, we present results for the intermediate time window observable computed using O($a$) improved Wilson fermions at six values of the lattice spacings below 0.1\,fm and pion masses down to the physical value. Using two different sets of improvement coefficients in the definitions of the local and conserved vector currents, we perform a detailed scaling study which results in a fully controlled extrapolation to the continuum limit without any additional treatment of the data, except for the inclusion of finite-volume corrections. To determine the latter, we use a combination of the method of Hansen and Patella and the Meyer-Lellouch-L眉scher procedure employing the Gounaris-Sakurai parameterization for the pion form factor. We correct our results for isospin-breaking effects via the perturbative expansion of QCD+QED around the isosymmetric theory. Our result at the physical point is $a_渭^{\mathrm{win}}=(237.30\pm0.79_{\rm stat}\pm1.22_{\rm syst})\times10^{-10}$, where the systematic error includes an estimate of the uncertainty due to the quenched charm quark in our calculation. Our result displays a tension of 3.9$蟽$ with a recent evaluation of $a_渭^{\mathrm{win}}$ based on the data-driven method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.06582v2-abstract-full').style.display = 'none'; document.getElementById('2206.06582v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages, 9 figures, 10 tables; version accepted for publication: extended discussion of finite-volume corrections. Results and conclusions unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP-22-038, CERN-TH-2022-098, DESY-22-105 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 106, 114502 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.15810">arXiv:2203.15810</a> <span> [<a href="https://arxiv.org/pdf/2203.15810">pdf</a>, <a href="https://arxiv.org/format/2203.15810">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Prospects for precise predictions of $a_渭$ in the Standard Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Colangelo%2C+G">G. Colangelo</a>, <a href="/search/hep-ph?searchtype=author&query=Davier%2C+M">M. Davier</a>, <a href="/search/hep-ph?searchtype=author&query=El-Khadra%2C+A+X">A. X. El-Khadra</a>, <a href="/search/hep-ph?searchtype=author&query=Hoferichter%2C+M">M. Hoferichter</a>, <a href="/search/hep-ph?searchtype=author&query=Lehner%2C+C">C. Lehner</a>, <a href="/search/hep-ph?searchtype=author&query=Lellouch%2C+L">L. Lellouch</a>, <a href="/search/hep-ph?searchtype=author&query=Mibe%2C+T">T. Mibe</a>, <a href="/search/hep-ph?searchtype=author&query=Roberts%2C+B+L">B. L. Roberts</a>, <a href="/search/hep-ph?searchtype=author&query=Teubner%2C+T">T. Teubner</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">H. Wittig</a>, <a href="/search/hep-ph?searchtype=author&query=Ananthanarayan%2C+B">B. Ananthanarayan</a>, <a href="/search/hep-ph?searchtype=author&query=Bashir%2C+A">A. Bashir</a>, <a href="/search/hep-ph?searchtype=author&query=Bijnens%2C+J">J. Bijnens</a>, <a href="/search/hep-ph?searchtype=author&query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-ph?searchtype=author&query=Boyle%2C+P">P. Boyle</a>, <a href="/search/hep-ph?searchtype=author&query=Bray-Ali%2C+N">N. Bray-Ali</a>, <a href="/search/hep-ph?searchtype=author&query=Caprini%2C+I">I. Caprini</a>, <a href="/search/hep-ph?searchtype=author&query=Calame%2C+C+M+C">C. M. Carloni Calame</a>, <a href="/search/hep-ph?searchtype=author&query=Cat%C3%A0%2C+O">O. Cat脿</a>, <a href="/search/hep-ph?searchtype=author&query=C%C3%A8%2C+M">M. C猫</a>, <a href="/search/hep-ph?searchtype=author&query=Charles%2C+J">J. Charles</a>, <a href="/search/hep-ph?searchtype=author&query=Christ%2C+N+H">N. H. Christ</a>, <a href="/search/hep-ph?searchtype=author&query=Curciarello%2C+F">F. Curciarello</a>, <a href="/search/hep-ph?searchtype=author&query=Danilkin%2C+I">I. Danilkin</a>, <a href="/search/hep-ph?searchtype=author&query=Das%2C+D">D. Das</a> , et al. (57 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.15810v1-abstract-short" style="display: inline;"> We discuss the prospects for improving the precision on the hadronic corrections to the anomalous magnetic moment of the muon, and the plans of the Muon $g-2$ Theory Initiative to update the Standard Model prediction. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.15810v1-abstract-full" style="display: none;"> We discuss the prospects for improving the precision on the hadronic corrections to the anomalous magnetic moment of the muon, and the plans of the Muon $g-2$ Theory Initiative to update the Standard Model prediction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.15810v1-abstract-full').style.display = 'none'; document.getElementById('2203.15810v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to the US Community Study on the Future of Particle Physics (Snowmass 2021)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-22-236-T, LTH 1303, MITP-22-030 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.08676">arXiv:2203.08676</a> <span> [<a href="https://arxiv.org/pdf/2203.08676">pdf</a>, <a href="https://arxiv.org/format/2203.08676">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP08(2022)220">10.1007/JHEP08(2022)220 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The hadronic running of the electromagnetic coupling and the electroweak mixing angle from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-ph?searchtype=author&query=G%C3%A9rardin%2C+A">Antoine G茅rardin</a>, <a href="/search/hep-ph?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Miura%2C+K">Kohtaroh Miura</a>, <a href="/search/hep-ph?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-ph?searchtype=author&query=Risch%2C+A">Andreas Risch</a>, <a href="/search/hep-ph?searchtype=author&query=Jos%C3%A9%2C+T+S">Teseo San Jos茅</a>, <a href="/search/hep-ph?searchtype=author&query=Wilhelm%2C+J">Jonas Wilhelm</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.08676v2-abstract-short" style="display: inline;"> We compute the hadronic running of the electromagnetic and weak couplings in lattice QCD with $N_{\mathrm{f}}=2+1$ flavors of $\mathcal{O}(a)$ improved Wilson fermions. Using two different discretizations of the vector current, we compute the quark-connected and -disconnected contributions to the hadronic vacuum polarization (HVP) functions $\bar螤^{纬纬}$ and $\bar螤^{纬Z}$ for Euclidean squared momen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08676v2-abstract-full').style.display = 'inline'; document.getElementById('2203.08676v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.08676v2-abstract-full" style="display: none;"> We compute the hadronic running of the electromagnetic and weak couplings in lattice QCD with $N_{\mathrm{f}}=2+1$ flavors of $\mathcal{O}(a)$ improved Wilson fermions. Using two different discretizations of the vector current, we compute the quark-connected and -disconnected contributions to the hadronic vacuum polarization (HVP) functions $\bar螤^{纬纬}$ and $\bar螤^{纬Z}$ for Euclidean squared momenta $Q^2\leq 7\,\mathrm{GeV}^2$. Gauge field ensembles at four values of the lattice spacing and several values of the pion mass, including its physical value, are used to extrapolate the results to the physical point. The ability to perform an exact flavor decomposition allows us to present the most precise determination to date of the $\mathrm{SU}(3)$-flavor-suppressed HVP function $\bar螤^{08}$ that enters the running of $\sin^2胃_{\mathrm{W}}$. Our results for $\bar螤^{纬纬}$, $\bar螤^{纬Z}$ and $\bar螤^{08}$ are presented in terms of rational functions for continuous values of $Q^2$ below $7 \,\mathrm{GeV}^2$. We observe a tension of up to $3.5$ standard deviation between our lattice results for $螖伪^{(5)}_{\mathrm{had}}(-Q^2)$ and estimates based on the $R$-ratio for space-like momenta in the range $3$--$7\,\mathrm{GeV}^2$. The tension is, however, strongly diminished when translating our result to the $Z$ pole, by employing the Euclidean split technique and perturbative QCD, which yields $螖伪^{(5)}_{\mathrm{had}}(M_Z^2)=0.027\,73(15)$ and agrees with results based on the $R$-ratio within the quoted uncertainties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08676v2-abstract-full').style.display = 'none'; document.getElementById('2203.08676v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">63 pages, 17 figures, 11 tables. v2: version accepted for publication in JHEP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP-22-019, CERN-TH-2022-035, DESY-22-050 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP08(2022)220 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.09849">arXiv:2111.09849</a> <span> [<a href="https://arxiv.org/pdf/2111.09849">pdf</a>, <a href="https://arxiv.org/format/2111.09849">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-022-10536-1">10.1140/epjc/s10052-022-10536-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> FLAG Review 2021 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Aoki%2C+Y">Y. Aoki</a>, <a href="/search/hep-ph?searchtype=author&query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-ph?searchtype=author&query=Colangelo%2C+G">G. Colangelo</a>, <a href="/search/hep-ph?searchtype=author&query=Collins%2C+S">S. Collins</a>, <a href="/search/hep-ph?searchtype=author&query=Della+Morte%2C+M">M. Della Morte</a>, <a href="/search/hep-ph?searchtype=author&query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-ph?searchtype=author&query=D%C3%BCrr%2C+S">S. D眉rr</a>, <a href="/search/hep-ph?searchtype=author&query=Feng%2C+X">X. Feng</a>, <a href="/search/hep-ph?searchtype=author&query=Fukaya%2C+H">H. Fukaya</a>, <a href="/search/hep-ph?searchtype=author&query=Golterman%2C+M">M. Golterman</a>, <a href="/search/hep-ph?searchtype=author&query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-ph?searchtype=author&query=Gupta%2C+R">R. Gupta</a>, <a href="/search/hep-ph?searchtype=author&query=Hashimoto%2C+S">S. Hashimoto</a>, <a href="/search/hep-ph?searchtype=author&query=Heller%2C+U+M">U. M. Heller</a>, <a href="/search/hep-ph?searchtype=author&query=Herdoiza%2C+G">G. Herdoiza</a>, <a href="/search/hep-ph?searchtype=author&query=Hernandez%2C+P">P. Hernandez</a>, <a href="/search/hep-ph?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-ph?searchtype=author&query=J%C3%BCttner%2C+A">A. J眉ttner</a>, <a href="/search/hep-ph?searchtype=author&query=Kaneko%2C+T">T. Kaneko</a>, <a href="/search/hep-ph?searchtype=author&query=Lunghi%2C+E">E. Lunghi</a>, <a href="/search/hep-ph?searchtype=author&query=Meinel%2C+S">S. Meinel</a>, <a href="/search/hep-ph?searchtype=author&query=Monahan%2C+C">C. Monahan</a>, <a href="/search/hep-ph?searchtype=author&query=Nicholson%2C+A">A. Nicholson</a>, <a href="/search/hep-ph?searchtype=author&query=Onogi%2C+T">T. Onogi</a>, <a href="/search/hep-ph?searchtype=author&query=Pena%2C+C">C. Pena</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.09849v2-abstract-short" style="display: inline;"> We review lattice results related to pion, kaon, $D$-meson, $B$-meson, and nucleon physics with the aim of making them easily accessible to the nuclear and particle physics communities. More specifically, we report on the determination of the light-quark masses, the form factor $f_+(0)$ arising in the semileptonic $K \to 蟺$ transition at zero momentum transfer, as well as the decay constant ratio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09849v2-abstract-full').style.display = 'inline'; document.getElementById('2111.09849v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.09849v2-abstract-full" style="display: none;"> We review lattice results related to pion, kaon, $D$-meson, $B$-meson, and nucleon physics with the aim of making them easily accessible to the nuclear and particle physics communities. More specifically, we report on the determination of the light-quark masses, the form factor $f_+(0)$ arising in the semileptonic $K \to 蟺$ transition at zero momentum transfer, as well as the decay constant ratio $f_K/f_蟺$ and its consequences for the CKM matrix elements $V_{us}$ and $V_{ud}$. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of $SU(2)_L\times SU(2)_R$ and $SU(3)_L\times SU(3)_R$ Chiral Perturbation Theory. We review the determination of the $B_K$ parameter of neutral kaon mixing as well as the additional four $B$ parameters that arise in theories of physics beyond the Standard Model. For the heavy-quark sector, we provide results for $m_c$ and $m_b$ as well as those for the decay constants, form factors, and mixing parameters of charmed and bottom mesons and baryons. These are the heavy-quark quantities most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. We review the status of lattice determinations of the strong coupling constant $伪_s$. We consider nucleon matrix elements, and review the determinations of the axial, scalar and tensor bilinears, both isovector and flavor diagonal. Finally, in this review we have added a new section reviewing determinations of scale-setting quantities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09849v2-abstract-full').style.display = 'none'; document.getElementById('2111.09849v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">418 pages, 53 figures, 200 tables, 1056 references. Minor changes, version as published in EPJC. arXiv admin note: substantial text overlap with arXiv:1902.08191, arXiv:1607.00299, arXiv:1310.8555</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2021-191, JLAB-THY-21-3528 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur.Phys.J.C 82 (2022) 10, 869 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.04537">arXiv:2109.04537</a> <span> [<a href="https://arxiv.org/pdf/2109.04537">pdf</a>, <a href="https://arxiv.org/format/2109.04537">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> The hadronic contribution to the running of the electromagnetic coupling and electroweak mixing angle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Jos%C3%A9%2C+T+S">Teseo San Jos茅</a>, <a href="/search/hep-ph?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-ph?searchtype=author&query=G%C3%A9rardin%2C+A">Antoine G茅rardin</a>, <a href="/search/hep-ph?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Miura%2C+K">Kohtaroh Miura</a>, <a href="/search/hep-ph?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-ph?searchtype=author&query=Risch%2C+A">Andreas Risch</a>, <a href="/search/hep-ph?searchtype=author&query=Wilhelm%2C+J">Jonas Wilhelm</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.04537v2-abstract-short" style="display: inline;"> As present and future experiments, on both the energy and precision frontiers, look to identify new physics beyond the Standard Model, we require more precise determinations of fundamental quantities, like the QED and electroweak couplings at various momenta. These can be obtained either entirely from experimental measurements, or from one such measurement at a particular virtuality combined with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.04537v2-abstract-full').style.display = 'inline'; document.getElementById('2109.04537v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.04537v2-abstract-full" style="display: none;"> As present and future experiments, on both the energy and precision frontiers, look to identify new physics beyond the Standard Model, we require more precise determinations of fundamental quantities, like the QED and electroweak couplings at various momenta. These can be obtained either entirely from experimental measurements, or from one such measurement at a particular virtuality combined with the couplings' virtuality dependence computed within the SM. Thus, a precise, entirely theoretical determination of the running couplings is highly desirable, even more since the preliminary results of the E989 experiment in Fermilab were published. We give results for the hadronic contribution to the QED running coupling $伪(Q^2)$ and weak mixing angle $\sin^2胃_W(Q^2)$ in the space-like energy region $(0, 7]~\text{GeV}^2$ with a total relative uncertainty of $2\%$ at energies $Q^2 \ll 1~\text{GeV}^2$, and $1\%$ at $Q^2 > 1~\text{GeV}^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.04537v2-abstract-full').style.display = 'none'; document.getElementById('2109.04537v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures, talk presented at the 38th International Symposium on Lattice Field Theory, 26th-30th July 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2021-126, DESY-21-137, MITP/21-038 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE2021)423 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.01054">arXiv:2103.01054</a> <span> [<a href="https://arxiv.org/pdf/2103.01054">pdf</a>, <a href="https://arxiv.org/format/2103.01054">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.242003">10.1103/PhysRevLett.127.242003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Weakly bound $H$ dibaryon from SU(3)-flavor-symmetric QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Green%2C+J+R">Jeremy R. Green</a>, <a href="/search/hep-ph?searchtype=author&query=Hanlon%2C+A+D">Andrew D. Hanlon</a>, <a href="/search/hep-ph?searchtype=author&query=Junnarkar%2C+P+M">Parikshit M. Junnarkar</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.01054v2-abstract-short" style="display: inline;"> We present the first study of baryon-baryon interactions in the continuum limit of lattice QCD, finding unexpectedly large lattice artifacts. Specifically, we determine the binding energy of the $H$ dibaryon at a single quark-mass point. The calculation is performed at six values of the lattice spacing $a$, using O($a$)-improved Wilson fermions at the SU(3)-symmetric point with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.01054v2-abstract-full').style.display = 'inline'; document.getElementById('2103.01054v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.01054v2-abstract-full" style="display: none;"> We present the first study of baryon-baryon interactions in the continuum limit of lattice QCD, finding unexpectedly large lattice artifacts. Specifically, we determine the binding energy of the $H$ dibaryon at a single quark-mass point. The calculation is performed at six values of the lattice spacing $a$, using O($a$)-improved Wilson fermions at the SU(3)-symmetric point with $m_蟺=m_K\approx 420$ MeV. Energy levels are extracted by applying a variational method to correlation matrices of bilocal two-baryon interpolating operators computed using the distillation technique. Our analysis employs L眉scher's finite-volume quantization condition to determine the scattering phase shifts from the spectrum and vice versa, both above and below the two-baryon threshold. We perform global fits to the lattice spectra using parametrizations of the phase shift, supplemented by terms describing discretization effects, then extrapolate the lattice spacing to zero. The phase shift and the binding energy determined from it are found to be strongly affected by lattice artifacts. Our estimate of the binding energy in the continuum limit of three-flavor QCD is $B_H^{\text{SU(3)}_{\rm f}}=4.56\pm1.13_{\rm stat}\pm0.63_{\rm syst}$ MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.01054v2-abstract-full').style.display = 'none'; document.getElementById('2103.01054v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, plus supplemental material (10 pages, 10 figures, 2 tables) and spectrum data file (HDF5 format). v2: new finer ensemble, revised analysis with more conservative uncertainties in the spectrum, more details in the supplemental material, and additional references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP-21-009, CERN-TH-2021-024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.07460">arXiv:2102.07460</a> <span> [<a href="https://arxiv.org/pdf/2102.07460">pdf</a>, <a href="https://arxiv.org/format/2102.07460">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.094522">10.1103/PhysRevD.103.094522 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Isovector electromagnetic form factors of the nucleon from lattice QCD and the proton radius puzzle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Djukanovic%2C+D">D. Djukanovic</a>, <a href="/search/hep-ph?searchtype=author&query=Harris%2C+T">T. Harris</a>, <a href="/search/hep-ph?searchtype=author&query=von+Hippel%2C+G">G. von Hippel</a>, <a href="/search/hep-ph?searchtype=author&query=Junnarkar%2C+P+M">P. M. Junnarkar</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H+B">H. B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Mohler%2C+D">D. Mohler</a>, <a href="/search/hep-ph?searchtype=author&query=Ottnad%2C+K">K. Ottnad</a>, <a href="/search/hep-ph?searchtype=author&query=Schulz%2C+T">T. Schulz</a>, <a href="/search/hep-ph?searchtype=author&query=Wilhelm%2C+J">J. Wilhelm</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">H. Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.07460v1-abstract-short" style="display: inline;"> We present results for the isovector electromagnetic form factors of the nucleon computed on the CLS ensembles with $N_f=2+1$ flavors of $\mathcal{O}(a)$-improved Wilson fermions and an $\mathcal{O}(a)$-improved vector current. The analysis includes ensembles with four lattice spacings and pion masses ranging from 130 MeV up to 350 MeV and mainly targets the low-$Q^2$ region. In order to remove an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.07460v1-abstract-full').style.display = 'inline'; document.getElementById('2102.07460v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.07460v1-abstract-full" style="display: none;"> We present results for the isovector electromagnetic form factors of the nucleon computed on the CLS ensembles with $N_f=2+1$ flavors of $\mathcal{O}(a)$-improved Wilson fermions and an $\mathcal{O}(a)$-improved vector current. The analysis includes ensembles with four lattice spacings and pion masses ranging from 130 MeV up to 350 MeV and mainly targets the low-$Q^2$ region. In order to remove any bias from unsuppressed excited-state contributions, we investigate several source-sink separations between 1.0 fm and 1.5 fm and apply the summation method as well as explicit two-state fits. The chiral interpolation is performed by applying covariant chiral perturbation theory including vector mesons directly to our form factor data, thus avoiding an auxiliary parametrization of the $Q^2$ dependence. At the physical point, we obtain $渭=4.71(11)_{\mathrm{stat}}(13)_{\mathrm{sys}}$ for the nucleon isovector magnetic moment, in good agreement with the experimental value and $\langle r_\mathrm{M}^2\rangle~=~0.661(30)_{\mathrm{stat}}(11)_{\mathrm{sys}}\,~\mathrm{fm}^2$ for the corresponding square-radius, again in good agreement with the value inferred from the $ep$-scattering determination [Bernauer et~al., Phys. Rev. Lett., 105, 242001 (2010)] of the proton radius. Our estimate for the isovector electric charge radius, $\langle r_\mathrm{E}^2\rangle = 0.800(25)_{\mathrm{stat}}(22)_{\mathrm{sys}}\,~\mathrm{fm}^2$, however, is in slight tension with the larger value inferred from the aforementioned $ep$-scattering data, while being in agreement with the value derived from the 2018 CODATA average for the proton charge radius. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.07460v1-abstract-full').style.display = 'none'; document.getElementById('2102.07460v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 094522 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.04822">arXiv:2006.04822</a> <span> [<a href="https://arxiv.org/pdf/2006.04822">pdf</a>, <a href="https://arxiv.org/format/2006.04822">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physrep.2020.07.006">10.1016/j.physrep.2020.07.006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The anomalous magnetic moment of the muon in the Standard Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Aoyama%2C+T">T. Aoyama</a>, <a href="/search/hep-ph?searchtype=author&query=Asmussen%2C+N">N. Asmussen</a>, <a href="/search/hep-ph?searchtype=author&query=Benayoun%2C+M">M. Benayoun</a>, <a href="/search/hep-ph?searchtype=author&query=Bijnens%2C+J">J. Bijnens</a>, <a href="/search/hep-ph?searchtype=author&query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-ph?searchtype=author&query=Bruno%2C+M">M. Bruno</a>, <a href="/search/hep-ph?searchtype=author&query=Caprini%2C+I">I. Caprini</a>, <a href="/search/hep-ph?searchtype=author&query=Calame%2C+C+M+C">C. M. Carloni Calame</a>, <a href="/search/hep-ph?searchtype=author&query=C%C3%A8%2C+M">M. C猫</a>, <a href="/search/hep-ph?searchtype=author&query=Colangelo%2C+G">G. Colangelo</a>, <a href="/search/hep-ph?searchtype=author&query=Curciarello%2C+F">F. Curciarello</a>, <a href="/search/hep-ph?searchtype=author&query=Czy%C5%BC%2C+H">H. Czy偶</a>, <a href="/search/hep-ph?searchtype=author&query=Danilkin%2C+I">I. Danilkin</a>, <a href="/search/hep-ph?searchtype=author&query=Davier%2C+M">M. Davier</a>, <a href="/search/hep-ph?searchtype=author&query=Davies%2C+C+T+H">C. T. H. Davies</a>, <a href="/search/hep-ph?searchtype=author&query=Della+Morte%2C+M">M. Della Morte</a>, <a href="/search/hep-ph?searchtype=author&query=Eidelman%2C+S+I">S. I. Eidelman</a>, <a href="/search/hep-ph?searchtype=author&query=El-Khadra%2C+A+X">A. X. El-Khadra</a>, <a href="/search/hep-ph?searchtype=author&query=G%C3%A9rardin%2C+A">A. G茅rardin</a>, <a href="/search/hep-ph?searchtype=author&query=Giusti%2C+D">D. Giusti</a>, <a href="/search/hep-ph?searchtype=author&query=Golterman%2C+M">M. Golterman</a>, <a href="/search/hep-ph?searchtype=author&query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-ph?searchtype=author&query=G%C3%BClpers%2C+V">V. G眉lpers</a>, <a href="/search/hep-ph?searchtype=author&query=Hagelstein%2C+F">F. Hagelstein</a>, <a href="/search/hep-ph?searchtype=author&query=Hayakawa%2C+M">M. Hayakawa</a> , et al. (107 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.04822v2-abstract-short" style="display: inline;"> We review the present status of the Standard Model calculation of the anomalous magnetic moment of the muon. This is performed in a perturbative expansion in the fine-structure constant $伪$ and is broken down into pure QED, electroweak, and hadronic contributions. The pure QED contribution is by far the largest and has been evaluated up to and including $\mathcal{O}(伪^5)$ with negligible numerical… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.04822v2-abstract-full').style.display = 'inline'; document.getElementById('2006.04822v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.04822v2-abstract-full" style="display: none;"> We review the present status of the Standard Model calculation of the anomalous magnetic moment of the muon. This is performed in a perturbative expansion in the fine-structure constant $伪$ and is broken down into pure QED, electroweak, and hadronic contributions. The pure QED contribution is by far the largest and has been evaluated up to and including $\mathcal{O}(伪^5)$ with negligible numerical uncertainty. The electroweak contribution is suppressed by $(m_渭/M_W)^2$ and only shows up at the level of the seventh significant digit. It has been evaluated up to two loops and is known to better than one percent. Hadronic contributions are the most difficult to calculate and are responsible for almost all of the theoretical uncertainty. The leading hadronic contribution appears at $\mathcal{O}(伪^2)$ and is due to hadronic vacuum polarization, whereas at $\mathcal{O}(伪^3)$ the hadronic light-by-light scattering contribution appears. Given the low characteristic scale of this observable, these contributions have to be calculated with nonperturbative methods, in particular, dispersion relations and the lattice approach to QCD. The largest part of this review is dedicated to a detailed account of recent efforts to improve the calculation of these two contributions with either a data-driven, dispersive approach, or a first-principle, lattice-QCD approach. The final result reads $a_渭^\text{SM}=116\,591\,810(43)\times 10^{-11}$ and is smaller than the Brookhaven measurement by 3.7$蟽$. The experimental uncertainty will soon be reduced by up to a factor four by the new experiment currently running at Fermilab, and also by the future J-PARC experiment. This and the prospects to further reduce the theoretical uncertainty in the near future-which are also discussed here-make this quantity one of the most promising places to look for evidence of new physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.04822v2-abstract-full').style.display = 'none'; document.getElementById('2006.04822v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">196 pages, 103 figures, version published in Phys. Rept., bib files for the citation references are available from: https://muon-gm2-theory.illinois.edu</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-207-T, INT-PUB-20-021, KEK Preprint 2020-5, MITP/20-028, CERN-TH-2020-075, IFT-UAM/CSIC-20-74, LMU-ASC 18/20, LTH 1234, LU TP 20-20, MAN/HEP/2020/003, PSI-PR-20-06, UWThPh 2020-14, ZU-TH 18/20 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rept. 887 (2020) 1-166 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.04733">arXiv:1911.04733</a> <span> [<a href="https://arxiv.org/pdf/1911.04733">pdf</a>, <a href="https://arxiv.org/format/1911.04733">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> The leading hadronic vacuum polarization contribution to the muon anomalous magnetic moment using $N_f=2+1$ O($a$) improved Wilson quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=G%C3%A9rardin%2C+A">Antoine G茅rardin</a>, <a href="/search/hep-ph?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-ph?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-ph?searchtype=author&query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H">Harvey Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-ph?searchtype=author&query=Wilhelm%2C+J">Jonas Wilhelm</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.04733v1-abstract-short" style="display: inline;"> We present a lattice calculation of the leading hadronic contribution to the anomalous magnetic moment of the muon. This work is based on a subset of the CLS ensembles with $N_f = 2+1$ dynamical quarks and a quenched charm quark. Noise reduction techniques are used to improve significantly the statistical precision of the dominant light quark contribution. The main source of systematic error comes… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.04733v1-abstract-full').style.display = 'inline'; document.getElementById('1911.04733v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.04733v1-abstract-full" style="display: none;"> We present a lattice calculation of the leading hadronic contribution to the anomalous magnetic moment of the muon. This work is based on a subset of the CLS ensembles with $N_f = 2+1$ dynamical quarks and a quenched charm quark. Noise reduction techniques are used to improve significantly the statistical precision of the dominant light quark contribution. The main source of systematic error comes from finite size effects which are estimated using the formalism described in Ref. [7] and based on our knowledge of the timelike pion form factor. The strange and charm quark contributions are under control and an estimate of the quark-disconnected contribution is included. Isospin breaking effects will be studied in a future publication but are included in the systematic error using an estimate based on published lattice results. Our final result, $a_渭^{\rm hvp} = (720.0\pm 12.4 \pm 6.8)\times 10^{-10}$, has a precision of about 2%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.04733v1-abstract-full').style.display = 'none'; document.getElementById('1911.04733v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages. Contribution to the 37th International Symposium on Lattice Field Theory (LATTICE2019), 16-22 June 2019, Wuhan, China</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/19-075,DESY 19-196 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.09525">arXiv:1910.09525</a> <span> [<a href="https://arxiv.org/pdf/1910.09525">pdf</a>, <a href="https://arxiv.org/format/1910.09525">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.363.0010">10.22323/1.363.0010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The hadronic contribution to the running of the electromagnetic coupling and the electroweak mixing angle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-ph?searchtype=author&query=Jos%C3%A9%2C+T+S">Teseo San Jos茅</a>, <a href="/search/hep-ph?searchtype=author&query=G%C3%A9rardin%2C+A">Antoine G茅rardin</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Miura%2C+K">Kohtaroh Miura</a>, <a href="/search/hep-ph?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-ph?searchtype=author&query=Risch%2C+A">Andreas Risch</a>, <a href="/search/hep-ph?searchtype=author&query=Wilhelm%2C+J">Jonas Wilhelm</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.09525v2-abstract-short" style="display: inline;"> The electromagnetic coupling $伪$ and the electroweak mixing angle $胃_{\mathrm{W}}$ are parameters of the Standard Model (SM) that enter precision SM tests and play a fundamental r么le in beyond SM physics searches. Their values are energy dependent, and non-perturbative hadronic contributions are the main source of uncertainty to the theoretical knowledge of the running with energy. We present a la… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.09525v2-abstract-full').style.display = 'inline'; document.getElementById('1910.09525v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.09525v2-abstract-full" style="display: none;"> The electromagnetic coupling $伪$ and the electroweak mixing angle $胃_{\mathrm{W}}$ are parameters of the Standard Model (SM) that enter precision SM tests and play a fundamental r么le in beyond SM physics searches. Their values are energy dependent, and non-perturbative hadronic contributions are the main source of uncertainty to the theoretical knowledge of the running with energy. We present a lattice study of the leading hadronic contribution to the running of $伪$ and $\sin^2胃_{\mathrm{W}}$. The former is related to the hadronic vacuum polarization (HVP) function of electromagnetic currents, and the latter to the HVP mixing of the electromagnetic current with the vector part of the weak neutral currents. We use the time-momentum representation (TMR) method to compute the HVP on the lattice, estimating both connected and disconnected contributions on $N_{\mathrm{f}}=2+1$ non-perturbatively $O(a)$-improved Wilson fermions ensembles from the Coordinated Lattice Simulations (CLS) initiative. The use of different lattice spacings and quark masses allows us to reliably extrapolate the results to the physical point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.09525v2-abstract-full').style.display = 'none'; document.getElementById('1910.09525v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures, v2: corrected the charm contribution in Figure 2 and Table 2, talk presented at the 37th International Symposium on Lattice Field Theory, 16-22 June 2019, Wuhan, China</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/19-064, DESY 19-179 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE2019)010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.01291">arXiv:1905.01291</a> <span> [<a href="https://arxiv.org/pdf/1905.01291">pdf</a>, <a href="https://arxiv.org/format/1905.01291">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.034513">10.1103/PhysRevD.100.034513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nucleon isovector charges and twist-2 matrix elements with $N_f=2+1$ dynamical Wilson quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Harris%2C+T">Tim Harris</a>, <a href="/search/hep-ph?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-ph?searchtype=author&query=Junnarkar%2C+P">Parikshit Junnarkar</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-ph?searchtype=author&query=Wilhelm%2C+J">Jonas Wilhelm</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a>, <a href="/search/hep-ph?searchtype=author&query=Wrang%2C+L">Linus Wrang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.01291v2-abstract-short" style="display: inline;"> We present results from a lattice QCD study of nucleon matrix elements at vanishing momentum transfer for local and twist-2 isovector operator insertions. Computations are performed on gauge ensembles with non-perturbatively improved $N_f=2+1$ Wilson fermions, covering four values of the lattice spacing and pion masses down to $M_蟺\approx200$MeV. Several source-sink separations (typically ~1.0fm t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.01291v2-abstract-full').style.display = 'inline'; document.getElementById('1905.01291v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.01291v2-abstract-full" style="display: none;"> We present results from a lattice QCD study of nucleon matrix elements at vanishing momentum transfer for local and twist-2 isovector operator insertions. Computations are performed on gauge ensembles with non-perturbatively improved $N_f=2+1$ Wilson fermions, covering four values of the lattice spacing and pion masses down to $M_蟺\approx200$MeV. Several source-sink separations (typically ~1.0fm to ~1.5fm) allow us to assess excited-state contamination. Results on individual ensembles are obtained from simultaneous two-state fits across all observables and all available source-sink separations with the energy gap as a common fit parameter. Renormalization has been performed non-perturbatively using the Rome-Southampton method for all but the finest lattice spacing for which an extrapolation has been used. Physical results are quoted in the $\overline{MS}$ scheme at a scale of $渭=2$GeV and are obtained from a combined chiral, continuum and finite-size extrapolation. For the nucleon isovector axial, scalar and tensor charges we find physical values of $g_A^{u-d}=1.242(25)_\text{stat}(\genfrac{}{}{0pt}{2}{+00}{-31})_\text{sys}$, $g_S^{u-d}=1.13(11)_\text{stat}(\genfrac{}{}{0pt}{2}{+07}{-06})_\text{sys}$ and $g_T^{u-d}=0.965(38)_\text{stat}(\genfrac{}{}{0pt}{2}{+13}{-41})_\text{sys}$, respectively, where individual systematic errors in each direction from the chiral, continuum and finite-size extrapolation have been added in quadrature. Our final results for the isovector average quark momentum fraction and the isovector helicity and transversity moments are given by $\langle x\rangle_{u-d}=0.180(25)_\text{stat}(\genfrac{}{}{0pt}{2}{+14}{-06})_\text{sys}$, $\langle x\rangle_{螖u-螖d}=0.221(25)_\text{stat}(\genfrac{}{}{0pt}{2}{+10}{-00})_\text{sys}$ and $\langle x\rangle_{未u-未d}=0.212(32)_\text{stat}(\genfrac{}{}{0pt}{2}{+20}{-10})_\text{sys}$, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.01291v2-abstract-full').style.display = 'none'; document.getElementById('1905.01291v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 13 figures; matching version accepted for publication in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 034513 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.03120">arXiv:1904.03120</a> <span> [<a href="https://arxiv.org/pdf/1904.03120">pdf</a>, <a href="https://arxiv.org/format/1904.03120">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.014510">10.1103/PhysRevD.100.014510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The leading hadronic contribution to $(g-2)_渭$ from lattice QCD with $N_{\rm f}=2+1$ flavours of O($a$) improved Wilson quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=G%C3%A9rardin%2C+A">Antoine G茅rardin</a>, <a href="/search/hep-ph?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-ph?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-ph?searchtype=author&query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-ph?searchtype=author&query=Wilhelm%2C+J">Jonas Wilhelm</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.03120v1-abstract-short" style="display: inline;"> The comparison of the theoretical and experimental determinations of the anomalous magnetic moment of the muon $(g-2)_渭$ constitutes one of the strongest tests of the Standard Model at low energies. In this article, we compute the leading hadronic contribution to $(g-2)_渭$ using lattice QCD simulations employing Wilson quarks. Gauge field ensembles at four different lattice spacings and several va… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.03120v1-abstract-full').style.display = 'inline'; document.getElementById('1904.03120v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.03120v1-abstract-full" style="display: none;"> The comparison of the theoretical and experimental determinations of the anomalous magnetic moment of the muon $(g-2)_渭$ constitutes one of the strongest tests of the Standard Model at low energies. In this article, we compute the leading hadronic contribution to $(g-2)_渭$ using lattice QCD simulations employing Wilson quarks. Gauge field ensembles at four different lattice spacings and several values of the pion mass down to its physical value are used. We apply the O($a$) improvement programme with two discretizations of the vector current to better constrain the approach to the continuum limit. The electromagnetic current correlators are computed in the time-momentum representation. In addition, we perform auxiliary calculations of the pion form factor at timelike momenta in order to better constrain the tail of the isovector correlator and to correct its dominant finite-size effect. For the numerically dominant light-quark contribution, we have rescaled the lepton mass by the pion decay constant computed on each lattice ensemble. We perform a combined chiral and continuum extrapolation to the physical point, and our final result is $ a_渭^{\rm hvp}=(720.0\pm12.4_{\rm stat}\,\pm9.9_{\rm syst})\cdot10^{-10}$. It contains the contributions of quark-disconnected diagrams, and the systematic error has been enlarged to account for the missing isospin-breaking effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.03120v1-abstract-full').style.display = 'none'; document.getElementById('1904.03120v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/19-021 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 014510 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.02384">arXiv:1904.02384</a> <span> [<a href="https://arxiv.org/pdf/1904.02384">pdf</a>, <a href="https://arxiv.org/format/1904.02384">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Testing the strength of the $\text{U}_A(1)$ anomaly at the chiral phase transition in two-flavour QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-ph?searchtype=author&query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-ph?searchtype=author&query=Francis%2C+A">Anthony Francis</a>, <a href="/search/hep-ph?searchtype=author&query=Harris%2C+T">Tim Harris</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Philipsen%2C+O">Owe Philipsen</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.02384v1-abstract-short" style="display: inline;"> We study the thermal transition of QCD with two degenerate light flavours by lattice simulations using $\mathcal{O}(a)$-improved Wilson quarks. Particular emphasis lies on the pattern of chiral symmetry restoration, which we probe via the static screening correlators. On $32^3$ volumes we observe that the screening masses in transverse iso-vector vector and axial-vector channels become degenerate… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.02384v1-abstract-full').style.display = 'inline'; document.getElementById('1904.02384v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.02384v1-abstract-full" style="display: none;"> We study the thermal transition of QCD with two degenerate light flavours by lattice simulations using $\mathcal{O}(a)$-improved Wilson quarks. Particular emphasis lies on the pattern of chiral symmetry restoration, which we probe via the static screening correlators. On $32^3$ volumes we observe that the screening masses in transverse iso-vector vector and axial-vector channels become degenerate at the transition temperature. The splitting between the screening masses in iso-vector scalar and pseudoscalar channels is strongly reduced compared to the splitting at zero temperature and is actually consistent with zero within uncertainties. In this proceedings article we extend our studies to matrix elements and iso-singlet correlation functions. Furthermore, we present results on larger volumes, including first results at the physical pion mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.02384v1-abstract-full').style.display = 'none'; document.getElementById('1904.02384v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 9 figures, invited contribution to the 9th International Workshop on Chiral Dynamics, Sept. 17-21, 2018, Duke University, Durham, NC, USA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.12566">arXiv:1903.12566</a> <span> [<a href="https://arxiv.org/pdf/1903.12566">pdf</a>, <a href="https://arxiv.org/format/1903.12566">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.212001">10.1103/PhysRevLett.123.212001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strange electromagnetic form factors of the nucleon with $N_f = 2 + 1$ $\mathcal{O}(a)$-improved Wilson fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Djukanovic%2C+D">Dalibor Djukanovic</a>, <a href="/search/hep-ph?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-ph?searchtype=author&query=Wilhelm%2C+J">Jonas Wilhelm</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.12566v2-abstract-short" style="display: inline;"> We present results for the strange contribution to the electromagnetic form factors of the nucleon computed on the CLS ensembles with $N_f=2+1$ flavors of $\mathcal{O}(a)$-improved Wilson fermions and an $\mathcal{O}(a)$-improved vector current. Several source-sink separations are investigated in order to estimate the excited-state contamination. We calculate the form factors on six ensembles with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.12566v2-abstract-full').style.display = 'inline'; document.getElementById('1903.12566v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.12566v2-abstract-full" style="display: none;"> We present results for the strange contribution to the electromagnetic form factors of the nucleon computed on the CLS ensembles with $N_f=2+1$ flavors of $\mathcal{O}(a)$-improved Wilson fermions and an $\mathcal{O}(a)$-improved vector current. Several source-sink separations are investigated in order to estimate the excited-state contamination. We calculate the form factors on six ensembles with lattice spacings in the range of $a=0.049-0.086\,\text{fm}$ and pion masses in the range of $m_蟺=200-360\,\text{MeV}$, which allows for a controlled chiral and continuum extrapolation. In the computation of the quark-disconnected contributions we employ hierarchical probing as a variance reduction technique. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.12566v2-abstract-full').style.display = 'none'; document.getElementById('1903.12566v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 9 figures; matching version accepted for publication in PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/19-024 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123, 212001 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.08191">arXiv:1902.08191</a> <span> [<a href="https://arxiv.org/pdf/1902.08191">pdf</a>, <a href="https://arxiv.org/ps/1902.08191">ps</a>, <a href="https://arxiv.org/format/1902.08191">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-019-7354-7">10.1140/epjc/s10052-019-7354-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> FLAG Review 2019 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Aoki%2C+S">S. Aoki</a>, <a href="/search/hep-ph?searchtype=author&query=Aoki%2C+Y">Y. Aoki</a>, <a href="/search/hep-ph?searchtype=author&query=Becirevic%2C+D">D. Becirevic</a>, <a href="/search/hep-ph?searchtype=author&query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-ph?searchtype=author&query=Colangelo%2C+G">G. Colangelo</a>, <a href="/search/hep-ph?searchtype=author&query=Collins%2C+S">S. Collins</a>, <a href="/search/hep-ph?searchtype=author&query=Della+Morte%2C+M">M. Della Morte</a>, <a href="/search/hep-ph?searchtype=author&query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-ph?searchtype=author&query=D%C3%BCrr%2C+S">S. D眉rr</a>, <a href="/search/hep-ph?searchtype=author&query=Fukaya%2C+H">H. Fukaya</a>, <a href="/search/hep-ph?searchtype=author&query=Golterman%2C+M">M. Golterman</a>, <a href="/search/hep-ph?searchtype=author&query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-ph?searchtype=author&query=Gupta%2C+R">R. Gupta</a>, <a href="/search/hep-ph?searchtype=author&query=Hashimoto%2C+S">S. Hashimoto</a>, <a href="/search/hep-ph?searchtype=author&query=Heller%2C+U+M">U. M. Heller</a>, <a href="/search/hep-ph?searchtype=author&query=Herdoiza%2C+G">G. Herdoiza</a>, <a href="/search/hep-ph?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-ph?searchtype=author&query=J%C3%BCttner%2C+A">A. J眉ttner</a>, <a href="/search/hep-ph?searchtype=author&query=Kaneko%2C+T">T. Kaneko</a>, <a href="/search/hep-ph?searchtype=author&query=Lin%2C+C+-+D">C. -J. D. Lin</a>, <a href="/search/hep-ph?searchtype=author&query=Lunghi%2C+E">E. Lunghi</a>, <a href="/search/hep-ph?searchtype=author&query=Mawhinney%2C+R">R. Mawhinney</a>, <a href="/search/hep-ph?searchtype=author&query=Nicholson%2C+A">A. Nicholson</a>, <a href="/search/hep-ph?searchtype=author&query=Onogi%2C+T">T. Onogi</a>, <a href="/search/hep-ph?searchtype=author&query=Pena%2C+C">C. Pena</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.08191v3-abstract-short" style="display: inline;"> We review lattice results related to pion, kaon, $D$-meson, $B$-meson, and nucleon physics with the aim of making them easily accessible to the nuclear and particle physics communities. More specifically, we report on the determination of the light-quark masses, the form factor $f_+(0)$ arising in the semileptonic $K \to 蟺$ transition at zero momentum transfer, as well as the decay constant ratio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.08191v3-abstract-full').style.display = 'inline'; document.getElementById('1902.08191v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.08191v3-abstract-full" style="display: none;"> We review lattice results related to pion, kaon, $D$-meson, $B$-meson, and nucleon physics with the aim of making them easily accessible to the nuclear and particle physics communities. More specifically, we report on the determination of the light-quark masses, the form factor $f_+(0)$ arising in the semileptonic $K \to 蟺$ transition at zero momentum transfer, as well as the decay constant ratio $f_K/f_蟺$ and its consequences for the CKM matrix elements $V_{us}$ and $V_{ud}$. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of $SU(2)_L\times SU(2)_R$ and $SU(3)_L\times SU(3)_R$ Chiral Perturbation Theory. We review the determination of the $B_K$ parameter of neutral kaon mixing as well as the additional four $B$ parameters that arise in theories of physics beyond the Standard Model. For the heavy-quark sector, we provide results for $m_c$ and $m_b$ as well as those for $D$- and $B$-meson decay constants, form factors, and mixing parameters. These are the heavy-quark quantities most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. We review the status of lattice determinations of the strong coupling constant $伪_s$. Finally, in this review we have added a new section reviewing results for nucleon matrix elements of the axial, scalar and tensor bilinears, both isovector and flavor diagonal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.08191v3-abstract-full').style.display = 'none'; document.getElementById('1902.08191v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">458 pages, 46 figures, 209 tables, 1146 references. Minor changes, version as published in EPJC. arXiv admin note: substantial text overlap with arXiv:1607.00299, arXiv:1310.8555</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.03553">arXiv:1812.03553</a> <span> [<a href="https://arxiv.org/pdf/1812.03553">pdf</a>, <a href="https://arxiv.org/format/1812.03553">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> The hadronic vacuum polarization contribution to $(g-2)_渭$ from $2+1$ flavours of O($a$) improved Wilson quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=G%C3%A9rardin%2C+A">Antoine G茅rardin</a>, <a href="/search/hep-ph?searchtype=author&query=Harris%2C+T">Tim Harris</a>, <a href="/search/hep-ph?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-ph?searchtype=author&query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H">Harvey Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-ph?searchtype=author&query=Ottnad%2C+K">Konstantin Ottnad</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.03553v1-abstract-short" style="display: inline;"> We report on our ongoing project to determine the leading-order hadronic vacuum polarisation contribution to the muon $g-2$, using ensembles with $N_f=2+1$ flavours of O($a$) improved Wilson quarks generated by the CLS effort, with pion masses down to the physical value. We employ O($a$) improved versions of the local and conserved vector currents to compute the contributions of the light, strange… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.03553v1-abstract-full').style.display = 'inline'; document.getElementById('1812.03553v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.03553v1-abstract-full" style="display: none;"> We report on our ongoing project to determine the leading-order hadronic vacuum polarisation contribution to the muon $g-2$, using ensembles with $N_f=2+1$ flavours of O($a$) improved Wilson quarks generated by the CLS effort, with pion masses down to the physical value. We employ O($a$) improved versions of the local and conserved vector currents to compute the contributions of the light, strange and charm quarks to $(g-2)_渭$, using the time-momentum representation. We perform a detailed investigation of the systematic effects arising from constraining the long-distance regime of the vector correlator. To this end we make use of auxiliary calculations in the iso-vector channel using distillation and the L眉scher formalism. Our results are corrected for finite-volume effects by computing the timelike pion form factor in finite and infinite volume. For certain parameter choices, the corrections computed in this way can also be confronted with results determined on different volumes. Currently, the overall precision of our results is limited by the uncertainties in the lattice scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.03553v1-abstract-full').style.display = 'none'; document.getElementById('1812.03553v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in: Proceedings of the 36th International Symposium on Lattice Field Theory (Lattice 2018), Michigan State University, East Lansing, USA; 7 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/18-121 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.09370">arXiv:1807.09370</a> <span> [<a href="https://arxiv.org/pdf/1807.09370">pdf</a>, <a href="https://arxiv.org/format/1807.09370">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.ppnp.2018.09.001">10.1016/j.ppnp.2018.09.001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice QCD and the anomalous magnetic moment of the muon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.09370v2-abstract-short" style="display: inline;"> The anomalous magnetic moment of the muon, a_mu, has been measured with an overall precision of 540 ppb by the E821 experiment at BNL. Since the publication of this result in 2004 there has been a persistent tension of 3.5 standard deviations with the theoretical prediction of a_mu based on the Standard Model. The uncertainty of the latter is dominated by the effects of the strong interaction, not… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.09370v2-abstract-full').style.display = 'inline'; document.getElementById('1807.09370v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.09370v2-abstract-full" style="display: none;"> The anomalous magnetic moment of the muon, a_mu, has been measured with an overall precision of 540 ppb by the E821 experiment at BNL. Since the publication of this result in 2004 there has been a persistent tension of 3.5 standard deviations with the theoretical prediction of a_mu based on the Standard Model. The uncertainty of the latter is dominated by the effects of the strong interaction, notably the hadronic vacuum polarisation (HVP) and the hadronic light-by-light (HLbL) scattering contributions, which are commonly evaluated using a data-driven approach and hadronic models, respectively. Given that the discrepancy between theory and experiment is currently one of the most intriguing hints for a possible failure of the Standard Model, it is of paramount importance to determine both the HVP and HLbL contributions from first principles. In this review we present the status of lattice QCD calculations of the leading-order HVP and the HLbL scattering contributions, a_mu^hvp and a_mu^hlbl. After describing the formalism to express a_mu^hvp and a_mu^hlbl in terms of Euclidean correlation functions that can be computed on the lattice, we focus on the systematic effects that must be controlled to achieve a first-principles determination of the dominant strong interaction contributions to a_mu with the desired level of precision. We also present an overview of current lattice QCD results for a_mu^hvp and a_mu^hlbl, as well as related quantities such as the transition form factor for pi0 -> gamma*gamma*. While the total error of current lattice QCD estimates of a_mu^hvp has reached the few-percent level, it must be further reduced by a factor 5 to be competitive with the data-driven dispersive approach. At the same time, there has been good progress towards the determination of a_mu^hlbl with an uncertainty at the 10-15%-level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.09370v2-abstract-full').style.display = 'none'; document.getElementById('1807.09370v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">79 pages, 21 figures; version published in Prog Part Nucl Phys</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/18-069, HIM-2018-03 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Prog. Part. Nucl. Phys. 104 (2019) 46-96 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.03966">arXiv:1805.03966</a> <span> [<a href="https://arxiv.org/pdf/1805.03966">pdf</a>, <a href="https://arxiv.org/format/1805.03966">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.074505">10.1103/PhysRevD.99.074505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice QCD study of the $H$ dibaryon using hexaquark and two-baryon interpolators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Francis%2C+A">A. Francis</a>, <a href="/search/hep-ph?searchtype=author&query=Green%2C+J+R">J. R. Green</a>, <a href="/search/hep-ph?searchtype=author&query=Junnarkar%2C+P+M">P. M. Junnarkar</a>, <a href="/search/hep-ph?searchtype=author&query=Miao%2C+C">Ch. Miao</a>, <a href="/search/hep-ph?searchtype=author&query=Rae%2C+T+D">T. D. Rae</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">H. Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.03966v2-abstract-short" style="display: inline;"> We present a lattice QCD spectroscopy study in the isospin singlet, strangeness $-2$ sectors relevant for the conjectured $H$ dibaryon. We employ both local and bilocal interpolating operators to isolate the ground state in the rest frame and in moving frames. Calculations are performed using two flavors of O($a$)-improved Wilson fermions and a quenched strange quark. Our initial point-source meth… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.03966v2-abstract-full').style.display = 'inline'; document.getElementById('1805.03966v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.03966v2-abstract-full" style="display: none;"> We present a lattice QCD spectroscopy study in the isospin singlet, strangeness $-2$ sectors relevant for the conjectured $H$ dibaryon. We employ both local and bilocal interpolating operators to isolate the ground state in the rest frame and in moving frames. Calculations are performed using two flavors of O($a$)-improved Wilson fermions and a quenched strange quark. Our initial point-source method for constructing correlators does not allow for bilocal operators at the source; nevertheless, results from using these operators at the sink indicate that they provide an improved overlap onto the ground state in comparison with the local operators. We also present results, in the rest frame, using a second method based on distillation to compute a hermitian matrix of correlators with bilocal operators at both the source and the sink. This method yields a much more precise and reliable determination of the ground-state energy. In the flavor-SU(3) symmetric case, we apply L眉scher's finite-volume quantization condition to the rest-frame and moving-frame energy levels to determine the $S$-wave scattering phase shift, near and below the two-particle threshold. For a pion mass of 960 MeV, we find that there exists a bound $H$ dibaryon with binding energy $螖E=(19\pm10)$ MeV. In the 27-plet (dineutron) sector, the finite-volume analysis suggests that the existence of a bound state is unlikely. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.03966v2-abstract-full').style.display = 'none'; document.getElementById('1805.03966v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 12 figures, expanded discussion of fit ranges and single baryon energy levels, clarification of terminology; version published in Phys. Rev. D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2018-098, DESY 18-066, HIM-2018-02, MITP/18-030, TIFR/TH/18-12 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 074505 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.04238">arXiv:1801.04238</a> <span> [<a href="https://arxiv.org/pdf/1801.04238">pdf</a>, <a href="https://arxiv.org/format/1801.04238">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817901017">10.1051/epjconf/201817901017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hadronic light-by-light scattering contribution to the muon g-2 on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Asmussen%2C+N">Nils Asmussen</a>, <a href="/search/hep-ph?searchtype=author&query=Gerardin%2C+A">Antoine Gerardin</a>, <a href="/search/hep-ph?searchtype=author&query=Green%2C+J">Jeremy Green</a>, <a href="/search/hep-ph?searchtype=author&query=Gryniuk%2C+O">Oleksii Gryniuk</a>, <a href="/search/hep-ph?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Nyffeler%2C+A">Andreas Nyffeler</a>, <a href="/search/hep-ph?searchtype=author&query=Pascalutsa%2C+V">Vladimir Pascalutsa</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.04238v1-abstract-short" style="display: inline;"> We briefly review several activities at Mainz related to hadronic light-by-light scattering (HLbL) using lattice QCD. First we present a position-space approach to the HLbL contribution in the muon g-2, where we focus on exploratory studies of the pion-pole contribution in a simple model and the lepton loop in QED in the continuum and in infinite volume. The second part describes a lattice calcula… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.04238v1-abstract-full').style.display = 'inline'; document.getElementById('1801.04238v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.04238v1-abstract-full" style="display: none;"> We briefly review several activities at Mainz related to hadronic light-by-light scattering (HLbL) using lattice QCD. First we present a position-space approach to the HLbL contribution in the muon g-2, where we focus on exploratory studies of the pion-pole contribution in a simple model and the lepton loop in QED in the continuum and in infinite volume. The second part describes a lattice calculation of the double-virtual pion transition form factor F_{pi^0 gamma^* gamma^*}(q_1^2, q_2^2) in the spacelike region with photon virtualities up to 1.5 GeV^2 which paves the way for a lattice calculation of the pion-pole contribution to HLbL. The third topic involves HLbL forward scattering amplitudes calculated in lattice QCD which can be described, using dispersion relations (HLbL sum rules), by gamma^* gamma^* -> hadrons fusion cross sections and then compared with phenomenological models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.04238v1-abstract-full').style.display = 'none'; document.getElementById('1801.04238v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 19 figures, contribution to the proceedings of FCCP2017 - Workshop on "Flavour changing and conserving processes", 7-9 September 2017, Anacapri, Capri Island, Italy</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 18-007, MITP/18-001 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.00421">arXiv:1712.00421</a> <span> [<a href="https://arxiv.org/pdf/1712.00421">pdf</a>, <a href="https://arxiv.org/format/1712.00421">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.074501">10.1103/PhysRevD.98.074501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hadronic light-by-light scattering amplitudes from lattice QCD versus dispersive sum rules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=G%C3%A9rardin%2C+A">Antoine G茅rardin</a>, <a href="/search/hep-ph?searchtype=author&query=Green%2C+J">Jeremy Green</a>, <a href="/search/hep-ph?searchtype=author&query=Gryniuk%2C+O">Oleksii Gryniuk</a>, <a href="/search/hep-ph?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Pascalutsa%2C+V">Vladimir Pascalutsa</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.00421v1-abstract-short" style="display: inline;"> The hadronic contribution to the eight forward amplitudes of light-by-light scattering ($纬^*纬^*\to 纬^*纬^*$) is computed in lattice QCD. Via dispersive sum rules, the amplitudes are compared to a model of the $纬^*纬^*\to {\rm hadrons}$ cross sections in which the fusion process is described by hadronic resonances. Our results thus provide an important test for the model estimates of hadronic light-b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.00421v1-abstract-full').style.display = 'inline'; document.getElementById('1712.00421v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.00421v1-abstract-full" style="display: none;"> The hadronic contribution to the eight forward amplitudes of light-by-light scattering ($纬^*纬^*\to 纬^*纬^*$) is computed in lattice QCD. Via dispersive sum rules, the amplitudes are compared to a model of the $纬^*纬^*\to {\rm hadrons}$ cross sections in which the fusion process is described by hadronic resonances. Our results thus provide an important test for the model estimates of hadronic light-by-light scattering in the anomalous magnetic moment of the muon, $a_渭^{\rm HLbL}$. Using simple parametrizations of the resonance $M\to 纬^*纬^*$ transition form factors, we determine the corresponding monopole and dipole masses by performing a global fit to all eight amplitudes. Together with a previous dedicated calculation of the $蟺^0\to 纬^*纬^*$ transition form factor, our calculation provides valuable information for phenomenological estimates of $a_渭^{\rm HLbL}$. The presented calculations are performed in two-flavor QCD with pion masses extending down to 190\,MeV at two different lattice spacings. In addition to the fully connected Wick contractions, on two lattice ensembles we also compute the (2+2) disconnected class of diagrams, and find that their overall size is compatible with a parameter-free, large-$N$ inspired prediction, where $N$ is the number of colors. Motivated by this observation, we estimate in the same way the disconnected contribution to $a_渭^{\rm HLbL}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.00421v1-abstract-full').style.display = 'none'; document.getElementById('1712.00421v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 10 figures with up to 8 panels</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/17-088, DESY 17-202 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 074501 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.07916">arXiv:1711.07916</a> <span> [<a href="https://arxiv.org/pdf/1711.07916">pdf</a>, <a href="https://arxiv.org/format/1711.07916">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.ppnp.2018.01.007">10.1016/j.ppnp.2018.01.007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parton distributions and lattice QCD calculations: a community white paper </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-ph?searchtype=author&query=Nocera%2C+E+R">Emanuele R. Nocera</a>, <a href="/search/hep-ph?searchtype=author&query=Olness%2C+F">Fred Olness</a>, <a href="/search/hep-ph?searchtype=author&query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-ph?searchtype=author&query=Rojo%2C+J">Juan Rojo</a>, <a href="/search/hep-ph?searchtype=author&query=Accardi%2C+A">Alberto Accardi</a>, <a href="/search/hep-ph?searchtype=author&query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-ph?searchtype=author&query=Bacchetta%2C+A">Alessandro Bacchetta</a>, <a href="/search/hep-ph?searchtype=author&query=Bozzi%2C+G">Giuseppe Bozzi</a>, <a href="/search/hep-ph?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-ph?searchtype=author&query=Collins%2C+S">Sara Collins</a>, <a href="/search/hep-ph?searchtype=author&query=Cooper-Sarkar%2C+A">Amanda Cooper-Sarkar</a>, <a href="/search/hep-ph?searchtype=author&query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-ph?searchtype=author&query=Del+Debbio%2C+L">Luigi Del Debbio</a>, <a href="/search/hep-ph?searchtype=author&query=Engelhardt%2C+M">Michael Engelhardt</a>, <a href="/search/hep-ph?searchtype=author&query=Green%2C+J">Jeremy Green</a>, <a href="/search/hep-ph?searchtype=author&query=Gupta%2C+R">Rajan Gupta</a>, <a href="/search/hep-ph?searchtype=author&query=Harland-Lang%2C+L+A">Lucian A. Harland-Lang</a>, <a href="/search/hep-ph?searchtype=author&query=Ishikawa%2C+T">Tomomi Ishikawa</a>, <a href="/search/hep-ph?searchtype=author&query=Kusina%2C+A">Aleksander Kusina</a>, <a href="/search/hep-ph?searchtype=author&query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-ph?searchtype=author&query=Liuti%2C+S">Simonetta Liuti</a>, <a href="/search/hep-ph?searchtype=author&query=Monahan%2C+C">Christopher Monahan</a>, <a href="/search/hep-ph?searchtype=author&query=Nadolsky%2C+P">Pavel Nadolsky</a>, <a href="/search/hep-ph?searchtype=author&query=Qiu%2C+J">Jian-Wei Qiu</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.07916v3-abstract-short" style="display: inline;"> In the framework of quantum chromodynamics (QCD), parton distribution functions (PDFs) quantify how the momentum and spin of a hadron are divided among its quark and gluon constituents. Two main approaches exist to determine PDFs. The first approach, based on QCD factorization theorems, realizes a QCD analysis of a suitable set of hard-scattering measurements, often using a variety of hadronic obs… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.07916v3-abstract-full').style.display = 'inline'; document.getElementById('1711.07916v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.07916v3-abstract-full" style="display: none;"> In the framework of quantum chromodynamics (QCD), parton distribution functions (PDFs) quantify how the momentum and spin of a hadron are divided among its quark and gluon constituents. Two main approaches exist to determine PDFs. The first approach, based on QCD factorization theorems, realizes a QCD analysis of a suitable set of hard-scattering measurements, often using a variety of hadronic observables. The second approach, based on first-principle operator definitions of PDFs, uses lattice QCD to compute directly some PDF-related quantities, such as their moments. Motivated by recent progress in both approaches, in this document we present an overview of lattice-QCD and global-analysis techniques used to determine unpolarized and polarized proton PDFs and their moments. We provide benchmark numbers to validate present and future lattice-QCD calculations and we illustrate how they could be used to reduce the PDF uncertainties in current unpolarized and polarized global analyses. This document represents a first step towards establishing a common language between the two communities, to foster dialogue and to further improve our knowledge of PDFs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.07916v3-abstract-full').style.display = 'none'; document.getElementById('1711.07916v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">80 pages, 15 figures, 28 tables, minor typos corrected, published in Progress in Particle and Nuclear Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 17-185, IFJPAN-IV-2017-19, INT-PUB-17-042, MSUHEP-17-017, Nikhef-2017-047, OUTP-17-15P, SMU-HEP-17-08 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.10072">arXiv:1710.10072</a> <span> [<a href="https://arxiv.org/pdf/1710.10072">pdf</a>, <a href="https://arxiv.org/format/1710.10072">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817506031">10.1051/epjconf/201817506031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A lattice calculation of the hadronic vacuum polarization contribution to $(g-2)_渭$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Della+Morte%2C+M">M. Della Morte</a>, <a href="/search/hep-ph?searchtype=author&query=Francis%2C+A">A. Francis</a>, <a href="/search/hep-ph?searchtype=author&query=G%C3%A9rardin%2C+A">A. G茅rardin</a>, <a href="/search/hep-ph?searchtype=author&query=G%C3%BClpers%2C+V">V. G眉lpers</a>, <a href="/search/hep-ph?searchtype=author&query=Herdoiza%2C+G">G. Herdoiza</a>, <a href="/search/hep-ph?searchtype=author&query=von+Hippel%2C+G">G. von Hippel</a>, <a href="/search/hep-ph?searchtype=author&query=Horch%2C+H">H. Horch</a>, <a href="/search/hep-ph?searchtype=author&query=J%C3%A4ger%2C+B">B. J盲ger</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H+B">H. B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Nyffeler%2C+A">A. Nyffeler</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">H. Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.10072v1-abstract-short" style="display: inline;"> We present results of calculations of the hadronic vacuum polarisation contribution to the muon anomalous magnetic moment. Specifically, we focus on controlling the infrared regime of the vacuum polarisation function. Our results are corrected for finite-size effects by combining the Gounaris-Sakurai parameterisation of the timelike pion form factor with the L眉scher formalism. The impact of quark-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.10072v1-abstract-full').style.display = 'inline'; document.getElementById('1710.10072v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.10072v1-abstract-full" style="display: none;"> We present results of calculations of the hadronic vacuum polarisation contribution to the muon anomalous magnetic moment. Specifically, we focus on controlling the infrared regime of the vacuum polarisation function. Our results are corrected for finite-size effects by combining the Gounaris-Sakurai parameterisation of the timelike pion form factor with the L眉scher formalism. The impact of quark-disconnected diagrams and the precision of the scale determination is discussed and included in our final result in two-flavour QCD, which carries an overall uncertainty of 6%. We present preliminary results computed on ensembles with $N_f=2+1$ dynamical flavours and discuss how the long-distance contribution can be accurately constrained by a dedicated spectrum calculation in the iso-vector channel. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.10072v1-abstract-full').style.display = 'none'; document.getElementById('1710.10072v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures; To appear in: Proceedings of the 35th International Symposium on Lattice Field Theory (Lattice 2017), Granada, Spain</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> HIM-2017-06, MITP/17-076 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.09359">arXiv:1710.09359</a> <span> [<a href="https://arxiv.org/pdf/1710.09359">pdf</a>, <a href="https://arxiv.org/format/1710.09359">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817506030">10.1051/epjconf/201817506030 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Light-by-light forward scattering amplitudes in Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Gerardin%2C+A">Antoine Gerardin</a>, <a href="/search/hep-ph?searchtype=author&query=Green%2C+J">Jeremy Green</a>, <a href="/search/hep-ph?searchtype=author&query=Gryniuk%2C+O">Oleksii Gryniuk</a>, <a href="/search/hep-ph?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Pascalutsa%2C+V">Vladimir Pascalutsa</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.09359v1-abstract-short" style="display: inline;"> We present our preliminary results on the calculation of hadronic light-by-light forward scattering amplitudes using vector four-point correlation functions computed on the lattice. Using a dispersive approach, forward scattering amplitudes can be described by $纬^* 纬^* \to$ hadrons fusion cross sections and then compared with phenomenology. We show that only a few states are needed to reproduce ou… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.09359v1-abstract-full').style.display = 'inline'; document.getElementById('1710.09359v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.09359v1-abstract-full" style="display: none;"> We present our preliminary results on the calculation of hadronic light-by-light forward scattering amplitudes using vector four-point correlation functions computed on the lattice. Using a dispersive approach, forward scattering amplitudes can be described by $纬^* 纬^* \to$ hadrons fusion cross sections and then compared with phenomenology. We show that only a few states are needed to reproduce our data. In particular, the sum rules considered in this study imply relations between meson$-纬纬$ couplings and provide valuable information about individual form factors which are often used to estimate the meson-pole contributions to the hadronic light-by-light contribution to the $(g-2)$ of the muon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.09359v1-abstract-full').style.display = 'none'; document.getElementById('1710.09359v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of the 35th International Symposium on Lattice Field Theory (Lattice 2017), Granada, Spain. 8 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.07715">arXiv:1707.07715</a> <span> [<a href="https://arxiv.org/pdf/1707.07715">pdf</a>, <a href="https://arxiv.org/ps/1707.07715">ps</a>, <a href="https://arxiv.org/format/1707.07715">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.074016">10.1103/PhysRevD.96.074016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous magnetic moment of the muon, a hybrid approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Dominguez%2C+C+A">C. A. Dominguez</a>, <a href="/search/hep-ph?searchtype=author&query=Horch%2C+H">H. Horch</a>, <a href="/search/hep-ph?searchtype=author&query=J%C3%A4ger%2C+B">B. J盲ger</a>, <a href="/search/hep-ph?searchtype=author&query=Nasrallah%2C+N+F">N. F. Nasrallah</a>, <a href="/search/hep-ph?searchtype=author&query=Schilcher%2C+K">K. Schilcher</a>, <a href="/search/hep-ph?searchtype=author&query=Spiesberger%2C+H">H. Spiesberger</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">H. Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.07715v2-abstract-short" style="display: inline;"> A new QCD sum rule determination of the leading order hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, $a_渭^{\rm hvp}$, is proposed. This approach combines data on $e^{+}e^{-}$ annihilation into hadrons, perturbative QCD and lattice QCD results for the first derivative of the electromagnetic current correlator at zero momentum transfer,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.07715v2-abstract-full').style.display = 'inline'; document.getElementById('1707.07715v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.07715v2-abstract-full" style="display: none;"> A new QCD sum rule determination of the leading order hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, $a_渭^{\rm hvp}$, is proposed. This approach combines data on $e^{+}e^{-}$ annihilation into hadrons, perturbative QCD and lattice QCD results for the first derivative of the electromagnetic current correlator at zero momentum transfer, $螤_{\rm EM}^\prime(0)$. The idea is based on the observation that, in the relevant kinematic domain, the integration kernel $K(s)$, entering the formula relating $a_渭^{\rm hvp}$ to $e^{+}e^{-}$ annihilation data, behaves like $1/s$ times a very smooth function of $s$, the squared energy. We find an expression for $a_渭$ in terms of $螤_{\rm EM}^\prime(0)$, which can be calculated in lattice QCD. Using recent lattice results we find a good approximation for $a_渭^{\rm hvp}$, but the precision is not yet sufficient to resolve the discrepancy between the $R(s)$ data-based results and the experimentally measured value. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.07715v2-abstract-full').style.display = 'none'; document.getElementById('1707.07715v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, added some clarifying text and two references, removed typos, results unchanged. Version to be published in Phys.Rev.D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/17-045, HIM-2017-04 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 074016 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.06186">arXiv:1705.06186</a> <span> [<a href="https://arxiv.org/pdf/1705.06186">pdf</a>, <a href="https://arxiv.org/format/1705.06186">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/S0217751X1950009X">10.1142/S0217751X1950009X <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Iso-vector axial form factors of the nucleon in two-flavour lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Capitani%2C+S">Stefano Capitani</a>, <a href="/search/hep-ph?searchtype=author&query=Della+Morte%2C+M">Michele Della Morte</a>, <a href="/search/hep-ph?searchtype=author&query=Djukanovic%2C+D">Dalibor Djukanovic</a>, <a href="/search/hep-ph?searchtype=author&query=von+Hippel%2C+G+M">Georg M. von Hippel</a>, <a href="/search/hep-ph?searchtype=author&query=Hua%2C+J">Jiayu Hua</a>, <a href="/search/hep-ph?searchtype=author&query=J%C3%A4ger%2C+B">Benjamin J盲ger</a>, <a href="/search/hep-ph?searchtype=author&query=Junnarkar%2C+P+M">Parikshit M. Junnarkar</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Rae%2C+T+D">Thomas D. Rae</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.06186v4-abstract-short" style="display: inline;"> We present a lattice calculation of the nucleon iso-vector axial and induced pseudoscalar form factors on the CLS ensembles using $N_{\rm f}=2$ dynamical flavours of non-perturbatively $\mathcal{O}(a)$-improved Wilson fermions and an $\mathcal{O}(a)$-improved axial current together with the pseudoscalar density. Excited-state effects in the extraction of the form factors are treated using a variet… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.06186v4-abstract-full').style.display = 'inline'; document.getElementById('1705.06186v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.06186v4-abstract-full" style="display: none;"> We present a lattice calculation of the nucleon iso-vector axial and induced pseudoscalar form factors on the CLS ensembles using $N_{\rm f}=2$ dynamical flavours of non-perturbatively $\mathcal{O}(a)$-improved Wilson fermions and an $\mathcal{O}(a)$-improved axial current together with the pseudoscalar density. Excited-state effects in the extraction of the form factors are treated using a variety of methods, with a detailed discussion of their respective merits. The chiral and continuum extrapolation of the results is performed both using formulae inspired by Heavy Baryon Chiral Perturbation Theory (HBChPT) and a global approach to the form factors based on a chiral effective theory (EFT) including axial vector mesons. Our results indicate that careful treatment of excited-state effects is important in order to obtain reliable results for the axial form factors of the nucleon, and that the main remaining error stems from the systematic uncertainties of the chiral extrapolation. As final results, we quote $g_{\rm A} = 1.278 \pm 0.068\genfrac{}{}{0pt}{1}{+0.000}{-0.087}$, $\langle r_{\rm A}^2\rangle = 0.360 \pm 0.036\genfrac{}{}{0pt}{1}{+0.080}{-0.088}~\mathrm{fm}^2$, and $g_{\rm P} = 7.7 \pm 1.8 \genfrac{}{}{0pt}{1}{+0.8}{-2.0}$ for the axial charge, axial charge radius and induced pseudoscalar charge, respectively, where the first error is statistical and the second is systematic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.06186v4-abstract-full').style.display = 'none'; document.getElementById('1705.06186v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 13 figures (23 PDF files); uses revtex4-1.cls; v4: corrections to affiliation addresses, matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CP3-Origins-2017-018, HIM-2017-03, MITP/17-029, TIFR/TH/17-21 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Int.J.Mod.Phys. A 34 (2019) 1950009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.01775">arXiv:1705.01775</a> <span> [<a href="https://arxiv.org/pdf/1705.01775">pdf</a>, <a href="https://arxiv.org/format/1705.01775">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP10(2017)020">10.1007/JHEP10(2017)020 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The hadronic vacuum polarization contribution to the muon $g-2$ from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Della+Morte%2C+M">M. Della Morte</a>, <a href="/search/hep-ph?searchtype=author&query=Francis%2C+A">A. Francis</a>, <a href="/search/hep-ph?searchtype=author&query=G%C3%BClpers%2C+V">V. G眉lpers</a>, <a href="/search/hep-ph?searchtype=author&query=Herdo%C3%ADza%2C+G">G. Herdo铆za</a>, <a href="/search/hep-ph?searchtype=author&query=von+Hippel%2C+G">G. von Hippel</a>, <a href="/search/hep-ph?searchtype=author&query=Horch%2C+H">H. Horch</a>, <a href="/search/hep-ph?searchtype=author&query=J%C3%A4ger%2C+B">B. J盲ger</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H+B">H. B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Nyffeler%2C+A">A. Nyffeler</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">H. Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.01775v2-abstract-short" style="display: inline;"> We present a calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment, $a_渭^{\mathrm hvp}$, in lattice QCD employing dynamical up and down quarks. We focus on controlling the infrared regime of the vacuum polarization function. To this end we employ several complementary approaches, including Pad茅 fits, time moments and the time-momentum representation. We… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.01775v2-abstract-full').style.display = 'inline'; document.getElementById('1705.01775v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.01775v2-abstract-full" style="display: none;"> We present a calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment, $a_渭^{\mathrm hvp}$, in lattice QCD employing dynamical up and down quarks. We focus on controlling the infrared regime of the vacuum polarization function. To this end we employ several complementary approaches, including Pad茅 fits, time moments and the time-momentum representation. We correct our results for finite-volume effects by combining the Gounaris-Sakurai parameterization of the timelike pion form factor with the L眉scher formalism. On a subset of our ensembles we have derived an upper bound on the magnitude of quark-disconnected diagrams and found that they decrease the estimate for $a_渭^{\mathrm hvp}$ by at most 2%. Our final result is $a_渭^{\mathrm hvp}=(654\pm32\,{}^{+21}_{-23})\cdot 10^{-10}$, where the first error is statistical, and the second denotes the combined systematic uncertainty. Based on our findings we discuss the prospects for determining $a_渭^{\mathrm hvp}$ with sub-percent precision. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.01775v2-abstract-full').style.display = 'none'; document.getElementById('1705.01775v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42 pages, 7 figures, version published in JHEP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CP3-Origins-2017-015, HIM-2017-02, IFT-UAM/CSIC-17-039, MITP/17-030 <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 81V05 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 1710 (2017) 020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.06882">arXiv:1608.06882</a> <span> [<a href="https://arxiv.org/pdf/1608.06882">pdf</a>, <a href="https://arxiv.org/format/1608.06882">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP12(2016)158">10.1007/JHEP12(2016)158 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the strength of the $U_A(1)$ anomaly at the chiral phase transition in $N_f=2$ QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Brandt%2C+B+B">Bastian B. Brandt</a>, <a href="/search/hep-ph?searchtype=author&query=Francis%2C+A">Anthony Francis</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Philipsen%2C+O">Owe Philipsen</a>, <a href="/search/hep-ph?searchtype=author&query=Robaina%2C+D">Daniel Robaina</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.06882v2-abstract-short" style="display: inline;"> We study the thermal transition of QCD with two degenerate light flavours by lattice simulations using $O(a)$-improved Wilson quarks. Temperature scans are performed at a fixed value of $N_t = (aT)^{-1}=16$, where $a$ is the lattice spacing and $T$ the temperature, at three fixed zero-temperature pion masses between 200 MeV and 540 MeV. In this range we find that the transition is consistent with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.06882v2-abstract-full').style.display = 'inline'; document.getElementById('1608.06882v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.06882v2-abstract-full" style="display: none;"> We study the thermal transition of QCD with two degenerate light flavours by lattice simulations using $O(a)$-improved Wilson quarks. Temperature scans are performed at a fixed value of $N_t = (aT)^{-1}=16$, where $a$ is the lattice spacing and $T$ the temperature, at three fixed zero-temperature pion masses between 200 MeV and 540 MeV. In this range we find that the transition is consistent with a broad crossover. As a probe of the restoration of chiral symmetry, we study the static screening spectrum. We observe a degeneracy between the transverse isovector vector and axial-vector channels starting from the transition temperature. Particularly striking is the strong reduction of the splitting between isovector scalar and pseudoscalar screening masses around the chiral phase transition by at least a factor of three compared to its value at zero temperature. In fact, the splitting is consistent with zero within our uncertainties. This disfavours a chiral phase transition in the $O(4)$ universality class. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.06882v2-abstract-full').style.display = 'none'; document.getElementById('1608.06882v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">46 pages, 16 figure, 12 tables; v2: typos corrected; enhanced explanations and discussions; included study of systematic effects for the extraction of screening masses; conclusions unchanged; new version to match published version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.00299">arXiv:1607.00299</a> <span> [<a href="https://arxiv.org/pdf/1607.00299">pdf</a>, <a href="https://arxiv.org/ps/1607.00299">ps</a>, <a href="https://arxiv.org/format/1607.00299">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Review of lattice results concerning low-energy particle physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Aoki%2C+S">S. Aoki</a>, <a href="/search/hep-ph?searchtype=author&query=Aoki%2C+Y">Y. Aoki</a>, <a href="/search/hep-ph?searchtype=author&query=Becirevic%2C+D">D. Becirevic</a>, <a href="/search/hep-ph?searchtype=author&query=Bernard%2C+C">C. Bernard</a>, <a href="/search/hep-ph?searchtype=author&query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-ph?searchtype=author&query=Colangelo%2C+G">G. Colangelo</a>, <a href="/search/hep-ph?searchtype=author&query=Della+Morte%2C+M">M. Della Morte</a>, <a href="/search/hep-ph?searchtype=author&query=Dimopoulos%2C+P">P. Dimopoulos</a>, <a href="/search/hep-ph?searchtype=author&query=D%C3%BCrr%2C+S">S. D眉rr</a>, <a href="/search/hep-ph?searchtype=author&query=Fukaya%2C+H">H. Fukaya</a>, <a href="/search/hep-ph?searchtype=author&query=Golterman%2C+M">M. Golterman</a>, <a href="/search/hep-ph?searchtype=author&query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-ph?searchtype=author&query=Hashimoto%2C+S">S. Hashimoto</a>, <a href="/search/hep-ph?searchtype=author&query=Heller%2C+U+M">U. M. Heller</a>, <a href="/search/hep-ph?searchtype=author&query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-ph?searchtype=author&query=J%C3%BCttner%2C+A">A. J眉ttner</a>, <a href="/search/hep-ph?searchtype=author&query=Kaneko%2C+T">T. Kaneko</a>, <a href="/search/hep-ph?searchtype=author&query=Lellouch%2C+L">L. Lellouch</a>, <a href="/search/hep-ph?searchtype=author&query=Leutwyler%2C+H">H. Leutwyler</a>, <a href="/search/hep-ph?searchtype=author&query=Lin%2C+C+-+D">C. -J. D. Lin</a>, <a href="/search/hep-ph?searchtype=author&query=Lubicz%2C+V">V. Lubicz</a>, <a href="/search/hep-ph?searchtype=author&query=Lunghi%2C+E">E. Lunghi</a>, <a href="/search/hep-ph?searchtype=author&query=Mawhinney%2C+R">R. Mawhinney</a>, <a href="/search/hep-ph?searchtype=author&query=Onogi%2C+T">T. Onogi</a>, <a href="/search/hep-ph?searchtype=author&query=Pena%2C+C">C. Pena</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.00299v1-abstract-short" style="display: inline;"> We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle physics community. More specifically, we report on the determination of the light-quark masses, the form factor f+(0), arising in the semileptonic K -> pi transition at zero momentum transfer, as well as the decay constant ratio fK/fpi and its consequences for the C… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.00299v1-abstract-full').style.display = 'inline'; document.getElementById('1607.00299v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.00299v1-abstract-full" style="display: none;"> We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle physics community. More specifically, we report on the determination of the light-quark masses, the form factor f+(0), arising in the semileptonic K -> pi transition at zero momentum transfer, as well as the decay constant ratio fK/fpi and its consequences for the CKM matrix elements Vus and Vud. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2)LxSU(2)R and SU(3)LxSU(3)R Chiral Perturbation Theory. We review the determination of the BK parameter of neutral kaon mixing as well as the additional four B parameters that arise in theories of physics beyond the Standard Model. The latter quantities are an addition compared to the previous review. For the heavy-quark sector, we provide results for mc and mb (also new compared to the previous review), as well as those for D- and B-meson decay constants, form factors, and mixing parameters. These are the heavy-quark quantities most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. Finally, we review the status of lattice determinations of the strong coupling constant alpha_s. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.00299v1-abstract-full').style.display = 'none'; document.getElementById('1607.00299v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">383 pages, 32 figures, 160 tables, 795 references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.01749">arXiv:1507.01749</a> <span> [<a href="https://arxiv.org/pdf/1507.01749">pdf</a>, <a href="https://arxiv.org/format/1507.01749">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epja/i2015-15158-0">10.1140/epja/i2015-15158-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The scalar radius of the pion from Lattice QCD in the continuum limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=G%C3%BClpers%2C+V">Vera G眉lpers</a>, <a href="/search/hep-ph?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.01749v1-abstract-short" style="display: inline;"> We extend our study of the pion scalar radius in two-flavour lattice QCD to include two additional lattice spacings as well as lighter pion masses, enabling us to perform a combined chiral and continuum extrapolation. We find discretisation artefacts to be small for the radius, and confirm the importance of the disconnected diagrams in reproducing the correct chiral behaviour. Our final result for… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.01749v1-abstract-full').style.display = 'inline'; document.getElementById('1507.01749v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.01749v1-abstract-full" style="display: none;"> We extend our study of the pion scalar radius in two-flavour lattice QCD to include two additional lattice spacings as well as lighter pion masses, enabling us to perform a combined chiral and continuum extrapolation. We find discretisation artefacts to be small for the radius, and confirm the importance of the disconnected diagrams in reproducing the correct chiral behaviour. Our final result for the scalar radius of the pion at the physical point is $\left\langle r^2\right\rangle^蟺_{\rm S}=0.600\pm0.052$ fm$^2$, corresponding to a value of $\overline{\ell}_4=4.54\pm0.30$ for the low-energy constant $\overline{\ell}_4$ of NLO chiral perturbation theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.01749v1-abstract-full').style.display = 'none'; document.getElementById('1507.01749v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures, uses svjour.cls</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/15-050 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.04628">arXiv:1504.04628</a> <span> [<a href="https://arxiv.org/pdf/1504.04628">pdf</a>, <a href="https://arxiv.org/format/1504.04628">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.92.054511">10.1103/PhysRevD.92.054511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nucleon electromagnetic form factors in two-flavour QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Capitani%2C+S">S. Capitani</a>, <a href="/search/hep-ph?searchtype=author&query=Della+Morte%2C+M">M. Della Morte</a>, <a href="/search/hep-ph?searchtype=author&query=Djukanovic%2C+D">D. Djukanovic</a>, <a href="/search/hep-ph?searchtype=author&query=von+Hippel%2C+G">G. von Hippel</a>, <a href="/search/hep-ph?searchtype=author&query=Hua%2C+J">J. Hua</a>, <a href="/search/hep-ph?searchtype=author&query=J%C3%A4ger%2C+B">B. J盲ger</a>, <a href="/search/hep-ph?searchtype=author&query=Knippschild%2C+B">B. Knippschild</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H+B">H. B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Rae%2C+T+D">T. D. Rae</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">H. Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.04628v2-abstract-short" style="display: inline;"> We present results for the nucleon electromagnetic form factors, including the momentum transfer dependence and derived quantities (charge radii and magnetic moment). The analysis is performed using O(a) improved Wilson fermions in Nf=2 QCD measured on the CLS ensembles. Particular focus is placed on a systematic evaluation of the influence of excited states in three-point correlation functions, w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.04628v2-abstract-full').style.display = 'inline'; document.getElementById('1504.04628v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.04628v2-abstract-full" style="display: none;"> We present results for the nucleon electromagnetic form factors, including the momentum transfer dependence and derived quantities (charge radii and magnetic moment). The analysis is performed using O(a) improved Wilson fermions in Nf=2 QCD measured on the CLS ensembles. Particular focus is placed on a systematic evaluation of the influence of excited states in three-point correlation functions, which lead to a biased evaluation, if not accounted for correctly. We argue that the use of summed operator insertions and fit ans盲tze including excited states allow us to suppress and control this effect. We employ a novel method to perform joint chiral and continuum extrapolations, by fitting the form factors directly to the expressions of covariant baryonic chiral effective field theory. The final results for the charge radii and magnetic moment from our lattice calculations include, for the first time, a full error budget. We find that our estimates are compatible with experimental results within their overall uncertainties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.04628v2-abstract-full').style.display = 'none'; document.getElementById('1504.04628v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 10 figures, citations modified</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/15-026, HIM-2015-01, CP3-Origins-2015-012, DIAS-2015-12 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 92, 054511 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.6934">arXiv:1412.6934</a> <span> [<a href="https://arxiv.org/pdf/1412.6934">pdf</a>, <a href="https://arxiv.org/format/1412.6934">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Study of the Couplings of QED and QCD from the Adler Function </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Francis%2C+A">Anthony Francis</a>, <a href="/search/hep-ph?searchtype=author&query=Herdo%C3%ADza%2C+G">Gregorio Herdo铆za</a>, <a href="/search/hep-ph?searchtype=author&query=Horch%2C+H">Hanno Horch</a>, <a href="/search/hep-ph?searchtype=author&query=J%C3%A4ger%2C+B">Benjamin J盲ger</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.6934v1-abstract-short" style="display: inline;"> The contribution from hadronic vacuum polarisation effects is responsible for a large fraction of the theoretical uncertainty in the running of the QED coupling. The current level of uncertainty has become a limitation for electroweak precision tests. We use lattice QCD simulations with two flavours of O$(a)$ improved Wilson fermions to determine the Adler function in a broad range of the momentum… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.6934v1-abstract-full').style.display = 'inline'; document.getElementById('1412.6934v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.6934v1-abstract-full" style="display: none;"> The contribution from hadronic vacuum polarisation effects is responsible for a large fraction of the theoretical uncertainty in the running of the QED coupling. The current level of uncertainty has become a limitation for electroweak precision tests. We use lattice QCD simulations with two flavours of O$(a)$ improved Wilson fermions to determine the Adler function in a broad range of the momentum transfer $Q^2$. The running of the QED coupling, including valence contributions from $u$, $d$, $s$ and $c$ quarks, is compared to phenomenological results at intermediate $Q^2$ values. In the large $Q^2$ regime, the lattice determination of the Adler function is fitted to perturbation theory in order to examine the feasibility of a determination of the strong coupling constant. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.6934v1-abstract-full').style.display = 'none'; document.getElementById('1412.6934v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures. Contribution to the 32nd International Symposium on Lattice Field Theory (Lattice 2014), 23-28 June 2014, Columbia University, New York, NY, USA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.3031">arXiv:1411.3031</a> <span> [<a href="https://arxiv.org/pdf/1411.3031">pdf</a>, <a href="https://arxiv.org/format/1411.3031">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD Studies of the Leading Order Hadronic Contribution to the Muon $g-2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Francis%2C+A">Anthony Francis</a>, <a href="/search/hep-ph?searchtype=author&query=G%C3%BClpers%2C+V">Vera G眉lpers</a>, <a href="/search/hep-ph?searchtype=author&query=Herdo%C3%ADza%2C+G">Gregorio Herdo铆za</a>, <a href="/search/hep-ph?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-ph?searchtype=author&query=Horch%2C+H">Hanno Horch</a>, <a href="/search/hep-ph?searchtype=author&query=J%C3%A4ger%2C+B">Benjamin J盲ger</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Shintani%2C+E">Eigo Shintani</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.3031v2-abstract-short" style="display: inline;"> The anomalous magnetic moment of the muon, $g_渭-2$, is one of the most promising observables to identify hints for physics beyond the Standard Model. QCD contributions are currently responsible for the largest fraction of the overall theoretical uncertainty in $g_渭-2$. The possibility to determine these hadronic contributions from first principles through lattice QCD calculations has triggered a n… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.3031v2-abstract-full').style.display = 'inline'; document.getElementById('1411.3031v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.3031v2-abstract-full" style="display: none;"> The anomalous magnetic moment of the muon, $g_渭-2$, is one of the most promising observables to identify hints for physics beyond the Standard Model. QCD contributions are currently responsible for the largest fraction of the overall theoretical uncertainty in $g_渭-2$. The possibility to determine these hadronic contributions from first principles through lattice QCD calculations has triggered a number of recent studies. Recent proposals to improve the accuracy of lattice determinations are reported. We present an update of our studies of the leading-order hadronic contribution to $g_渭-2$ with improved Wilson fermions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.3031v2-abstract-full').style.display = 'none'; document.getElementById('1411.3031v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures. Contribution to the Proceedings of the 37th International Conference on High Energy Physics (ICHEP 2014), 2-9 July 2014, Valencia, Spain. Minor changes, updated references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.7491">arXiv:1410.7491</a> <span> [<a href="https://arxiv.org/pdf/1410.7491">pdf</a>, <a href="https://arxiv.org/format/1410.7491">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> The leading hadronic contribution to (g-2) of the muon: The chiral behavior using the mixed representation method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Francis%2C+A">Anthony Francis</a>, <a href="/search/hep-ph?searchtype=author&query=Guelpers%2C+V">Vera Guelpers</a>, <a href="/search/hep-ph?searchtype=author&query=Herdoiza%2C+G">Gregorio Herdoiza</a>, <a href="/search/hep-ph?searchtype=author&query=Horch%2C+H">Hanno Horch</a>, <a href="/search/hep-ph?searchtype=author&query=Jaeger%2C+B">Benjamin Jaeger</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.7491v1-abstract-short" style="display: inline;"> We extend our analysis of the leading hadronic contribution to the anomalous magnetic moment of the muon using the mixed representation method to study its chiral behavior. We present results derived from local-conserved two-point lattice vector correlation functions, computed on a subset of light two-flavor ensembles made available to us through the CLS effort with pion masses as low as 190 MeV.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.7491v1-abstract-full').style.display = 'inline'; document.getElementById('1410.7491v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.7491v1-abstract-full" style="display: none;"> We extend our analysis of the leading hadronic contribution to the anomalous magnetic moment of the muon using the mixed representation method to study its chiral behavior. We present results derived from local-conserved two-point lattice vector correlation functions, computed on a subset of light two-flavor ensembles made available to us through the CLS effort with pion masses as low as 190 MeV. The data is analyzed also using the more standard four-momentum method. Both methods are systematically compared as the calculations approach the physical point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.7491v1-abstract-full').style.display = 'none'; document.getElementById('1410.7491v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, talk contribution to "The 32nd International Symposium on Lattice Field Theory", 23-28 June, 2014, Columbia University New York, NY</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1404.3723">arXiv:1404.3723</a> <span> [<a href="https://arxiv.org/pdf/1404.3723">pdf</a>, <a href="https://arxiv.org/format/1404.3723">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-014-2981-5">10.1140/epjc/s10052-014-2981-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> QCD and strongly coupled gauge theories: challenges and perspectives </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Brambilla%2C+N">N. Brambilla</a>, <a href="/search/hep-ph?searchtype=author&query=Eidelman%2C+S">S. Eidelman</a>, <a href="/search/hep-ph?searchtype=author&query=Foka%2C+P">P. Foka</a>, <a href="/search/hep-ph?searchtype=author&query=Gardner%2C+S">S. Gardner</a>, <a href="/search/hep-ph?searchtype=author&query=Kronfeld%2C+A+S">A. S. Kronfeld</a>, <a href="/search/hep-ph?searchtype=author&query=Alford%2C+M+G">M. G. Alford</a>, <a href="/search/hep-ph?searchtype=author&query=Alkofer%2C+R">R. Alkofer</a>, <a href="/search/hep-ph?searchtype=author&query=Butenschoen%2C+M">M. Butenschoen</a>, <a href="/search/hep-ph?searchtype=author&query=Cohen%2C+T+D">T. D. Cohen</a>, <a href="/search/hep-ph?searchtype=author&query=Erdmenger%2C+J">J. Erdmenger</a>, <a href="/search/hep-ph?searchtype=author&query=Fabbietti%2C+L">L. Fabbietti</a>, <a href="/search/hep-ph?searchtype=author&query=Faber%2C+M">M. Faber</a>, <a href="/search/hep-ph?searchtype=author&query=Goity%2C+J+L">J. L. Goity</a>, <a href="/search/hep-ph?searchtype=author&query=Ketzer%2C+B">B. Ketzer</a>, <a href="/search/hep-ph?searchtype=author&query=Lin%2C+H+W">H. W. Lin</a>, <a href="/search/hep-ph?searchtype=author&query=Llanes-Estrada%2C+F+J">F. J. Llanes-Estrada</a>, <a href="/search/hep-ph?searchtype=author&query=Meyer%2C+H">H. Meyer</a>, <a href="/search/hep-ph?searchtype=author&query=Pakhlov%2C+P">P. Pakhlov</a>, <a href="/search/hep-ph?searchtype=author&query=Pallante%2C+E">E. Pallante</a>, <a href="/search/hep-ph?searchtype=author&query=Polikarpov%2C+M+I">M. I. Polikarpov</a>, <a href="/search/hep-ph?searchtype=author&query=Sazdjian%2C+H">H. Sazdjian</a>, <a href="/search/hep-ph?searchtype=author&query=Schmitt%2C+A">A. Schmitt</a>, <a href="/search/hep-ph?searchtype=author&query=Snow%2C+W+M">W. M. Snow</a>, <a href="/search/hep-ph?searchtype=author&query=Vairo%2C+A">A. Vairo</a>, <a href="/search/hep-ph?searchtype=author&query=Vogt%2C+R">R. Vogt</a> , et al. (24 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1404.3723v2-abstract-short" style="display: inline;"> We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly-coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.3723v2-abstract-full').style.display = 'inline'; document.getElementById('1404.3723v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1404.3723v2-abstract-full" style="display: none;"> We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly-coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.3723v2-abstract-full').style.display = 'none'; document.getElementById('1404.3723v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 April, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">246 pp, around 128 figures; v2 adds material, references, and corrections suggested by readers of v1 -- to be submitted to EPJC</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CCQCN-2014-24, CCTP-2014-5, CERN-PH-TH/2014-033, DF-1-2014, FERMILAB-PUB-14-024/T, HIP-2014-03/TH, ITEP-LAT-2014-1, JLAB-THY-14-1865, LLNL-JRNL-651216, MITP/14-016, NT@UW 14-04, RUB-TPII-01/2014, TUM-EFT 46/14, UWThPh-2014-006 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 74:2981 (2014) 1 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.6975">arXiv:1311.6975</a> <span> [<a href="https://arxiv.org/pdf/1311.6975">pdf</a>, <a href="https://arxiv.org/format/1311.6975">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Computing the Adler function from the vacuum polarization function </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Horch%2C+H">Hanno Horch</a>, <a href="/search/hep-ph?searchtype=author&query=Della+Morte%2C+M">Michele Della Morte</a>, <a href="/search/hep-ph?searchtype=author&query=Herdo%C3%ADza%2C+G">Gregorio Herdo铆za</a>, <a href="/search/hep-ph?searchtype=author&query=J%C3%A4ger%2C+B">Benjamin J盲ger</a>, <a href="/search/hep-ph?searchtype=author&query=J%C3%BCttner%2C+A">Andreas J眉ttner</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.6975v1-abstract-short" style="display: inline;"> We use a lattice determination of the hadronic vacuum polarization tensor to study the associated Ward identities and compute the Adler function. The vacuum polarization tensor is computed from a combination of point-split and local vector currents, using two flavours of O($a$)-improved Wilson fermions. Partially twisted boundary conditions are employed to obtain a fine momentum resolution. The mo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.6975v1-abstract-full').style.display = 'inline'; document.getElementById('1311.6975v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.6975v1-abstract-full" style="display: none;"> We use a lattice determination of the hadronic vacuum polarization tensor to study the associated Ward identities and compute the Adler function. The vacuum polarization tensor is computed from a combination of point-split and local vector currents, using two flavours of O($a$)-improved Wilson fermions. Partially twisted boundary conditions are employed to obtain a fine momentum resolution. The modifications of the Ward identities by lattice artifacts and by the use of twisted boundary conditions are monitored. We determine the Adler function from the derivative of the vacuum polarization function over a large region of momentum transfer $q^2$. As a first account of systematic effects, a continuum limit scaling analysis is performed in the large $q^2$ regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.6975v1-abstract-full').style.display = 'none'; document.getElementById('1311.6975v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, Germany</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/13-070, HIM-2013-06 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE 2013)304 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1310.8555">arXiv:1310.8555</a> <span> [<a href="https://arxiv.org/pdf/1310.8555">pdf</a>, <a href="https://arxiv.org/ps/1310.8555">ps</a>, <a href="https://arxiv.org/format/1310.8555">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Review of lattice results concerning low energy particle physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Aoki%2C+S">Sinya Aoki</a>, <a href="/search/hep-ph?searchtype=author&query=Aoki%2C+Y">Yasumichi Aoki</a>, <a href="/search/hep-ph?searchtype=author&query=Bernard%2C+C">Claude Bernard</a>, <a href="/search/hep-ph?searchtype=author&query=Blum%2C+T">Tom Blum</a>, <a href="/search/hep-ph?searchtype=author&query=Colangelo%2C+G">Gilberto Colangelo</a>, <a href="/search/hep-ph?searchtype=author&query=Della+Morte%2C+M">Michele Della Morte</a>, <a href="/search/hep-ph?searchtype=author&query=D%C3%BCrr%2C+S">Stephan D眉rr</a>, <a href="/search/hep-ph?searchtype=author&query=El-Khadra%2C+A+X">Aida X. El-Khadra</a>, <a href="/search/hep-ph?searchtype=author&query=Fukaya%2C+H">Hidenori Fukaya</a>, <a href="/search/hep-ph?searchtype=author&query=Horsley%2C+R">Roger Horsley</a>, <a href="/search/hep-ph?searchtype=author&query=J%C3%BCttner%2C+A">Andreas J眉ttner</a>, <a href="/search/hep-ph?searchtype=author&query=Kaneko%2C+T">Takeshi Kaneko</a>, <a href="/search/hep-ph?searchtype=author&query=Laiho%2C+J">Jack Laiho</a>, <a href="/search/hep-ph?searchtype=author&query=Lellouch%2C+L">Laurent Lellouch</a>, <a href="/search/hep-ph?searchtype=author&query=Leutwyler%2C+H">Heinrich Leutwyler</a>, <a href="/search/hep-ph?searchtype=author&query=Lubicz%2C+V">Vittorio Lubicz</a>, <a href="/search/hep-ph?searchtype=author&query=Lunghi%2C+E">Enrico Lunghi</a>, <a href="/search/hep-ph?searchtype=author&query=Necco%2C+S">Silvia Necco</a>, <a href="/search/hep-ph?searchtype=author&query=Onogi%2C+T">Tetsuya Onogi</a>, <a href="/search/hep-ph?searchtype=author&query=Pena%2C+C">Carlos Pena</a>, <a href="/search/hep-ph?searchtype=author&query=Sachrajda%2C+C+T">Christopher T. Sachrajda</a>, <a href="/search/hep-ph?searchtype=author&query=Sharpe%2C+S+R">Stephen R. Sharpe</a>, <a href="/search/hep-ph?searchtype=author&query=Simula%2C+S">Silvano Simula</a>, <a href="/search/hep-ph?searchtype=author&query=Sommer%2C+R">Rainer Sommer</a>, <a href="/search/hep-ph?searchtype=author&query=Van+de+Water%2C+R+S">Ruth S. Van de Water</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1310.8555v4-abstract-short" style="display: inline;"> We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle physics community. More specifically, we report on the determination of the light-quark masses, the form factor f+(0), arising in semileptonic K -> pi transition at zero momentum transfer, as well as the decay constant ratio fK/fpi of decay constants and its consequ… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.8555v4-abstract-full').style.display = 'inline'; document.getElementById('1310.8555v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1310.8555v4-abstract-full" style="display: none;"> We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle physics community. More specifically, we report on the determination of the light-quark masses, the form factor f+(0), arising in semileptonic K -> pi transition at zero momentum transfer, as well as the decay constant ratio fK/fpi of decay constants and its consequences for the CKM matrix elements Vus and Vud. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2)LxSU(2)R and SU(3)LxSU(3)R Chiral Perturbation Theory and review the determination of the BK parameter of neutral kaon mixing. The inclusion of heavy-quark quantities significantly expands the FLAG scope with respect to the previous review. Therefore, for this review, we focus on D- and B-meson decay constants, form factors, and mixing parameters, since these are most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. In addition we review the status of lattice determinations of the strong coupling constant alpha_s. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.8555v4-abstract-full').style.display = 'none'; document.getElementById('1310.8555v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Several errors of transcription in the entries of Table 1 have been corrected. The entries of Table 1 now agree with the final results quoted in the main text. 324 pages, 26 figures, 118 tables, 697 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CP3-Origins-2013-040 DNRF90, DIAS-2013-40, FERMILAB-PUB-13-484-T, FTUAM-13-28, IFIC/13-76, IFT-UAM/CSIC-13-106, MITP/13-067, YITP-13-114 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1309.2104">arXiv:1309.2104</a> <span> [<a href="https://arxiv.org/pdf/1309.2104">pdf</a>, <a href="https://arxiv.org/format/1309.2104">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.89.094503">10.1103/PhysRevD.89.094503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The scalar pion form factor in two-flavor lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=G%C3%BClpers%2C+V">Vera G眉lpers</a>, <a href="/search/hep-ph?searchtype=author&query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-ph?searchtype=author&query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1309.2104v2-abstract-short" style="display: inline;"> We calculate the scalar form factor of the pion using two dynamical flavors of non-perturbatively $\mathcal{O}(a)$-improved Wilson fermions, including both the connected and the disconnected contribution to the relevant correlation functions. We employ the calculation of all-to-all propagators using stochastic sources and a generalized hopping parameter expansion. From the form factor data at vani… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.2104v2-abstract-full').style.display = 'inline'; document.getElementById('1309.2104v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1309.2104v2-abstract-full" style="display: none;"> We calculate the scalar form factor of the pion using two dynamical flavors of non-perturbatively $\mathcal{O}(a)$-improved Wilson fermions, including both the connected and the disconnected contribution to the relevant correlation functions. We employ the calculation of all-to-all propagators using stochastic sources and a generalized hopping parameter expansion. From the form factor data at vanishing momentum transfer, $Q^2=0$, and two non-vanishing $Q^2$ we obtain an estimate for the scalar radius $\left<r^2\right>^蟺_{_{\rm S}}$ of the pion at one value of the lattice spacing and for five different pion masses. Using Chiral Perturbation Theory at next-to-leading order, we find $\left<r^2\right>^蟺_{_{\rm S}}=0.635\pm0.016$ fm$^2$ at the physical pion mass (statistical error only). This is in good agreement with the phenomenological estimate from $蟺蟺$-scattering. The inclusion of the disconnected contribution is essential for achieving this level of agreement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.2104v2-abstract-full').style.display = 'none'; document.getElementById('1309.2104v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 September, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 10 pdf figures, uses revtex4-1; version to appear in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/13-049, HIM-2013-04 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 89, 094503 (2014) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Wittig%2C+H&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Wittig%2C+H&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Wittig%2C+H&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>