CINXE.COM

Search results for: Kalaiselvi Arumugam

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Kalaiselvi Arumugam</title> <meta name="description" content="Search results for: Kalaiselvi Arumugam"> <meta name="keywords" content="Kalaiselvi Arumugam"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Kalaiselvi Arumugam" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Kalaiselvi Arumugam"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Kalaiselvi Arumugam</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Changes in Secretory Products and Lipid Profile in the Epididymis and Spermatozoa of Rats Induced by Aluminium Chloride</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramalingam%20Venugopal">Ramalingam Venugopal</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalaiselvi%20Arumugam"> Kalaiselvi Arumugam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental exposure to heavy metals is associated with a wide range of toxic effects. It is evident that heavy metals released in the environment affect the reproductive processes and fertility of animals. Toxic metals affect the male and female reproductive system directly or indirectly. Considering the toxic nature of aluminium and also the major role of secretory products and lipids in sperm maturation, the present study was planned to investigate the effect of aluminium chloride on secretory products like glyceryl phosphoryl choline (GPC), sialic acid, carnitine and acetyl carnitine content and also lipid profiles in the epididymis and spermatozoa of adult rats. Aluminium chloride, 50 mg/kg body weight was administered orally daily for 60 days. 24 hours after the last dose the rats were sacrificed and immediately epididymis was dissected out and spermatozoa was isolated. The weight of the epididymis decreased significantly. GPC and sialic acid content was significantly reduced in the epididymis and not much altered in spermatozoa. Carnitine and acetyl carnitine contents were markedly decreased in the spermatozoa as well as in the epididymis. Aluminium chloride administration caused a marked reduction in total lipid, cholesterol, phospholipids and cholesterol content in epididymis and no significant changes in spermatozoa. Several changes take place in the spermatozoa as they pass through the epididymis. These changes are directly related to the acquisition of fertilizing ability of spermatozoa. From the results, it is evident that aluminium chloride has definite influence on secretory products and lipid profiles in the epididymis. This may eventually have an adverse impact on the fertility of the animal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium%20chloride" title="aluminium chloride">aluminium chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=rat" title=" rat"> rat</a>, <a href="https://publications.waset.org/abstracts/search?q=carnitine" title=" carnitine"> carnitine</a>, <a href="https://publications.waset.org/abstracts/search?q=GPC" title=" GPC"> GPC</a>, <a href="https://publications.waset.org/abstracts/search?q=sialic%20acid" title=" sialic acid"> sialic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=epididymis" title=" epididymis"> epididymis</a>, <a href="https://publications.waset.org/abstracts/search?q=spermatozoa" title=" spermatozoa"> spermatozoa</a> </p> <a href="https://publications.waset.org/abstracts/10221/changes-in-secretory-products-and-lipid-profile-in-the-epididymis-and-spermatozoa-of-rats-induced-by-aluminium-chloride" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Indoor Visible Light Communication Channel Characterization for User Mobility: A Use-Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pooja%20Sanathkumar">Pooja Sanathkumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinidhi%20Murali"> Srinidhi Murali</a>, <a href="https://publications.waset.org/abstracts/search?q=Sethuraman%20TV"> Sethuraman TV</a>, <a href="https://publications.waset.org/abstracts/search?q=Saravanan%20M"> Saravanan M</a>, <a href="https://publications.waset.org/abstracts/search?q=Paventhan%20Arumugam"> Paventhan Arumugam</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashwin%20Ashok"> Ashwin Ashok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The last decade has witnessed a significant interest in visible light communication (VLC) technology, as VLC can potentially achieve high data rate links and secure communication channels. However, the use of VLC under mobile settings is fundamentally limited as its a line-of-sight (LOS) technology and there has been limited breakthroughs in realizing VLC for mobile settings. In this regard, this work targets to study the VLC channel under mobility. Through a use-case study analysis with experiment data traces this paper presents an empirical VLC channel study considering the application of VLC for smart lighting in an indoor room environment. This paper contributes a calibration study of a prototype VLC smart lighting system in an indoor environment and through the inferences gained from the calibration, and considering a user is carrying a mobile device fit with a VLC receiver, this work presents recommendations for user's position adjustments, with the goal to ensure maximum connectivity across the room. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=visible%20light%20communication" title="visible light communication">visible light communication</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility" title=" mobility"> mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20study" title=" empirical study"> empirical study</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20characterization" title=" channel characterization"> channel characterization</a> </p> <a href="https://publications.waset.org/abstracts/127321/indoor-visible-light-communication-channel-characterization-for-user-mobility-a-use-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Bioefficiency of Cinnamomum verum Loaded Niosomes and Its Microbicidal and Mosquito Larvicidal Activity against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aasaithambi%20Kalaiselvi">Aasaithambi Kalaiselvi</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Gabriel%20Paulraj"> Michael Gabriel Paulraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekambaram%20Nakkeeran"> Ekambaram Nakkeeran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Emergences of mosquito vector-borne diseases are considered as a perpetual problem globally in tropical countries. The outbreak of several diseases such as chikungunya, zika virus infection and dengue fever has created a massive threat towards the living population. Frequent usage of synthetic insecticides like Dichloro Diphenyl Trichloroethane (DDT) eventually had its adverse harmful effects on humans as well as the environment. Since there are no perennial vaccines, prevention, treatment or drugs available for these pathogenic vectors, WHO is more concerned in eradicating their breeding sites effectively without any side effects on humans and environment by approaching plant-derived natural eco-friendly bio-insecticides. The aim of this study is to investigate the larvicidal potency of Cinnamomum verum essential oil (CEO) loaded niosomes. Cholesterol and surfactant variants of Span 20, 60 and 80 were used in synthesizing CEO loaded niosomes using Transmembrane pH gradient method. The synthesized CEO loaded niosomes were characterized by Zeta potential, particle size, Fourier Transform Infrared Spectroscopy (FT-IR), GC-MS and SEM analysis to evaluate charge, size, functional properties, the composition of secondary metabolites and morphology. The Z-average size of the formed niosomes was 1870.84 nm and had good stability with zeta potential -85.3 meV. The entrapment efficiency of the CEO loaded niosomes was determined by UV-Visible Spectrophotometry. The bio-potency of CEO loaded niosomes was treated and assessed against gram-positive (Bacillus subtilis) and gram-negative (Escherichia coli) bacteria and fungi (Aspergillus fumigatus and Candida albicans) at various concentrations. The larvicidal activity was evaluated against II to IV instar larvae of Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus at various concentrations for 24 h. The mortality rate of LC₅₀ and LC₉₀ values were calculated. The results exhibited that CEO loaded niosomes have greater efficiency against mosquito larvicidal activity. The results suggest that niosomes could be used in various applications of biotechnology and drug delivery systems with greater stability by altering the drug of interest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cinnamomum%20verum" title="Cinnamomum verum">Cinnamomum verum</a>, <a href="https://publications.waset.org/abstracts/search?q=niosomes" title=" niosomes"> niosomes</a>, <a href="https://publications.waset.org/abstracts/search?q=entrapment%20efficiency" title=" entrapment efficiency"> entrapment efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=bactericidal%20and%20fungicidal" title=" bactericidal and fungicidal"> bactericidal and fungicidal</a>, <a href="https://publications.waset.org/abstracts/search?q=mosquito%20larvicidal%20activity" title=" mosquito larvicidal activity"> mosquito larvicidal activity</a> </p> <a href="https://publications.waset.org/abstracts/100109/bioefficiency-of-cinnamomum-verum-loaded-niosomes-and-its-microbicidal-and-mosquito-larvicidal-activity-against-aedes-aegypti-anopheles-stephensi-and-culex-quinquefasciatus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Demographic Dividend and Creation of Human and Knowledge Capital in Liberal India: An Endogenous Growth Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arjun%20K.">Arjun K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Arumugam%20Sankaran"> Arumugam Sankaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Kumar"> Sanjay Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mousumi%20%20Das"> Mousumi Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper analyses the existence of endogenous growth scenario emanating from the demographic dividend in India during the liberalization period starting from 1980. Demographic dividend creates a fertile ground for the cultivation of human and knowledge capitals contributing to technological progress which can be measured using total factor productivity. The relationship among total factor productivity, human and knowledge capitals are examined in an open endogenous framework for the period 1980-2016. The control variables such as foreign direct investment, trade openness, energy consumption are also employed. The data are sourced from Reserve Bank of India, World Bank, International Energy Agency and The National Science and Technology Management Information System. To understand the dynamic association among variables, ARDL bounds approach to cointegration followed by Toda-Yamamoto causality test are used. The results reveal a short run and long run relationship among the variables supported by the existence of causality. This calls for an integrated policy to build and augment human capital and research and development activities to sustain and pace up growth and development in the nation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=demographic%20dividend" title="demographic dividend">demographic dividend</a>, <a href="https://publications.waset.org/abstracts/search?q=young%20population" title=" young population"> young population</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20endogenous%20growth%20models" title=" open endogenous growth models"> open endogenous growth models</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20and%20knowledge%20capital" title=" human and knowledge capital"> human and knowledge capital</a> </p> <a href="https://publications.waset.org/abstracts/107591/demographic-dividend-and-creation-of-human-and-knowledge-capital-in-liberal-india-an-endogenous-growth-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Long Run Estimates of Population, Consumption and Economic Development of India: An ARDL Bounds Testing Approach of Cointegration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Kumar">Sanjay Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Arumugam%20Sankaran"> Arumugam Sankaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Arjun%20K."> Arjun K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mousumi%20Das"> Mousumi Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The amount of domestic consumption and population growth is having a positive impact on economic growth and development as observed by the Harrod-Domar and endogenous growth models. The paper negates the Solow growth model which argues the population growth has a detrimental impact on per capita and steady-state growth. Unlike the Solow model, the paper observes, the per capita income growth never falls zero, and it sustains as positive. Hence, our goal here is to investigate the relationship among population, domestic consumption and economic growth of India. For this estimation, annual data from 1980-2016 has been collected from World Development Indicator and Reserve Bank of India. To know the long run as well as short-run dynamics among the variables, we have employed the ARDL bounds testing approach of cointegration followed by modified Wald causality test to know the direction of causality. The conclusion from cointegration and ARDL estimates reveal that there is a long run positive and statistically significant relationship among the variables under study. At the same time, the causality test shows that there is a causal relationship that exists among the variables. Hence, this calls for policies which have a long run perspective in strengthening the capabilities and entitlements of people and stabilizing domestic demand so as to serve long run and short run growth and stability of the economy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cointegration" title="cointegration">cointegration</a>, <a href="https://publications.waset.org/abstracts/search?q=consumption" title=" consumption"> consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20development" title=" economic development"> economic development</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20growth" title=" population growth"> population growth</a> </p> <a href="https://publications.waset.org/abstracts/107590/long-run-estimates-of-population-consumption-and-economic-development-of-india-an-ardl-bounds-testing-approach-of-cointegration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Antioxidant Capacity and Total Phenolic Content of Aqueous Acetone and Ethanol Extract of Edible Parts of Moringa oleifera and Sesbania grandiflora</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Perumal%20Siddhuraju">Perumal Siddhuraju</a>, <a href="https://publications.waset.org/abstracts/search?q=Arumugam%20Abirami"> Arumugam Abirami</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunasekaran%20Nagarani"> Gunasekaran Nagarani</a>, <a href="https://publications.waset.org/abstracts/search?q=Marimuthu%20Sangeethapriya"> Marimuthu Sangeethapriya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aqueous ethanol and aqueous acetone extracts of Moringa oleifera (outer pericarp of immature fruit and flower) and Sesbania grandiflora white variety (flower and leaf) were examined for radical scavenging capacities and antioxidant activities. Ethanol extract of S. grandiflora (flower and leaf) and acetone extract of M. oleifera (outer pericarp of immature fruit and flower) contained relatively higher levels of total dietary phenolics than the other extracts. The antioxidant potential of the extracts were assessed by employing different in vitro assays such as reducing power assay, DPPH˙, ABTS˙+ and ˙OH radical scavenging capacities, antihemolytic assay by hydrogen peroxide induced method and metal chelating ability. Though all the extracts exhibited dose dependent reducing power activity, acetone extract of all the samples were found to have more hydrogen donating ability in DPPH˙ (2.3% - 65.03%) and hydroxyl radical scavenging systems (21.6% - 77.4%) than the ethanol extracts. The potential of multiple antioxidant activity was evident as it possessed antihemolytic activity (43.2 % to 68.0 %) and metal ion chelating potency (45.16 - 104.26 mg EDTA/g sample). The result indicate that acetone extract of M. oleifera (OPIF and flower) and S. grandiflora (flower and leaf) endowed with polyphenols, could be utilized as natural antioxidants/nutraceuticals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Moringa%20oleifera" title=" Moringa oleifera"> Moringa oleifera</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenolics" title=" polyphenolics"> polyphenolics</a>, <a href="https://publications.waset.org/abstracts/search?q=Sesbania%20grandiflora" title=" Sesbania grandiflora"> Sesbania grandiflora</a>, <a href="https://publications.waset.org/abstracts/search?q=underutilized%20vegetables" title=" underutilized vegetables "> underutilized vegetables </a> </p> <a href="https://publications.waset.org/abstracts/8734/antioxidant-capacity-and-total-phenolic-content-of-aqueous-acetone-and-ethanol-extract-of-edible-parts-of-moringa-oleifera-and-sesbania-grandiflora" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Effect of 3-Dimensional Knitted Spacer Fabrics Characteristics on Its Thermal and Compression Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Veerakumar%20Arumugam">Veerakumar Arumugam</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Mishra"> Rajesh Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Militky"> Jiri Militky</a>, <a href="https://publications.waset.org/abstracts/search?q=Jana%20Salacova"> Jana Salacova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thermo-physiological comfort and compression properties of knitted spacer fabrics have been evaluated by varying the different spacer fabric parameters. Air permeability and water vapor transmission of the fabrics were measured using the Textest FX-3300 air permeability tester and PERMETEST. Then thermal behavior of fabrics was obtained by Thermal conductivity analyzer and overall moisture management capacity was evaluated by moisture management tester. Spacer Fabrics compression properties were also tested using Kawabata Evaluation System (KES-FB3). In the KES testing, the compression resilience, work of compression, linearity of compression and other parameters were calculated from the pressure-thickness curves. Analysis of Variance (ANOVA) was performed using new statistical software named QC expert trilobite and Darwin in order to compare the influence of different fabric parameters on thermo-physiological and compression behavior of samples. This study established that the raw materials, type of spacer yarn, density, thickness and tightness of surface layer have significant influence on both thermal conductivity and work of compression in spacer fabrics. The parameter which mainly influence on the water vapor permeability of these fabrics is the properties of raw material i.e. the wetting and wicking properties of fibers. The Pearson correlation between moisture capacity of the fabrics and water vapour permeability was found using statistical software named QC expert trilobite and Darwin. These findings are important requirements for the further designing of clothing for extreme environmental conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20spacer%20fabrics" title="3D spacer fabrics">3D spacer fabrics</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20management" title=" moisture management"> moisture management</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20of%20compression%20%28WC%29" title=" work of compression (WC)"> work of compression (WC)</a>, <a href="https://publications.waset.org/abstracts/search?q=resilience%20of%20compression%20%28RC%29" title=" resilience of compression (RC)"> resilience of compression (RC)</a> </p> <a href="https://publications.waset.org/abstracts/37460/effect-of-3-dimensional-knitted-spacer-fabrics-characteristics-on-its-thermal-and-compression-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Synthesis of Pendent Compartmental Ligand Derived from Polymethacrylate of 3-Formylsalicylic Acid Schiff Base and Its Application Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dhivya%20Arumugam">Dhivya Arumugam</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaliyappan%20Thananjeyan"> Kaliyappan Thananjeyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The monomer of (3-((4-(methacryloyloxy)phenylimino)methyl)-2-hydroxybenzoic acid) schiff base polymer was prepared by reacting methacryloyl chloride with imine compound derived from 3-formylsalisylic acid and 4- aminophenol. The monomer was polymerized in DMF at 70oC using benzoyl peroxide as free radical initiator. Polymer metal complex was obtained in DMF solution of polymer with aqueous solution of metal ions. The polymer and the polymer metal complex were characterized by elemental analysis and spectral studies. The elemental analysis data suggest that the metal to ligand ratio is 1:1 and hence, it acts as a binucleating compartmental ligand. The IR spectral data of these complexes suggest that the metals are coordinated through nitrogen of the imine group, the oxygen of carboxylate ion and the oxygen of the phenolic –OH group which also acts as the bridging ligand. The electronic spectra and magnetic moments of the polychelates shows that octahedral and square planar structure for Ni(II) and Cu(II) complexes respectively. X-ray diffraction studies revealed that polychelates are highly crystalline. The thermal and electrical properties, catalytic activity, structure property relationships are discussed. Further the synthesized polymer was used for metal uptake studies from waste water, which is one of the effective waste water treatment strategies. And also, the polymers and polychelates were investigated for antimicrobial activity with various microorganisms by using agar well diffusion method and the results have been discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acyclic%20compartmental%20ligands" title="acyclic compartmental ligands">acyclic compartmental ligands</a>, <a href="https://publications.waset.org/abstracts/search?q=binucleating%20ligand" title=" binucleating ligand"> binucleating ligand</a>, <a href="https://publications.waset.org/abstracts/search?q=3-formylsalicylic%20acid" title=" 3-formylsalicylic acid"> 3-formylsalicylic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20radical%20polymerization" title=" free radical polymerization"> free radical polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=polluting%20ions" title=" polluting ions"> polluting ions</a>, <a href="https://publications.waset.org/abstracts/search?q=polychelate" title=" polychelate"> polychelate</a> </p> <a href="https://publications.waset.org/abstracts/150724/synthesis-of-pendent-compartmental-ligand-derived-from-polymethacrylate-of-3-formylsalicylic-acid-schiff-base-and-its-application-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> High Throughput LC-MS/MS Studies on Sperm Proteome of Malnad Gidda (Bos Indicus) Cattle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kerekoppa%20Puttaiah%20Bhatta%20Ramesha">Kerekoppa Puttaiah Bhatta Ramesha</a>, <a href="https://publications.waset.org/abstracts/search?q=Uday%20Kannegundla"> Uday Kannegundla</a>, <a href="https://publications.waset.org/abstracts/search?q=Praseeda%20Mol"> Praseeda Mol</a>, <a href="https://publications.waset.org/abstracts/search?q=Lathika%20Gopalakrishnan"> Lathika Gopalakrishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagish%20Kour%20Reen"> Jagish Kour Reen</a>, <a href="https://publications.waset.org/abstracts/search?q=Gourav%20Dey"> Gourav Dey</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Kumar"> Manish Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakthivel%20Jeyakumar"> Sakthivel Jeyakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Arumugam%20Kumaresan"> Arumugam Kumaresan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiran%20Kumar%20M."> Kiran Kumar M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Thottethodi%20Subrahmanya%20Keshava%20Prasad"> Thottethodi Subrahmanya Keshava Prasad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spermatozoa are the highly specialized transcriptionally and translationally inactive haploid male gamete. The understanding of proteome of sperm is indispensable to explore the mechanism of sperm motility and fertility. Though there is a large number of human sperm proteomic studies, in-depth proteomic information on Bos indicus spermatozoa is not well established yet. Therefore, we illustrated the profile of sperm proteome in indigenous cattle, Malnad gidda (Bos Indicus), using high-resolution mass spectrometry. In the current study, two semen ejaculates from 3 breeding bulls were collected employing the artificial vaginal method. Using 45% percoll purification, spermatozoa cells were isolated. Protein was extracted using lysis buffer containing 2% Sodium Dodecyl Sulphate (SDS) and protein concentration was estimated. Fifty micrograms of protein from each individual were pooled for further downstream processing. Pooled sample was fractionated using SDS-Poly Acrylamide Gel Electrophoresis, which is followed by in-gel digestion. The peptides were subjected to C18 Stage Tip clean-up and analyzed in Orbitrap Fusion Tribrid mass spectrometer interfaced with Proxeon Easy-nano LC II system (Thermo Scientific, Bremen, Germany). We identified a total of 6773 peptides with 28426 peptide spectral matches, which belonged to 1081 proteins. Gene ontology analysis has been carried out to determine the biological processes, molecular functions and cellular components associated with sperm protein. The biological process chiefly represented our data is an oxidation-reduction process (5%), spermatogenesis (2.5%) and spermatid development (1.4%). The highlighted molecular functions are ATP, and GTP binding (14%) and the prominent cellular components most observed in our data were nuclear membrane (1.5%), acrosomal vesicle (1.4%), and motile cilium (1.3%). Seventeen percent of sperm proteins identified in this study were involved in metabolic pathways. To the best of our knowledge, this data represents the first total sperm proteome from indigenous cattle, Malnad Gidda. We believe that our preliminary findings could provide a strong base for the future understanding of bovine sperm proteomics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bos%20indicus" title="Bos indicus">Bos indicus</a>, <a href="https://publications.waset.org/abstracts/search?q=Malnad%20Gidda" title=" Malnad Gidda"> Malnad Gidda</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry" title=" mass spectrometry"> mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=spermatozoa" title=" spermatozoa"> spermatozoa</a> </p> <a href="https://publications.waset.org/abstracts/84954/high-throughput-lc-msms-studies-on-sperm-proteome-of-malnad-gidda-bos-indicus-cattle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Environmental Catalysts for Refining Technology Application: Reduction of CO Emission and Gasoline Sulphur in Fluid Catalytic Cracking Unit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Loganathan%20Kumaresan">Loganathan Kumaresan</a>, <a href="https://publications.waset.org/abstracts/search?q=Velusamy%20Chidambaram"> Velusamy Chidambaram</a>, <a href="https://publications.waset.org/abstracts/search?q=Arumugam%20Velayutham%20Karthikeyani"> Arumugam Velayutham Karthikeyani</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Cheru%20Pulikottil"> Alex Cheru Pulikottil</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhusudan%20Sau"> Madhusudan Sau</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurpreet%20Singh%20Kapur"> Gurpreet Singh Kapur</a>, <a href="https://publications.waset.org/abstracts/search?q=Sankara%20Sri%20Venkata%20Ramakumar"> Sankara Sri Venkata Ramakumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmentally driven regulations throughout the world stipulate dramatic improvements in the quality of transportation fuels and refining operations. The exhaust gases like CO, NOx, and SOx from stationary sources (e.g., refinery) and motor vehicles contribute to a large extent for air pollution. The refining industry is under constant environmental pressure to achieve more rigorous standards on sulphur content in the fuel used in the transportation sector and other off-gas emissions. Fluid catalytic cracking unit (FCCU) is a major secondary process in refinery for gasoline and diesel production. CO-combustion promoter additive and gasoline sulphur reduction (GSR) additive are catalytic systems used in FCCU to assist the combustion of CO to CO₂ in the regenerator and regulate sulphur in gasoline faction respectively along with main FCC catalyst. Effectiveness of these catalysts is governed by the active metal used, its dispersion, the type of base material employed, and retention characteristics of additive in FCCU such as attrition resistance and density. The challenge is to have a high-density microsphere catalyst support for its retention and high activity of the active metals as these catalyst additives are used in low concentration compare to the main FCC catalyst. The present paper discusses in the first part development of high dense microsphere of nanocrystalline alumina by hydro-thermal method for CO combustion promoter application. Performance evaluation of additive was conducted under simulated regenerator conditions and shows CO combustion efficiency above 90%. The second part discusses the efficacy of a co-precipitation method for the generation of the active crystalline spinels of Zn, Mg, and Cu with aluminium oxides as an additive. The characterization and micro activity test using heavy combined hydrocarbon feedstock at FCC unit conditions for evaluating gasoline sulphur reduction activity are studied. These additives were characterized by X-Ray Diffraction, NH₃-TPD & N₂ sorption analysis, TPR analysis to establish structure-activity relationship. The reaction of sulphur removal mechanisms involving hydrogen transfer reaction, aromatization and alkylation functionalities are established to rank GSR additives for their activity, selectivity, and gasoline sulphur removal efficiency. The sulphur shifting in other liquid products such as heavy naphtha, light cycle oil, and clarified oil were also studied. PIONA analysis of liquid product reveals 20-40% reduction of sulphur in gasoline without compromising research octane number (RON) of gasoline and olefins content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrothermal" title="hydrothermal">hydrothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocrystalline" title=" nanocrystalline"> nanocrystalline</a>, <a href="https://publications.waset.org/abstracts/search?q=spinel" title=" spinel"> spinel</a>, <a href="https://publications.waset.org/abstracts/search?q=sulphur%20reduction" title=" sulphur reduction"> sulphur reduction</a> </p> <a href="https://publications.waset.org/abstracts/115690/environmental-catalysts-for-refining-technology-application-reduction-of-co-emission-and-gasoline-sulphur-in-fluid-catalytic-cracking-unit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115690.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10