CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 256 results for author: <span class="mathjax">Kubiak, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&amp;query=Kubiak%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Kubiak, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Kubiak%2C+M&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Kubiak, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Kubiak%2C+M&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Kubiak%2C+M&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kubiak%2C+M&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kubiak%2C+M&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kubiak%2C+M&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kubiak%2C+M&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kubiak%2C+M&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13174">arXiv:2411.13174</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13174">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Production and Loss Processes of Hydrogen Energetic Neutral Atoms in the Heliosphere from 5 eV to 500 keV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Swaczyna%2C+P">Pawe艂 Swaczyna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">Maciej Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">Marzena A. Kubiak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13174v1-abstract-short" style="display: inline;"> Energetic Neutral Atom (ENA) observations provide valuable insights into the plasma conditions in the heliosphere and the surrounding interstellar medium. Unlike plasma detectors, which measure charged particles tied to the magnetic fields at their location, ENA detectors capture former ions that were neutralized in distant regions and traverse the heliosphere in straight trajectories. ENA fluxes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13174v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13174v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13174v1-abstract-full" style="display: none;"> Energetic Neutral Atom (ENA) observations provide valuable insights into the plasma conditions in the heliosphere and the surrounding interstellar medium. Unlike plasma detectors, which measure charged particles tied to the magnetic fields at their location, ENA detectors capture former ions that were neutralized in distant regions and traverse the heliosphere in straight trajectories. ENA fluxes near the Sun represent line-of-sight integrals of parent ion fluxes multiplied by neutralization (production) rates and reduced by the probability of ENA reionization (loss) processes. So far, most ENA analyses have focused on charge exchange between hydrogen atoms and protons as the primary source of ENAs. Here, we examine various ENA production and loss processes throughout the heliosphere in the broad energy range (5 eV to 500 keV) encompassing the next-generation ENA instruments aboard the Interstellar Mapping and Acceleration Probe (IMAP) mission. Our study considers binary collisions involving the most abundant species: protons, electrons, 伪-particles, He+ ions, photons, as well as hydrogen and helium atoms. Our findings indicate that, in addition to ENAs produced by charge exchange of energetic protons with hydrogen atoms, a significant portion of high-energy ENAs originate from the charge exchange with helium atoms. Below 10 keV, the dominant ENA loss processes are charge exchange collisions with protons and photoionization. However, stripping ionization processes, e.g., from collisions with ambient interstellar neutral hydrogen, become the main loss mechanism for higher energies because the charge exchange rate rapidly decreases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13174v1-abstract-full').style.display = 'none'; document.getElementById('2411.13174v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 7 figures, 3 tables, submitted to ApJS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.09915">arXiv:2406.09915</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.09915">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ad5832">10.3847/2041-8213/ad5832 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interstellar Neutral Hydrogen in the Heliosphere: New Horizons Observations in the Context of Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Swaczyna%2C+P">P. Swaczyna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">M. Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dialynas%2C+K">K. Dialynas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dyke%2C+L">L. Dyke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fraternale%2C+F">F. Fraternale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galli%2C+A">A. Galli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heerikhuisen%2C+J">J. Heerikhuisen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kornbleuth%2C+M+Z">M. Z. Kornbleuth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koutroumpa%2C+D">D. Koutroumpa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kowalska-Leszczy%C5%84ska%2C+I">I. Kowalska-Leszczy艅ska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">M. A. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Michael%2C+A+T">A. T. Michael</a>, <a href="/search/astro-ph?searchtype=author&amp;query=M%C3%BCller%2C+H+-">H. -R. M眉ller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Opher%2C+M">M. Opher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rahmanifard%2C+F">F. Rahmanifard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.09915v1-abstract-short" style="display: inline;"> Interstellar neutral (ISN) hydrogen is the most abundant species in the outer heliosheath and the very local interstellar medium (VLISM). Charge exchange collisions in the outer heliosheath result in filtration, reducing the ISN hydrogen density inside the heliosphere. Additionally, these atoms are intensively ionized close to the Sun, resulting in a substantial reduction of their density within a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09915v1-abstract-full').style.display = 'inline'; document.getElementById('2406.09915v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.09915v1-abstract-full" style="display: none;"> Interstellar neutral (ISN) hydrogen is the most abundant species in the outer heliosheath and the very local interstellar medium (VLISM). Charge exchange collisions in the outer heliosheath result in filtration, reducing the ISN hydrogen density inside the heliosphere. Additionally, these atoms are intensively ionized close to the Sun, resulting in a substantial reduction of their density within a few au from the Sun. The products of this ionization - pickup ions (PUIs) - are detected by charged particle detectors. The Solar Wind Around Pluto (SWAP) instrument on New Horizons provides, for the first time, PUI observations from the distant heliosphere. We analyze the observations collected between 22 and 52 au from the Sun to find the ISN hydrogen density profile and compare the results with predictions from global heliosphere models. We conclude that the density profile derived from the observations is inconsistent with steady-state model predictions. This discrepancy is not explained by time variations close to the Sun and thus may be related to the temporal evolution of the outer boundaries or VLISM conditions. Furthermore, we show that the cold and hot models of ISN hydrogen distribution are not a good approximation closer to the termination shock. Therefore, we recommend a new fiduciary point based on the available New Horizons observations at 40 au from the Sun, at ecliptic direction (285.62掳, 1.94掳), where the ISN hydrogen density is 0.11 cm$^{-3}$. The continued operation of New Horizons should give better insight into the source of the discussed discrepancy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09915v1-abstract-full').style.display = 'none'; document.getElementById('2406.09915v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Author Accepted Manuscript. Accepted for publication in The Astrophysical Journal Letters. 11 pages, 4 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal Letters 969:L20 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.09080">arXiv:2402.09080</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.09080">pdf</a>, <a href="https://arxiv.org/ps/2402.09080">ps</a>, <a href="https://arxiv.org/format/2402.09080">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Science Opportunities for IMAP-Lo Observations of Interstellar Neutral Hydrogen and Deuterium During a Maximum of Solar Activity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">Marzena A. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">Maciej Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moebius%2C+E">Eberhard Moebius</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schwadron%2C+N+A">Nathan A. Schwadron</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.09080v2-abstract-short" style="display: inline;"> Direct-sampling observations of interstellar neutral gas, including hydrogen and deuterium, have been performed for more than one cycle of solar activity by IBEX. IBEX viewing is restricted to directions perpendicular to the spacecraft--Sun line, which limits the observations to several months each year. This restriction is removed in a forthcoming mission Interstellar Mapping and Acceleration Pro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.09080v2-abstract-full').style.display = 'inline'; document.getElementById('2402.09080v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.09080v2-abstract-full" style="display: none;"> Direct-sampling observations of interstellar neutral gas, including hydrogen and deuterium, have been performed for more than one cycle of solar activity by IBEX. IBEX viewing is restricted to directions perpendicular to the spacecraft--Sun line, which limits the observations to several months each year. This restriction is removed in a forthcoming mission Interstellar Mapping and Acceleration Probe. The IMAP-Lo instrument will have a capability of adjusting the angle of its boresight with the spacecraft rotation axis. We continue a series of studies of resulting science opportunities. We adopt a schedule of adjusting the boresight angle suggested by Kubiak et al. 2023 and focus on interstellar hydrogen and deuterium during solar maximum epoch. Based on extensive set of simulations, we identify the times during calendar year and elongation angles of the boresight needed to measure the abundance of D/H at the termination shock and unambiguously observe interstellar H without contribution from interstellar He. Furthermore, IMAP-Lo will be able to resolve the primary and secondary populations, in particular to view the secondary population with little contribution from the primary. We show that the expected signal is sensitive to details of radiation pressure, particularly its dependence on radial speed of the atoms, and to details of the behavior of the distribution function of the primary and secondary populations at the heliopause. Therefore, IMAP-Lo will be able to provide observations needed to address compelling questions of the heliospheric physics, and even general astrophysics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.09080v2-abstract-full').style.display = 'none'; document.getElementById('2402.09080v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.08043">arXiv:2402.08043</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.08043">pdf</a>, <a href="https://arxiv.org/format/2402.08043">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Sensitivity of the helioglow to variation of the total ionization rate and solar Lyman-alpha emission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kowalska-Leszczynska%2C+I">Izabela Kowalska-Leszczynska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">Marzena A. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">Maciej Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Strumik%2C+M">Marek Strumik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.08043v1-abstract-short" style="display: inline;"> Direct observations of solar wind are mostly limited to the vicinity of the ecliptic plane. Retrieving the latitudinal structure of solar wind indirectly based on observations of the backscatter glow of interstellar neutral hydrogen is complex and requires support from theoretical models. The GLOWS instrument, to operate on the planned IMAP mission, will scan the helioglow along circumsolar rings&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08043v1-abstract-full').style.display = 'inline'; document.getElementById('2402.08043v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.08043v1-abstract-full" style="display: none;"> Direct observations of solar wind are mostly limited to the vicinity of the ecliptic plane. Retrieving the latitudinal structure of solar wind indirectly based on observations of the backscatter glow of interstellar neutral hydrogen is complex and requires support from theoretical models. The GLOWS instrument, to operate on the planned IMAP mission, will scan the helioglow along circumsolar rings with an angular distance of ~75 degrees. Its objective is to retrieve the latitudinal structure of the ionization rate of interstellar hydrogen and with this, the structure of the solar wind. In preparation for future analysis, we studied the sensitivity of the light curves to temporal and latitudinal variation of the ionization rate of interstellar hydrogen and the solar Lyman-alpha illumination. Based on carefully planned numerical experiments, we analyze the time delay and relaxation time of the system for variations of the ionization rate and solar illumination in heliolatitude and with time. We found that variations in the solar illumination are reflected in the helioglow without delay, but relaxation takes longer than the variation rise time. By contrast, variations in the ionization rate are anti-correlated with the helioglow brightness with a delay of several months. We also found that the helioglow is not sensitive to variations in the ionization rate at the solar poles, so retrieving the ionization rate and solar wind at the poles requires an approximation of the ionization rate profiles with appropriate parametric functions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08043v1-abstract-full').style.display = 'none'; document.getElementById('2402.08043v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.14039">arXiv:2312.14039</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.14039">pdf</a>, <a href="https://arxiv.org/format/2312.14039">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Effects of Heliolatitudinal Anisotropy of Solar FUV/EUV Emissions on Lyman-alpha Helioglow </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Strumik%2C+M">M. Strumik</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">M. Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">M. A. Kubiak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.14039v1-abstract-short" style="display: inline;"> We present a study of the influence of solar UV anisotropy on the heliospheric backscatter helioglow generated by resonant scattering of solar Lyman-alpha photons on interstellar hydrogen atoms around the Sun. Simulations based on the WawHelioGlow model suggest that the response of the helioglow pole-to-ecliptic ratio to the anisotropy is linear, but 15% of the anisotropy (polar darkening) generat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14039v1-abstract-full').style.display = 'inline'; document.getElementById('2312.14039v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.14039v1-abstract-full" style="display: none;"> We present a study of the influence of solar UV anisotropy on the heliospheric backscatter helioglow generated by resonant scattering of solar Lyman-alpha photons on interstellar hydrogen atoms around the Sun. Simulations based on the WawHelioGlow model suggest that the response of the helioglow pole-to-ecliptic ratio to the anisotropy is linear, but 15% of the anisotropy (polar darkening) generates 30-40% change in the ratio in the solar minimum and 15-20% in the solar maximum. We attribute this difference to an interplay between the solar UV anisotropy and the latitudinal structure of the solar wind in solar minima. The solar UV anisotropy also increases the helioglow intensity from the downwind direction by 5-10%, due to the influence of the anisotropy on the ionization losses and trajectories of atoms passing by the Sun in polar regions. Consequently, mid-latitude regions (in the heliographic and ecliptic coordinates) are least affected by the UV anisotropy. By comparison of the simulation results with observations of the SOHO/SWAN satellite instrument, we derive the day-by-day time evolution of the solar Lyman-alpha anisotropy for the north and south poles over two solar cycles from 1996 to 2022. The inferred anisotropy is ~5-10% in solar minima and ~15-25% in solar maxima, the northern anisotropy being stronger than the southern. Our study suggests that in solar minima a highly structured solar wind is associated with relatively small solar UV anisotropy, while in solar maxima the solar wind is more isotropic but a substantial solar UV anisotropy appears. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14039v1-abstract-full').style.display = 'none'; document.getElementById('2312.14039v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 14 figures. Accepted for publication in Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.06931">arXiv:2309.06931</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.06931">pdf</a>, <a href="https://arxiv.org/ps/2309.06931">ps</a>, <a href="https://arxiv.org/format/2309.06931">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Science Opportunities for IMAP-Lo Observations of Interstellar Neutral Helium, Neon and Oxygen During a Maximum of Solar Activity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">M. A. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">M. Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Swaczyna%2C+P">P. Swaczyna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moebius%2C+E">E. Moebius</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schwadron%2C+N+A">N. A. Schwadron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McComas%2C+D+J">D. J. McComas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.06931v2-abstract-short" style="display: inline;"> Direct-sampling observations of interstellar neutral (ISN) species and their secondary populations give information about the physical state of the local interstellar medium and processes occuring in the outer heliosheath. Such observations are performed from Earth&#39;s orbit by the IBEX-Lo experiment on board the Interstellar Boundary Explorer (IBEX) mission. IBEX ISN viewing is restricted to direct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.06931v2-abstract-full').style.display = 'inline'; document.getElementById('2309.06931v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.06931v2-abstract-full" style="display: none;"> Direct-sampling observations of interstellar neutral (ISN) species and their secondary populations give information about the physical state of the local interstellar medium and processes occuring in the outer heliosheath. Such observations are performed from Earth&#39;s orbit by the IBEX-Lo experiment on board the Interstellar Boundary Explorer (IBEX) mission. IBEX ISN viewing is restricted to directions close to perpendicular to the Earth-Sun line, which limits the observations of interstellar species to several months during the year. A greatly improved data set will be possible for the upcoming Interstellar Mapping and Acceleration Probe (IMAP) mission due to a novel concept of putting the IMAP ISN detector, IMAP-Lo, on a pivot platform that varies the angle of observation relative to the Sun-Earth line and the detector boresight. Here we suggest a 2 yr scenario for varying the viewing angle in such a way that all the necessary atom components can be observed sufficiently well to achieve the science goals of the nominal IMAP mission. This scenario facilitates, among others, removal of the correlation of the inflow parameters of interstellar gas, unambiguous analysis of the primary and secondary populations of interstellar helium (He), neon (Ne) and oxygen (O), and determination of the ionization rates of He and Ne free of possible calibration bias. The scheme is operationally simple, provides a good counting statistics, and synergizes observations of interstellar species and heliospheric energetic neutral atoms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.06931v2-abstract-full').style.display = 'none'; document.getElementById('2309.06931v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Approved for ApjS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.06694">arXiv:2307.06694</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.06694">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ace719">10.3847/1538-4357/ace719 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interstellar Conditions Deduced from Interstellar Neutral Helium Observed by IBEX and Global Heliosphere Modeling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Swaczyna%2C+P">P. Swaczyna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">M. Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heerikhuisen%2C+J">J. Heerikhuisen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">M. A. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rahmanifard%2C+F">F. Rahmanifard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zirnstein%2C+E+J">E. J. Zirnstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fuselier%2C+S+A">S. A. Fuselier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galli%2C+A">A. Galli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McComas%2C+D+J">D. J. McComas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=M%C3%B6bius%2C+E">E. M枚bius</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schwadron%2C+N+A">N. A. Schwadron</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.06694v1-abstract-short" style="display: inline;"> In situ observations of interstellar neutral (ISN) helium atoms by the IBEX-Lo instrument onboard the Interstellar Boundary Explorer (IBEX) mission are used to determine the velocity and temperature of the pristine very local interstellar medium (VLISM). Most ISN helium atoms penetrating the heliosphere, known as the primary population, originate in the pristine VLISM. As the primary atoms travel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06694v1-abstract-full').style.display = 'inline'; document.getElementById('2307.06694v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.06694v1-abstract-full" style="display: none;"> In situ observations of interstellar neutral (ISN) helium atoms by the IBEX-Lo instrument onboard the Interstellar Boundary Explorer (IBEX) mission are used to determine the velocity and temperature of the pristine very local interstellar medium (VLISM). Most ISN helium atoms penetrating the heliosphere, known as the primary population, originate in the pristine VLISM. As the primary atoms travel through the outer heliosheath, they charge exchange with He$^+$ ions in slowed and compressed plasma creating the secondary population. With more than 2.4 million ISN helium atoms sampled by IBEX during ISN seasons 2009-2020, we compare the observations with predictions of a parametrized model of ISN helium transport in the heliosphere. We account for the filtration of ISN helium atoms at the heliospheric boundaries by charge exchange and elastic collisions. We examine the sensitivity of the ISN helium fluxes to the interstellar conditions described by the pristine VLISM velocity, temperature, magnetic field, and composition. We show that comprehensive modeling of the filtration processes is critical for interpreting ISN helium observations, as the change in the derived VLISM conditions exceeds the statistical uncertainties when accounting for these effects. The pristine VLISM parameters found by this analysis are the flow speed (26.6 km s$^{-1}$), inflow direction in ecliptic coordinates (255.7$^\circ$, 5.04$^\circ$), temperature (7350 K), and B-V plane inclination to the ecliptic plane (53.7$^\circ$). The derived pristine VLISM He$^+$ density is $9.7\times10^3$ cm$^{-3}$. Additionally, we show a strong correlation between the interstellar plasma density and magnetic field strength deduced from these observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06694v1-abstract-full').style.display = 'none'; document.getElementById('2307.06694v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 3 figures, 2 tables, accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.01135">arXiv:2306.01135</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.01135">pdf</a>, <a href="https://arxiv.org/ps/2306.01135">ps</a>, <a href="https://arxiv.org/format/2306.01135">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acda8c">10.3847/1538-4357/acda8c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The flow direction of interstellar neutral H from SOHO/SWAN </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">M. Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">M. A. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Strumik%2C+M">M. Strumik</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kowalska-Leszczynska%2C+I">I. Kowalska-Leszczynska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Porowski%2C+C">C. Porowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Quemerais%2C+E">E. Quemerais</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.01135v2-abstract-short" style="display: inline;"> Interstellar neutral hydrogen flows into the heliosphere as a mixture of the primary and secondary populations from two somewhat different directions due to splitting occurring in the magnetized outer heliosheath. The direction of inflow of interstellar neutral H observed in the inner heliosphere, confronted with that of the unperturbed flow of interstellar neutral helium, is important for underst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.01135v2-abstract-full').style.display = 'inline'; document.getElementById('2306.01135v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.01135v2-abstract-full" style="display: none;"> Interstellar neutral hydrogen flows into the heliosphere as a mixture of the primary and secondary populations from two somewhat different directions due to splitting occurring in the magnetized outer heliosheath. The direction of inflow of interstellar neutral H observed in the inner heliosphere, confronted with that of the unperturbed flow of interstellar neutral helium, is important for understanding the geometry of the distortion of the heliosphere from axial symmetry. It is also needed for facilitating remote-sensing studies of the solar wind structure based on observations of the helioglow, such as those presently performed by SOHO/SWAN, and in a near future by IMAP/GLOWS. In the past, the only means to measure the flow direction of interstellar hydrogen were spectroscopic observations of the helioglow. Here, we propose a new method to determine this parameter based on a long series of photometric observations of the helioglow. The method is based on purely geometric considerations and does not depend on any model and absolute calibration of the measurements. We apply this method to sky maps of the helioglow available from the SOHO/SWAN experiment and derive the mean flow longitude of interstellar hydrogen. We obtain $253.1\degr \pm 2.8\degr$, which is in perfect agreement with the previously obtained results based on spectroscopic observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.01135v2-abstract-full').style.display = 'none'; document.getElementById('2306.01135v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in ApJ. Title adjusted to the published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astrophysical Journal Vol. 952:2, 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.04510">arXiv:2305.04510</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.04510">pdf</a>, <a href="https://arxiv.org/ps/2305.04510">ps</a>, <a href="https://arxiv.org/format/2305.04510">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acd18f">10.3847/1538-4357/acd18f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radiation pressure acting on the neutral He atoms in the Heliosphere </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kowalska-Leszczynska%2C+I">Izabela Kowalska-Leszczynska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">Marzena A. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">Maciej Bzowski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.04510v2-abstract-short" style="display: inline;"> The Interstellar Neutral Helium (ISN He) is an important source of information on the physical state of the Local Interstellar Medium. Radiation pressure acting on the neutral helium atoms in the heliosphere has always been neglected, its effect has been considered insignificant compared to gravitational force. The most advanced numerical models of ISN He take into account more and more subtle eff&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.04510v2-abstract-full').style.display = 'inline'; document.getElementById('2305.04510v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.04510v2-abstract-full" style="display: none;"> The Interstellar Neutral Helium (ISN He) is an important source of information on the physical state of the Local Interstellar Medium. Radiation pressure acting on the neutral helium atoms in the heliosphere has always been neglected, its effect has been considered insignificant compared to gravitational force. The most advanced numerical models of ISN He take into account more and more subtle effects, therefore it is important to check if the effect of radiation pressure is still negligible. In this paper, we use the most up-to-date version of the Warsaw Test Particle Model (WTPM) to calculate the expected helium distribution in the heliosphere, and simulate the flux of ISN He observed by the Interstellar Boundary Explorer (IBEX) and in the future by the Interstellar Mapping and Acceleration Probe (IMAP). We compare results calculated with and without radiation pressure during low and high solar activity. The results show that in the analysis of IBEX-Lo observations the radiation pressure acting on typical helium causes flux differences at a level of 1-4% and is comparable to the observational errors. For the more sensitive IMAP-Lo instrument, there are some regions in the considered observations configurations where radiation pressure causes potentially statistically significant changes in the calculated fluxes. The effect can be up to 9% for the indirect beam and is likely to be higher than the estimated errors. Therefore, we claim that in the future analysis of the IMAP-Lo observations radiation pressure acting on ISN He should be considered. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.04510v2-abstract-full').style.display = 'none'; document.getElementById('2305.04510v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.08195">arXiv:2303.08195</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.08195">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/acc397">10.3847/1538-4365/acc397 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Relative In-flight Response of IBEX-Lo to Interstellar Neutral Helium Atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Swaczyna%2C+P">P. Swaczyna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">M. Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fuselier%2C+S+A">S. A. Fuselier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galli%2C+A">A. Galli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heerikhuisen%2C+J">J. Heerikhuisen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">M. A. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McComas%2C+D+J">D. J. McComas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=M%C3%B6bius%2C+E">E. M枚bius</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rahmanifard%2C+F">F. Rahmanifard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schwadron%2C+N+A">N. A. Schwadron</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.08195v1-abstract-short" style="display: inline;"> The IBEX-Lo instrument on the Interstellar Boundary Explorer (IBEX) mission measures interstellar neutral (ISN) helium atoms. The detection of helium atoms is made through negative hydrogen (H$^-$) ions sputtered by the helium atoms from the IBEX-Lo conversion surface. The energy spectrum of ions sputtered by ISN helium atoms is broad and overlaps the four lowest IBEX-Lo electrostatic analyzer (ES&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08195v1-abstract-full').style.display = 'inline'; document.getElementById('2303.08195v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.08195v1-abstract-full" style="display: none;"> The IBEX-Lo instrument on the Interstellar Boundary Explorer (IBEX) mission measures interstellar neutral (ISN) helium atoms. The detection of helium atoms is made through negative hydrogen (H$^-$) ions sputtered by the helium atoms from the IBEX-Lo conversion surface. The energy spectrum of ions sputtered by ISN helium atoms is broad and overlaps the four lowest IBEX-Lo electrostatic analyzer (ESA) steps. Consequently, the energy response function for helium atoms does not correspond to the nominal energy step transmission. Moreover, laboratory calibration is incomplete because it is difficult to produce narrow-energy neutral atom beams that are expected for ISN helium atoms. Here, we analyze the ISN helium observations in ESA steps 1-4 to derive the relative in-flight response of IBEX-Lo to helium atoms. We compare the ratios of the observed count rates as a function of the mean ISN helium atom energy estimated using the Warsaw Test Particle Model (WTPM). The WTPM uses a global heliosphere model to calculate charge exchange gains and losses to estimate the secondary ISN helium population. We find that the modeled mean energies of ISN helium atoms, unlike their modeled fluxes, are not very sensitive to the very local interstellar medium parameters. The obtained relative responses supplement the laboratory calibration and enable more detailed quantitative studies of the ISN helium signal. A similar procedure that we applied to the IBEX-Lo observations may be used to complement laboratory calibration of the next-generation IMAP-Lo instrument on the Interstellar Mapping and Acceleration Probe (IMAP) mission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08195v1-abstract-full').style.display = 'none'; document.getElementById('2303.08195v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 8 figures, 1 table, accepted for publication in ApJS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.10793">arXiv:2301.10793</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.10793">pdf</a>, <a href="https://arxiv.org/ps/2301.10793">ps</a>, <a href="https://arxiv.org/format/2301.10793">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/acb497">10.3847/1538-4365/acb497 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Determining the ionization rates of interstellar neutral species using direct-sampling observations of their direct and indirect beams </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">M. Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">M. A. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moebius%2C+E">E. Moebius</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schwadron%2C+N+A">N. A. Schwadron</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.10793v1-abstract-short" style="display: inline;"> A good understanding of the ionization rates of neutral species in the heliosphere is important for studies of the heliosphere and planetary atmospheres. So far, the intensities of the ionization reactions have been studied based on observations of the contributing phenomena, such as the solar spectral flux in the EUV band and the flux of the solar wind protons, alpha particles, and electrons. The&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.10793v1-abstract-full').style.display = 'inline'; document.getElementById('2301.10793v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.10793v1-abstract-full" style="display: none;"> A good understanding of the ionization rates of neutral species in the heliosphere is important for studies of the heliosphere and planetary atmospheres. So far, the intensities of the ionization reactions have been studied based on observations of the contributing phenomena, such as the solar spectral flux in the EUV band and the flux of the solar wind protons, alpha particles, and electrons. The results strongly depend on absolute calibration of these measurements, which, especially for the EUV measurements, is challenging. Here, we propose a novel method of determining the ionization rate of neutral species based on direct sampling of interstellar neutral gas from two locations in space distant to each other. In particular, we suggest performing observations from the vicinity of Earth&#39;s orbit and using ratios of fluxes of ISN He for the direct and indirect orbits of interstellar atoms. We identify the most favorable conditions and observations geometries, suitable for implementation on the forthcoming NASA mission Interstellar Mapping and Acceleration Probe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.10793v1-abstract-full').style.display = 'none'; document.getElementById('2301.10793v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for ApJS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.14101">arXiv:2208.14101</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.14101">pdf</a>, <a href="https://arxiv.org/ps/2208.14101">ps</a>, <a href="https://arxiv.org/format/2208.14101">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Breaking correlation in the inflow parameters of interstellar neutral gas in direct-sampling observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">M. Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">M. A. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=M%C3%B6bius%2C+E">E. M枚bius</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schwadron%2C+N+A">N. A. Schwadron</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.14101v1-abstract-short" style="display: inline;"> We analyze the reasons for the correlation between the temperature, direction, and speed of the interstellar neutral gas inflow into the heliosphere, obtained in analyzes of observations performed by the IBEX-Lo instrument onboard Interstellar Boundary Explorer (IBEX). We point out that this correlation is the combined result of the inability to measure the speed of the atoms that enter the instru&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.14101v1-abstract-full').style.display = 'inline'; document.getElementById('2208.14101v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.14101v1-abstract-full" style="display: none;"> We analyze the reasons for the correlation between the temperature, direction, and speed of the interstellar neutral gas inflow into the heliosphere, obtained in analyzes of observations performed by the IBEX-Lo instrument onboard Interstellar Boundary Explorer (IBEX). We point out that this correlation is the combined result of the inability to measure the speed of the atoms that enter the instrument and the restriction of the observations to a short orbital arc around the Sun performed by the instrument during observation. We demonstrate that without the capability to measure the speed, but with the ability to perform observations along longer orbital arcs, or from at least two distant locations on the orbit around the Sun, it is possible to break the parameter correlation. This, however, requires a capability to adjust the boresight of the instrument relative to the spacecraft rotation axis, such as that of the planned IMAP-Lo camera onboard the Interstellar Mapping and Acceleration Probe (IMAP). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.14101v1-abstract-full').style.display = 'none'; document.getElementById('2208.14101v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.05463">arXiv:2201.05463</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.05463">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/ac4bde">10.3847/1538-4365/ac4bde <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Very Local Interstellar Medium Revealed by Complete Solar Cycle of Interstellar Neutral Helium Observations with IBEX </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Swaczyna%2C+P">P. Swaczyna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">M. A. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">M. Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bower%2C+J">J. Bower</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fuselier%2C+S+A">S. A. Fuselier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galli%2C+A">A. Galli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heirtzler%2C+D">D. Heirtzler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McComas%2C+D+J">D. J. McComas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=M%C3%B6bius%2C+E">E. M枚bius</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rahmanifard%2C+F">F. Rahmanifard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schwadron%2C+N+A">N. A. Schwadron</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.05463v1-abstract-short" style="display: inline;"> The IBEX-Lo instrument on board the Interstellar Boundary Explorer (IBEX) mission samples interstellar neutral (ISN) helium atoms penetrating the heliosphere from the very local interstellar medium (VLISM). In this study, we analyze the IBEX-Lo ISN helium observations covering a complete solar cycle, from 2009 through 2020 using a comprehensive uncertainty analysis including statistical and system&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05463v1-abstract-full').style.display = 'inline'; document.getElementById('2201.05463v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.05463v1-abstract-full" style="display: none;"> The IBEX-Lo instrument on board the Interstellar Boundary Explorer (IBEX) mission samples interstellar neutral (ISN) helium atoms penetrating the heliosphere from the very local interstellar medium (VLISM). In this study, we analyze the IBEX-Lo ISN helium observations covering a complete solar cycle, from 2009 through 2020 using a comprehensive uncertainty analysis including statistical and systematic sources.W e employ the Warsaw Test Particle Model to simulate ISN helium fluxes at IBEX, which are subsequently compared with the observed count rate in the three lowest energy steps of IBEX-Lo. The $蠂^2$ analysis shows that the ISN helium flows from ecliptic $(位,尾)=(255.59^{\circ}\pm0.23^{\circ}, 5.14^{\circ}\pm0.08^{\circ})$, with speed $v_\text{HP}=25.86\pm0.21$ km s$^{-1}$ and temperature $T_\text{HP}=7450\pm140$ K at the heliopause. Accounting for gravitational attraction and elastic collisions, the ISN helium speed and temperature in the pristine VLISM far from the heliopause are $v_\text{VLISM}=25.9$ km s$^{-1}$ and $T_\text{VLISM}=6150$ K, respectively. The time evolution of the ISN helium fluxes at 1 au over 12 years suggests significant changes in the IBEX-Lo detection efficiency, higher ionization rates of ISN helium atoms in the heliosphere than assumed in the model, or an additional unaccounted signal source in the analyzed observations. Nevertheless, we do not find any indication of the evolution of the derived parameters of ISN helium over the period analyzed. Finally, we argue that the continued operation of IBEX-Lo to overlap with the Interstellar Mapping and Acceleration Probe (IMAP) will be pivotal in tracking possible physical changes in the VLISM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05463v1-abstract-full').style.display = 'none'; document.getElementById('2201.05463v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 6 figures, 8 tables, accepted for publication in ApJS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.15412">arXiv:2111.15412</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.15412">pdf</a>, <a href="https://arxiv.org/ps/2111.15412">ps</a>, <a href="https://arxiv.org/format/2111.15412">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac4092">10.3847/1538-4357/ac4092 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Absorption of the Lyman-$伪$ radiation in the heliosphere </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kowalska-Leszczynska%2C+I">Izabela Kowalska-Leszczynska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">Marzena A. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">Maciej Bzowski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.15412v1-abstract-short" style="display: inline;"> Absorption of the Lyman-$伪$ radiation on Interstellar Neutral Hydrogen (ISN H) atoms in the heliosphere is a potentially important effect to account for in precise gas distribution simulations. In this paper we develop a method to estimate the magnitude of absorption of solar Lyman-$伪$ radiation inside the solar wind termination shock and to include absorption effects in the Warsaw Test Particle M&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.15412v1-abstract-full').style.display = 'inline'; document.getElementById('2111.15412v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.15412v1-abstract-full" style="display: none;"> Absorption of the Lyman-$伪$ radiation on Interstellar Neutral Hydrogen (ISN H) atoms in the heliosphere is a potentially important effect to account for in precise gas distribution simulations. In this paper we develop a method to estimate the magnitude of absorption of solar Lyman-$伪$ radiation inside the solar wind termination shock and to include absorption effects in the Warsaw Test Particle Model (WTPM) by an appropriate modification of radiation pressure. We perform calculations of absorption effects on a 3D grid in the heliosphere and present a set of parameters to model absorption effects for the mean solar activity conditions. We show that absorption can change up to 3% depending on the solar activity level. Using a modified version of WTPM, we calculate the expected signal from IBEX-Lo and show that absorption may modify the simulated flux up to 8%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.15412v1-abstract-full').style.display = 'none'; document.getElementById('2111.15412v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submited to ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal, Volume 926, Number 1 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.08095">arXiv:2109.08095</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.08095">pdf</a>, <a href="https://arxiv.org/format/2109.08095">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ac2734">10.3847/2041-8213/ac2734 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Influence of Heliolatitudinal Anisotropy of Solar FUV/EUV Emissions on Lyman-alpha Helioglow: SOHO/SWAN Observations and WawHelioGlow Modeling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Strumik%2C+M">Marek Strumik</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">Maciej Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">Marzena A. Kubiak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.08095v1-abstract-short" style="display: inline;"> Observations of the Sun&#39;s surface suggest a nonuniform radiated flux as related to the presence of bright active regions and darker coronal holes. The variations of the FUV/EUV source radiation can be expected to affect the Lyman-alpha backscatter glow measured by spaceborne instruments. In particular, inferring the heliolatitudinal structure of the solar wind from helioglow variations in the sky&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08095v1-abstract-full').style.display = 'inline'; document.getElementById('2109.08095v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.08095v1-abstract-full" style="display: none;"> Observations of the Sun&#39;s surface suggest a nonuniform radiated flux as related to the presence of bright active regions and darker coronal holes. The variations of the FUV/EUV source radiation can be expected to affect the Lyman-alpha backscatter glow measured by spaceborne instruments. In particular, inferring the heliolatitudinal structure of the solar wind from helioglow variations in the sky can be quite challenging if the heliolatitudinal structure of the solar FUV/EUV radiation is not properly included in the modeling of the heliospheric glow. We present results of analysis of the heliolatitudinal structure of the solar Lyman-alpha radiation as inferred from comparison of SOHO/SWAN satellite observations of the helioglow intensity with modeling results obtained from the recently-developed WawHelioGlow model. We find that in addition to time-dependent heliolatitudinal anisotropy of the solar wind, also time-dependent heliolatitudinal variations of the intensity of the solar Lyman-alpha and photoionizing emissions must be taken into account to reproduce the observed helioglow modulation in the sky. We present a particular latitudinal and temporal dependence of the solar Lyman-alpha flux obtained as a result of our analysis. We analyze also differences between polar-equatorial anisotropies close to the solar surface and seen by an observer located far from the Sun. We discuss the implications of these findings for the interpretation of heliospheric-glow observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08095v1-abstract-full').style.display = 'none'; document.getElementById('2109.08095v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Astrophysical Journal Letters, 11 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.02802">arXiv:2103.02802</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.02802">pdf</a>, <a href="https://arxiv.org/ps/2103.02802">ps</a>, <a href="https://arxiv.org/format/2103.02802">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/abeb78">10.3847/1538-4365/abeb78 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> WawHelioGlow: a model of the heliospheric backscatter glow. II. The helioglow buildup and the potential significance of the anisotropy in the solar EUV output </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">M. A. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">M. Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kowalska-Leszczynska%2C+I">I. Kowalska-Leszczynska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Strumik%2C+M">M. Strumik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.02802v1-abstract-short" style="display: inline;"> The helioglow is a fluorescence of interstellar atoms inside the heliosphere, where they are excited by the solar EUV. Because the mean free path between collisions for the interstellar gas is comparable to the size of the heliosphere, the distribution function of this gas inside the heliosphere strongly varies in space and with time and is non-Maxwellian. Coupling between realistically modeled so&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.02802v1-abstract-full').style.display = 'inline'; document.getElementById('2103.02802v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.02802v1-abstract-full" style="display: none;"> The helioglow is a fluorescence of interstellar atoms inside the heliosphere, where they are excited by the solar EUV. Because the mean free path between collisions for the interstellar gas is comparable to the size of the heliosphere, the distribution function of this gas inside the heliosphere strongly varies in space and with time and is non-Maxwellian. Coupling between realistically modeled solar factors and the distribution function of interstellar neutral gas is accounted for in a helioglow model that we have developed. WawHelioGlow is presented in the accompanying Paper I. Here, we present the evolution of the gas density, solar illumination, helioglow source function, and other relevant parameters building up the helioglow signal for selected lines of sight observed at 1 au. We compare these elements for various phases of the solar cycle and we present the sensitivity of the results to heliolatitudinal anisotropy of the solar EUV output. We assume a realistic latitudinal anisotropy of the solar wind flux using results from analysis of interplanetary scintillations. We compare the simulated helioglow with with selected maps observed by the SOHO/SWAN instrument. We demonstrate that WawHelioGlow is able to reproduce fundamental features of the sky distribution of the helioglow. For some phases of the solar cycle, the model with an anisotropy of the solar EUV output better reproduces the observations, while for other phases no EUV anisotropy is needed. In all simulated cases, the solar wind anisotropy following insight from interplanetary scintillation measurements is present. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.02802v1-abstract-full').style.display = 'none'; document.getElementById('2103.02802v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.02797">arXiv:2103.02797</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.02797">pdf</a>, <a href="https://arxiv.org/ps/2103.02797">ps</a>, <a href="https://arxiv.org/format/2103.02797">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/abeb79">10.3847/1538-4365/abeb79 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> WawHelioGlow: a model of the heliospheric backscatter glow. I. Model definition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">M. A. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">M. Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kowalska-Leszczynska%2C+I">I. Kowalska-Leszczynska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Strumik%2C+M">M. Strumik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.02797v1-abstract-short" style="display: inline;"> The helioglow is a fluorescence of interstellar atoms inside the heliosphere, where they are excited by the solar EUV emission. So far, the helioglow of interstellar H and He have been detected. The helioglow features a characteristic distribution in the sky, which can be used to derive both the properties of interstellar neutral gas and those of the solar wind. This requires a simulation model ca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.02797v1-abstract-full').style.display = 'inline'; document.getElementById('2103.02797v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.02797v1-abstract-full" style="display: none;"> The helioglow is a fluorescence of interstellar atoms inside the heliosphere, where they are excited by the solar EUV emission. So far, the helioglow of interstellar H and He have been detected. The helioglow features a characteristic distribution in the sky, which can be used to derive both the properties of interstellar neutral gas and those of the solar wind. This requires a simulation model capable of catching with a sufficient realism the essential coupling relations between the solar factors and interstellar. The solar factors include the solar wind flux and its variation with time and heliolatitude, as well as the heliolatitude and time variation of the solar EUV output. The ISN gas inside the heliosphere features a complex distribution function, which varies with time and location. The paper presents the first version of a WawHelioGlow simulation model for the helioglow flux using an optically thin, single scattering approximation. The helioglow computations are based on a sophisticated kinetic treatment of the distribution functions of interstellar H and He provided by the (n)WTPM model. The model takes into account heliolatitudinal and spectral variations of the solar EUV output from observations. We present a formulation of the model and the treatment of the solar spectral flux. The accompanying Paper II illustrates details of the line of sight evolution of the elements of the model and a brief comparison of results of the WawHelioGlow code with selected sky maps of the hydrogen helioglow, obtained by the SWAN instrument onboard the SOHO mission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.02797v1-abstract-full').style.display = 'none'; document.getElementById('2103.02797v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.10557">arXiv:2008.10557</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.10557">pdf</a>, <a href="https://arxiv.org/ps/2008.10557">ps</a>, <a href="https://arxiv.org/format/2008.10557">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Time delay between outer heliosheath crossing and observation of interstellar neutral atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">M. Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">M. A. Kubiak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.10557v1-abstract-short" style="display: inline;"> In situ measurements of the heliospheric particle populations by the Voyager spacecraft can only be put in an appropriate context with remote-sensing observations of energetic and interstellar neutral atoms (ENAs and ISN, respectively) at 1 au when the time delay between the production and the observation times is taken into account. ENA times of flight from the production regions in the helioshea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.10557v1-abstract-full').style.display = 'inline'; document.getElementById('2008.10557v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.10557v1-abstract-full" style="display: none;"> In situ measurements of the heliospheric particle populations by the Voyager spacecraft can only be put in an appropriate context with remote-sensing observations of energetic and interstellar neutral atoms (ENAs and ISN, respectively) at 1 au when the time delay between the production and the observation times is taken into account. ENA times of flight from the production regions in the heliosheath are relatively easy to estimate because these atoms follow almost constant speed, force-free trajectories. For the ISN populations, dynamical and ballistic selection effects are important, and times of flight are much longer. We estimate these times for ISN He and H atoms observed by IBEX and in the future by IMAP using the WTPM model with synthesis method. We show that for the primary population atoms, the times of flight are on the order of three solar cycle periods, with a spread equivalent to one solar cycle. For the secondary populations, the times of flight are on the order of ten solar cycle periods, and during the past ten years of observations, IBEX has been collecting secondary He atoms produced in the OHS during almost entire 19th century. ISN atoms penetrating the heliopause at the time of Voyager crossing will become gradually visible about 2027, during the planned IMAP observations. Hypothetical variations in the ISN flow in the Local Interstellar Medium are currently not detectable. Nevertheless, we expect steady-state heliosphere models used with appropriately averaged solar wind parameters to be suitable for understanding the ISN observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.10557v1-abstract-full').style.display = 'none'; document.getElementById('2008.10557v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.12262">arXiv:2006.12262</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.12262">pdf</a>, <a href="https://arxiv.org/format/2006.12262">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab9e6f">10.3847/1538-4357/ab9e6f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inferring contributions from unresolved point sources to diffuse emissions measured in UV sky surveys: general method and SOHO/SWAN case study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Strumik%2C+M">Marek Strumik</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">Maciej Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kowalska-Leszczynska%2C+I">Izabela Kowalska-Leszczynska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">Marzena A. Kubiak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.12262v1-abstract-short" style="display: inline;"> In observations of diffuse emissions like, e.g., the Lyman-$伪$ heliospheric glow, contributions to the observed signal from point sources (e.g., stars) are considered as a contamination. There are relatively few brightest point sources that are usually properly resolved and can be subtracted or masked. We present results of analysis of the distribution of point sources using UV sky-survey maps fro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.12262v1-abstract-full').style.display = 'inline'; document.getElementById('2006.12262v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.12262v1-abstract-full" style="display: none;"> In observations of diffuse emissions like, e.g., the Lyman-$伪$ heliospheric glow, contributions to the observed signal from point sources (e.g., stars) are considered as a contamination. There are relatively few brightest point sources that are usually properly resolved and can be subtracted or masked. We present results of analysis of the distribution of point sources using UV sky-survey maps from the SOHO/SWAN instrument and spectrophotometry data from the IUE satellite. The estimated distribution suggests that the number of these sources increases with decreasing intensity. Below a certain threshold, these sources cannot be resolved against the diffuse signal from the backscatter glow, that results in a certain physical background from unresolved point sources. Detection, understanding and subtraction of the point-source background has implications for proper characterization of diffuse emissions and accurate comparison with models. Stars are also often used as standard candles for in-flight calibration of satellite UV observations, thus proper understanding of signal contributions from the point sources is important for the calibration process. We present a general approach to quantify the background radiation level from unresolved point sources in UV sky-survey maps. In the proposed method, a distribution of point sources as a function of their intensity is properly integrated to compute the background signal level. These general considerations are applied to estimate the unresolved-point-sources background in the SOHO/SWAN observations that on average amounts to $28.9$ R. We discuss also the background radiation anisotropies and general questions related to modeling the point-source contributions to diffuse UV-emission observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.12262v1-abstract-full').style.display = 'none'; document.getElementById('2006.12262v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in Astrophysical Journal, 21 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.07065">arXiv:2001.07065</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.07065">pdf</a>, <a href="https://arxiv.org/ps/2001.07065">ps</a>, <a href="https://arxiv.org/format/2001.07065">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/ab7b77">10.3847/1538-4365/ab7b77 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Update of the Solar Lyman-Alpha Profile Line Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kowalska-Leszczynska%2C+I">Izabela Kowalska-Leszczynska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">Maciej Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">Marzena A. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sok%C3%B3%C5%82%2C+J+M">Justyna M. Sok贸艂</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.07065v1-abstract-short" style="display: inline;"> We present a modification of a model of solar cycle evolution of the solar Lyman-alpha line profile, along with a sensitivity study of interstellar neutral H hydrogen to uncertainties in radiation pressure level. The line profile model, originally developed by Kowalska-Leszczynska et al. 2018a, is parametrized by the composite solar Lyman-alpha flux, which recently was revised Machol et al. 2019.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.07065v1-abstract-full').style.display = 'inline'; document.getElementById('2001.07065v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.07065v1-abstract-full" style="display: none;"> We present a modification of a model of solar cycle evolution of the solar Lyman-alpha line profile, along with a sensitivity study of interstellar neutral H hydrogen to uncertainties in radiation pressure level. The line profile model, originally developed by Kowalska-Leszczynska et al. 2018a, is parametrized by the composite solar Lyman-alpha flux, which recently was revised Machol et al. 2019. We present modified parameters of the previously-developed model of solar radiation pressure for neutral hydrogen and deuterium atoms in the heliosphere. The mathematical function used in the model, as well as the fitting procedure, remain unchanged. We show selected effects of the model modification on ISN H properties in the heliosphere and we discuss the sensitivity of these quantities to uncertainties in the calibration of the composite Lyman-alpha series. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.07065v1-abstract-full').style.display = 'none'; document.getElementById('2001.07065v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures, 2 tables Submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.10265">arXiv:1911.10265</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.10265">pdf</a>, <a href="https://arxiv.org/format/1911.10265">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/ab50bc">10.3847/1538-4365/ab50bc <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Science Opportunities from Observations of the Interstellar Neutral Gas with Adjustable Boresight Direction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sok%C3%B3%C5%82%2C+J+M">Justyna M. Sok贸艂</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">Marzena A. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">Maciej Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=M%C3%B6bius%2C+E">Eberhard M枚bius</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schwadron%2C+N+A">Nathan A. Schwadron</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.10265v2-abstract-short" style="display: inline;"> The interstellar neutral (ISN) gas enters the heliosphere and is detected at a few au from the Sun, as demonstrated by Ulysses and the nterstellar Boundary Explorer (IBEX) missions. Ulysses observed ISN gas from different vantage points in a polar orbit from 1994 to 2007, while IBEX has been observing in an Earth orbit in a fixed direction relative to the Sun from 2009. McComas et al. 2018 reporte&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.10265v2-abstract-full').style.display = 'inline'; document.getElementById('1911.10265v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.10265v2-abstract-full" style="display: none;"> The interstellar neutral (ISN) gas enters the heliosphere and is detected at a few au from the Sun, as demonstrated by Ulysses and the nterstellar Boundary Explorer (IBEX) missions. Ulysses observed ISN gas from different vantage points in a polar orbit from 1994 to 2007, while IBEX has been observing in an Earth orbit in a fixed direction relative to the Sun from 2009. McComas et al. 2018 reported about an IMAP-Lo detector on board the Interstellar Mapping and Acceleration Probe (IMAP), with an ability to track the ISN flux in the sky. We present observation geometries for ISN gas for a detector with the capability to adjust the boresight direction along the Earth orbit over a year within a multichoice ISN observation scheme. We study science opportunities from the observations as a function of time during a year and the phase of solar activity. We identify observation geometries and determine the observation seasons separately for various ISN species and populations. We find that using an adjustable viewing direction allows for ISN gas observations in the upwind hemisphere, where the signal is not distorted by gravitational focusing, in addition to the viewing of ISN species throughout the entire year. Moreover, we demonstrate that with appropriately adjusted observation geometries, primary and secondary populations can be fully separated. Additionally, we show that atoms of ISN gas on indirect trajectories are accessible for detection, and we present their impact on the study of the ionization rates for ISN species. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.10265v2-abstract-full').style.display = 'none'; document.getElementById('1911.10265v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 figures, 3 tables, 26 pages;</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal Supplement Series 245:28 (22pp), 2019 December </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.10019">arXiv:1911.10019</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.10019">pdf</a>, <a href="https://arxiv.org/ps/1911.10019">ps</a>, <a href="https://arxiv.org/format/1911.10019">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab5b14">10.3847/1538-4357/ab5b14 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Heliospheric structure as revealed by the 3 -- 88 keV H ENA spectra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Czechowski%2C+A">A. Czechowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">M. Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sok%C3%B3%C5%82%2C+J+M">J. M. Sok贸艂</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">M. A. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heerikhuisen%2C+J">J. Heerikhuisen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zirnstein%2C+E+J">E. J. Zirnstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pogorelov%2C+N+V">N. V. Pogorelov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schwadron%2C+N+A">N. A. Schwadron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilchenbach%2C+M">M. Hilchenbach</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Grygorczuk%2C+J">J. Grygorczuk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zank%2C+G+P">G. P. Zank</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.10019v1-abstract-short" style="display: inline;"> Energetic neutral atoms (ENA) are an important tool for investigating the structure of the heliosphere. Recently, it was observed that fluxes of ENAs (with energy $\le$ 55 keV) coming from the upwind and downwind regions of the heliosphere are similar in strength. This led the authors of these observations to hypothesize that the heliosphere is bubble-like rather than comet-like, meaning that it h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.10019v1-abstract-full').style.display = 'inline'; document.getElementById('1911.10019v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.10019v1-abstract-full" style="display: none;"> Energetic neutral atoms (ENA) are an important tool for investigating the structure of the heliosphere. Recently, it was observed that fluxes of ENAs (with energy $\le$ 55 keV) coming from the upwind and downwind regions of the heliosphere are similar in strength. This led the authors of these observations to hypothesize that the heliosphere is bubble-like rather than comet-like, meaning that it has no extended tail. We investigate the directional distribution of the ENA flux for a wide energy range (3--88 keV) including the observations from IBEX (Interstellar Boundary Explorer), INCA (Ion and Neutral Camera, on board Cassini), and HSTOF (High energy Suprathermal Time Of Flight sensor, on board SOHO, Solar and Heliospheric Observatory). An essential element is the model of pickup ion acceleration at the termination shock (TS) proposed by Zank. We use state of the art models of the global heliosphere, interstellar neutral gas density, and pickup ion distributions. The results, based on the &#34;comet-like&#34; model of the heliosphere, are close in flux magnitude to ENA observations by IBEX, HSTOF and partly by INCA (except for the 5.2-13.5 keV energy channel). We find that the ENA flux from the tail dominates at high energy (in agreement with HSTOF, but not INCA). At low energy, our comet-like model produces the similar strengths of the ENA fluxes from the upwind and downwind directions, which, therefore, removes this as a compelling argument for a bubble-like heliosphere. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.10019v1-abstract-full').style.display = 'none'; document.getElementById('1911.10019v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in The Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.00447">arXiv:1908.00447</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.00447">pdf</a>, <a href="https://arxiv.org/format/1908.00447">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz2112">10.1093/mnras/stz2112 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Candidates for non-pulsating stars located in the Cepheid instability strip in the Large Magellanic Cloud based on Str枚mgren photometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Narloch%2C+W">W. Narloch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pietrzy%C5%84ski%2C+G">G. Pietrzy艅ski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ko%C5%82aczkowski%2C+Z">Z. Ko艂aczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smolec%2C+R">R. Smolec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=G%C3%B3rski%2C+M">M. G贸rski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M">M. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Udalski%2C+A">A. Udalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Soszy%C5%84ski%2C+I">I. Soszy艅ski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graczyk%2C+D">D. Graczyk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gieren%2C+W">W. Gieren</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karczmarek%2C+P">P. Karczmarek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zgirski%2C+B">B. Zgirski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wielg%C3%B3rski%2C+P">P. Wielg贸rski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Suchomska%2C+K">K. Suchomska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pilecki%2C+B">B. Pilecki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Taormina%2C+M">M. Taormina</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ka%C5%82uszy%C5%84ski%2C+M">M. Ka艂uszy艅ski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.00447v2-abstract-short" style="display: inline;"> We present candidates for non-pulsating stars lying in the classical Cepheid instability strip based on OGLE photometric maps combined with Str枚mgren photometry obtained with the 4.1-m SOAR telescope, and Gaia DR2 data in four fields in the Large Magellanic Cloud. We selected 19 candidates in total. After analysis of their light curves from OGLE surveys we found that all these stars appear to be p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.00447v2-abstract-full').style.display = 'inline'; document.getElementById('1908.00447v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.00447v2-abstract-full" style="display: none;"> We present candidates for non-pulsating stars lying in the classical Cepheid instability strip based on OGLE photometric maps combined with Str枚mgren photometry obtained with the 4.1-m SOAR telescope, and Gaia DR2 data in four fields in the Large Magellanic Cloud. We selected 19 candidates in total. After analysis of their light curves from OGLE surveys we found that all these stars appear to be photometrically stable at the level of a few mmag. Our results show that non-pulsating stars might constitute to about 21%-30% of the whole sample of giant stars located in the classical instability strip. Furthermore, we identified potential candidates for classical Cepheids with hot companions based on their Str枚mgren colours. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.00447v2-abstract-full').style.display = 'none'; document.getElementById('1908.00447v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures, 4 tables, published in MNRAS. Grant number in Acknowledgements updated. Added missing reference to a table in a text</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.09645">arXiv:1907.09645</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.09645">pdf</a>, <a href="https://arxiv.org/ps/1907.09645">ps</a>, <a href="https://arxiv.org/format/1907.09645">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab3462">10.3847/1538-4357/ab3462 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interstellar neutral helium in the heliosphere from IBEX observations. VI. The He$^+$ density and the ionization state in the Very Local Interstellar Matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">M. Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Czechowski%2C+A">A. Czechowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frisch%2C+P+C">P. C. Frisch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fuselier%2C+S+A">S. A. Fuselier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galli%2C+A">A. Galli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Grygorczuk%2C+J">J. Grygorczuk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heerikhuisen%2C+J">J. Heerikhuisen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">M. A. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kucharek%2C+H">H. Kucharek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McComas%2C+D+J">D. J. McComas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moebius%2C+E">E. Moebius</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schwadron%2C+N+A">N. A. Schwadron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Slavin%2C+J">J. Slavin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sokol%2C+J+M">J. M. Sokol</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Swaczyna%2C+P">P. Swaczyna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wurz%2C+P">P. Wurz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zirnstein%2C+E+J">E. J. Zirnstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.09645v1-abstract-short" style="display: inline;"> Interstellar neutral gas atoms penetrate the heliopause and reach 1~au, where they are detected by IBEX. The flow of neutral interstellar helium through the perturbed interstellar plasma in the outer heliosheath (OHS) results in creation of the secondary population of interstellar He atoms, the so-called Warm Breeze, due to charge exchange with perturbed ions. The secondary population brings the i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.09645v1-abstract-full').style.display = 'inline'; document.getElementById('1907.09645v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.09645v1-abstract-full" style="display: none;"> Interstellar neutral gas atoms penetrate the heliopause and reach 1~au, where they are detected by IBEX. The flow of neutral interstellar helium through the perturbed interstellar plasma in the outer heliosheath (OHS) results in creation of the secondary population of interstellar He atoms, the so-called Warm Breeze, due to charge exchange with perturbed ions. The secondary population brings the imprint of the OHS conditions to the IBEX-Lo instrument. Based on a global simulation of the heliosphere with measurement-based parameters and detailed kinetic simulation of the filtration of He in the OHS, we find the number density of interstellar He$^+$ population at $(8.98\pm 0.12)\times 10^{-3}$~cm$^{-3}$. With this, we obtain the absolute density of interstellar H$^+$ $5.4\times 10^{-2}$~cm$^{-3}$ and electrons $6.3\times 10^{-2}$~cm$^{-3}$, and ionization degrees of H 0.26 and He 0.37. The results agree with estimates of the Very Local Interstellar Matter parameters obtained from fitting the observed spectra of diffuse interstellar EUV and soft X-Ray background. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.09645v1-abstract-full').style.display = 'none'; document.getElementById('1907.09645v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.08958">arXiv:1907.08958</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.08958">pdf</a>, <a href="https://arxiv.org/ps/1907.08958">ps</a>, <a href="https://arxiv.org/format/1907.08958">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab3404">10.3847/1538-4357/ab3404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Synthesis of the distribution function of ISN He </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">Marzena A. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">Maciej Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sokol%2C+J+M">Justyna M. Sokol</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.08958v1-abstract-short" style="display: inline;"> Interaction of the solar wind with interstellar matter involves, among other, charge exchange between interstellar neutral atoms and plasma, which results in the creation of secondary population of interstellar neutral (ISN) atoms. The secondary population of interstellar He was detected by Interstellar Boundary Explorer (IBEX), but interpretation of these measurements was mostly based on an appro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08958v1-abstract-full').style.display = 'inline'; document.getElementById('1907.08958v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.08958v1-abstract-full" style="display: none;"> Interaction of the solar wind with interstellar matter involves, among other, charge exchange between interstellar neutral atoms and plasma, which results in the creation of secondary population of interstellar neutral (ISN) atoms. The secondary population of interstellar He was detected by Interstellar Boundary Explorer (IBEX), but interpretation of these measurements was mostly based on an approximation that the primary interstellar neutral population and the secondary population were non-interacting homogeneous Maxwell-Boltzmann functions in the outer heliosheath. We simulate the distribution function in the outer heliosheath and inside the heliopause using method of characteristics with statistical weights obtained from solutions of the production and loss equations for the secondary atoms due to charge-exchange collisions in the outer heliosheath. We show that the two-Maxwellian approximation for the distribution function of neutral He is not a good approximation within the outer heliosheath but a reasonable one inside the termination shock. This is due to a strong selection effect: the He atoms able to penetrate inside the termination shock are a small, peculiar subset of the entire secondary He population. Nevertheless, the two-Maxwellian approximation reproduces the density distribution of ISN He inside the termination shock well and enables a realistic reproduction of the orientation of the plane defined by the Sun&#39;s velocity vector through the local interstellar matter and the vector of unperturbed interstellar magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08958v1-abstract-full').style.display = 'none'; document.getElementById('1907.08958v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astrophysical Journal 882:114, 2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.06425">arXiv:1903.06425</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.06425">pdf</a>, <a href="https://arxiv.org/format/1903.06425">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab21c4">10.3847/1538-4357/ab21c4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interstellar Neutral Gas Species And Their Pickup Ions Inside The Heliospheric Termination Shock. The Large-scale Structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sok%C3%B3%C5%82%2C+J+M">Justyna M. Sok贸艂</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">Marzena A. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">Maciej Bzowski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.06425v2-abstract-short" style="display: inline;"> We study the distribution of the interstellar neutral (ISN) gas density and the pick-up ion (PUI) density of hydrogen, helium, neon, and oxygen in the heliosphere for heliocentric distances from inside 1 au up to the solar wind termination shock (TS), both in and out of the ecliptic plane. We discuss similarities and differences in the large-scale structures of the ISN gas and PUIs formed in the h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.06425v2-abstract-full').style.display = 'inline'; document.getElementById('1903.06425v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.06425v2-abstract-full" style="display: none;"> We study the distribution of the interstellar neutral (ISN) gas density and the pick-up ion (PUI) density of hydrogen, helium, neon, and oxygen in the heliosphere for heliocentric distances from inside 1 au up to the solar wind termination shock (TS), both in and out of the ecliptic plane. We discuss similarities and differences in the large-scale structures of the ISN gas and PUIs formed in the heliosphere between various species. We discuss the distribution of ISN gas and PUI densities for two extreme phases of the solar activity cycle, it is the solar minimum and the solar maximum. We identify the location of the ISN gas density cavity of various species. We study the relative abundance ratios of Ne/O, H/He, Ne/He, and O/He for ISN gas and PUIs densities and their variation with location in the heliosphere. We also discuss the modulation of relative abundance ratios of ISN gas and PUIs along the TS. We conclude that the preferable locations for detection of He$^+$ and Ne$^+$ PUIs are in the downwind hemisphere within 1~au, whereas for H$^+$ and O$^+$ PUIs the preferable locations for detection are for distances from Jupiter to Pluto orbits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.06425v2-abstract-full').style.display = 'none'; document.getElementById('1903.06425v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 figures, 2 tables, Published in The Astrophysical Journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2019, The Astrophysical Journal, 879:24 (20pp), doi:10.3847/1538-4357/ab21c4 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.04929">arXiv:1809.04929</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.04929">pdf</a>, <a href="https://arxiv.org/ps/1809.04929">ps</a>, <a href="https://arxiv.org/format/1809.04929">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aae70b">10.3847/1538-4357/aae70b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of the solar Ly-$伪$ line profile during the solar cycle. II. How accurate is the present radiation pressure paradigm for interstellar neutral H in the heliosphere? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kowalska-Leszczynska%2C+I">Izabela Kowalska-Leszczynska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">Maciej Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sok%C3%B3%C5%82%2C+J+M">Justyna M. Sok贸艂</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">Marzena A. Kubiak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.04929v2-abstract-short" style="display: inline;"> Following the derivation of a more accurate model of the evolution of the solar Lyman-$伪$ line with the changing solar activity by Kowalska-leszczynska et al. 2018 (IKL18) than the formerly used model by Tarnopolski et al. 2009 (ST09), we investigate potential consequences that adoption of the resulting refined model of radiation pressure has for the model distribution of interstellar neutral (ISN&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.04929v2-abstract-full').style.display = 'inline'; document.getElementById('1809.04929v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.04929v2-abstract-full" style="display: none;"> Following the derivation of a more accurate model of the evolution of the solar Lyman-$伪$ line with the changing solar activity by Kowalska-leszczynska et al. 2018 (IKL18) than the formerly used model by Tarnopolski et al. 2009 (ST09), we investigate potential consequences that adoption of the resulting refined model of radiation pressure has for the model distribution of interstellar neutral (ISN) H in the inner heliosphere and on the interpretation of selected observations. We simulated the ISN H densities using the two alternative radiation pressure models and identical models of all other factors affecting the ISN H distribution. We found that during most of the solar cycle, the IKL18 model predicts larger densities of ISN H and PUIs than ST09 in the inner heliosphere, especially in the downwind hemisphere. However, the density of ISN H at the termination shock estimated by Bzowski et al. 2008 obtained using ST09 does not need revision, and the detection of ISN D by IBEX is supported. However, we point out the existence of a considerable absorption of a portion of the solar Lyman-$伪$ spectral flux inside the heliosphere. Therefore, the model of radiation pressure for ISN H is still likely to need revision, and hence the available models of ISN H are not self-consistent. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.04929v2-abstract-full').style.display = 'none'; document.getElementById('1809.04929v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ApJ 17 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal, Volume 868, Issue 1, article id. 49, 14 pp. (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.09460">arXiv:1801.09460</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.09460">pdf</a>, <a href="https://arxiv.org/format/1801.09460">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aaabbf">10.3847/1538-4357/aaabbf <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interstellar neutral helium in the heliosphere from IBEX observations. V. Observations in IBEX-Lo ESA steps 1, 2, &amp; 3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Swaczyna%2C+P">Pawe艂 Swaczyna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">Maciej Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">Marzena A. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sok%C3%B3%C5%82%2C+J+M">Justyna M. Sok贸艂</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fuselier%2C+S+A">Stephen A. Fuselier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galli%2C+A">Andr茅 Galli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heirtzler%2C+D">David Heirtzler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kucharek%2C+H">Harald Kucharek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McComas%2C+D+J">David J. McComas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=M%C3%B6bius%2C+E">Eberhard M枚bius</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schwadron%2C+N+A">Nathan A. Schwadron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wurz%2C+P">Peter Wurz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.09460v1-abstract-short" style="display: inline;"> Direct-sampling observations of interstellar neutral (ISN) He by Interstellar Boundary Explorer (IBEX) provide valuable insight into the physical state of and processes operating in the interstellar medium ahead of the heliosphere. The ISN He atom signals are observed at the four lowest ESA steps of the IBEX-Lo sensor. The observed signal is a mixture of the primary and secondary components of ISN&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.09460v1-abstract-full').style.display = 'inline'; document.getElementById('1801.09460v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.09460v1-abstract-full" style="display: none;"> Direct-sampling observations of interstellar neutral (ISN) He by Interstellar Boundary Explorer (IBEX) provide valuable insight into the physical state of and processes operating in the interstellar medium ahead of the heliosphere. The ISN He atom signals are observed at the four lowest ESA steps of the IBEX-Lo sensor. The observed signal is a mixture of the primary and secondary components of ISN He and H. Previously, only data from one of the ESA steps have been used. Here, we extended the analysis to data collected in the three lowest ESA steps with the strongest ISN He signal, for the observation seasons 2009-2015. The instrument sensitivity is modeled as a linear function of the atom impact speed onto the sensor&#39;s conversion surface separately for each ESA step of the instrument. We found that the sensitivity increases from lower to higher ESA steps, but within each of the ESA steps it is a decreasing function of the atom impact speed. This result may be influenced by the hydrogen contribution, which was not included in the adopted model, but seems to exist in the signal. We conclude that the currently accepted temperature of ISN He and velocity of the Sun through the interstellar medium do not need a revision, and we sketch a plan of further data analysis aiming at investigating ISN H and a better understanding of the population of ISN He originating in the outer heliosheath. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.09460v1-abstract-full').style.display = 'none'; document.getElementById('1801.09460v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures, 5 tables, accepted for publication in the The Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.01151">arXiv:1712.01151</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.01151">pdf</a>, <a href="https://arxiv.org/ps/1712.01151">ps</a>, <a href="https://arxiv.org/format/1712.01151">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aa988f">10.3847/1538-4357/aa988f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The downwind hemisphere of the heliosphere: Eight years of IBEX-Lo observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Galli%2C+A">A. Galli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wurz%2C+P">P. Wurz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schwadron%2C+N+A">N. A. Schwadron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kucharek%2C+H">H. Kucharek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=M%C3%B6bius%2C+E">E. M枚bius</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">M. Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=M.%2C+J">J. M.</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sok%C3%B3%C5%82"> Sok贸艂</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">M. A. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fuselier%2C+S+A">S. A. Fuselier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Funsten%2C+H+O">H. O. Funsten</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McComas%2C+D+J">D. J. McComas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.01151v1-abstract-short" style="display: inline;"> We present a comprehensive study of energetic neutral atoms (ENAs) of 10 eV to 2.5 keV from the downwind hemisphere of the heliosphere. These ENAs are believed to originate mostly from pickup protons and solar wind protons in the inner heliosheath. This study includes all low-energy observations made with the Interstellar Boundary Explorer over the first 8 years. Since the protons around 0.1 keV d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.01151v1-abstract-full').style.display = 'inline'; document.getElementById('1712.01151v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.01151v1-abstract-full" style="display: none;"> We present a comprehensive study of energetic neutral atoms (ENAs) of 10 eV to 2.5 keV from the downwind hemisphere of the heliosphere. These ENAs are believed to originate mostly from pickup protons and solar wind protons in the inner heliosheath. This study includes all low-energy observations made with the Interstellar Boundary Explorer over the first 8 years. Since the protons around 0.1 keV dominate the plasma pressure in the inner heliosheath in downwind direction, these ENA observations offer the unique opportunity to constrain the plasma properties and dimensions of the heliosheath where no in-situ observations are available. We first derive energy spectra of ENA intensities averaged over time for 49 macropixels covering the entire downwind hemisphere. The results confirm previous studies regarding integral intensities and the roll-over around 0.1 keV energy. With the expanded dataset we now find that ENA intensities at 0.2 and 0.1 keV seem to anti-correlate with solar activity. We then derive the product of total plasma pressure and emission thickness of protons in the heliosheath to estimate lower limits on the thickness of the inner heliosheath. The temporally averaged ENA intensities support a rather spherical shape of the termination shock and a heliosheath thickness between 150 and 210 au for most regions of the downwind hemisphere. Around the nominal downwind direction of 76掳 ecliptic longitude, the heliosheath is at least 280 au thick. There, the neutral hydrogen density seems to be depleted compared to upwind directions by roughly a factor of 2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.01151v1-abstract-full').style.display = 'none'; document.getElementById('1712.01151v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Preprint of article in The Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.06602">arXiv:1710.06602</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.06602">pdf</a>, <a href="https://arxiv.org/ps/1710.06602">ps</a>, <a href="https://arxiv.org/format/1710.06602">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aa9f2a">10.3847/1538-4357/aa9f2a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of the Solar Lyman-Alpha line profile during the solar cycle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kowalska-Leszczynska%2C+I">Izabela Kowalska-Leszczynska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">Maciej Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sok%C3%B3%C5%82%2C+J+M">Justyna M. Sok贸艂</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">Marzena A. Kubiak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.06602v3-abstract-short" style="display: inline;"> Recent studies of interstellar neutral (ISN) hydrogen observed by the Interstellar Boundary Explorer (IBEX) suggested that the present understanding of the radiation pressure acting on hydrogen atoms in the heliosphere should be revised. There is a significant discrepancy between theoretical predictions of the ISN H signal using the currently used model of the solar Lyman-alpha profile by Tarnopol&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.06602v3-abstract-full').style.display = 'inline'; document.getElementById('1710.06602v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.06602v3-abstract-full" style="display: none;"> Recent studies of interstellar neutral (ISN) hydrogen observed by the Interstellar Boundary Explorer (IBEX) suggested that the present understanding of the radiation pressure acting on hydrogen atoms in the heliosphere should be revised. There is a significant discrepancy between theoretical predictions of the ISN H signal using the currently used model of the solar Lyman-alpha profile by Tarnopolski et al. 2009 (TB09) and the signal due to ISN H observed by IBEX-Lo. We developed a new model of evolution of the solar Lyman-alpha profile that takes into account all available observations of the full-disk solar Lyman-alpha profiles from SUMER/SOHO, provided by Lemaire et al. 2015 (L15), covering practically the entire 23rd solar cycle. The model has three components that reproduce different features of the profile. The main shape of the emission line that is produced in the chromosphere is modeled by the kappa function; the central reversal due to absorption in the transition region is modeled by the Gauss function; the spectral background is represented by the linear function. The coefficients of all those components are linear functions of the line-integrated full-disk Lyman-alpha irradiance, which is the only free parameter of the model. The new model features potentially important differences in comparison with the model by TB09, which was based on a limited set of observations. This change in the understanding of radiation pressure, especially during low solar activity, may significantly affect the interstellar H and D distributions in the inner heliosphere and their derivative populations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.06602v3-abstract-full').style.display = 'none'; document.getElementById('1710.06602v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 11 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 852 (2018) 115 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.02193">arXiv:1707.02193</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.02193">pdf</a>, <a href="https://arxiv.org/ps/1707.02193">ps</a>, <a href="https://arxiv.org/format/1707.02193">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aa7ed5">10.3847/1538-4357/aa7ed5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The helium Warm Breeze in IBEX observations as a result of charge exchange collisions in the outer heliosheath </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">Maciej Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">Marzena A. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Czechowski%2C+A">Andrzej Czechowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Grygorczuk%2C+J">Jolanta Grygorczuk</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.02193v1-abstract-short" style="display: inline;"> We simulated the signal due to neutral He atoms, observed by Interstellar Boundary Explorer (IBEX), assuming that charge exchange collisions between neutral He atoms and He+ ions operate everywhere between the heliopause and a distant source region in the local interstellar cloud, where the neutral and charged components are in thermal equilibrium. We simulated several test cases of the plasma flo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.02193v1-abstract-full').style.display = 'inline'; document.getElementById('1707.02193v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.02193v1-abstract-full" style="display: none;"> We simulated the signal due to neutral He atoms, observed by Interstellar Boundary Explorer (IBEX), assuming that charge exchange collisions between neutral He atoms and He+ ions operate everywhere between the heliopause and a distant source region in the local interstellar cloud, where the neutral and charged components are in thermal equilibrium. We simulated several test cases of the plasma flow within the outer heliosheath and investigated the signal generation for plasma flows both in the absence and in the presence of the interstellar magnetic field. We found that a signal in the portion of IBEX data identified as due to the Warm Breeze does not arise when a homogeneous plasma flow in front of the heliopause is assumed, but it appears immediately when any reasonable disturbance in its flow due to the presence of the heliosphere is assumed. We obtained a good qualitative agreement between the data selected for comparison and the simulations for a model flow with the velocity vector of the unperturbed gas and the direction and intensity of magnetic field adopted from recent determinations. We conclude that direct-sampling observations of neutral He atoms at 1~AU from the Sun are a sensitive tool for investigating the flow of interstellar matter in the outer heliosheath, that the Warm Breeze is indeed the secondary population of interstellar helium, as it was hypothesized earlier, and that the WB signal is consistent with the heliosphere distorted from axial symmetry by the interstellar magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.02193v1-abstract-full').style.display = 'none'; document.getElementById('1707.02193v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.06316">arXiv:1704.06316</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.06316">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/aa66d8">10.3847/1538-4365/aa66d8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Seven Years of Imaging the Global Heliosphere with IBEX </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=McComas%2C+D+J">D. J. McComas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zirnstein%2C+E+J">E. J. Zirnstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">M. Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dayeh%2C+M+A">M. A. Dayeh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Funsten%2C+H+O">H. O. Funsten</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fuselier%2C+S+A">S. A. Fuselier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Janzen%2C+P+H">P. H. Janzen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">M. A. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kucharek%2C+H">H. Kucharek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=M%C3%B6bius%2C+E">E. M枚bius</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reisenfeld%2C+D+B">D. B. Reisenfeld</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schwadron%2C+N+A">N. A. Schwadron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sok%C3%B3%C5%82%2C+J+M">J. M. Sok贸艂</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Szalay%2C+J+R">J. R. Szalay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tokumaru%2C+M">M. Tokumaru</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.06316v1-abstract-short" style="display: inline;"> The Interstellar Boundary Explorer (IBEX) has now operated in space for 7 years and returned nearly continuous observations that have led to scientific discoveries and reshaped our entire understanding of the outer heliosphere and its interaction with the local interstellar medium. Here we extend prior work, adding the 2014-2015 data for the first time, and examine, validate, initially analyze, an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.06316v1-abstract-full').style.display = 'inline'; document.getElementById('1704.06316v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.06316v1-abstract-full" style="display: none;"> The Interstellar Boundary Explorer (IBEX) has now operated in space for 7 years and returned nearly continuous observations that have led to scientific discoveries and reshaped our entire understanding of the outer heliosphere and its interaction with the local interstellar medium. Here we extend prior work, adding the 2014-2015 data for the first time, and examine, validate, initially analyze, and provide a complete 7-year set of Energetic Neutral Atom (ENA) observations from ~0.1 to 6 keV. The data, maps, and documentation provided here represent the 10th major release of IBEX data and include improvements to various prior corrections to provide the citable reference for the current version of IBEX data. We are now able to study time variations in the outer heliosphere and interstellar interaction over more than half a solar cycle. We find that the Ribbon has evolved differently than the globally distributed flux (GDF), with a leveling off and partial recovery of ENAs from the GDF, owing to solar wind output flattening and recovery. The Ribbon has now also lost its latitudinal ordering, which reflects the breakdown of solar minimum solar wind conditions and exhibits a greater time delay than for the surrounding GDF. Together, the IBEX observations strongly support a secondary ENA source for the Ribbon, and we suggest that this be adopted as the nominal explanation of the Ribbon going forward. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.06316v1-abstract-full').style.display = 'none'; document.getElementById('1704.06316v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Pre-print, 59 pages, 33 figures, published in ApJS</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal Supplement Series, 229:41 (32pp), 2017 April </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.01741">arXiv:1603.01741</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.01741">pdf</a>, <a href="https://arxiv.org/ps/1603.01741">ps</a>, <a href="https://arxiv.org/format/1603.01741">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/0067-0049/223/2/25">10.3847/0067-0049/223/2/25 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interstellar neutral helium in the heliosphere from IBEX observations. IV. Flow vector, Mach number, and abundance of the Warm Breeze </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">M. A. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Swaczyna%2C+P">P. Swaczyna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">M. Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sokol%2C+J+M">J. M. Sokol</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fuselier%2C+S+A">S. A. Fuselier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galli%2C+A">A. Galli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heirtzler%2C+D">D. Heirtzler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kucharek%2C+H">H. Kucharek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leonard%2C+T+W">T. W. Leonard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moebius%2C+D+J+M+E">D. J. McComas E. Moebius</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Park%2C+J">J. Park</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schwadron%2C+N+A">N. A. Schwadron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wurz%2C+P">P. Wurz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.01741v1-abstract-short" style="display: inline;"> With the velocity vector and temperature of the pristine interstellar neutral (ISN) He recently obtained with high precision from a coordinated analysis summarized by McComas et al.2015b, we analyzed the IBEX observations of neutral He left out from this analysis. These observations were collected during the ISN observation seasons 2010---2014 and cover the region in the Earth&#39;s orbit where the Wa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.01741v1-abstract-full').style.display = 'inline'; document.getElementById('1603.01741v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.01741v1-abstract-full" style="display: none;"> With the velocity vector and temperature of the pristine interstellar neutral (ISN) He recently obtained with high precision from a coordinated analysis summarized by McComas et al.2015b, we analyzed the IBEX observations of neutral He left out from this analysis. These observations were collected during the ISN observation seasons 2010---2014 and cover the region in the Earth&#39;s orbit where the Warm Breeze persists. We used the same simulation model and a very similar parameter fitting method to that used for the analysis of ISN He. We approximated the parent population of the Warm Breeze in front of the heliosphere with a homogeneous Maxwell-Boltzmann distribution function and found a temperature of $\sim 9\,500$ K, an inflow speed of 11.3 km s$^{-1}$, and an inflow longitude and latitude in the J2000 ecliptic coordinates $251.6^\circ$, $12.0^\circ$. The abundance of the Warm Breeze relative to the interstellar neutral He is 5.7\% and the Mach number is 1.97. The newly found inflow direction of the Warm Breeze, the inflow directions of ISN H and ISN He, and the direction to the center of IBEX Ribbon are almost perfectly co-planar, and this plane coincides within relatively narrow statistical uncertainties with the plane fitted only to the inflow directions of ISN He, ISN H, and the Warm Breeze. This co-planarity lends support to the hypothesis that the Warm Breeze is the secondary population of ISN He and that the center of the Ribbon coincides with the direction of the local interstellar magnetic field. The common plane for the direction of inflow of ISN gas, ISN H, the Warm Breeze, and the local interstellar magnetic field %includes the Sun and is given by the normal direction: ecliptic longitude $349.7^\circ \pm 0.6^\circ$ and latitude $35.7^\circ \pm 0.6^\circ$ in the J2000 coordinates, with the correlation coefficient of 0.85. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.01741v1-abstract-full').style.display = 'none'; document.getElementById('1603.01741v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Astrophysical Journal Supplement Series</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.01186">arXiv:1603.01186</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.01186">pdf</a>, <a href="https://arxiv.org/ps/1603.01186">ps</a>, <a href="https://arxiv.org/format/1603.01186">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stw515">10.1093/mnras/stw515 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Solar cycle variation of interstellar neutral He, Ne, O density and pick-up ions along the Earth&#39;s orbit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sok%C3%B3%C5%82%2C+J+M">Justyna M. Sok贸艂</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">Maciej Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">Marzena A. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=M%C3%B6bius%2C+E">Eberhard M枚bius</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.01186v2-abstract-short" style="display: inline;"> We simulated the modulation of the interstellar neutral (ISN) He, Ne, and O density and pick-up ion (PUI) production rate and count rate along the Earth&#39;s orbit over the solar cycle from 2002 to 2013 to verify if solar cycle-related effects may modify the inferred ecliptic longitude of the ISN inflow direction. We adopted the classical PUI model with isotropic distribution function and adiabatic c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.01186v2-abstract-full').style.display = 'inline'; document.getElementById('1603.01186v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.01186v2-abstract-full" style="display: none;"> We simulated the modulation of the interstellar neutral (ISN) He, Ne, and O density and pick-up ion (PUI) production rate and count rate along the Earth&#39;s orbit over the solar cycle from 2002 to 2013 to verify if solar cycle-related effects may modify the inferred ecliptic longitude of the ISN inflow direction. We adopted the classical PUI model with isotropic distribution function and adiabatic cooling, modified by time- and heliolatitude-dependent ionization rates and non-zero injection speed of PUIs. We found that the ionization losses have a noticeable effect on the derivation of the ISN inflow longitude based on the Gaussian fit to the crescent and cone peak locations. We conclude that the non-zero radial velocity of the ISN flow and the energy range of the PUI distribution function that is accumulated are of importance for a precise reproduction of the PUI count rate along the Earth orbit. However, the temporal and latitudinal variations of the ionization in the heliosphere, and particularly their variation on the solar cycle time-scale, may significantly modify the shape of PUI cone and crescent and also their peak positions from year to year and thus bias by a few degrees the derived longitude of the ISN gas inflow direction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.01186v2-abstract-full').style.display = 'none'; document.getElementById('1603.01186v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in the Monthly Notices of the Royal Astronomical Society, vol. 458, Issue 4, pp 3691-3704, doi:10.1093/mnras/stw515</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> MNRAS, 2016, vol. 458, Issue 4, pp 3691-3704 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.00134">arXiv:1512.00134</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.00134">pdf</a>, <a href="https://arxiv.org/ps/1512.00134">ps</a>, <a href="https://arxiv.org/format/1512.00134">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/0004-637X/825/2/112">10.3847/0004-637X/825/2/112 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The First Neptune Analog or Super-Earth with Neptune-like Orbit: MOA-2013-BLG-605Lb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sumi%2C+T">T. Sumi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Udalski%2C+A">A. Udalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bennett%2C+D+P">D. P. Bennett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gould%2C+A">A. Gould</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Poleski%2C+R">R. Poleski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+I+A">I. A. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rattenbury%2C+N">N. Rattenbury</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pogge%2C+R+W">R. W. Pogge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bensby%2C+T">T. Bensby</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beaulieu%2C+J+P">J. P. Beaulieu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marquette%2C+J+B">J. B. Marquette</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Batista%2C+V">V. Batista</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brillant%2C+S">S. Brillant</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abe%2C+F">F. Abe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Asakura%2C+Y">Y. Asakura</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhattacharya%2C+A">A. Bhattacharya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Donachie%2C+M">M. Donachie</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Freeman%2C+M">M. Freeman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fukui%2C+A">A. Fukui</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hirao%2C+Y">Y. Hirao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Itow%2C+Y">Y. Itow</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koshimoto%2C+N">N. Koshimoto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+M+C+A">M. C. A. Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ling%2C+C+H">C. H. Ling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Masuda%2C+K">K. Masuda</a> , et al. (24 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.00134v3-abstract-short" style="display: inline;"> We present the discovery of the first Neptune analog exoplanet or super-Earth with Neptune-like orbit, MOA-2013-BLG-605Lb. This planet has a mass similar to that of Neptune or a super-Earth and it orbits at $9\sim 14$ times the expected position of the snow-line, $a_{\rm snow}$, which is similar to Neptune&#39;s separation of $ 11\,a_{\rm snow}$ from the Sun. The planet/host-star mass ratio is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.00134v3-abstract-full').style.display = 'inline'; document.getElementById('1512.00134v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.00134v3-abstract-full" style="display: none;"> We present the discovery of the first Neptune analog exoplanet or super-Earth with Neptune-like orbit, MOA-2013-BLG-605Lb. This planet has a mass similar to that of Neptune or a super-Earth and it orbits at $9\sim 14$ times the expected position of the snow-line, $a_{\rm snow}$, which is similar to Neptune&#39;s separation of $ 11\,a_{\rm snow}$ from the Sun. The planet/host-star mass ratio is $q=(3.6\pm0.7)\times 10^{-4}$ and the projected separation normalized by the Einstein radius is $s=2.39\pm0.05$. There are three degenerate physical solutions and two of these are due to a new type of degeneracy in the microlensing parallax parameters, which we designate &#34;the wide degeneracy&#34;. The three models have (i) a Neptune-mass planet with a mass of $M_{\rm p}=21_{-7}^{+6} M_{Earth}$ orbiting a low-mass M-dwarf with a mass of $M_{\rm h}=0.19_{-0.06}^{+0.05} M_\odot$, (ii) a mini-Neptune with $M_{\rm p}= 7.9_{-1.2}^{+1.8} M_{Earth}$ orbiting a brown dwarf host with $M_{\rm h}=0.068_{-0.011}^{+0.019} M_\odot$ and (iii) a super-Earth with $M_{\rm p}= 3.2_{-0.3}^{+0.5} M_{Earth}$ orbiting a low-mass brown dwarf host with $M_{\rm h}=0.025_{-0.004}^{+0.005} M_\odot$ which is slightly favored. The 3-D planet-host separations are 4.6$_{-1.2}^{+4.7}$ AU, 2.1$_{-0.2}^{+1.0}$ AU and 0.94$_{-0.02}^{+0.67}$ AU, which are $8.9_{-1.4}^{+10.5}$, $12_{-1}^{+7}$ or $14_{-1}^{+11}$ times larger than $a_{\rm snow}$ for these models, respectively. The Keck AO observation confirm that the lens is faint. This discovery suggests that low-mass planets with Neptune-like orbit are common. So processes similar to the one that formed Neptune in our own Solar System or cold super-Earth may be common in other solar systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.00134v3-abstract-full').style.display = 'none'; document.getElementById('1512.00134v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">54 pages, 10 figures, 13 tables, Accepted for publication in the ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.06187">arXiv:1510.06187</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.06187">pdf</a>, <a href="https://arxiv.org/format/1510.06187">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0067-0049/220/2/26">10.1088/0067-0049/220/2/26 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interstellar Neutral Helium in the Heliosphere from IBEX Observations. I. Uncertainties and Backgrounds in the Data and Parameter Determination Method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Swaczyna%2C+P">P. Swaczyna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">M. Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">M. A. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sok%C3%B3%C5%82%2C+J+M">J. M. Sok贸艂</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fuselier%2C+S+A">S. A. Fuselier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heirtzler%2C+D">D. Heirtzler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kucharek%2C+H">H. Kucharek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leonard%2C+T+W">T. W. Leonard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McComas%2C+D+J">D. J. McComas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=M%C3%B6bius%2C+E">E. M枚bius</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schwadron%2C+N+A">N. A. Schwadron</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.06187v1-abstract-short" style="display: inline;"> This paper is one of three companion papers presenting the results of our in-depth analysis of the interstellar neutral helium (ISN He) observations carried out using the IBEX-Lo during the first six Interstellar Boundary Explorer (IBEX) observation seasons. We derive corrections for losses due to the limited throughput of the interface buffer and determine the IBEX spin-axis pointing. We develop&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.06187v1-abstract-full').style.display = 'inline'; document.getElementById('1510.06187v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.06187v1-abstract-full" style="display: none;"> This paper is one of three companion papers presenting the results of our in-depth analysis of the interstellar neutral helium (ISN He) observations carried out using the IBEX-Lo during the first six Interstellar Boundary Explorer (IBEX) observation seasons. We derive corrections for losses due to the limited throughput of the interface buffer and determine the IBEX spin-axis pointing. We develop an uncertainty system for the data, taking into account the resulting correlations between the data points. This system includes uncertainties due to Poisson statistics, background, spin-axis determination, systematic deviation of the boresight from the prescribed position, correction for the interface buffer losses, and the expected Warm Breeze (WB) signal. Subsequently, we analyze the data from 2009 to examine the role of various components of the uncertainty system. We show that the ISN He flow parameters are in good agreement with the values obtained by the original analysis. We identify the WB as the principal contributor to the global $蠂^2$ values in previous analyses. Other uncertainties have a much milder role and their contributions are comparable to each other. The application of this uncertainty system reduced the minimum $蠂^2$ value 4-fold. The obtained $蠂^2$ value, still exceeding the expected value, suggests that either the uncertainty system may still be incomplete or the adopted physical model lacks a potentially important element, which is likely an imperfect determination of the WB parameters. The derived corrections and uncertainty system are used in the accompanying paper by Bzowski et al. in an analysis of the data from six seasons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.06187v1-abstract-full').style.display = 'none'; document.getElementById('1510.06187v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJS 220 (2015), 26 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.04874">arXiv:1510.04874</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.04874">pdf</a>, <a href="https://arxiv.org/ps/1510.04874">ps</a>, <a href="https://arxiv.org/format/1510.04874">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0067-0049/220/2/29">10.1088/0067-0049/220/2/29 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Interstellar Neutral He haze in the heliosphere: what can we learn? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sok%C3%B3%C5%82%2C+J+M">Justyna M. Sok贸艂</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">M. Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">M. A. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Swaczyna%2C+P">P. Swaczyna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galli%2C+A">A. Galli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wurz%2C+P">P. Wurz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=M%C3%B6bius%2C+E">E. M枚bius</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kucharek%2C+H">H. Kucharek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fuselier%2C+S+A">S. A. Fuselier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McComas%2C+D+J">D. J. McComas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.04874v2-abstract-short" style="display: inline;"> Neutral interstellar helium has been observed by the Interstellar Boundary Explorer (IBEX) since 2009 with a signal-to-noise ratio well above 1000. Because of the geometry of the observations, the signal observed from January to March each year is the easiest to identify. However, as we show via simulations, the portion of the signal in the range of intensities from 10^{-3} to 10^{-2} of the peak&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.04874v2-abstract-full').style.display = 'inline'; document.getElementById('1510.04874v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.04874v2-abstract-full" style="display: none;"> Neutral interstellar helium has been observed by the Interstellar Boundary Explorer (IBEX) since 2009 with a signal-to-noise ratio well above 1000. Because of the geometry of the observations, the signal observed from January to March each year is the easiest to identify. However, as we show via simulations, the portion of the signal in the range of intensities from 10^{-3} to 10^{-2} of the peak value, previously mostly left out from the analysis, may bring important information about the details of the distribution function of interstellar He gas in front of the heliosphere. In particular, these observations may inform us about possible departures of the parent interstellar He population from equilibrium. We compare the expected distribution of the signal for the canonical assumption of a single Maxwell-Boltzmann population with the distributions for a superposition of the Maxwell-Boltzmann primary population and the recently discovered Warm Breeze, and for a single primary population given by a kappa function. We identify the regions on the sky where the differences between those cases are expected to be the most visible against the background. We discuss the diagnostic potential of the fall peak of the interstellar signal, reduced by a factor of 50 due to the Compton-Getting effect but still above the detection limit of IBEX. We point out the strong energy dependence of the fall signal and suggest that searching for this signal in the data could bring an independent assessment of the low-energy measurement threshold of the IBEX-Lo sensor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.04874v2-abstract-full').style.display = 'none'; document.getElementById('1510.04874v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This paper is a part of the special issue of Astrophysical Journal Supplement Series on interstellar neutrals measured by IBEX</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.04869">arXiv:1510.04869</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.04869">pdf</a>, <a href="https://arxiv.org/ps/1510.04869">ps</a>, <a href="https://arxiv.org/format/1510.04869">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0067-0049/220/2/27">10.1088/0067-0049/220/2/27 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interstellar neutral helium in the heliosphere from IBEX observations. II. The Warsaw Test Particle Model (WTPM) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sok%C3%B3%C5%82%2C+J+M">Justyna M. Sok贸艂</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">Marzena A. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">Maciej Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Swaczyna%2C+P">Pawe艂 Swaczyna</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.04869v2-abstract-short" style="display: inline;"> We have developed a refined and optimized version of the Warsaw Test Particle Model of interstellar neutral gas in the heliosphere, specially tailored for analysis of IBEX-Lo observations. The former version of the model was used in the analysis of neutral He observed by IBEX that resulted in an unexpected conclusion that the interstellar neutral He flow vector was different than previously though&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.04869v2-abstract-full').style.display = 'inline'; document.getElementById('1510.04869v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.04869v2-abstract-full" style="display: none;"> We have developed a refined and optimized version of the Warsaw Test Particle Model of interstellar neutral gas in the heliosphere, specially tailored for analysis of IBEX-Lo observations. The former version of the model was used in the analysis of neutral He observed by IBEX that resulted in an unexpected conclusion that the interstellar neutral He flow vector was different than previously thought and that a new population of neutral He, dubbed the Warm Breeze, exists in the heliosphere. It was also used in the reanalysis of Ulysses observations that confirmed the original findings on the flow vector, but suggested a significantly higher temperature. The present version model has two strains targeted for different applications, based on an identical paradigm, but differing in the implementation and in the treatment of ionization losses. We present the model in detail and discuss numerous effects related to the measurement process that potentially modify the resulting flux of ISN He observed by IBEX, and identify those of them that should not be omitted in the simulations to avoid biasing the results. This paper is part of a coordinated series of papers presenting the current state of analysis of IBEX-Lo observations of ISN He. Details of the analysis method are presented by Swaczyna et al. 2015, and results of the analysis are presented by Bzowski et al. 2015. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.04869v2-abstract-full').style.display = 'none'; document.getElementById('1510.04869v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This paper is a part of the special issue of Astrophysical Journal Supplement Series on interstellar neutrals measured by IBEX</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astrophysical Journal Supplement Series, 2015, 220:27 (24pp) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.04835">arXiv:1510.04835</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.04835">pdf</a>, <a href="https://arxiv.org/format/1510.04835">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0067-0049/220/2/28">10.1088/0067-0049/220/2/28 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interstellar neutral helium in the heliosphere from IBEX observations. III. Mach number of the flow, velocity vector, and temperature from the first six years of measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">M. Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Swaczyna%2C+P">P. Swaczyna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">M. A. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sokol%2C+J+M">J. M. Sokol</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fuselier%2C+S+A">S. A. Fuselier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galli%2C+A">A. Galli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heirtzler%2C+D">D. Heirtzler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kucharek%2C+H">H. Kucharek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leonard%2C+T+W">T. W. Leonard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McComas%2C+D+J">D. J. McComas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moebius%2C+E">E. Moebius</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schwadron%2C+N+A">N. A. Schwadron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wurz%2C+P">P. Wurz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.04835v2-abstract-short" style="display: inline;"> We analyzed observations of interstellar neutral helium (ISN~He) obtained from the Interstellar Boundary Explorer (IBEX) satellite during its first six years of operation. We used a refined version of the ISN~He simulation model, presented in the companion paper by Sokol_et al. 2015, and a sophisticated data correlation and uncertainty system and parameter fitting method, described in the companio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.04835v2-abstract-full').style.display = 'inline'; document.getElementById('1510.04835v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.04835v2-abstract-full" style="display: none;"> We analyzed observations of interstellar neutral helium (ISN~He) obtained from the Interstellar Boundary Explorer (IBEX) satellite during its first six years of operation. We used a refined version of the ISN~He simulation model, presented in the companion paper by Sokol_et al. 2015, and a sophisticated data correlation and uncertainty system and parameter fitting method, described in the companion paper by Swaczyna et al 2015. We analyzed the entire data set together and the yearly subsets, and found the temperature and velocity vector of ISN~He in front of the heliosphere. As seen in the previous studies, the allowable parameters are highly correlated and form a four-dimensional tube in the parameter space. The inflow longitudes obtained from the yearly data subsets show a spread of ~6 degree, with the other parameters varying accordingly along the parameter tube, and the minimum chi-square value is larger than expected. We found, however, that the Mach number of the ISN~He flow shows very little scatter and is thus very tightly constrained. It is in excellent agreement with the original analysis of ISN~He observations from IBEX and recent reanalyses of observations from Ulysses. We identify a possible inaccuracy in the Warm Breeze parameters as the likely cause of the scatter in the ISN~He parameters obtained from the yearly subsets, and we suppose that another component may exist in the signal, or a process that is not accounted for in the current physical model of ISN~He in front of the heliosphere. From our analysis, the inflow velocity vector, temperature, and Mach number of the flow are equal to lambda_ISNHe = 255.8 +/- 0.5 degree, beta_ISNHe = 5.16 +/- 0.10 degree, T_ISNHe = 7440 +/- 260 K, v_ISNHe = 25.8 +/- 0.4$ km/s, and M_ISNHe = 5.079 +/- 0.028, with uncertainties strongly correlated along the parameter tube. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.04835v2-abstract-full').style.display = 'none'; document.getElementById('1510.04835v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updated references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astrophysical Journal Supplement Series Vol 220 Number 2, page 28, 2015 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.04945">arXiv:1502.04945</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1502.04945">pdf</a>, <a href="https://arxiv.org/ps/1502.04945">ps</a>, <a href="https://arxiv.org/format/1502.04945">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stu2621">10.1093/mnras/stu2621 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Massive stars exploding in a He-rich circumstellar medium. V. Observations of the slow-evolving SN Ibn OGLE-2012-SN-006 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Pastorello%2C+A">A. Pastorello</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wyrzykowski%2C+L">L. Wyrzykowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Valenti%2C+S">S. Valenti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Prieto%2C+J+L">J. L. Prieto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kozlowski%2C+S">S. Kozlowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Udalski%2C+A">A. Udalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Elias-Rosa%2C+N">N. Elias-Rosa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morales-Garoffolo%2C+A">A. Morales-Garoffolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+J+P">J. P. Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benetti%2C+S">S. Benetti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bersten%2C+M">M. Bersten</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Botticella%2C+M+T">M. T. Botticella</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cappellaro%2C+E">E. Cappellaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fasano%2C+G">G. Fasano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fraser%2C+M">M. Fraser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gal-Yam%2C+A">A. Gal-Yam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gillone%2C+M">M. Gillone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graham%2C+M+L">M. L. Graham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Greiner%2C+J">J. Greiner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hachinger%2C+S">S. Hachinger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Howell%2C+D+A">D. A. Howell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Inserra%2C+C">C. Inserra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Parrent%2C+J">J. Parrent</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rau%2C+A">A. Rau</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">S. Schulze</a> , et al. (14 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.04945v1-abstract-short" style="display: inline;"> We present optical observations of the peculiar Type Ibn supernova (SN Ibn) OGLE-2012-SN-006, discovered and monitored by the OGLE-IV survey, and spectroscopically followed by PESSTO at late phases. Stringent pre-discovery limits constrain the explosion epoch with fair precision to JD = 2456203.8 +- 4.0. The rise time to the I-band light curve maximum is about two weeks. The object reaches the pea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.04945v1-abstract-full').style.display = 'inline'; document.getElementById('1502.04945v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.04945v1-abstract-full" style="display: none;"> We present optical observations of the peculiar Type Ibn supernova (SN Ibn) OGLE-2012-SN-006, discovered and monitored by the OGLE-IV survey, and spectroscopically followed by PESSTO at late phases. Stringent pre-discovery limits constrain the explosion epoch with fair precision to JD = 2456203.8 +- 4.0. The rise time to the I-band light curve maximum is about two weeks. The object reaches the peak absolute magnitude M(I) = -19.65 +- 0.19 on JD = 2456218.1 +- 1.8. After maximum, the light curve declines for about 25 days with a rate of 4 mag per 100d. The symmetric I-band peak resembles that of canonical Type Ib/c supernovae (SNe), whereas SNe Ibn usually exhibit asymmetric and narrower early-time light curves. Since 25 days past maximum, the light curve flattens with a decline rate slower than that of the 56Co to 56Fe decay, although at very late phases it steepens to approach that rate. An early-time spectrum is dominated by a blue continuum, with only a marginal evidence for the presence of He I lines marking this SN Type. This spectrum shows broad absorptions bluewards than 5000A, likely O II lines, which are similar to spectral features observed in super-luminous SNe at early epochs. The object has been spectroscopically monitored by PESSTO from 90 to 180 days after peak, and these spectra show the typical features observed in a number of SN 2006jc-like events, including a blue spectral energy distribution and prominent and narrow (v(FWHM) ~ 1900 km/s) He I emission lines. This suggests that the ejecta are interacting with He-rich circumstellar material. The detection of broad (10000 km/s) O I and Ca II features likely produced in the SN ejecta (including the [O I] 6300A,6364A doublet in the latest spectra) lends support to the interpretation of OGLE-2012-SN-006 as a core-collapse event. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.04945v1-abstract-full').style.display = 'none'; document.getElementById('1502.04945v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 9 figures, 4 tables. Accepted by MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.4121">arXiv:1412.4121</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.4121">pdf</a>, <a href="https://arxiv.org/ps/1412.4121">ps</a>, <a href="https://arxiv.org/format/1412.4121">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/811/2/113">10.1088/0004-637X/811/2/113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deciphering the 3D structure of the old Galactic bulge from the OGLE RR Lyrae stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Pietrukowicz%2C+P">P. Pietrukowicz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kozlowski%2C+S">S. Kozlowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Skowron%2C+J">J. Skowron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Soszynski%2C+I">I. Soszynski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Udalski%2C+A">A. Udalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Poleski%2C+R">R. Poleski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wyrzykowski%2C+L">L. Wyrzykowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Szymanski%2C+M+K">M. K. Szymanski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pietrzynski%2C+G">G. Pietrzynski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ulaczyk%2C+K">K. Ulaczyk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroz%2C+P">P. Mroz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Skowron%2C+D+M">D. M. Skowron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M">M. Kubiak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.4121v2-abstract-short" style="display: inline;"> We have analyzed a sample of 27,258 fundamental-mode RR Lyrae variable stars (type RRab) detected recently toward the Galactic bulge by the Optical Gravitational Lensing Experiment (OGLE) survey. The data support our earlier claim that these metal-poor stars trace closely the barred structure formed of intermediate-age red clump giants. The distance to the Galactic center (GC) inferred from the bu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.4121v2-abstract-full').style.display = 'inline'; document.getElementById('1412.4121v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.4121v2-abstract-full" style="display: none;"> We have analyzed a sample of 27,258 fundamental-mode RR Lyrae variable stars (type RRab) detected recently toward the Galactic bulge by the Optical Gravitational Lensing Experiment (OGLE) survey. The data support our earlier claim that these metal-poor stars trace closely the barred structure formed of intermediate-age red clump giants. The distance to the Galactic center (GC) inferred from the bulge RR Lyrae stars is R_0=8.27+/-0.01(stat)+/-0.40(sys) kpc. We show that their spatial distribution has the shape of a triaxial ellipsoid with an major axis located in the Galactic plane and inclined at an angle of i=20+/-3 deg to the Sun-GC line of sight. The obtained scale-length ratio of the major axis to the minor axis in the Galactic plane and to the axis vertical to the plane is 1:0.49(2):0.39(2). We do not see the evidence for the bulge RR Lyrae stars forming an X-shaped structure. Based on the light curve parameters, we derive metallicities of the RRab variables and show that there is a very mild but statistically significant radial metallicity gradient. About 60% of the bulge RRab stars form two very close sequences on the period-amplitude (or Bailey) diagram, which we interpret as two major old bulge populations: A and B. Their metallicities likely differ. Population A is about four times less abundant than the slightly more metal-poor population B. Most of the remaining stars seem to represent other, even more metal-poor populations of the bulge. The presence of multiple old populations indicates that the Milky Way bulge was initially formed through mergers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.4121v2-abstract-full').style.display = 'none'; document.getElementById('1412.4121v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ApJ, in press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.2506">arXiv:1412.2506</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.2506">pdf</a>, <a href="https://arxiv.org/ps/1412.2506">ps</a>, <a href="https://arxiv.org/format/1412.2506">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Period-Luminosity Relations for Ellipsoidal Binary Stars in the OGLE-III Fields of the Large Magellanic Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Pawlak%2C+M">M. Pawlak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Soszynski%2C+I">I. Soszynski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pietrukowicz%2C+P">P. Pietrukowicz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Skowron%2C+J">J. Skowron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Poleski%2C+R">R. Poleski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Udalski%2C+A">A. Udalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Szymanski%2C+M+K">M. K. Szymanski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M">M. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pietrzynski%2C+G">G. Pietrzynski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wyrzykowski%2C+L">L. Wyrzykowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ulaczyk%2C+K">K. Ulaczyk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kozlowski%2C+S">S. Kozlowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Skowron%2C+D+M">D. M. Skowron</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.2506v1-abstract-short" style="display: inline;"> We report the discovery of two distinct types of ellipsoidal binary systems occupying, so called, sequence E on the period-luminosity (P-L) diagram. We propose that steeper P-L relation is composed of giant-dwarf binaries, while the other consists of giant-giant binary systems. Analysis is based on a sample of 5334 objects, which we select from the OGLE-III survey data toward the the Large Magella&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.2506v1-abstract-full').style.display = 'inline'; document.getElementById('1412.2506v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.2506v1-abstract-full" style="display: none;"> We report the discovery of two distinct types of ellipsoidal binary systems occupying, so called, sequence E on the period-luminosity (P-L) diagram. We propose that steeper P-L relation is composed of giant-dwarf binaries, while the other consists of giant-giant binary systems. Analysis is based on a sample of 5334 objects, which we select from the OGLE-III survey data toward the the Large Magellanic Cloud. We show that one of the components of ellipsoidal binaries is typically either a Red Clump or a Red Giant Branch star, which leads to clear separation split of the sequence E at P = 40 d. In its short-period part, we identify two subsequences corresponding to the two types of binary systems (E2 and E3), while in the longer-period part the two groups merge forming a single subsequence E1. We extract a group of 271 ellipsoidal systems with eccentric orbits, from our sample. We present the period-luminosity relation they follow. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.2506v1-abstract-full').style.display = 'none'; document.getElementById('1412.2506v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 15 figures, submitted to Acta Astronomica</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.7384">arXiv:1411.7384</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1411.7384">pdf</a>, <a href="https://arxiv.org/ps/1411.7384">ps</a>, <a href="https://arxiv.org/format/1411.7384">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stu2497">10.1093/mnras/stu2497 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The X-Shaped Milky Way Bulge in OGLE-III Photometry and in N-Body Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Nataf%2C+D+M">David M. Nataf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Udalski%2C+A">Andrzej Udalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Skowron%2C+J">Jan Skowron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Szyma%C5%84ski%2C+M+K">Micha艂 K. Szyma艅ski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M">Marcin Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pietrzy%C5%84ski%2C+G">Grzegorz Pietrzy艅ski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Soszy%C5%84ski%2C+I">Igor Soszy艅ski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ulaczyk%2C+K">Krzysztof Ulaczyk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wyrzykowski%2C+%C5%81">艁ukasz Wyrzykowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Poleski%2C+R">Rados艂aw Poleski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Athanassoula%2C+E">E. Athanassoula</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ness%2C+M">Melissa Ness</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shen%2C+J">Juntai Shen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Z">Zhao-Yu Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.7384v2-abstract-short" style="display: inline;"> We model the split red clump of the Galactic bulge in OGLE-III photometry, and compare the results to predictions from two N-body models. Our analysis yields precise maps of the brightness of the two red clumps, the fraction of stars in the more distant peak, and their combined surface density. We compare the observations to predictions from two N-body models previously used in the literature. Bot&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.7384v2-abstract-full').style.display = 'inline'; document.getElementById('1411.7384v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.7384v2-abstract-full" style="display: none;"> We model the split red clump of the Galactic bulge in OGLE-III photometry, and compare the results to predictions from two N-body models. Our analysis yields precise maps of the brightness of the two red clumps, the fraction of stars in the more distant peak, and their combined surface density. We compare the observations to predictions from two N-body models previously used in the literature. Both models correctly predict several features as long as one assumes an angle $伪_{\rm{Bar}} \approx 30^{\circ}$ between the Galactic bar&#39;s major axis and the line of sight to the Galactic centre. In particular that the fraction of stars in the faint red clump should decrease with increasing longitude. The biggest discrepancies between models and data are in the rate of decline of the combined surface density of red clump stars toward negative longitudes and of the brightness difference between the two red clumps toward positive longitudes, with neither discrepancy exceeding $\sim$25% in amplitude. Our analysis of the red giant luminosity function also yields an estimate of the red giant branch bump parameters toward these high-latitude fields, and evidence for a high rate ($\sim$25%) of disk contamination in the bulge at the colour and magnitude of the red clump, with the disk contamination rate increasing toward sightlines further distant from the plane. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.7384v2-abstract-full').style.display = 'none'; document.getElementById('1411.7384v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 14 figures, 5 tables, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.8252">arXiv:1410.8252</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1410.8252">pdf</a>, <a href="https://arxiv.org/ps/1410.8252">ps</a>, <a href="https://arxiv.org/format/1410.8252">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/804/1/33">10.1088/0004-637X/804/1/33 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> OGLE-2011-BLG-0265Lb: a Jovian Microlensing Planet Orbiting an M Dwarf </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Skowron%2C+J">J. Skowron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shin%2C+I+-">I. -G. Shin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Udalski%2C+A">A. Udalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+C">C. Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sumi%2C+T">T. Sumi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shvartzvald%2C+Y">Y. Shvartzvald</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gould%2C+A">A. Gould</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dominis-Prester%2C+D">D. Dominis-Prester</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Street%2C+R+A">R. A. Street</a>, <a href="/search/astro-ph?searchtype=author&amp;query=J%C3%B8rgensen%2C+U+G">U. G. J酶rgensen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bennett%2C+D+P">D. P. Bennett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bozza%2C+V">V. Bozza</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Szyma%C5%84ski%2C+M+K">M. K. Szyma艅ski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M">M. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pietrzy%C5%84ski%2C+G">G. Pietrzy艅ski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Soszy%C5%84ski%2C+I">I. Soszy艅ski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Poleski%2C+R">R. Poleski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koz%C5%82owski%2C+S">S. Koz艂owski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pietrukowicz%2C+P">P. Pietrukowicz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ulaczyk%2C+K">K. Ulaczyk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wyrzykowski%2C+%C5%81">艁. Wyrzykowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abe%2C+F">F. Abe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhattacharya%2C+A">A. Bhattacharya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+I+A">I. A. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Botzler%2C+C+S">C. S. Botzler</a> , et al. (99 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.8252v2-abstract-short" style="display: inline;"> We report the discovery of a Jupiter-mass planet orbiting an M-dwarf star that gave rise to the microlensing event OGLE-2011-BLG-0265. Such a system is very rare among known planetary systems and thus the discovery is important for theoretical studies of planetary formation and evolution. High-cadence temporal coverage of the planetary signal combined with extended observations throughout the even&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.8252v2-abstract-full').style.display = 'inline'; document.getElementById('1410.8252v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.8252v2-abstract-full" style="display: none;"> We report the discovery of a Jupiter-mass planet orbiting an M-dwarf star that gave rise to the microlensing event OGLE-2011-BLG-0265. Such a system is very rare among known planetary systems and thus the discovery is important for theoretical studies of planetary formation and evolution. High-cadence temporal coverage of the planetary signal combined with extended observations throughout the event allows us to accurately model the observed light curve. The final microlensing solution remains, however, degenerate yielding two possible configurations of the planet and the host star. In the case of the preferred solution, the mass of the planet is $M_{\rm p} = 0.9\pm 0.3\ M_{\rm J}$, and the planet is orbiting a star with a mass $M = 0.22\pm 0.06\ M_\odot$. The second possible configuration (2$蟽$ away) consists of a planet with $M_{\rm p}=0.6\pm 0.3\ M_{\rm J}$ and host star with $M=0.14\pm 0.06\ M_\odot$. The system is located in the Galactic disk 3 -- 4 kpc towards the Galactic bulge. In both cases, with an orbit size of 1.5 -- 2.0 AU, the planet is a &#34;cold Jupiter&#34; -- located well beyond the &#34;snow line&#34; of the host star. Currently available data make the secure selection of the correct solution difficult, but there are prospects for lifting the degeneracy with additional follow-up observations in the future, when the lens and source star separate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.8252v2-abstract-full').style.display = 'none'; document.getElementById('1410.8252v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 2 tables, 5 figures. Accepted in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.1542">arXiv:1410.1542</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1410.1542">pdf</a>, <a href="https://arxiv.org/ps/1410.1542">ps</a>, <a href="https://arxiv.org/format/1410.1542">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Over 38000 RR Lyrae Stars in the OGLE Galactic Bulge Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Soszynski%2C+I">I. Soszynski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Udalski%2C+A">A. Udalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Szymanski%2C+M+K">M. K. Szymanski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pietrukowicz%2C+P">P. Pietrukowicz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroz%2C+P">P. Mroz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Skowron%2C+J">J. Skowron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kozlowski%2C+S">S. Kozlowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Poleski%2C+R">R. Poleski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Skowron%2C+D">D. Skowron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pietrzynski%2C+G">G. Pietrzynski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wyrzykowski%2C+L">L. Wyrzykowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ulaczyk%2C+K">K. Ulaczyk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M">M. Kubiak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.1542v1-abstract-short" style="display: inline;"> We present the most comprehensive picture ever obtained of the central parts of the Milky Way probed with RR Lyrae variable stars. This is a collection of 38257 RR Lyr stars detected over 182 square degrees monitored photometrically by the Optical Gravitational Lensing Experiment (OGLE) in the most central regions of the Galactic bulge. The sample consists of 16804 variables found and published by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.1542v1-abstract-full').style.display = 'inline'; document.getElementById('1410.1542v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.1542v1-abstract-full" style="display: none;"> We present the most comprehensive picture ever obtained of the central parts of the Milky Way probed with RR Lyrae variable stars. This is a collection of 38257 RR Lyr stars detected over 182 square degrees monitored photometrically by the Optical Gravitational Lensing Experiment (OGLE) in the most central regions of the Galactic bulge. The sample consists of 16804 variables found and published by the OGLE collaboration in 2011 and 21453 RR Lyr stars newly detected in the photometric databases of the fourth phase of the OGLE survey (OGLE-IV). 93% of the OGLE-IV variables were previously unknown. The total sample consists of 27258 RRab, 10825 RRc, and 174 RRd stars. We provide OGLE-IV I- and V-band light curves of the variables along with their basic parameters. About 300 RR Lyr stars in our collection are plausible members of 15 globular clusters. Among others, we found the first pulsating variables that may belong to the globular cluster Terzan 1 and the first RRd star in the globular cluster M54. Our survey also covers the center and outskirts of the Sagittarius Dwarf Spheroidal Galaxy enabling studies of the spatial distribution of the old stellar population from this galaxy. A group of double-mode RR Lyr stars with period ratios around 0.740 form a stream in the sky that may be a relic of a cluster or a dwarf galaxy tidally disrupted by the Milky Way. Three of our RR Lyr stars experienced a pulsation mode switching from double-mode to single fundamental mode or vice versa. We also present the first known RRd stars with large-amplitude Blazhko effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.1542v1-abstract-full').style.display = 'none'; document.getElementById('1410.1542v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 9 figures, submitted to Acta Astronomica</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.1095">arXiv:1409.1095</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1409.1095">pdf</a>, <a href="https://arxiv.org/ps/1409.1095">ps</a>, <a href="https://arxiv.org/format/1409.1095">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> OGLE-IV Real-Time Transient Search </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Wyrzykowski%2C+L">L. Wyrzykowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kostrzewa-Rutkowska%2C+Z">Z. Kostrzewa-Rutkowska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kozlowski%2C+S">S. Kozlowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Udalski%2C+A">A. Udalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Poleski%2C+R">R. Poleski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Skowron%2C+J">J. Skowron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blagorodnova%2C+N">N. Blagorodnova</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M">M. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Szymanski%2C+M+K">M. K. Szymanski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pietrzynski%2C+G">G. Pietrzynski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Soszynski%2C+I">I. Soszynski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ulaczyk%2C+K">K. Ulaczyk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pietrukowicz%2C+P">P. Pietrukowicz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroz%2C+P">P. Mroz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.1095v1-abstract-short" style="display: inline;"> We present the design and first results of a real-time search for transients within the 650 sq. deg. area around the Magellanic Clouds, conducted as part of the OGLE-IV project and aimed at detecting supernovae, novae and other events. The average sampling of about 4 days from September to May, yielded a detection of 238 transients in 2012/2013 and 2013/2014 seasons. The superb photometric and ast&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.1095v1-abstract-full').style.display = 'inline'; document.getElementById('1409.1095v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.1095v1-abstract-full" style="display: none;"> We present the design and first results of a real-time search for transients within the 650 sq. deg. area around the Magellanic Clouds, conducted as part of the OGLE-IV project and aimed at detecting supernovae, novae and other events. The average sampling of about 4 days from September to May, yielded a detection of 238 transients in 2012/2013 and 2013/2014 seasons. The superb photometric and astrometric quality of the OGLE data allows for numerous applications of the discovered transients. We use this sample to prepare and train a Machine Learning-based automated classifier for early light curves, which distinguishes major classes of transients with more than 80% of correct answers. Spectroscopically classified 49 supernovae Type Ia are used to construct a Hubble Diagram with statistical scatter of about 0.3 mag and fill the least populated region of the redshifts range in the Union sample. We investigate the influence of host galaxy environments on supernovae statistics and find the mean host extinction of A_I=0.19+-0.10 mag and A_V=0.39+-0.21 mag based on a subsample of supernovae Type Ia. We show that the positional accuracy of the survey is of the order of 0.5 pixels (0.13 arcsec) and that the OGLE-IV Transient Detection System is capable of detecting transients within the nuclei of galaxies. We present a few interesting cases of nuclear transients of unknown type. All data on the OGLE transients are made publicly available to the astronomical community via the OGLE website. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.1095v1-abstract-full').style.display = 'none'; document.getElementById('1409.1095v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Acta Astronomica. Webpage: http://ogle.astrouw.edu.pl</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1408.6223">arXiv:1408.6223</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1408.6223">pdf</a>, <a href="https://arxiv.org/ps/1408.6223">ps</a>, <a href="https://arxiv.org/format/1408.6223">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/795/1/42">10.1088/0004-637X/795/1/42 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Triple Microlens OGLE-2008-BLG-092L: Binary Stellar System with a Circumprimary Uranus-type Planet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Poleski%2C+R">Rados艂aw Poleski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Skowron%2C+J">Jan Skowron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Udalski%2C+A">Andrzej Udalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+C">Cheongho Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koz%C5%82owski%2C+S">Szymon Koz艂owski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wyrzykowski%2C+%C5%81">艁ukasz Wyrzykowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dong%2C+S">Subo Dong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Szyma%C5%84ski%2C+M+K">Micha艂 K. Szyma艅ski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M">Marcin Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pietrzy%C5%84ski%2C+G">Grzegorz Pietrzy艅ski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Soszy%C5%84ski%2C+I">Igor Soszy艅ski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ulaczyk%2C+K">Krzysztof Ulaczyk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pietrukowicz%2C+P">Pawe艂 Pietrukowicz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gould%2C+A">Andrew Gould</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1408.6223v3-abstract-short" style="display: inline;"> We present the gravitational microlensing discovery of a 4 M_Uranus planet that orbits a 0.7 M_Sun star at ~18 AU. This is the first known analog of Uranus. Similar planets, i.e., cold ice-giants, are inaccessible to either radial velocity or transit methods because of the long orbital periods, while low reflected light prevents direct imaging. We discuss how similar planets may contaminate the sa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.6223v3-abstract-full').style.display = 'inline'; document.getElementById('1408.6223v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1408.6223v3-abstract-full" style="display: none;"> We present the gravitational microlensing discovery of a 4 M_Uranus planet that orbits a 0.7 M_Sun star at ~18 AU. This is the first known analog of Uranus. Similar planets, i.e., cold ice-giants, are inaccessible to either radial velocity or transit methods because of the long orbital periods, while low reflected light prevents direct imaging. We discuss how similar planets may contaminate the sample of the very short microlensing events that are interpreted as free-floating planets with an estimated rate of 1.8 per main sequence star. Moreover, the host star has a nearby stellar (or brown dwarf) companion. The projected separation of the planet is only ~3 times smaller than that of the companion star, suggesting significant dynamical interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.6223v3-abstract-full').style.display = 'none'; document.getElementById('1408.6223v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">published in ApJ; the photometry and the code used for fitting the double-lens extended-source (with limb darkening) microlensing model are attached as ancillary files</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2014 ApJ Vol. 795, 42 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1407.7926">arXiv:1407.7926</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1407.7926">pdf</a>, <a href="https://arxiv.org/ps/1407.7926">ps</a>, <a href="https://arxiv.org/format/1407.7926">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/798/2/123">10.1088/0004-637X/798/2/123 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> OGLE-2013-BLG-0102LA,B: Microlensing binary with components at star/brown-dwarf and brown-dwarf/planet boundaries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Jung%2C+Y+K">Y. K. Jung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Udalski%2C+A">A. Udalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sumi%2C+T">T. Sumi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+C">C. Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gould%2C+A">A. Gould</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Skowron%2C+J">J. Skowron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koz%C5%82owski%2C+S">S. Koz艂owski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Poleski%2C+R">R. Poleski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wyrzykowski%2C+%C5%81">艁. Wyrzykowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Szyma%C5%84ski%2C+M+K">M. K. Szyma艅ski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pietrzy%C5%84ski%2C+G">G. Pietrzy艅ski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Soszy%C5%84ski%2C+I">I. Soszy艅ski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ulaczyk%2C+K">K. Ulaczyk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pietrukowicz%2C+P">P. Pietrukowicz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mr%C3%B3z%2C+P">P. Mr贸z</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M">M. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abe%2C+F">F. Abe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bennett%2C+D+P">D. P. Bennett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+I+A">I. A. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Botzler%2C+C+S">C. S. Botzler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Freeman%2C+M">M. Freeman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fukui%2C+A">A. Fukui</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fukunaga%2C+D">D. Fukunaga</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Itow%2C+Y">Y. Itow</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koshimoto%2C+N">N. Koshimoto</a> , et al. (29 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1407.7926v2-abstract-short" style="display: inline;"> We present the analysis of the gravitational microlensing event OGLE-2013-BLG-0102. The light curve of the event is characterized by a strong short-term anomaly superposed on a smoothly varying lensing curve with a moderate magnification $A_{\rm max}\sim 1.5$. It is found that the event was produced by a binary lens with a mass ratio between the components of $q = 0.13$ and the anomaly was caused&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.7926v2-abstract-full').style.display = 'inline'; document.getElementById('1407.7926v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1407.7926v2-abstract-full" style="display: none;"> We present the analysis of the gravitational microlensing event OGLE-2013-BLG-0102. The light curve of the event is characterized by a strong short-term anomaly superposed on a smoothly varying lensing curve with a moderate magnification $A_{\rm max}\sim 1.5$. It is found that the event was produced by a binary lens with a mass ratio between the components of $q = 0.13$ and the anomaly was caused by the passage of the source trajectory over a caustic located away from the barycenter of the binary. From the analysis of the effects on the light curve due to the finite size of the source and the parallactic motion of the Earth, the physical parameters of the lens system are determined. The measured masses of the lens components are $M_{1} = 0.096 \pm 0.013~M_{\odot}$ and $M_{2} = 0.012 \pm 0.002~M_{\odot}$, which correspond to near the hydrogen-burning and deuterium-burning mass limits, respectively. The distance to the lens is $3.04 \pm 0.31~{\rm kpc}$ and the projected separation between the lens components is $0.80 \pm 0.08~{\rm AU}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.7926v2-abstract-full').style.display = 'none'; document.getElementById('1407.7926v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 figures, 2 tables, ApJ submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1407.1115">arXiv:1407.1115</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1407.1115">pdf</a>, <a href="https://arxiv.org/ps/1407.1115">ps</a>, <a href="https://arxiv.org/format/1407.1115">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.1251527">10.1126/science.1251527 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Terrestrial Planet in a ~1 AU Orbit Around One Member of a ~15 AU Binary </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Gould%2C+A">A. Gould</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Udalski%2C+A">A. Udalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shin%2C+I+-">I. -G. Shin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Porritt%2C+I">I. Porritt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Skowron%2C+J">J. Skowron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+C">C. Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yee%2C+J+C">J. C. Yee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koz%C5%82owski%2C+S">S. Koz艂owski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+J+-">J. -Y. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Poleski%2C+R">R. Poleski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wyrzykowski%2C+%C5%81">艁. Wyrzykowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ulaczyk%2C+K">K. Ulaczyk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pietrukowicz%2C+P">P. Pietrukowicz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mr%C3%B3z%2C+P">P. Mr贸z</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Szyma%C5%84ski%2C+M+K">M. K. Szyma艅ski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M">M. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Soszy%C5%84ski%2C+I">I. Soszy艅ski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pietrzy%C5%84ski%2C+G">G. Pietrzy艅ski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gaudi%2C+B+S">B. S. Gaudi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Christie%2C+G+W">G. W. Christie</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Drummond%2C+J">J. Drummond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McCormick%2C+J">J. McCormick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Natusch%2C+T">T. Natusch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ngan%2C+H">H. Ngan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tan%2C+T+-">T. -G. Tan</a> , et al. (39 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1407.1115v1-abstract-short" style="display: inline;"> We detect a cold, terrestrial planet in a binary-star system using gravitational microlensing. The planet has low mass (2 Earth masses) and lies projected at $a_{\perp,ph}$ ~ 0.8 astronomical units (AU) from its host star, similar to the Earth-Sun distance. However, the planet temperature is much lower, T&lt;60 Kelvin, because the host star is only 0.10--0.15 solar masses and therefore more than 400&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.1115v1-abstract-full').style.display = 'inline'; document.getElementById('1407.1115v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1407.1115v1-abstract-full" style="display: none;"> We detect a cold, terrestrial planet in a binary-star system using gravitational microlensing. The planet has low mass (2 Earth masses) and lies projected at $a_{\perp,ph}$ ~ 0.8 astronomical units (AU) from its host star, similar to the Earth-Sun distance. However, the planet temperature is much lower, T&lt;60 Kelvin, because the host star is only 0.10--0.15 solar masses and therefore more than 400 times less luminous than the Sun. The host is itself orbiting a slightly more massive companion with projected separation $a_{\perp,ch}=$10--15 AU. Straightforward modification of current microlensing search strategies could increase their sensitivity to planets in binary systems. With more detections, such binary-star/planetary systems could place constraints on models of planet formation and evolution. This detection is consistent with such systems being very common. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.1115v1-abstract-full').style.display = 'none'; document.getElementById('1407.1115v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Science, Main and supplementary material combined</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science, v345, p46-49, 2014 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.7742">arXiv:1405.7742</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1405.7742">pdf</a>, <a href="https://arxiv.org/ps/1405.7742">ps</a>, <a href="https://arxiv.org/format/1405.7742">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0067-0049/213/2/29">10.1088/0067-0049/213/2/29 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Warm Breeze from the starboard bow: a new population of neutral helium in the heliosphere </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kubiak%2C+M+A">M. A. Kubiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bzowski%2C+M">M. Bzowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sok%C3%B3%C5%82%2C+J+M">J. M. Sok贸艂</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Swaczyna%2C+P">P. Swaczyna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Grzedzielski%2C+S">S. Grzedzielski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alexashov%2C+D+B">D. B. Alexashov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izmodenov%2C+V+V">V. V. Izmodenov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moebius%2C+E">E. Moebius</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leonard%2C+T">T. Leonard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fuselier%2C+S+A">S. A. Fuselier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wurz%2C+P">P. Wurz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McComas%2C+D+J">D. J. McComas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.7742v1-abstract-short" style="display: inline;"> We investigate the signals from neutral He atoms observed from Earth orbit in 2010 by IBEX. The full He signal observed during the 2010 observation season can be explained as a superposition of pristine neutral interstellar He gas and an additional population of neutral He that we call the Warm Breeze. The Warm Breeze is approximately two-fold slower and 2.5 times warmer than the primary interstel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.7742v1-abstract-full').style.display = 'inline'; document.getElementById('1405.7742v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.7742v1-abstract-full" style="display: none;"> We investigate the signals from neutral He atoms observed from Earth orbit in 2010 by IBEX. The full He signal observed during the 2010 observation season can be explained as a superposition of pristine neutral interstellar He gas and an additional population of neutral He that we call the Warm Breeze. The Warm Breeze is approximately two-fold slower and 2.5 times warmer than the primary interstellar He population, and its density in front of the heliosphere is ~7% that of the neutral interstellar helium. The inflow direction of the Warm Breeze differs by ~19deg from the inflow direction of interstellar gas. The Warm Breeze seems a long-term feature of the heliospheric environment. It has not been detected earlier because it is strongly ionized inside the heliosphere, which brings it below the threshold of detection via pickup ion and heliospheric backscatter glow observations, as well as by the direct sampling of GAS/Ulysses. Possible sources for the Warm Breeze include (1) the secondary population of interstellar helium, created via charge exchange and perhaps elastic scattering of neutral interstellar He atoms on interstellar He+ ions in the outer heliosheath, or (2) a gust of interstellar He originating from a hypothetic wave train in the Local Interstellar Cloud. A secondary population is expected from models, but the characteristics of the Warm Breeze do not fully conform to modeling results. If, nevertheless, this is the explanation, IBEX-Lo observations of the Warm Breeze provide key insights into the physical state of plasma in the outer heliosheath. If the second hypothesis is true, the source is likely to be located within a few thousand of AU from the Sun, which is the propagation range of possible gusts of interstellar neutral helium with the Warm Breeze characteristics against dissipation via elastic scattering in the Local Cloud. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.7742v1-abstract-full').style.display = 'none'; document.getElementById('1405.7742v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to ApJS</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Kubiak%2C+M&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Kubiak%2C+M&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kubiak%2C+M&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kubiak%2C+M&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kubiak%2C+M&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kubiak%2C+M&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kubiak%2C+M&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10