CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 1,590 results for author: <span class="mathjax">Zhang, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Zhang%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Zhang, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Zhang%2C+J&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Zhang, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Zhang%2C+J&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Zhang%2C+J&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhang%2C+J&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhang%2C+J&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhang%2C+J&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhang%2C+J&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.20600">arXiv:2503.20600</a> <span> [<a href="https://arxiv.org/pdf/2503.20600">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Efficient second-harmonic emission via strong modal overlap in single-resonant lithium niobate nanocavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jiang%2C+Z">Zhi Jiang</a>, <a href="/search/physics?searchtype=author&query=Yao%2C+D">Danyang Yao</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+Y">Yu Gao</a>, <a href="/search/physics?searchtype=author&query=Ran%2C+X">Xu Ran</a>, <a href="/search/physics?searchtype=author&query=Li%2C+D">Duomao Li</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+E">Erqi Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jianguo Wang</a>, <a href="/search/physics?searchtype=author&query=Gan%2C+X">Xuetao Gan</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jinchuan Zhang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+F">Fengqi Liu</a>, <a href="/search/physics?searchtype=author&query=Hao%2C+Y">Yue Hao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.20600v1-abstract-short" style="display: inline;"> High-efficiency second-harmonic generation (SHG) in compact integrated photonic systems is crucial for advancing nonlinear optical technologies. However, achieving exceptional conversion efficiencies while maintaining stable performance remains a significant challenge. Here, we report a high-Q single-resonant photonic crystal nanobeam cavity (PCNBC) on a polymer-loaded lithium niobate on insulator… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.20600v1-abstract-full').style.display = 'inline'; document.getElementById('2503.20600v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.20600v1-abstract-full" style="display: none;"> High-efficiency second-harmonic generation (SHG) in compact integrated photonic systems is crucial for advancing nonlinear optical technologies. However, achieving exceptional conversion efficiencies while maintaining stable performance remains a significant challenge. Here, we report a high-Q single-resonant photonic crystal nanobeam cavity (PCNBC) on a polymer-loaded lithium niobate on insulator (LNOI) platform, which enables bright second-harmonic (SH) emission. Through synergistic optimization of modal confinement and spatial overlap in a y-cut LN architecture, our device achieves a normalized SHG conversion efficiency of 163%/W, outperforming previous LN-based photonic crystal cavities LN-based photonic crystal cavities by over three orders of magnitude. The visible SH emission at 768.77 nm exhibits a single-lobe radiation pattern with precise spectral alignment between fundamental (FH) and second-harmonic (SH) modes, a critical feature for integrated photonic circuits. Remarkably, the conversion efficiency remains stable under thermal variations up to 20掳C, addressing a key limitation of multi-resonant systems. High-order cavity modes are directly visualized via CCD imaging, confirming strong spatial overlap. This work establishes a record SHG conversion efficiency for LN microcavities and provides a scalable, temperature-insensitive architecture for nonlinear light sources, with immediate applications in quantum optics and chip-scale interconnects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.20600v1-abstract-full').style.display = 'none'; document.getElementById('2503.20600v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.19983">arXiv:2503.19983</a> <span> [<a href="https://arxiv.org/pdf/2503.19983">pdf</a>, <a href="https://arxiv.org/format/2503.19983">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> A Linear Collider Vision for the Future of Particle Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Abramowicz%2C+H">H. Abramowicz</a>, <a href="/search/physics?searchtype=author&query=Adli%2C+E">E. Adli</a>, <a href="/search/physics?searchtype=author&query=Alharthi%2C+F">F. Alharthi</a>, <a href="/search/physics?searchtype=author&query=Almanza-Soto%2C+M">M. Almanza-Soto</a>, <a href="/search/physics?searchtype=author&query=Altakach%2C+M+M">M. M. Altakach</a>, <a href="/search/physics?searchtype=author&query=Castelazo%2C+S+A">S Ampudia Castelazo</a>, <a href="/search/physics?searchtype=author&query=Angal-Kalinin%2C+D">D. Angal-Kalinin</a>, <a href="/search/physics?searchtype=author&query=Appleby%2C+R+B">R. B. Appleby</a>, <a href="/search/physics?searchtype=author&query=Arbey%2C+A">A. Arbey</a>, <a href="/search/physics?searchtype=author&query=Arquero%2C+O">O. Arquero</a>, <a href="/search/physics?searchtype=author&query=Aryshev%2C+A">A. Aryshev</a>, <a href="/search/physics?searchtype=author&query=Asai%2C+S">S. Asai</a>, <a href="/search/physics?searchtype=author&query=Attia%2C+D">D. Attia</a>, <a href="/search/physics?searchtype=author&query=Avila-Jimenez%2C+J+L">J. L. Avila-Jimenez</a>, <a href="/search/physics?searchtype=author&query=Baer%2C+H">H. Baer</a>, <a href="/search/physics?searchtype=author&query=Bagger%2C+J+A">J. A. Bagger</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&query=Bailey%2C+I+R">I. R. Bailey</a>, <a href="/search/physics?searchtype=author&query=Balazs%2C+C">C. Balazs</a>, <a href="/search/physics?searchtype=author&query=Barklow%2C+T">T. Barklow</a>, <a href="/search/physics?searchtype=author&query=Baudot%2C+J">J. Baudot</a>, <a href="/search/physics?searchtype=author&query=Bechtle%2C+P">P. Bechtle</a>, <a href="/search/physics?searchtype=author&query=Behnke%2C+T">T. Behnke</a>, <a href="/search/physics?searchtype=author&query=Bellerive%2C+A+B">A. B. Bellerive</a>, <a href="/search/physics?searchtype=author&query=Belomestnykh%2C+S">S. Belomestnykh</a> , et al. (333 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.19983v1-abstract-short" style="display: inline;"> In this paper we review the physics opportunities at linear $e^+e^-$ colliders with a special focus on high centre-of-mass energies and beam polarisation, take a fresh look at the various accelerator technologies available or under development and, for the first time, discuss how a facility first equipped with a technology mature today could be upgraded with technologies of tomorrow to reach much… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.19983v1-abstract-full').style.display = 'inline'; document.getElementById('2503.19983v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.19983v1-abstract-full" style="display: none;"> In this paper we review the physics opportunities at linear $e^+e^-$ colliders with a special focus on high centre-of-mass energies and beam polarisation, take a fresh look at the various accelerator technologies available or under development and, for the first time, discuss how a facility first equipped with a technology mature today could be upgraded with technologies of tomorrow to reach much higher energies and/or luminosities. In addition, we will discuss detectors and alternative collider modes, as well as opportunities for beyond-collider experiments and R\&D facilities as part of a linear collider facility (LCF). The material of this paper will support all plans for $e^+e^-$ linear colliders and additional opportunities they offer, independently of technology choice or proposed site, as well as R\&D for advanced accelerator technologies. This joint perspective on the physics goals, early technologies and upgrade strategies has been developed by the LCVision team based on an initial discussion at LCWS2024 in Tokyo and a follow-up at the LCVision Community Event at CERN in January 2025. It heavily builds on decades of achievements of the global linear collider community, in particular in the context of CLIC and ILC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.19983v1-abstract-full').style.display = 'none'; document.getElementById('2503.19983v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Community document for EPPSU, will be updated several times</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.18843">arXiv:2503.18843</a> <span> [<a href="https://arxiv.org/pdf/2503.18843">pdf</a>, <a href="https://arxiv.org/format/2503.18843">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Experimental Evidence of Vortex $纬$ Photons in All-Optical Inverse Compton Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wei%2C+M">Mingxuan Wei</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+S">Siyu Chen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yu Wang</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+X">Xichen Hu</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+M">Mingyang Zhu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+H">Hao Hu</a>, <a href="/search/physics?searchtype=author&query=He%2C+P">Pei-Lun He</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+W">Weijun Zhou</a>, <a href="/search/physics?searchtype=author&query=Jia%2C+J">Jiao Jia</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+L">Li Lu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+B">Boyuan Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+F">Feng Liu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+M">Min Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+L">Liming Chen</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jian-Xing Li</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+W">Wenchao Yan</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.18843v1-abstract-short" style="display: inline;"> Vortex $纬$ photons carrying orbital angular momenta (OAM) hold great potential for various applications. However, their generation remains a great challenge. Here, we successfully generate sub-MeV vortex $纬$ photons via all-optical inverse Compton scattering of relativistic electrons colliding with a sub-relativistic Laguerre-Gaussian laser. In principle, directly measuring the OAM of $纬$ photons… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.18843v1-abstract-full').style.display = 'inline'; document.getElementById('2503.18843v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.18843v1-abstract-full" style="display: none;"> Vortex $纬$ photons carrying orbital angular momenta (OAM) hold great potential for various applications. However, their generation remains a great challenge. Here, we successfully generate sub-MeV vortex $纬$ photons via all-optical inverse Compton scattering of relativistic electrons colliding with a sub-relativistic Laguerre-Gaussian laser. In principle, directly measuring the OAM of $纬$ photons is challenging due to their incoherence and extremely short wavelength. Therein, we put forward a novel method to determine the OAM properties by revealing the quantum opening angle of vortex $纬$ photons, since vortex particles exhibit not only a spiral phase but also transverse momentum according to the quantum electrodynamics theory. Thus,$纬$ photons carrying OAM anifest a much larger angular distribution than those without OAM, which has been clearly observed in our experiments. This angular expansion is considered as an overall effect lying beyond classical theory. Our method provides the first experimental evidence for detecting vortex $纬$ photons and opens a new perspective for investigating OAM-induced quantum phenomena in broad fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.18843v1-abstract-full').style.display = 'none'; document.getElementById('2503.18843v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.16156">arXiv:2503.16156</a> <span> [<a href="https://arxiv.org/pdf/2503.16156">pdf</a>, <a href="https://arxiv.org/ps/2503.16156">ps</a>, <a href="https://arxiv.org/format/2503.16156">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Electromagnetically Induced Transparency Effect Improves Quantum Battery Lifetime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+C">Cheng-Ge Liu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jin-Tian Zhang</a>, <a href="/search/physics?searchtype=author&query=Ai%2C+Q">Qing Ai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.16156v2-abstract-short" style="display: inline;"> Quantum battery (QB) is an application of quantum thermodynamics which uses quantum effects to store and transfer energy, overcoming the limitations of classical batteries and potentially improving performance. However, due to the interaction with the external environment, it will lead to decoherence and thus reduce the lifetime of QBs. Here, we propose suppressing the environmental dissipation in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.16156v2-abstract-full').style.display = 'inline'; document.getElementById('2503.16156v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.16156v2-abstract-full" style="display: none;"> Quantum battery (QB) is an application of quantum thermodynamics which uses quantum effects to store and transfer energy, overcoming the limitations of classical batteries and potentially improving performance. However, due to the interaction with the external environment, it will lead to decoherence and thus reduce the lifetime of QBs. Here, we propose suppressing the environmental dissipation in the energy-storage process of the QB by exploiting the electromagnetically-induced transparency (EIT) and bound states. By constructing a hybrid system composed of a four-level atom and a coupled-cavity array, two bound states are formed in the system when the energy of the QB is in the energy band of the cavity array. Due to the bound states and the EIT effect, the ambient dissipation is significantly suppressed, which improves the lifetime of the QB. In addition, we show that when the energy of the QB is in resonance with the cavity, the ergotropy of the QB reaches the maximum. Furthermore, there exists an optimal coupling strength between two neighbouring cavities which helps improve the performance of the QB. These discoveries may shed the light on the design of high-efficiency QBs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.16156v2-abstract-full').style.display = 'none'; document.getElementById('2503.16156v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.16003">arXiv:2503.16003</a> <span> [<a href="https://arxiv.org/pdf/2503.16003">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Mechano-Bactericidal Surfaces Achieved by Epitaxial Growth of Metal-Organic Frameworks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cao%2C+Z">Zhejian Cao</a>, <a href="/search/physics?searchtype=author&query=Pandit%2C+S">Santosh Pandit</a>, <a href="/search/physics?searchtype=author&query=Noa%2C+F+M+A">Francoise M. Amombo Noa</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jian Zhang</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+W">Wengeng Gao</a>, <a href="/search/physics?searchtype=author&query=Rahimi%2C+S">Shadi Rahimi</a>, <a href="/search/physics?searchtype=author&query=%C3%96hrstr%C3%B6m%2C+L">Lars 脰hrstr枚m</a>, <a href="/search/physics?searchtype=author&query=Mijakovic%2C+I">Ivan Mijakovic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.16003v1-abstract-short" style="display: inline;"> Mechano-bactericidal (MB) surfaces have been proposed as an emerging strategy for preventing biofilm formation. Unlike antibiotics and metal ions that chemically interfere with cellular processes, MB nanostructures cause physical damage to the bacteria. The antibacterial performance of artificial MB surfaces relies on rational control of surface features, which is difficult to achieve for large su… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.16003v1-abstract-full').style.display = 'inline'; document.getElementById('2503.16003v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.16003v1-abstract-full" style="display: none;"> Mechano-bactericidal (MB) surfaces have been proposed as an emerging strategy for preventing biofilm formation. Unlike antibiotics and metal ions that chemically interfere with cellular processes, MB nanostructures cause physical damage to the bacteria. The antibacterial performance of artificial MB surfaces relies on rational control of surface features, which is difficult to achieve for large surfaces in real-life applications. Herein, we report a facile and scalable method for fabricating MB surfaces based on metal-organic frameworks (MOFs) using epitaxial MOF-on-MOF hybrids as building blocks with nanopillars of less than 5 nm tip diameter, 200 nm base diameter, and 300 nm length. Two methods of MOF surface assembly, in-situ growth and ex-situ dropcasting, result in surfaces with nanopillars in different orientations, both presenting MB actions (bactericidal efficiency of 83% for E. coli). Distinct MB mechanisms, including stretching, impaling, and apoptosis-like death induced by mechanical injury are discussed with the observed bacterial morphology on the obtained MOF surfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.16003v1-abstract-full').style.display = 'none'; document.getElementById('2503.16003v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Total 36 pages(14-page manuscript and 22-page supplementary information)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.12119">arXiv:2503.12119</a> <span> [<a href="https://arxiv.org/pdf/2503.12119">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Photostriction Facilitates Relaxation of Lattice Distortion in Two-Dimensional Perovskites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jin Zhang</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+K">Kun Yang</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+J">Jianxin Yu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jia Zhang</a>, <a href="/search/physics?searchtype=author&query=Meng%2C+S">Sheng Meng</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+X">Xinghua Shi</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+W">Wei-Hai Fang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.12119v1-abstract-short" style="display: inline;"> The photostriction effect, a light-induced mechanical deformation in materials, originates from the intricate interplay between lattice structure and electronic excitation. In photovoltaic semiconductors, this effect plays a crucial role in shaping non-equilibrium structural responses, yet its fundamental mechanism remains elusive. Here, we uncover lattice expansion and structural reconfiguration… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.12119v1-abstract-full').style.display = 'inline'; document.getElementById('2503.12119v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.12119v1-abstract-full" style="display: none;"> The photostriction effect, a light-induced mechanical deformation in materials, originates from the intricate interplay between lattice structure and electronic excitation. In photovoltaic semiconductors, this effect plays a crucial role in shaping non-equilibrium structural responses, yet its fundamental mechanism remains elusive. Here, we uncover lattice expansion and structural reconfiguration in two-dimensional (2D) perovskites driven by photoinduced excitation using first-principles calculations. Our findings reveal that the photoinduced carriers lead to a substantial lattice expansion by about 2%. The expanded lattice facilitates strain relaxation with the amplitude of 20% by increasing interatomic distances and reducing internal stresses, thereby enhancing structural stability. The lattice dynamics can be systematically engineered through photodoping density, unveiling a new pathway to modulate light-matter interactions in 2D perovskites. These insights not only advance the understanding of optically driven structural dynamics but also offer a guiding principle for optimizing next-generation high-efficiency photovoltaic devices and optoelectronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.12119v1-abstract-full').style.display = 'none'; document.getElementById('2503.12119v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.11109">arXiv:2503.11109</a> <span> [<a href="https://arxiv.org/pdf/2503.11109">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Advancing Electronics Manufacturing Using Dynamically Programmable Micro-Transfer Printing System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Guo%2C+Q">Qinhua Guo</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+L">Lizhou Yang</a>, <a href="/search/physics?searchtype=author&query=Gan%2C+Y">Yawen Gan</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jingyang Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jiajun Zhang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+J">Jiahao Jiang</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+W">Weihan Lin</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+K">Kaiqi Chen</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chenchen Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yunda Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.11109v1-abstract-short" style="display: inline;"> Micro-transfer printing is an assembly technology that enables large-scale integration of diverse materials and components from micro- to nano-scale, crucial for developing advanced electronic and photonic systems. However, traditional micro-transfer printing technologies lack dynamic selectivity, limiting capabilities in sorting and repairing materials and components for effective yield managemen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.11109v1-abstract-full').style.display = 'inline'; document.getElementById('2503.11109v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.11109v1-abstract-full" style="display: none;"> Micro-transfer printing is an assembly technology that enables large-scale integration of diverse materials and components from micro- to nano-scale, crucial for developing advanced electronic and photonic systems. However, traditional micro-transfer printing technologies lack dynamic selectivity, limiting capabilities in sorting and repairing materials and components for effective yield management during large-scale manufacturing and integration processes. In this work, we introduce a dynamically programmable micro-transfer printing system utilizing a sharp phase-changing polymer and an independently addressable microheater array to modulate adhesion through localized heating. The system demonstrates dynamically programmable capabilities for selective transfer of various materials including semiconductors, polymers and metals, handling geometries from micro-scale chiplets to nanometer-thick films and micro-spheres. It also exhibits exceptional capabilities in 3D stacking and heterogeneous materials integration, significantly advancing the manufacturability of complex electronics. As a demonstration, we successfully perform dynamically programmable transfer of microLED chips to create arbitrarily specified patterns, offering a promising solution to the challenges of mass transfer and pixel repair in microLED display manufacturing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.11109v1-abstract-full').style.display = 'none'; document.getElementById('2503.11109v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.09420">arXiv:2503.09420</a> <span> [<a href="https://arxiv.org/pdf/2503.09420">pdf</a>, <a href="https://arxiv.org/format/2503.09420">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Imaging neutron radiation-induced defects in single-crystal chemical vapor deposition diamond at the atomic level </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jialiang Zhang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+F">Futao Huang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Shuo Li</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+G">Guojun Yu</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+Z">Zifeng Xu</a>, <a href="/search/physics?searchtype=author&query=Hei%2C+L">Lifu Hei</a>, <a href="/search/physics?searchtype=author&query=Lv%2C+F">Fanxiu Lv</a>, <a href="/search/physics?searchtype=author&query=Horne%2C+A">Aidan Horne</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+P">Peng Wang</a>, <a href="/search/physics?searchtype=author&query=Qi%2C+M">Ming Qi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.09420v1-abstract-short" style="display: inline;"> Diamond's exceptional properties make it highly suited for applications in challenging radiation environments. Understanding radiation-induced damage in diamond is crucial for enabling its practical applications and advancing materials science. However, direct imaging of radiation-induced crystal defects at the atomic scale remains rare due to diamond's compact lattice structure. Here, we report t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.09420v1-abstract-full').style.display = 'inline'; document.getElementById('2503.09420v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.09420v1-abstract-full" style="display: none;"> Diamond's exceptional properties make it highly suited for applications in challenging radiation environments. Understanding radiation-induced damage in diamond is crucial for enabling its practical applications and advancing materials science. However, direct imaging of radiation-induced crystal defects at the atomic scale remains rare due to diamond's compact lattice structure. Here, we report the atomic-level characterization of crystal defects induced by high-flux fast neutron radiation (up to $3 \times10^{17}$ n/$cm^2$) in single-crystal chemical vapor deposition diamonds. Through Raman spectroscopy, the phase transition from carbon $sp^3$ to $sp^2$ hybridization was identified, primarily associated with the formation of dumbbell-shaped interstitial defects. Using electron energy loss spectroscopy and aberration-corrected transmission electron microscopy, we observed a clustering trend in defect distribution, where $sp^2$ rich clusters manifested as dislocation structures with a density up to $10^{14}$ $cm^{-2}$. Lomer-Cottrell junctions were identified, offering a possible explanation for defect cluster formation. Radiation-induced point defects were found to be dispersed throughout the diamond lattice, highlighting the widespread nature of primary defect formation. Vacancy defects, along with $\langle 111 \rangle$ and $\langle 100 \rangle$ oriented dumbbell-shaped interstitial defects induced by high-dose neutron irradiation, were directly imaged, providing microscopic structural evidence that complements spectroscopic studies of point defects. Dynamical simulations combined with an adiabatic recombination-based damage model provided insights into the correlation between irradiation dose and resulting crystal damage. These findings advance our understanding of neutron-induced damage mechanisms in diamond and contribute to the development of radiation-resistant diamond materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.09420v1-abstract-full').style.display = 'none'; document.getElementById('2503.09420v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.08706">arXiv:2503.08706</a> <span> [<a href="https://arxiv.org/pdf/2503.08706">pdf</a>, <a href="https://arxiv.org/format/2503.08706">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> The SHMS 11 GeV/c Spectrometer in Hall C at Jefferson Lab </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ali%2C+S">S. Ali</a>, <a href="/search/physics?searchtype=author&query=Ahmidouch%2C+A">A. Ahmidouch</a>, <a href="/search/physics?searchtype=author&query=Ambrose%2C+G+R">G. R. Ambrose</a>, <a href="/search/physics?searchtype=author&query=Asaturyan%2C+A">A. Asaturyan</a>, <a href="/search/physics?searchtype=author&query=Gayoso%2C+C+A">C. Ayerbe Gayoso</a>, <a href="/search/physics?searchtype=author&query=Benesch%2C+J">J. Benesch</a>, <a href="/search/physics?searchtype=author&query=Berdnikov%2C+V">V. Berdnikov</a>, <a href="/search/physics?searchtype=author&query=Bhatt%2C+H">H. Bhatt</a>, <a href="/search/physics?searchtype=author&query=Bhetuwal%2C+D">D. Bhetuwal</a>, <a href="/search/physics?searchtype=author&query=Biswas%2C+D">D. Biswas</a>, <a href="/search/physics?searchtype=author&query=Brindza%2C+P">P. Brindza</a>, <a href="/search/physics?searchtype=author&query=Bukhari%2C+M">M. Bukhari</a>, <a href="/search/physics?searchtype=author&query=Burton%2C+M">M. Burton</a>, <a href="/search/physics?searchtype=author&query=Carlini%2C+R">R. Carlini</a>, <a href="/search/physics?searchtype=author&query=Carmignotto%2C+M">M. Carmignotto</a>, <a href="/search/physics?searchtype=author&query=Christy%2C+M+E">M. E. Christy</a>, <a href="/search/physics?searchtype=author&query=Cotton%2C+C">C. Cotton</a>, <a href="/search/physics?searchtype=author&query=Crafts%2C+J">J. Crafts</a>, <a href="/search/physics?searchtype=author&query=Day%2C+D">D. Day</a>, <a href="/search/physics?searchtype=author&query=Danagoulian%2C+S">S. Danagoulian</a>, <a href="/search/physics?searchtype=author&query=Dittmann%2C+A">A. Dittmann</a>, <a href="/search/physics?searchtype=author&query=Dongwi%2C+D+H">D. H. Dongwi</a>, <a href="/search/physics?searchtype=author&query=Duran%2C+B">B. Duran</a>, <a href="/search/physics?searchtype=author&query=Dutta%2C+D">D. Dutta</a>, <a href="/search/physics?searchtype=author&query=Ent%2C+R">R. Ent</a> , et al. (50 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.08706v1-abstract-short" style="display: inline;"> The Super High Momentum Spectrometer (SHMS) has been built for Hall C at the Thomas Jefferson National Accelerator Facility (Jefferson Lab). With a momentum capability reaching 11 GeV/c, the SHMS provides measurements of charged particles produced in electron-scattering experiments using the maximum available beam energy from the upgraded Jefferson Lab accelerator. The SHMS is an ion-optics magnet… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.08706v1-abstract-full').style.display = 'inline'; document.getElementById('2503.08706v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.08706v1-abstract-full" style="display: none;"> The Super High Momentum Spectrometer (SHMS) has been built for Hall C at the Thomas Jefferson National Accelerator Facility (Jefferson Lab). With a momentum capability reaching 11 GeV/c, the SHMS provides measurements of charged particles produced in electron-scattering experiments using the maximum available beam energy from the upgraded Jefferson Lab accelerator. The SHMS is an ion-optics magnetic spectrometer comprised of a series of new superconducting magnets which transport charged particles through an array of triggering, tracking, and particle-identification detectors that measure momentum, energy, angle and position in order to allow kinematic reconstruction of the events back to their origin at the scattering target. The detector system is protected from background radiation by a sophisticated shielding enclosure. The entire spectrometer is mounted on a rotating support structure which permits measurements to be taken with a large acceptance over laboratory scattering angles from 5.5 to 40 degrees, thus allowing a wide range of low cross-section experiments to be conducted. These experiments complement and extend the previous Hall C research program to higher energies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.08706v1-abstract-full').style.display = 'none'; document.getElementById('2503.08706v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">47 pages, 69 figures, to be submitted to NIMA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.08052">arXiv:2503.08052</a> <span> [<a href="https://arxiv.org/pdf/2503.08052">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Phase-matching of high harmonic generation in twisted solids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ma%2C+C">Chenjun Ma</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+C">Chen Huang</a>, <a href="/search/physics?searchtype=author&query=You%2C+Y">Yilong You</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Huazhan Liu</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+Z">Zhitong Ding</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+M">Mingchao Ding</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jin Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+G">Guixin Li</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+Z">Zhipei Sun</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+S">Shiwei Wu</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+C">Chaojie Ma</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+E">Enge Wang</a>, <a href="/search/physics?searchtype=author&query=Hong%2C+H">Hao Hong</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+K">Kaihui Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.08052v1-abstract-short" style="display: inline;"> High harmonic generation (HHG) in solids could enable attosecond and ultraviolet light sources with high compactness, great controllability and rich functions. However, the HHG process is accompanied by a quite large wavevector mismatch that is uncompensated by any traditional phase-matching method, directly limiting its energy conversion efficiency. Here, we propose an effective strategy for phas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.08052v1-abstract-full').style.display = 'inline'; document.getElementById('2503.08052v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.08052v1-abstract-full" style="display: none;"> High harmonic generation (HHG) in solids could enable attosecond and ultraviolet light sources with high compactness, great controllability and rich functions. However, the HHG process is accompanied by a quite large wavevector mismatch that is uncompensated by any traditional phase-matching method, directly limiting its energy conversion efficiency. Here, we propose an effective strategy for phase-matching of HHG with arbitrary harmonic orders in solids. Two flakes of solids with an interlayer twist induce a nonlinear optical phase that depends on the crystal symmetry, twist angle and harmonic order, which can be accurately designed to compensate for the phase mismatch in HHG. Guided by the twist-phase-matching theory, we achieved a record-high conversion efficiency of $~1.5\times10^{-5}$ for the fifth HHG in twisted hexagonal boron nitride crystals with a total thickness of only 1 $渭m$. Our work establishes a foundation for developing ultrashort-wavelength and ultrafast-pulse laser sources in compact solid-state tabletop systems for fundamental and applied sciences. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.08052v1-abstract-full').style.display = 'none'; document.getElementById('2503.08052v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.06687">arXiv:2503.06687</a> <span> [<a href="https://arxiv.org/pdf/2503.06687">pdf</a>, <a href="https://arxiv.org/format/2503.06687">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> UniGenX: Unified Generation of Sequence and Structure with Autoregressive Diffusion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+G">Gongbo Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yanting Li</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+R">Renqian Luo</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+P">Pipi Hu</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Z">Zeru Zhao</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Lingbo Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+G">Guoqing Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zun Wang</a>, <a href="/search/physics?searchtype=author&query=Bi%2C+R">Ran Bi</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+K">Kaiyuan Gao</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+L">Liya Guo</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+Y">Yu Xie</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+C">Chang Liu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jia Zhang</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+T">Tian Xie</a>, <a href="/search/physics?searchtype=author&query=Pinsler%2C+R">Robert Pinsler</a>, <a href="/search/physics?searchtype=author&query=Zeni%2C+C">Claudio Zeni</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Ziheng Lu</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+Y">Yingce Xia</a>, <a href="/search/physics?searchtype=author&query=Segler%2C+M">Marwin Segler</a>, <a href="/search/physics?searchtype=author&query=Riechert%2C+M">Maik Riechert</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+L">Li Yuan</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+L">Lei Chen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Haiguang Liu</a>, <a href="/search/physics?searchtype=author&query=Qin%2C+T">Tao Qin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.06687v1-abstract-short" style="display: inline;"> Unified generation of sequence and structure for scientific data (e.g., materials, molecules, proteins) is a critical task. Existing approaches primarily rely on either autoregressive sequence models or diffusion models, each offering distinct advantages and facing notable limitations. Autoregressive models, such as GPT, Llama, and Phi-4, have demonstrated remarkable success in natural language ge… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.06687v1-abstract-full').style.display = 'inline'; document.getElementById('2503.06687v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.06687v1-abstract-full" style="display: none;"> Unified generation of sequence and structure for scientific data (e.g., materials, molecules, proteins) is a critical task. Existing approaches primarily rely on either autoregressive sequence models or diffusion models, each offering distinct advantages and facing notable limitations. Autoregressive models, such as GPT, Llama, and Phi-4, have demonstrated remarkable success in natural language generation and have been extended to multimodal tasks (e.g., image, video, and audio) using advanced encoders like VQ-VAE to represent complex modalities as discrete sequences. However, their direct application to scientific domains is challenging due to the high precision requirements and the diverse nature of scientific data. On the other hand, diffusion models excel at generating high-dimensional scientific data, such as protein, molecule, and material structures, with remarkable accuracy. Yet, their inability to effectively model sequences limits their potential as general-purpose multimodal foundation models. To address these challenges, we propose UniGenX, a unified framework that combines autoregressive next-token prediction with conditional diffusion models. This integration leverages the strengths of autoregressive models to ease the training of conditional diffusion models, while diffusion-based generative heads enhance the precision of autoregressive predictions. We validate the effectiveness of UniGenX on material and small molecule generation tasks, achieving a significant leap in state-of-the-art performance for material crystal structure prediction and establishing new state-of-the-art results for small molecule structure prediction, de novo design, and conditional generation. Notably, UniGenX demonstrates significant improvements, especially in handling long sequences for complex structures, showcasing its efficacy as a versatile tool for scientific data generation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.06687v1-abstract-full').style.display = 'none'; document.getElementById('2503.06687v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.06644">arXiv:2503.06644</a> <span> [<a href="https://arxiv.org/pdf/2503.06644">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> The New CMS Measure of Excessive Radiation Dose or Inadequate CT Image Quality: Methods for Size-Adjusted Dose and Their Variabilities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ge%2C+G+Y">Gary Y Ge</a>, <a href="/search/physics?searchtype=author&query=Weaver%2C+C+M">Charles M Weaver</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.06644v1-abstract-short" style="display: inline;"> The Centers for Medicare & Medicaid Services (CMS) has introduced CMS1074v2, a quality measure for computed tomography (CT) that assesses radiation dose and image quality across 18 CT exam categories. This measure mandates the calculation of size-adjusted dose (SAD) using patient effective diameter and predefined size-adjustment coefficients. However, variability in SAD calculation methods raises… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.06644v1-abstract-full').style.display = 'inline'; document.getElementById('2503.06644v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.06644v1-abstract-full" style="display: none;"> The Centers for Medicare & Medicaid Services (CMS) has introduced CMS1074v2, a quality measure for computed tomography (CT) that assesses radiation dose and image quality across 18 CT exam categories. This measure mandates the calculation of size-adjusted dose (SAD) using patient effective diameter and predefined size-adjustment coefficients. However, variability in SAD calculation methods raises concerns about standardization, compliance, and clinical applicability. This study evaluates five commonly used methods for estimating effective diameter and their impact on SAD determination in thoracic and abdominal CT protocols. A retrospective analysis of 719 CT exams was performed, comparing SAD values across different calculation approaches. Results indicate significant variability in SAD, with attenuation-based methods overestimating SAD in chest exams and projection-based methods exhibiting greater variability in abdominal exams. The findings highlight potential inconsistencies in CMS-defined dose thresholds and challenges in applying the measure across diverse patient populations and institutional imaging practices. Addressing these inconsistencies is critical for ensuring accurate dose reporting and maintaining diagnostic integrity in CT imaging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.06644v1-abstract-full').style.display = 'none'; document.getElementById('2503.06644v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.06448">arXiv:2503.06448</a> <span> [<a href="https://arxiv.org/pdf/2503.06448">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> A Novel Design for SRAM Bitcell with 3-Complementary-FETs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cheng%2C+X">Xiaoyu Cheng</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+Y">Yangyang Hu</a>, <a href="/search/physics?searchtype=author&query=Miao%2C+T">Tianci Miao</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+W">Wenbo Liu</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+Q">Qihang Zheng</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yisi Liu</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+J">Jie Liang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+L">Liang Chen</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+A">Aiying Guo</a>, <a href="/search/physics?searchtype=author&query=Yin%2C+L">Luqiao Yin</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jianhua Zhang</a>, <a href="/search/physics?searchtype=author&query=Ren%2C+K">Kailin Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.06448v1-abstract-short" style="display: inline;"> The complementary field-effect transistors (CFETs), featuring vertically stacked n/p-FETs, enhance integration density and significantly reduce the area of standard cells such as static random-access memory (SRAM). However, the advantage of area scaling through CFETs is hindered by the imbalance in N/P transistor counts (typically 4N/2P) within SRAM cells. In this work, we propose a novel 6T-SRAM… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.06448v1-abstract-full').style.display = 'inline'; document.getElementById('2503.06448v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.06448v1-abstract-full" style="display: none;"> The complementary field-effect transistors (CFETs), featuring vertically stacked n/p-FETs, enhance integration density and significantly reduce the area of standard cells such as static random-access memory (SRAM). However, the advantage of area scaling through CFETs is hindered by the imbalance in N/P transistor counts (typically 4N/2P) within SRAM cells. In this work, we propose a novel 6T-SRAM design using three sets of CFETs, achieved by vertically stacking two n-FET pass-gate (PG) transistors via the CFET architecture. Through TCAD simulations, we optimize channel doping concentration and the number of top/bottom nanosheets (NS), demonstrating that junctionless accumulation mode (JAM) devices outperform inversion mode (IM) devices for PG and pull-down (PD) transistors. The proposed design achieves a 37% area reduction in SRAM standard cell layout compared to conventional CFET-based SRAM. With optimized parameters (n-type doping of \(1\times10^{15}\) cm\(^{-3}\) and '1B4T' NS configuration), the 3-CFET SRAM exhibits superior write margin (349.60 mV) and write delay (54.4 ps). This work advances SRAM design within the CFET framework, offering a scalable solution for next-generation memory technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.06448v1-abstract-full').style.display = 'none'; document.getElementById('2503.06448v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 10 Postscript figures, uses rotate.sty</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.06445">arXiv:2503.06445</a> <span> [<a href="https://arxiv.org/pdf/2503.06445">pdf</a>, <a href="https://arxiv.org/format/2503.06445">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> </div> </div> <p class="title is-5 mathjax"> Socioeconomic centers in cities worldwide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pang%2C+S">Shuai Pang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Junlong Zhang</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+L">Lei Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.06445v1-abstract-short" style="display: inline;"> Urban centers serve as engines of regional development, yet accurately defining and identifying the socioeconomic centers of cities globally remains a big challenge. Existing mapping efforts are often limited to large cities in developed regions and rely on data sources that are unavailable in many developing countries. This data scarcity hinders the establishment of consistent urban indicators, s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.06445v1-abstract-full').style.display = 'inline'; document.getElementById('2503.06445v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.06445v1-abstract-full" style="display: none;"> Urban centers serve as engines of regional development, yet accurately defining and identifying the socioeconomic centers of cities globally remains a big challenge. Existing mapping efforts are often limited to large cities in developed regions and rely on data sources that are unavailable in many developing countries. This data scarcity hinders the establishment of consistent urban indicators, such as accessibility, to assess progress towards the United Nations Sustainable Development Goals (SDGs). Here, we develop and validate a global map of the socioeconomic centers of cities for 2020 by integrating nighttime light and population density data within an advanced geospatial modeling framework. Our analysis reveals that monocentric cities -- the standard urban model -- still dominate our planet, accounting for over 80% of cities worldwide. However, these monocentric cities encompass only approximately 20% of the total urbanized area, urban population, and nighttime light intensity; this 80/20 pattern underscores significant disparities in urban development. Further analysis, combined with socioeconomic datasets, reveals a marked difference between developed and developing regions: high-income countries exhibit greater polycentricity than low-income countries, demonstrating a positive correlation between urban sprawl and economic growth. Our global dataset and findings provide critical insights into urban structure and development, with important implications for urban planning, policymaking, and the formulation of indicators for urban sustainability assessment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.06445v1-abstract-full').style.display = 'none'; document.getElementById('2503.06445v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.06172">arXiv:2503.06172</a> <span> [<a href="https://arxiv.org/pdf/2503.06172">pdf</a>, <a href="https://arxiv.org/format/2503.06172">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Asymmetric Modular Pulse Synthesizer: A High-Power High-Granularity Electronics Solution for Transcranial Magnetic Stimulation with Practically Any Pulse Shape for Neural Activation Selectivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jinshui Zhang</a>, <a href="/search/physics?searchtype=author&query=Peterchev%2C+A">Angel Peterchev</a>, <a href="/search/physics?searchtype=author&query=Goetz%2C+S">Stefan Goetz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.06172v1-abstract-short" style="display: inline;"> Noninvasive brain stimulation can activate neurons in the brain but requires power electronics with exceptionally high power in the mega-volt-ampere and high frequencies in the kilohertz range. Whereas oscillator circuits offered only one or very few pulse shapes, modular power electronics solved a long-standing problem for the first time and enabled arbitrary software-based design of the temporal… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.06172v1-abstract-full').style.display = 'inline'; document.getElementById('2503.06172v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.06172v1-abstract-full" style="display: none;"> Noninvasive brain stimulation can activate neurons in the brain but requires power electronics with exceptionally high power in the mega-volt-ampere and high frequencies in the kilohertz range. Whereas oscillator circuits offered only one or very few pulse shapes, modular power electronics solved a long-standing problem for the first time and enabled arbitrary software-based design of the temporal shape of stimuli. However, synthesizing arbitrary stimuli with a high output quality requires a large number of modules. Systems with few modules and pulse-width modulation may generate apparently smooth current shapes in the highly inductive coil, but the stimulation effect of the neurons depends on the electric field and the electric field becomes a burst of ultra-brief rectangular pulses. We propose an alternative solution that achieves high-resolution pulse shaping with fewer modules by implementing high-power wide-bandwidth voltage asymmetry. Rather than equal voltage steps, our system strategically assigns different voltages to each module to achieve a near-exponential improvement in resolution. Compared to prior designs, our experimental prototype achieved better output quality, although it uses only half the number of modules. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.06172v1-abstract-full').style.display = 'none'; document.getElementById('2503.06172v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.05367">arXiv:2503.05367</a> <span> [<a href="https://arxiv.org/pdf/2503.05367">pdf</a>, <a href="https://arxiv.org/format/2503.05367">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Semi-Supervised Learning for Dose Prediction in Targeted Radionuclide: A Synthetic Data Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jing Zhang</a>, <a href="/search/physics?searchtype=author&query=Bousse%2C+A">Alexandre Bousse</a>, <a href="/search/physics?searchtype=author&query=Imbert%2C+L">Laetitia Imbert</a>, <a href="/search/physics?searchtype=author&query=Xue%2C+S">Song Xue</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+K">Kuangyu Shi</a>, <a href="/search/physics?searchtype=author&query=Bert%2C+J">Julien Bert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.05367v1-abstract-short" style="display: inline;"> Targeted Radionuclide Therapy (TRT) is a modern strategy in radiation oncology that aims to administer a potent radiation dose specifically to cancer cells using cancer-targeting radiopharmaceuticals. Accurate radiation dose estimation tailored to individual patients is crucial. Deep learning, particularly with pre-therapy imaging, holds promise for personalizing TRT doses. However, current method… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.05367v1-abstract-full').style.display = 'inline'; document.getElementById('2503.05367v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.05367v1-abstract-full" style="display: none;"> Targeted Radionuclide Therapy (TRT) is a modern strategy in radiation oncology that aims to administer a potent radiation dose specifically to cancer cells using cancer-targeting radiopharmaceuticals. Accurate radiation dose estimation tailored to individual patients is crucial. Deep learning, particularly with pre-therapy imaging, holds promise for personalizing TRT doses. However, current methods require large time series of SPECT imaging, which is hardly achievable in routine clinical practice, and thus raises issues of data availability. Our objective is to develop a semi-supervised learning (SSL) solution to personalize dosimetry using pre-therapy images. The aim is to develop an approach that achieves accurate results when PET/CT images are available, but are associated with only a few post-therapy dosimetry data provided by SPECT images. In this work, we introduce an SSL method using a pseudo-label generation approach for regression tasks inspired by the FixMatch framework. The feasibility of the proposed solution was preliminarily evaluated through an in-silico study using synthetic data and Monte Carlo simulation. Experimental results for organ dose prediction yielded promising outcomes, showing that the use of pseudo-labeled data provides better accuracy compared to using only labeled data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.05367v1-abstract-full').style.display = 'none'; document.getElementById('2503.05367v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 13 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.04493">arXiv:2503.04493</a> <span> [<a href="https://arxiv.org/pdf/2503.04493">pdf</a>, <a href="https://arxiv.org/format/2503.04493">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Treatment of Wall Boundary Conditions in High-Order Compact Gas-Kinetic Schemes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jiawang Zhang</a>, <a href="/search/physics?searchtype=author&query=Ji%2C+X">Xing Ji</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+K">Kun Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.04493v1-abstract-short" style="display: inline;"> The boundary layer represents a fundamental structure in fluid dynamics, where accurate boundary discretization significantly enhances computational efficiency. This paper presents a third-order boundary discretization for compact gas-kinetic scheme (GKS). Wide stencils and curved boundaries pose challenges in the boundary treatment for high-order schemes, particularly for temporal accuracy. By ut… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.04493v1-abstract-full').style.display = 'inline'; document.getElementById('2503.04493v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.04493v1-abstract-full" style="display: none;"> The boundary layer represents a fundamental structure in fluid dynamics, where accurate boundary discretization significantly enhances computational efficiency. This paper presents a third-order boundary discretization for compact gas-kinetic scheme (GKS). Wide stencils and curved boundaries pose challenges in the boundary treatment for high-order schemes, particularly for temporal accuracy. By utilizing a time-dependent gas distribution function, the GKS simultaneously evaluates fluxes and updates flow variables at cell interfaces, enabling the concurrent update of cell-averaged flow variables and their gradients within the third-order compact scheme. The proposed one-sided discretization achieves third-order spatial accuracy on boundary cells by utilizing updated flow variables and gradients in the discretization for non-slip wall boundary conditions. High-order temporal accuracy on boundary cells is achieved through the GKS time-dependent flux implementation with multi-stage multi-derivative methodology. Additionally, we develop exact no-penetration conditions for both adiabatic and isothermal wall boundaries, with extensions to curved mesh geometries to fully exploit the advantages of high-order schemes. Comparative analysis between the proposed one-sided third-order boundary scheme, third-order boundary scheme with ghost cells, and second-order boundary scheme demonstrates significant performance differences for the third-order compact GKS. Results indicate that lower-order boundary cell treatments yield substantially inferior results, while the proposed third-order treatment demonstrates superior performance, particularly on coarse grid configurations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.04493v1-abstract-full').style.display = 'none'; document.getElementById('2503.04493v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.04437">arXiv:2503.04437</a> <span> [<a href="https://arxiv.org/pdf/2503.04437">pdf</a>, <a href="https://arxiv.org/format/2503.04437">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Single-photon counting pixel detector for soft X-rays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Baruffaldi%2C+F">Filippo Baruffaldi</a>, <a href="/search/physics?searchtype=author&query=Bergamaschi%2C+A">Anna Bergamaschi</a>, <a href="/search/physics?searchtype=author&query=Boscardin%2C+M">Maurizio Boscardin</a>, <a href="/search/physics?searchtype=author&query=Brueckner%2C+M">Martin Brueckner</a>, <a href="/search/physics?searchtype=author&query=Butcher%2C+T+A">Tim A. Butcher</a>, <a href="/search/physics?searchtype=author&query=Carulla%2C+M">Maria Carulla</a>, <a href="/search/physics?searchtype=author&query=Vignali%2C+M+C">Matteo Centis Vignali</a>, <a href="/search/physics?searchtype=author&query=Dinapoli%2C+R">Roberto Dinapoli</a>, <a href="/search/physics?searchtype=author&query=Finizio%2C+S">Simone Finizio</a>, <a href="/search/physics?searchtype=author&query=Froejdh%2C+E">Erik Froejdh</a>, <a href="/search/physics?searchtype=author&query=Greiffenberg%2C+D">Dominic Greiffenberg</a>, <a href="/search/physics?searchtype=author&query=Mozzanica%2C+A">Aldo Mozzanica</a>, <a href="/search/physics?searchtype=author&query=Paternoster%2C+G">Giovanni Paternoster</a>, <a href="/search/physics?searchtype=author&query=Phillips%2C+N+W">Nicholas W. Phillips</a>, <a href="/search/physics?searchtype=author&query=Raabe%2C+J">Joerg Raabe</a>, <a href="/search/physics?searchtype=author&query=Schmitt%2C+B">Bernd Schmitt</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jiaguo Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.04437v2-abstract-short" style="display: inline;"> Soft X-ray experiments at synchrotron light sources are essential for a wide range of research fields. However, commercially available detectors for this energy range often cannot deliver the necessary combination of quantum efficiency, signal-to-noise ratio, dynamic range, speed, and radiation hardness within a single system. While hybrid detectors have addressed these challenges effectively in t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.04437v2-abstract-full').style.display = 'inline'; document.getElementById('2503.04437v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.04437v2-abstract-full" style="display: none;"> Soft X-ray experiments at synchrotron light sources are essential for a wide range of research fields. However, commercially available detectors for this energy range often cannot deliver the necessary combination of quantum efficiency, signal-to-noise ratio, dynamic range, speed, and radiation hardness within a single system. While hybrid detectors have addressed these challenges effectively in the hard X-ray regime, specifically with single photon counting pixel detectors extensively used in high-performance synchrotron applications, similar solutions are desired for energies below 2 keV. In this work, we introduce the first single-photon-counting hybrid pixel detector capable of detecting X-ray energies as low as 550 eV, utilizing the internal amplification of Low-Gain Avalanche Diode (LGAD) sensors. This detector is thoroughly characterized in terms of Signal-to-Noise Ratio and Detective Quantum Efficiency. We demonstrate its capabilities through ptychographic imaging at MAX IV 4th generation synchrotron light source at the Fe L$_3$-edge (707 eV), showcasing the enhanced detection performance of the system. This development sets a new benchmark for soft X-ray applications at synchrotrons, paving the way for significant advancements in imaging and analysis at lower photon energies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.04437v2-abstract-full').style.display = 'none'; document.getElementById('2503.04437v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.04173">arXiv:2503.04173</a> <span> [<a href="https://arxiv.org/pdf/2503.04173">pdf</a>, <a href="https://arxiv.org/format/2503.04173">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/JSTQE.2024.3522205">10.1109/JSTQE.2024.3522205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Compact and fully functional high-frequency sine wave gating InGaAs/InP single-photon detector module </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xu%2C+Q">Qi Xu</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+C">Chao Yu</a>, <a href="/search/physics?searchtype=author&query=Cui%2C+D">Dajian Cui</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xuan-Yi Zhang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+W">Wei Chen</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+Y">Yu-Qiang Fang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+L">Lianjun Jiang</a>, <a href="/search/physics?searchtype=author&query=Tong%2C+Q">Qixia Tong</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+J">Jianglin Zhao</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jun Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.04173v1-abstract-short" style="display: inline;"> High-frequency sine wave gating (SWG) InGaAs/InP single-photon detectors (SPDs) are widely used for synchronous near-infrared single-photon detection. For practical use, the size of SPD is one of the most concerning features for system integration. Here we present, to the best of our knowledge, the most compact and fully functional high-frequency SWG InGaAs/InP SPD. We develop a sine wave gating i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.04173v1-abstract-full').style.display = 'inline'; document.getElementById('2503.04173v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.04173v1-abstract-full" style="display: none;"> High-frequency sine wave gating (SWG) InGaAs/InP single-photon detectors (SPDs) are widely used for synchronous near-infrared single-photon detection. For practical use, the size of SPD is one of the most concerning features for system integration. Here we present, to the best of our knowledge, the most compact and fully functional high-frequency SWG InGaAs/InP SPD. We develop a sine wave gating integrated circuit (SWGIC) using system-in-package technology that supports functions including large amplitude sine wave gate generation, coincidence gate generation, phase regulation, amplitude monitoring, and amplitude modulation. Moreover, we design and fabricate a high-performance multi-mode fiber coupled InGaAs/InP single-photon avalanche diode (SPAD) with a compact butterfly package. Furthermore, we implement a monolithically integrated readout circuit (MIRC) to extract the weak avalanche signal from large capacitance response of SWG. Finally, the SWGIC, SPAD, MIRC, and the affiliated circuits are integrated into a single module with a size of 6 cm x 5.7 cm x 1.7 cm. After characterization, the SPD module exhibits a photon detection efficiency of 40%, a dark count rate of 9 kcps, and an afterpulse probability of 4.6% at an operation temperature of 238 K and a hold-off time of 160 ns. Our work provides a practical solution for applications necessitating highly integrated near-infrared single-photon detection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.04173v1-abstract-full').style.display = 'none'; document.getElementById('2503.04173v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published by IEEE Journal of Selected Topics in Quantum Electronics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Journal of Selected Topics in Quantum Electronics 31(5), 3801007 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.02376">arXiv:2503.02376</a> <span> [<a href="https://arxiv.org/pdf/2503.02376">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Unsaturated Dinitrogen Difluoride under Pressure: toward high-Energy Density Polymerized NF Chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+G">Guo Chen</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+L">Ling Lin</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chengfeng Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jie Zhang</a>, <a href="/search/physics?searchtype=author&query=Frapper%2C+G">Gilles Frapper</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xianlong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.02376v2-abstract-short" style="display: inline;"> Based on first-principles calculations and ab initio molecular dynamics simulations, the polymerisation of the unsaturated cis dinitrogen-difluoride (cis-N2F2) molecular compound is investigated. The thermodynamic, dynamical and thermal stabilities of the nitrogen fluorine NF system are investigated at conditions of 0-3000 K and 0-200 GPa. The cis-N2F2 molecule is a suitable precursor to obtain on… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.02376v2-abstract-full').style.display = 'inline'; document.getElementById('2503.02376v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.02376v2-abstract-full" style="display: none;"> Based on first-principles calculations and ab initio molecular dynamics simulations, the polymerisation of the unsaturated cis dinitrogen-difluoride (cis-N2F2) molecular compound is investigated. The thermodynamic, dynamical and thermal stabilities of the nitrogen fluorine NF system are investigated at conditions of 0-3000 K and 0-200 GPa. The cis-N2F2 molecule is a suitable precursor to obtain one-dimensional polymerized nitrogen-fluorine (poly-NF) chains at a pressure above 90 GPa and at a temperature around 1900 K. Importantly, these poly-NF chains can be quenched to room conditions, and potentially serve as a High-energy-density materials (HEDM). It has been established that when Al is utilised as a reducing agent, poly-NF chains exhibit a gravimetric energy density of 13.55 kJ/g, which exceeds that of cubic gauche nitrogen (cg-N, 9.70 kJ/g). This is attributable to the presence of both polymerised nitrogen and strong oxidising F atoms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.02376v2-abstract-full').style.display = 'none'; document.getElementById('2503.02376v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">High-energy-density material, First-principles calculation, Ab initio molecular dynamics, NF compound</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.02165">arXiv:2503.02165</a> <span> [<a href="https://arxiv.org/pdf/2503.02165">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Integrated Computation and Communication with Fiber-optic Transmissions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jiahao Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+L">Lu Zhang</a>, <a href="/search/physics?searchtype=author&query=Pang%2C+X">Xiaodan Pang</a>, <a href="/search/physics?searchtype=author&query=Ozolins%2C+O">Oskars Ozolins</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Q">Qun Zhang</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+X">Xianbin Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.02165v1-abstract-short" style="display: inline;"> Fiber-optic transmission systems are leveraged not only as high-speed communication channels but also as nonlinear kernel functions for machine learning computations, enabling the seamless integration of computational intelligence and communication. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.02165v1-abstract-full" style="display: none;"> Fiber-optic transmission systems are leveraged not only as high-speed communication channels but also as nonlinear kernel functions for machine learning computations, enabling the seamless integration of computational intelligence and communication. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.02165v1-abstract-full').style.display = 'none'; document.getElementById('2503.02165v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.00968">arXiv:2503.00968</a> <span> [<a href="https://arxiv.org/pdf/2503.00968">pdf</a>, <a href="https://arxiv.org/format/2503.00968">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Simulation of the Background from $^{13}$C$(伪, n)^{16}$O Reaction in the JUNO Scintillator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=JUNO+Collaboration"> JUNO Collaboration</a>, <a href="/search/physics?searchtype=author&query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&query=Adamowicz%2C+K">Kai Adamowicz</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">Costas Andreopoulos</a>, <a href="/search/physics?searchtype=author&query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+W">Weidong Bai</a>, <a href="/search/physics?searchtype=author&query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/physics?searchtype=author&query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&query=Beretta%2C+M">Marco Beretta</a>, <a href="/search/physics?searchtype=author&query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/physics?searchtype=author&query=Bessonov%2C+N">Nikita Bessonov</a>, <a href="/search/physics?searchtype=author&query=Bick%2C+D">Daniel Bick</a>, <a href="/search/physics?searchtype=author&query=Bieger%2C+L">Lukas Bieger</a>, <a href="/search/physics?searchtype=author&query=Biktemerova%2C+S">Svetlana Biktemerova</a> , et al. (608 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.00968v2-abstract-short" style="display: inline;"> Large-scale organic liquid scintillator detectors are highly efficient in the detection of MeV-scale electron antineutrinos. These signal events can be detected through inverse beta decay on protons, which produce a positron accompanied by a neutron. A noteworthy background for antineutrinos coming from nuclear power reactors and from the depths of the Earth (geoneutrinos) is generated by ($伪, n$)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.00968v2-abstract-full').style.display = 'inline'; document.getElementById('2503.00968v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.00968v2-abstract-full" style="display: none;"> Large-scale organic liquid scintillator detectors are highly efficient in the detection of MeV-scale electron antineutrinos. These signal events can be detected through inverse beta decay on protons, which produce a positron accompanied by a neutron. A noteworthy background for antineutrinos coming from nuclear power reactors and from the depths of the Earth (geoneutrinos) is generated by ($伪, n$) reactions. In organic liquid scintillator detectors, $伪$ particles emitted from intrinsic contaminants such as $^{238}$U, $^{232}$Th, and $^{210}$Pb/$^{210}$Po, can be captured on $^{13}$C nuclei, followed by the emission of a MeV-scale neutron. Three distinct interaction mechanisms can produce prompt energy depositions preceding the delayed neutron capture, leading to a pair of events correlated in space and time within the detector. Thus, ($伪, n$) reactions represent an indistinguishable background in liquid scintillator-based antineutrino detectors, where their expected rate and energy spectrum are typically evaluated via Monte Carlo simulations. This work presents results from the open-source SaG4n software, used to calculate the expected energy depositions from the neutron and any associated de-excitation products. Also simulated is a detailed detector response to these interactions, using a dedicated Geant4-based simulation software from the JUNO experiment. An expected measurable $^{13}$C$(伪, n)^{16}$O event rate and reconstructed prompt energy spectrum with associated uncertainties, are presented in the context of JUNO, however, the methods and results are applicable and relevant to other organic liquid scintillator neutrino detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.00968v2-abstract-full').style.display = 'none'; document.getElementById('2503.00968v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 14 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.19729">arXiv:2502.19729</a> <span> [<a href="https://arxiv.org/pdf/2502.19729">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Realizing stable zig-zag polymeric nitrogen chains in P-N compounds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=zhang%2C+C">Chengfeng zhang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+G">Guo Chen</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yanfeng Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jie Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xianlong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.19729v1-abstract-short" style="display: inline;"> The zig-zag Nitrogen (N) chain similar to the Ch-N structure has long been considered a potential high energy density structure. However, all previously predicted zig-zag N chain structures similar to Ch-N exhibit imaginary frequencies in their phonon spectra at 0 GPa. Here, we conducted a systematic investigation of P-N compounds using first-principles calculations, uncovering a series of structu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.19729v1-abstract-full').style.display = 'inline'; document.getElementById('2502.19729v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.19729v1-abstract-full" style="display: none;"> The zig-zag Nitrogen (N) chain similar to the Ch-N structure has long been considered a potential high energy density structure. However, all previously predicted zig-zag N chain structures similar to Ch-N exhibit imaginary frequencies in their phonon spectra at 0 GPa. Here, we conducted a systematic investigation of P-N compounds using first-principles calculations, uncovering a series of structurally similar stable phases, C2/m-PNx (x = 6, 8, 10, 12, 14), in which N forms zig-zag N chains similar to those in Ch-N. In P-N compounds, the longest zig-zag N chain that can theoretically remain stable under ambient pressure is the N chain composed of 14 N atoms in C2/m-PN14. If the N chain continues to grow, inter-chain vibrational imaginary frequencies will arise in the system. Notably, N chains with an even number of atoms are more likely to be energetically favorable. The five C2/m-PNx phases and one metastable phase (R-PN6) exhibit both remarkable stability and excellent detonability at ambient pressure, positioning them as promising candidates for high-energy-density materials. In addition, the R-PN6 is the first structure to stabilize the N6 ring through covalent bonding, with the covalent network contributing to its high hardness (47.59 GPa). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.19729v1-abstract-full').style.display = 'none'; document.getElementById('2502.19729v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.19227">arXiv:2502.19227</a> <span> [<a href="https://arxiv.org/pdf/2502.19227">pdf</a>, <a href="https://arxiv.org/format/2502.19227">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yunyang Li</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+Z">Zaishuo Xia</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+L">Lin Huang</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+X">Xinran Wei</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+H">Han Yang</a>, <a href="/search/physics?searchtype=author&query=Harshe%2C+S">Sam Harshe</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zun Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+C">Chang Liu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jia Zhang</a>, <a href="/search/physics?searchtype=author&query=Shao%2C+B">Bin Shao</a>, <a href="/search/physics?searchtype=author&query=Gerstein%2C+M+B">Mark B. Gerstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.19227v2-abstract-short" style="display: inline;"> Density Functional Theory (DFT) is a pivotal method within quantum chemistry and materials science, with its core involving the construction and solution of the Kohn-Sham Hamiltonian. Despite its importance, the application of DFT is frequently limited by the substantial computational resources required to construct the Kohn-Sham Hamiltonian. In response to these limitations, current research has… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.19227v2-abstract-full').style.display = 'inline'; document.getElementById('2502.19227v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.19227v2-abstract-full" style="display: none;"> Density Functional Theory (DFT) is a pivotal method within quantum chemistry and materials science, with its core involving the construction and solution of the Kohn-Sham Hamiltonian. Despite its importance, the application of DFT is frequently limited by the substantial computational resources required to construct the Kohn-Sham Hamiltonian. In response to these limitations, current research has employed deep-learning models to efficiently predict molecular and solid Hamiltonians, with roto-translational symmetries encoded in their neural networks. However, the scalability of prior models may be problematic when applied to large molecules, resulting in non-physical predictions of ground-state properties. In this study, we generate a substantially larger training set (PubChemQH) than used previously and use it to create a scalable model for DFT calculations with physical accuracy. For our model, we introduce a loss function derived from physical principles, which we call Wavefunction Alignment Loss (WALoss). WALoss involves performing a basis change on the predicted Hamiltonian to align it with the observed one; thus, the resulting differences can serve as a surrogate for orbital energy differences, allowing models to make better predictions for molecular orbitals and total energies than previously possible. WALoss also substantially accelerates self-consistent-field (SCF) DFT calculations. Here, we show it achieves a reduction in total energy prediction error by a factor of 1347 and an SCF calculation speed-up by a factor of 18%. These substantial improvements set new benchmarks for achieving accurate and applicable predictions in larger molecular systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.19227v2-abstract-full').style.display = 'none'; document.getElementById('2502.19227v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.18603">arXiv:2502.18603</a> <span> [<a href="https://arxiv.org/pdf/2502.18603">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Mechanisms and Scale-up Potential of 3D Solar Interfacial-Evaporators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+J+H">James H. Zhang</a>, <a href="/search/physics?searchtype=author&query=Mittapally%2C+R">Rohith Mittapally</a>, <a href="/search/physics?searchtype=author&query=Oluwade%2C+A">Abimbola Oluwade</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+G">Gang Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.18603v1-abstract-short" style="display: inline;"> Evaporation rates from porous evaporators under sunlight have been reported to exceed the solar-thermal limit, determined by relating the incoming solar energy to the latent and sensible heat of water, for applications in desalination and brine pond drying. Although flat two-dimensional (2D) evaporators exceeding the solar limit implies a non-thermal process, tall three-dimensional (3D) solar evap… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.18603v1-abstract-full').style.display = 'inline'; document.getElementById('2502.18603v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.18603v1-abstract-full" style="display: none;"> Evaporation rates from porous evaporators under sunlight have been reported to exceed the solar-thermal limit, determined by relating the incoming solar energy to the latent and sensible heat of water, for applications in desalination and brine pond drying. Although flat two-dimensional (2D) evaporators exceeding the solar limit implies a non-thermal process, tall three-dimensional (3D) solar evaporators can exceed it by absorbing additional environmental heat into its cold sidewalls. Through modeling, we explain the physics and identify the critical heights in which a fin transitions from 2D to 3D evaporation and exceeds the solar-thermal limit. Our analyses illustrate that environmental heat absorption in 3D evaporators is determined by the ambient relative humidity and the airflow velocity. The model is then coarse-grained into a large-scale fin array device on the meters scale to analyze their scalability. We identify that these devices are unlikely to scale favorably in closed environment settings such as solar stills. Our modeling clearly illustrates the benefits and limitations of 3D evaporating arrays and pinpoints design choices in previous works that hinder the device's overall performance. This work illustrates the importance in distinguishing 2D from 3D evaporation for mechanisms underlying interfacial evaporation exceeding the solar-thermal limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.18603v1-abstract-full').style.display = 'none'; document.getElementById('2502.18603v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.18067">arXiv:2502.18067</a> <span> [<a href="https://arxiv.org/pdf/2502.18067">pdf</a>, <a href="https://arxiv.org/format/2502.18067">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Topology Design of Reconffgurable Intelligent Surfaces Based on Current Distribution and Otsu Image Segmentation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zhen Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J+W">Jun Wei Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H+D">Hui Dong Li</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+J">Junhui Qiu</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+L">Lijie Wu</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+W+W">Wan Wan Cao</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+R">Ren Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J+N">Jia Nan Zhang</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+Q">Qiang Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.18067v1-abstract-short" style="display: inline;"> Miniaturization of reconffgurable intelligent surface RIS) elements is a crucial trend in the development of RISs. It not only facilitates the attainment of multifunctional integration but also promotes seamless amalgamation with other elements. The current on the RIS element plays a crucial role in determining the characteristics of the induced electromagnetic ffeld components. Segments with high… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.18067v1-abstract-full').style.display = 'inline'; document.getElementById('2502.18067v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.18067v1-abstract-full" style="display: none;"> Miniaturization of reconffgurable intelligent surface RIS) elements is a crucial trend in the development of RISs. It not only facilitates the attainment of multifunctional integration but also promotes seamless amalgamation with other elements. The current on the RIS element plays a crucial role in determining the characteristics of the induced electromagnetic ffeld components. Segments with high current intensity determine the performance of RIS elements. Carving the parts with strong current distribution density into the metal patch of RIS element structure can achieve miniaturization. Based on this insight, this work proposes a topology design method that leverages current distribution and image processing techniques to achieve efffcient miniaturization of the RIS elements. In this proposed method, we ffrst obtain the current distribution across different operational states and the period of the working frequency. Next, we employ the Otsu image segmentation method to extract relevant image information from the current distribution images of the RIS elements. Subsequently, we utilize linear mapping techniques to convert this image information into the structure of RIS elements. Then, based on the structure of the RIS elements, the Quasi-Newton optimization algorithm is utilized to obtain the parameters of the tunable device that correspond to various operational states. As a result, we successfully construct the structural topology of the RIS elements based on their current distribution, designing areas with strong current distribution as metal patches. To validate the performance of the proposed method, a 16 by 16 3-bit RIS was developed, fabricated and measured. Compared with existing RIS designs, the proportion of the top-layer metal patches is smaller, which provides the possibility for integrating other functions and devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.18067v1-abstract-full').style.display = 'none'; document.getElementById('2502.18067v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.16567">arXiv:2502.16567</a> <span> [<a href="https://arxiv.org/pdf/2502.16567">pdf</a>, <a href="https://arxiv.org/format/2502.16567">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Electron-scale Kelvin-Helmholtz instability in magnetized shear flows </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Guo%2C+Y">Yao Guo</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+D">Dong Wu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.16567v1-abstract-short" style="display: inline;"> Electron-scale Kelvin-Helmholtz instabilities (ESKHI) are found in several astrophysical scenarios. Naturally ESKHI is subject to a background magnetic field, but an analytical dispersion relation and an accurate growth rate of ESKHI under this circumstance are long absent, as former MHD derivations are not applicable in the relativistic regime. We present a generalized dispersion relation of ESKH… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16567v1-abstract-full').style.display = 'inline'; document.getElementById('2502.16567v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.16567v1-abstract-full" style="display: none;"> Electron-scale Kelvin-Helmholtz instabilities (ESKHI) are found in several astrophysical scenarios. Naturally ESKHI is subject to a background magnetic field, but an analytical dispersion relation and an accurate growth rate of ESKHI under this circumstance are long absent, as former MHD derivations are not applicable in the relativistic regime. We present a generalized dispersion relation of ESKHI in relativistic magnetized shear flows, with few assumptions. ESKHI linear growth rates in certain cases are numerically calculated. We conclude that the presence of an external magnetic field decreases the maximum instability growth rate in most cases, but can slightly increase it when the shear velocity is sufficiently high. Also, the external magnetic field results in a larger cutoff wavenumber of the unstable band and increases the wavenumber of the most unstable mode. PIC simulations are carried out to verify our conclusions, where we also observe the suppressing of kinetic DC magnetic field generation, resulting from electron gyration induced by the external magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16567v1-abstract-full').style.display = 'none'; document.getElementById('2502.16567v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.16554">arXiv:2502.16554</a> <span> [<a href="https://arxiv.org/pdf/2502.16554">pdf</a>, <a href="https://arxiv.org/ps/2502.16554">ps</a>, <a href="https://arxiv.org/format/2502.16554">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Room temperature mass sensing based on nonlinear optomechanical dynamics: membrane-in-the-middle versus suspended membrane </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zheng%2C+J">Jiawei Zheng</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jinlian Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yangzheng Li</a>, <a href="/search/physics?searchtype=author&query=Mart%C4%B1nez%2C+L+J">Luis J. Mart谋nez</a>, <a href="/search/physics?searchtype=author&query=He%2C+B">Bing He</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+Q">Qing Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.16554v1-abstract-short" style="display: inline;"> How to weigh something as precise as possible is a constant endeavor for human being, and mass sensing has been essential to scientific research and many other aspects of modern society. In this work, we explore a special approach to mass sensing, which is purely based on the classical nonlinear dynamics of cavity optomechanical systems. We consider two types of systems, the mechanical resonator a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16554v1-abstract-full').style.display = 'inline'; document.getElementById('2502.16554v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.16554v1-abstract-full" style="display: none;"> How to weigh something as precise as possible is a constant endeavor for human being, and mass sensing has been essential to scientific research and many other aspects of modern society. In this work, we explore a special approach to mass sensing, which is purely based on the classical nonlinear dynamics of cavity optomechanical systems. We consider two types of systems, the mechanical resonator as a suspended membrane inside optical cavity or as a larger movable membrane that separates the optical cavity into two parts. Under a driving laser field with two tones satisfying a specific frequency condition, both systems enter a special dynamical pattern correlating the mechanical oscillation and the sidebands of oscillatory cavity field. After adding the nano-particle, which has its mass 未m to be measured, to the mechanical membrane as the detector, the cavity field sidebands will exhibit detectable changes, so that the tiny mass 未m can be deduced from the measured sideband intensities. For the latter system with a membrane in the middle, one can apply an additional single-tone laser field to magnify the modified sidebands much further, achieving an ultra-high sensitivity (未m/m) \sim 10^{-11} ($m$ is the mass of the membrane), even given a moderate mechanical quality factor. The operation range of the sensors is very wide, covering 7 or 8 orders of magnitudes. Moreover, a particular advantage of this type of mass sensors comes from the robustness of the realized dynamical pattern against thermal noise, and it enables such mass sensors to work well at room temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16554v1-abstract-full').style.display = 'none'; document.getElementById('2502.16554v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.13395">arXiv:2502.13395</a> <span> [<a href="https://arxiv.org/pdf/2502.13395">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Unsupervised CP-UNet Framework for Denoising DAS Data with Decay Noise </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Huang%2C+T">Tianye Huang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+A">Aopeng Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xiang Li</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jing Zhang</a>, <a href="/search/physics?searchtype=author&query=Xian%2C+S">Sijing Xian</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+M">Mingkong Lu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+G">Guodong Chen</a>, <a href="/search/physics?searchtype=author&query=Xiong%2C+L">Liangming Xiong</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+X">Xiangyun Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.13395v1-abstract-short" style="display: inline;"> Distributed acoustic sensor (DAS) technology leverages optical fiber cables to detect acoustic signals, providing cost-effective and dense monitoring capabilities. It offers several advantages including resistance to extreme conditions, immunity to electromagnetic interference, and accurate detection. However, DAS typically exhibits a lower signal-to-noise ratio (S/N) compared to geophones and is… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13395v1-abstract-full').style.display = 'inline'; document.getElementById('2502.13395v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.13395v1-abstract-full" style="display: none;"> Distributed acoustic sensor (DAS) technology leverages optical fiber cables to detect acoustic signals, providing cost-effective and dense monitoring capabilities. It offers several advantages including resistance to extreme conditions, immunity to electromagnetic interference, and accurate detection. However, DAS typically exhibits a lower signal-to-noise ratio (S/N) compared to geophones and is susceptible to various noise types, such as random noise, erratic noise, level noise, and long-period noise. This reduced S/N can negatively impact data analyses containing inversion and interpretation. While artificial intelligence has demonstrated excellent denoising capabilities, most existing methods rely on supervised learning with labeled data, which imposes stringent requirements on the quality of the labels. To address this issue, we develop a label-free unsupervised learning (UL) network model based on Context-Pyramid-UNet (CP-UNet) to suppress erratic and random noises in DAS data. The CP-UNet utilizes the Context Pyramid Module in the encoding and decoding process to extract features and reconstruct the DAS data. To enhance the connectivity between shallow and deep features, we add a Connected Module (CM) to both encoding and decoding section. Layer Normalization (LN) is utilized to replace the commonly employed Batch Normalization (BN), accelerating the convergence of the model and preventing gradient explosion during training. Huber-loss is adopted as our loss function whose parameters are experimentally determined. We apply the network to both the 2-D synthetic and filed data. Comparing to traditional denoising methods and the latest UL framework, our proposed method demonstrates superior noise reduction performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13395v1-abstract-full').style.display = 'none'; document.getElementById('2502.13395v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10974">arXiv:2502.10974</a> <span> [<a href="https://arxiv.org/pdf/2502.10974">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Simultaneous optical power delivery and distributed sensing through cross-band wavelength multiplexing over fiber link </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Huang%2C+T">Tianye Huang</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+L">Lu Guo</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xinyu Wang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yao Chen</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jing Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+M">Ming Zhu</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+M">Mingkong Lu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+K">Kaifu Chen</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+H">Hanlin Guo</a>, <a href="/search/physics?searchtype=author&query=Xiong%2C+L">Liangming Xiong</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+X">Xiangyun Hu</a>, <a href="/search/physics?searchtype=author&query=Shum%2C+P+P">Perry Ping Shum</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10974v1-abstract-short" style="display: inline;"> Optical fibers offer significant advantages in both power delivery and distributed sensing. In remote areas where stable power supply is not easy to access, the distributed optical fiber sensing (DOFS) which offers long distance monitoring capability and the power-over-fiber (PoF) which can provide energy for connected electronics or other sensors are highly desired simultaneously. In this letter,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10974v1-abstract-full').style.display = 'inline'; document.getElementById('2502.10974v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10974v1-abstract-full" style="display: none;"> Optical fibers offer significant advantages in both power delivery and distributed sensing. In remote areas where stable power supply is not easy to access, the distributed optical fiber sensing (DOFS) which offers long distance monitoring capability and the power-over-fiber (PoF) which can provide energy for connected electronics or other sensors are highly desired simultaneously. In this letter, the PoF-DOFS hybrid system is proposed and experimentally verified for the first time. By multiplexing the power channel and sensing channel with large wavelength separation, the cross-talk is greatly reduced. The results show that the Brillouin frequency shift under different temperature in the Brillouin optical time domain reflectometry remains unaffected by the high-power transmission background and the power delivery efficiency up to ~66% can be achieved over 1.3 km fiber link. This work paves the way for further research on PoF-DOFS hybrid system and gives a valuable solution for creating multi-parameter, multi-scale sensing network without the need for local power source. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10974v1-abstract-full').style.display = 'none'; document.getElementById('2502.10974v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages,6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.08990">arXiv:2502.08990</a> <span> [<a href="https://arxiv.org/pdf/2502.08990">pdf</a>, <a href="https://arxiv.org/format/2502.08990">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Broadband bright biphotons from periodically poled triple-resonance metasurface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jihua Zhang</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+C">Chaoxin Shi</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+J">Jinyong Ma</a>, <a href="/search/physics?searchtype=author&query=Setzpfandt%2C+F">Frank Setzpfandt</a>, <a href="/search/physics?searchtype=author&query=Pertsch%2C+T">Thomas Pertsch</a>, <a href="/search/physics?searchtype=author&query=Bao%2C+C">Chunxiong Bao</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jianjun Zhang</a>, <a href="/search/physics?searchtype=author&query=Sukhorukov%2C+A+A">Andrey A. Sukhorukov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.08990v1-abstract-short" style="display: inline;"> Biphotons from spontaneous parametric down conversion with broad bandwidth are highly wanted in many quantum technologies. However, achieving broad bandwidth in both frequency and momentum while keeping a high rate remains a challenge for both conventional nonlinear crystals and recently emerging nonlinear metasurfaces. Here, we address this challenge by introducing a periodically poled triple-res… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08990v1-abstract-full').style.display = 'inline'; document.getElementById('2502.08990v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.08990v1-abstract-full" style="display: none;"> Biphotons from spontaneous parametric down conversion with broad bandwidth are highly wanted in many quantum technologies. However, achieving broad bandwidth in both frequency and momentum while keeping a high rate remains a challenge for both conventional nonlinear crystals and recently emerging nonlinear metasurfaces. Here, we address this challenge by introducing a periodically poled triple-resonance metasurface (PPTM) incorporating a nano-grating atop a periodically poled LiNbO$_3$ thin film. PPTM supports high-Q guided mode resonances at pump, signal, and idler wavelengths meanwhile enabling quasi-phase matching between three guided modes in a broad frequency/momentum range. The predicted biphoton rate is over 100 MHz/mW with a frequency bandwidth of 165 nm around 1550 nm and a momentum bandwidth of $13^\circ \times 6^\circ$, improving the state-of-the-art by over three orders of magnitude in rate and one order of magnitude in bandwidths. This ultrathin broadband bright biphoton source could stimulate system-level miniaturization of various free-space quantum photonic technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08990v1-abstract-full').style.display = 'none'; document.getElementById('2502.08990v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.08537">arXiv:2502.08537</a> <span> [<a href="https://arxiv.org/pdf/2502.08537">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Broken symmetries associated with a Kagome chiral charge order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/physics?searchtype=author&query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/physics?searchtype=author&query=Shao%2C+S">Sen Shao</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jinjin Liu</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Y">Yilin Zhao</a>, <a href="/search/physics?searchtype=author&query=Yahyavi%2C+M">Mohammad Yahyavi</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/physics?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+X">Xian Yang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yongkai Li</a>, <a href="/search/physics?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/physics?searchtype=author&query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+B">Byunghoon Kim</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Junyi Zhang</a>, <a href="/search/physics?searchtype=author&query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/physics?searchtype=author&query=Balicas%2C+L">Luis Balicas</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/physics?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.08537v1-abstract-short" style="display: inline;"> Chirality or handedness manifests in all fields of science, ranging from cell biology, molecular interaction, and catalysis to different branches of physics. In condensed matter physics, chirality is intrinsic to enigmatic quantum phases, such as chiral charge density waves and chiral superconductivity. Here, the underlying chiral response is subtle and leads to broken symmetries in the ground sta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08537v1-abstract-full').style.display = 'inline'; document.getElementById('2502.08537v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.08537v1-abstract-full" style="display: none;"> Chirality or handedness manifests in all fields of science, ranging from cell biology, molecular interaction, and catalysis to different branches of physics. In condensed matter physics, chirality is intrinsic to enigmatic quantum phases, such as chiral charge density waves and chiral superconductivity. Here, the underlying chiral response is subtle and leads to broken symmetries in the ground state. Detection of subtle broken symmetries is the key to understand these quantum states but they are extremely challenging to expose leading to debate and controversy. Here, using second-order optical response, we uncover the broken symmetries of a chiral charge density wave in the Kagome lattice KV3Sb5, revealing the relevant broken symmetries of its charge order. KV3Sb5 undergoes a phase transition to a charge-ordered state at low temperatures. Our polarization-dependent mid-infrared photocurrent microscopy reveals an intrinsic, longitudinal helicity-dependent photocurrent associated with the charge order. Our measurements, supported by our theoretical analysis, provide direct evidence for broken inversion and mirror symmetries at the charge order transition, indicating a chiral charge ordered state. On the other hand, we do not observe a circular photogalvanic effect along the direction perpendicular to that of the incident light, imposing stringent constraints on the rotational and point group symmetries of the charge order. Our study not only visualizes the chiral nature of the Kagome charge order revealing its broken symmetries, but also highlights the nonlinear photogalvanic effect as a sensitive probe for detecting subtle symmetry breakings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08537v1-abstract-full').style.display = 'none'; document.getElementById('2502.08537v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">in press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.08409">arXiv:2502.08409</a> <span> [<a href="https://arxiv.org/pdf/2502.08409">pdf</a>, <a href="https://arxiv.org/format/2502.08409">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Stable Soliton Microcomb Generation in X-cut Lithium Tantalate via Thermal-Assisted Photorefractive Suppression </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cai%2C+J">Jiachen Cai</a>, <a href="/search/physics?searchtype=author&query=Wan%2C+S">Shuai Wan</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+B">Bowen Chen</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jin Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xuqiang Wang</a>, <a href="/search/physics?searchtype=author&query=Sui%2C+D">Dongchen Sui</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+P">Piyu Wang</a>, <a href="/search/physics?searchtype=author&query=Qu%2C+Z">Zhenyu Qu</a>, <a href="/search/physics?searchtype=author&query=Ke%2C+X">Xinjian Ke</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+Y">Yifan Zhu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yang Chen</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+W">WenHui Xu</a>, <a href="/search/physics?searchtype=author&query=Yi%2C+A">Ailun Yi</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jiaxiang Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+C">Chengli Wang</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+C">Chun-Hua Dong</a>, <a href="/search/physics?searchtype=author&query=Ou%2C+X">Xin Ou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.08409v1-abstract-short" style="display: inline;"> Chip-based soliton frequency microcombs combine compact size, broad bandwidth, and high coherence, presenting a promising solution for integrated optical telecommunications, precision sensing, and spectroscopy. Recent progress in ferroelectric thin films, particularly thin-film Lithium niobate (LN) and thin-film Lithium tantalate (LT), has significantly advanced electro-optic (EO) modulation and s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08409v1-abstract-full').style.display = 'inline'; document.getElementById('2502.08409v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.08409v1-abstract-full" style="display: none;"> Chip-based soliton frequency microcombs combine compact size, broad bandwidth, and high coherence, presenting a promising solution for integrated optical telecommunications, precision sensing, and spectroscopy. Recent progress in ferroelectric thin films, particularly thin-film Lithium niobate (LN) and thin-film Lithium tantalate (LT), has significantly advanced electro-optic (EO) modulation and soliton microcombs generation, leveraging their strong third-order nonlinearity and high Pockels coefficients. However, achieving soliton frequency combs in X-cut ferroelectric materials remains challenging due to the competing effects of thermo-optic and photorefractive phenomena. These issues hinder the simultaneous realization of soliton generation and high-speed EO modulation. Here, following the thermal-regulated carrier behaviour and auxiliary-laser-assisted approach, we propose a convenient mechanism to suppress both photorefractive and thermal dragging effect at once, and implement a facile method for soliton formation and its long-term stabilization in integrated X-cut LT microresonators for the first time. The resulting mode-locked states exhibit robust stability against perturbations, enabling new pathways for fully integrated photonic circuits that combine Kerr nonlinearity with high-speed EO functionality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08409v1-abstract-full').style.display = 'none'; document.getElementById('2502.08409v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, article</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.08174">arXiv:2502.08174</a> <span> [<a href="https://arxiv.org/pdf/2502.08174">pdf</a>, <a href="https://arxiv.org/format/2502.08174">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Towards the generation of petawatt near-infrared few-cycle light pulses via forward Raman amplification in plasma </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lei%2C+Z">Zhi-Yu Lei</a>, <a href="/search/physics?searchtype=author&query=Sheng%2C+Z">Zheng-Ming Sheng</a>, <a href="/search/physics?searchtype=author&query=Weng%2C+S">Su-Ming Weng</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+M">Min Chen</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.08174v1-abstract-short" style="display: inline;"> Light amplification towards extremely high power in the infrared regime remains a significant challenge due to the lack of suitable gain media. Here we propose a new scheme to amplify a laser pulse with tunable wavelengths towards extremely high power via forward Raman amplification in plasma. Different from those previously proposed schemes based upon backward Raman or Brillouin amplification, ou… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08174v1-abstract-full').style.display = 'inline'; document.getElementById('2502.08174v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.08174v1-abstract-full" style="display: none;"> Light amplification towards extremely high power in the infrared regime remains a significant challenge due to the lack of suitable gain media. Here we propose a new scheme to amplify a laser pulse with tunable wavelengths towards extremely high power via forward Raman amplification in plasma. Different from those previously proposed schemes based upon backward Raman or Brillouin amplification, our scheme involves a pump pulse and a seed pulse co-propagating in moderate density plasma, with the phase matching conditions for forward Raman scattering fulfilled. Due to their group velocity difference in plasma, the pump with a shorter wavelength and longer duration will chase the seed and transfer energy to the latter efficiently. Analytical models both for linear and nonlinear stages of amplification as well as particle-in-cell simulation show that by employing a 1.0 $\mathrm{渭m}$ pump laser, a 1.8 $\mathrm{渭m}$ seed pulse can be amplified $10^4$ times in its intensity, and then self-compressed to near-single-cycle. Our scheme shows the merits of high efficiency, high compactness, and relatively easy implementation with the co-propagating configuration, which may provide a unique route towards the petawatt few-cycle infrared laser pulses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08174v1-abstract-full').style.display = 'none'; document.getElementById('2502.08174v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.08044">arXiv:2502.08044</a> <span> [<a href="https://arxiv.org/pdf/2502.08044">pdf</a>, <a href="https://arxiv.org/format/2502.08044">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Twin-Space Representation of Classical Mapping Model in the Constraint Phase Space Representation: Numerically Exact Approach to Open Quantum Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jiaji Zhang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jian Liu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+L">Lipeng Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.08044v1-abstract-short" style="display: inline;"> The constraint coordinate-momentum \textit{phase space} (CPS) has recently been developed to study nonadiabatic dynamics in gas-phase and condensed-phase molecular systems. Although the CPS formulation is exact for describing the discrete (electronic/ vibrational/spin) state degrees of freedom (DOFs), when system-bath models in condense phase are studied, previous works often employ the discretiza… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08044v1-abstract-full').style.display = 'inline'; document.getElementById('2502.08044v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.08044v1-abstract-full" style="display: none;"> The constraint coordinate-momentum \textit{phase space} (CPS) has recently been developed to study nonadiabatic dynamics in gas-phase and condensed-phase molecular systems. Although the CPS formulation is exact for describing the discrete (electronic/ vibrational/spin) state degrees of freedom (DOFs), when system-bath models in condense phase are studied, previous works often employ the discretization of environmental bath DOFs, which breaks the time irreversibility and may make it difficult to obtain numerically converged results in the long-time limit. In this paper, we develop an exact trajectory-based phase space approach by adopting the twin-space (TS) formulation of quantum statistical mechanics, in which the density operator of the reduced system is transformed to the wavefunction of an expanded system with twice the DOFs. The classical mapping model (CMM) is then used to map the Hamiltonian of the expanded system to its equivalent classical counterpart on CPS. To demonstrate the applicability of the TS-CMM approach, we compare simulated population dynamics and nonlinear spectra for a few benchmark condensed phase system-bath models with those obtained from the hierarchical equations of motion method, which shows that our approach yields accurate dynamics of open quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08044v1-abstract-full').style.display = 'none'; document.getElementById('2502.08044v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.06116">arXiv:2502.06116</a> <span> [<a href="https://arxiv.org/pdf/2502.06116">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Event Vision Sensor: A Review </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Qin%2C+X">Xinyue Qin</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Junlin Zhang</a>, <a href="/search/physics?searchtype=author&query=Bao%2C+W">Wenzhong Bao</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+C">Chun Lin</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+H">Honglei Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.06116v1-abstract-short" style="display: inline;"> By monitoring temporal contrast, event-based vision sensors can provide high temporal resolution and low latency while maintaining low power consumption and simplicity in circuit structure. These characteristics have garnered significant attention in both academia and industry. In recent years, the application of back-illuminated (BSI) technology, wafer stacking techniques, and industrial interfac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.06116v1-abstract-full').style.display = 'inline'; document.getElementById('2502.06116v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.06116v1-abstract-full" style="display: none;"> By monitoring temporal contrast, event-based vision sensors can provide high temporal resolution and low latency while maintaining low power consumption and simplicity in circuit structure. These characteristics have garnered significant attention in both academia and industry. In recent years, the application of back-illuminated (BSI) technology, wafer stacking techniques, and industrial interfaces has brought new opportunities for enhancing the performance of event-based vision sensors. This is evident in the substantial advancements made in reducing noise, improving resolution, and increasing readout rates. Additionally, the integration of these technologies has enhanced the compatibility of event-based vision sensors with current and edge vision systems, providing greater possibilities for their practical applications. This paper will review the progression from neuromorphic engineering to state-of-the-art event-based vision sensor technologies, including their development trends, operating principles, and key features. Moreover, we will delve into the sensitivity of event-based vision sensors and the opportunities and challenges they face in the realm of infrared imaging, providing references for future research and applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.06116v1-abstract-full').style.display = 'none'; document.getElementById('2502.06116v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.04596">arXiv:2502.04596</a> <span> [<a href="https://arxiv.org/pdf/2502.04596">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics Education">physics.ed-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/CSCI.2016.0073">10.1109/CSCI.2016.0073 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Teaching Reform and Exploration on Object-Oriented Programming </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yuan%2C+G">Guowu Yuan</a>, <a href="/search/physics?searchtype=author&query=Kong%2C+B">Bing Kong</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+H">Haiyan Ding</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jixian Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Y">Yang Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.04596v1-abstract-short" style="display: inline;"> The problems in our teaching on object-oriented programming are analyzed, and the basic ideas, causes and methods of the reform are discussed on the curriculum, theoretical teaching and practical classes. Our practice shows that these reforms can improve students' understanding of object-oriented to enhance students' practical ability and innovative ability. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.04596v1-abstract-full" style="display: none;"> The problems in our teaching on object-oriented programming are analyzed, and the basic ideas, causes and methods of the reform are discussed on the curriculum, theoretical teaching and practical classes. Our practice shows that these reforms can improve students' understanding of object-oriented to enhance students' practical ability and innovative ability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04596v1-abstract-full').style.display = 'none'; document.getElementById('2502.04596v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.03996">arXiv:2502.03996</a> <span> [<a href="https://arxiv.org/pdf/2502.03996">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Power-over-fiber and distributed acoustic sensing hybridization in single fiber channel </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jing Zhang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yao Chen</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+T">Tianye Huang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+K">Kaifu Chen</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+H">Hanlin Guo</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Y">Yongkang Huang</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+L">Lu Guo</a>, <a href="/search/physics?searchtype=author&query=Xiong%2C+L">Liangming Xiong</a>, <a href="/search/physics?searchtype=author&query=Shum%2C+P+P">Perry Ping Shum</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.03996v1-abstract-short" style="display: inline;"> The efficient and independent operation of power-over-fiber (PoF) and distributed acoustic sensing (DAS) has been demonstrated using standard single-mode fiber (SSMF). A transmission optical power efficiency (OPTE) of 6.67% was achieved over an 11.8 km fiber link, supporting both power delivery and distributed optical fiber sensing (DOFS). To minimize cross-talk, the system separates the power and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03996v1-abstract-full').style.display = 'inline'; document.getElementById('2502.03996v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.03996v1-abstract-full" style="display: none;"> The efficient and independent operation of power-over-fiber (PoF) and distributed acoustic sensing (DAS) has been demonstrated using standard single-mode fiber (SSMF). A transmission optical power efficiency (OPTE) of 6.67% was achieved over an 11.8 km fiber link, supporting both power delivery and distributed optical fiber sensing (DOFS). To minimize cross-talk, the system separates the power and sensing channels by a 40 THz bandwidth. In the experiment, the power and sensing light wavelengths are 1064 nm (continuous) and 1550 nm (pulsed), respectively. As the transmitted optical power increased from 0 W to 2.13 W, the DAS system successfully localized vibration sources and reconstructed phase information, confirming its ability to operate under high optical power. The reported scheme verifies the possibility of constructing the sensing-energy hybrid network based on conventional optical fiber with the advantages of flexibility and low cost. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03996v1-abstract-full').style.display = 'none'; document.getElementById('2502.03996v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.01171">arXiv:2502.01171</a> <span> [<a href="https://arxiv.org/pdf/2502.01171">pdf</a>, <a href="https://arxiv.org/format/2502.01171">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Efficient and Scalable Density Functional Theory Hamiltonian Prediction through Adaptive Sparsity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Luo%2C+E">Erpai Luo</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+X">Xinran Wei</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+L">Lin Huang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yunyang Li</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+H">Han Yang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zun Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+C">Chang Liu</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+Z">Zaishuo Xia</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jia Zhang</a>, <a href="/search/physics?searchtype=author&query=Shao%2C+B">Bin Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.01171v1-abstract-short" style="display: inline;"> Hamiltonian matrix prediction is pivotal in computational chemistry, serving as the foundation for determining a wide range of molecular properties. While SE(3) equivariant graph neural networks have achieved remarkable success in this domain, their substantial computational cost-driven by high-order tensor product (TP) operations-restricts their scalability to large molecular systems with extensi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01171v1-abstract-full').style.display = 'inline'; document.getElementById('2502.01171v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.01171v1-abstract-full" style="display: none;"> Hamiltonian matrix prediction is pivotal in computational chemistry, serving as the foundation for determining a wide range of molecular properties. While SE(3) equivariant graph neural networks have achieved remarkable success in this domain, their substantial computational cost-driven by high-order tensor product (TP) operations-restricts their scalability to large molecular systems with extensive basis sets. To address this challenge, we introduce SPHNet, an efficient and scalable equivariant network that incorporates adaptive sparsity into Hamiltonian prediction. SPHNet employs two innovative sparse gates to selectively constrain non-critical interaction combinations, significantly reducing tensor product computations while maintaining accuracy. To optimize the sparse representation, we develop a Three-phase Sparsity Scheduler, ensuring stable convergence and achieving high performance at sparsity rates of up to 70 percent. Extensive evaluations on QH9 and PubchemQH datasets demonstrate that SPHNet achieves state-of-the-art accuracy while providing up to a 7x speedup over existing models. Beyond Hamiltonian prediction, the proposed sparsification techniques also hold significant potential for improving the efficiency and scalability of other SE(3) equivariant networks, further broadening their applicability and impact. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01171v1-abstract-full').style.display = 'none'; document.getElementById('2502.01171v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.00183">arXiv:2502.00183</a> <span> [<a href="https://arxiv.org/pdf/2502.00183">pdf</a>, <a href="https://arxiv.org/format/2502.00183">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Electron Acceleration in Carbon Nanotubes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bontoiu%2C+C">Cristian Bontoiu</a>, <a href="/search/physics?searchtype=author&query=Bonatto%2C+A">Alexandre Bonatto</a>, <a href="/search/physics?searchtype=author&query=Apsimon%2C+%C3%96">脰znur Apsimon</a>, <a href="/search/physics?searchtype=author&query=Bandiera%2C+L">Laura Bandiera</a>, <a href="/search/physics?searchtype=author&query=Cavoto%2C+G">Gianluca Cavoto</a>, <a href="/search/physics?searchtype=author&query=Drebot%2C+I">Illya Drebot</a>, <a href="/search/physics?searchtype=author&query=Gatti%2C+G">Giancarlo Gatti</a>, <a href="/search/physics?searchtype=author&query=Giner-Navarro%2C+J">Jorge Giner-Navarro</a>, <a href="/search/physics?searchtype=author&query=Lei%2C+B">Bifeng Lei</a>, <a href="/search/physics?searchtype=author&query=Mart%C3%ADn-Luna%2C+P">Pablo Mart铆n-Luna</a>, <a href="/search/physics?searchtype=author&query=Rago%2C+I">Ilaria Rago</a>, <a href="/search/physics?searchtype=author&query=P%C3%A9rez%2C+J+R">Juan Rodr铆guez P茅rez</a>, <a href="/search/physics?searchtype=author&query=Nunes%2C+B+S">Bruno Silveira Nunes</a>, <a href="/search/physics?searchtype=author&query=Sytov%2C+A">Alexei Sytov</a>, <a href="/search/physics?searchtype=author&query=Valagiannopoulos%2C+C">Constantinos Valagiannopoulos</a>, <a href="/search/physics?searchtype=author&query=Welsch%2C+C+P">Carsten P. Welsch</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+G">Guoxing Xia</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jiaqi Zhang</a>, <a href="/search/physics?searchtype=author&query=Resta-L%C3%B3pez%2C+J">Javier Resta-L贸pez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.00183v2-abstract-short" style="display: inline;"> Wakefield wavelengths associated with solid-state plasmas greatly limit the accelerating length. An alternative approach employs 2D carbon-based nanomaterials, like graphene or carbon nanotubes (CNTs), configured into structured targets. These nanostructures are designed with voids or low-density regions to effectively reduce the overall plasma density. This reduction enables the use of longer-wav… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00183v2-abstract-full').style.display = 'inline'; document.getElementById('2502.00183v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.00183v2-abstract-full" style="display: none;"> Wakefield wavelengths associated with solid-state plasmas greatly limit the accelerating length. An alternative approach employs 2D carbon-based nanomaterials, like graphene or carbon nanotubes (CNTs), configured into structured targets. These nanostructures are designed with voids or low-density regions to effectively reduce the overall plasma density. This reduction enables the use of longer-wavelength lasers and also extends the plasma wavelength and the acceleration length. In this study, we present, to our knowledge, the first numerical demonstration of electron acceleration via self-injection into a wakefield bubble driven by an infrared laser pulse in structured CNT targets, similar to the behavior observed in gaseous plasmas for LWFA in the nonlinear (or bubble) regime. Using the PIConGPU code, bundles of CNTs are modeled in a 3D geometry as 25 nm-thick carbon tubes with an initial density of $10^{22}$ cm$^{-3}$. The carbon plasma is ionized by a three-cycle, 800 nm wavelength laser pulse with a peak intensity of $10^{21}$ W cm$^{-2}$, achieving an effective plasma density of $10^{20}$ cm$^{-3}$. The same laser also drives the wakefield bubble, responsible for the electron self-injection and acceleration. Simulation results indicate that fs-long electron bunches with hundreds of pC charge can be self-injected and accelerated at gradients exceeding 1~TeV$/$m. Both charge and accelerating gradient figures are unprecedented when compared with LWFA in gaseous plasma. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00183v2-abstract-full').style.display = 'none'; document.getElementById('2502.00183v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.00181">arXiv:2502.00181</a> <span> [<a href="https://arxiv.org/pdf/2502.00181">pdf</a>, <a href="https://arxiv.org/format/2502.00181">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> MAIA: A new detector concept for a 10 TeV muon collider </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bell%2C+C">Charles Bell</a>, <a href="/search/physics?searchtype=author&query=Calzolari%2C+D">Daniele Calzolari</a>, <a href="/search/physics?searchtype=author&query=Carli%2C+C">Christian Carli</a>, <a href="/search/physics?searchtype=author&query=Di+Petrillo%2C+K+F">Karri Folan Di Petrillo</a>, <a href="/search/physics?searchtype=author&query=Hillman%2C+M">Micah Hillman</a>, <a href="/search/physics?searchtype=author&query=Holmes%2C+T+R">Tova R. Holmes</a>, <a href="/search/physics?searchtype=author&query=Jindariani%2C+S">Sergo Jindariani</a>, <a href="/search/physics?searchtype=author&query=Kennedy%2C+K+E">Kiley E. Kennedy</a>, <a href="/search/physics?searchtype=author&query=Kwok%2C+K+H+M">Ka Hei Martin Kwok</a>, <a href="/search/physics?searchtype=author&query=Lechner%2C+A">Anton Lechner</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+L">Lawrence Lee</a>, <a href="/search/physics?searchtype=author&query=Madlener%2C+T">Thomas Madlener</a>, <a href="/search/physics?searchtype=author&query=Meloni%2C+F">Federico Meloni</a>, <a href="/search/physics?searchtype=author&query=Ojalvo%2C+I">Isobel Ojalvo</a>, <a href="/search/physics?searchtype=author&query=Pani%2C+P">Priscilla Pani</a>, <a href="/search/physics?searchtype=author&query=Powers%2C+R">Rose Powers</a>, <a href="/search/physics?searchtype=author&query=Rosser%2C+B">Benjamin Rosser</a>, <a href="/search/physics?searchtype=author&query=Rozanov%2C+L">Leo Rozanov</a>, <a href="/search/physics?searchtype=author&query=Skoufaris%2C+K">Kyriacos Skoufaris</a>, <a href="/search/physics?searchtype=author&query=Sledge%2C+E">Elise Sledge</a>, <a href="/search/physics?searchtype=author&query=Tuna%2C+A">Alexander Tuna</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Junjia Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.00181v1-abstract-short" style="display: inline;"> Muon colliders offer a compelling opportunity to explore the TeV scale and conduct precision tests of the Standard Model, all within a relatively compact geographical footprint. This paper introduces a new detector concept, MAIA (Muon Accelerator Instrumented Apparatus), optimized for $\sqrt{s}=10$ TeV $渭渭$ collisions. The detector features an all-silicon tracker immersed in a 5T solenoid field. H… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00181v1-abstract-full').style.display = 'inline'; document.getElementById('2502.00181v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.00181v1-abstract-full" style="display: none;"> Muon colliders offer a compelling opportunity to explore the TeV scale and conduct precision tests of the Standard Model, all within a relatively compact geographical footprint. This paper introduces a new detector concept, MAIA (Muon Accelerator Instrumented Apparatus), optimized for $\sqrt{s}=10$ TeV $渭渭$ collisions. The detector features an all-silicon tracker immersed in a 5T solenoid field. High-granularity silicon-tungsten and iron-scintillator calorimeters surrounding the solenoid capture high-energy electronic and hadronic showers, respectively, and support particle-flow reconstruction. The outermost subsystem comprises an air-gap muon spectrometer, which enables standalone track reconstruction for high-momentum muons. The performance of the MAIA detector is evaluated in terms of differential particle reconstruction efficiencies and resolutions. Beam-induced background (BIB) simulations generated in FLUKA are overlaid with single particle gun samples to assess detector reconstruction capabilities under realistic experimental conditions. Even with BIB, reconstruction efficiencies exceed 95% for energetic tracks, photons, and neutrons in the central region of the detector. This paper outlines promising avenues of future work, including forward region optimization and opportunities for enhanced flavor/boosted object tagging, and addresses the technological assumptions needed to achieve the desired detector performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00181v1-abstract-full').style.display = 'none'; document.getElementById('2502.00181v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 24 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.18186">arXiv:2501.18186</a> <span> [<a href="https://arxiv.org/pdf/2501.18186">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> A photonic integrated processor for multiple parallel computational tasks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dong%2C+S">Sheng Dong</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+R">Ruiqi Zheng</a>, <a href="/search/physics?searchtype=author&query=Rao%2C+H">Huan Rao</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Junyi Zhang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jingxu Chen</a>, <a href="/search/physics?searchtype=author&query=Zeng%2C+C">Chencheng Zeng</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Y">Yu Huang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jiejun Zhang</a>, <a href="/search/physics?searchtype=author&query=Yao%2C+J">Jianping Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.18186v1-abstract-short" style="display: inline;"> Optical networks with parallel processing capabilities are significant in advancing high-speed data computing and large-scale data processing by providing ultra-width computational bandwidth. In this paper, we present a photonic integrated processor that can be segmented into multiple functional blocks, to enable compact and reconfigurable matrix operations for multiple parallel computational task… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.18186v1-abstract-full').style.display = 'inline'; document.getElementById('2501.18186v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.18186v1-abstract-full" style="display: none;"> Optical networks with parallel processing capabilities are significant in advancing high-speed data computing and large-scale data processing by providing ultra-width computational bandwidth. In this paper, we present a photonic integrated processor that can be segmented into multiple functional blocks, to enable compact and reconfigurable matrix operations for multiple parallel computational tasks. Fabricated on a silicon-on-insulator (SOI) platform, the photonic integrated processor supports fully reconfigurable optical matrix operations. By segmenting the chip into multiple functional blocks, it enables optical matrix operations of various sizes, offering great flexibility and scalability for parallel computational tasks. Specifically, we utilize this processor to perform optical convolution operations with various kernel sizes, including reconfigurable three-channel 1x1 convolution kernels and 2x2 real-valued convolution kernels, implemented within distinct segmented blocks of the chip. The multichannel optical 1x1 convolution operation is experimentally validated by using the deep residual U-Net, demonstrating precise segmentation of pneumonia lesion region in lung CT images. In addition, the capability of the 2x2 optical convolution operation is also experimentally validated by constructing an optical convolution layer and integrating an electrical fully connected layer, achieving ten-class classification of handwritten digit images. The photonic integrated processor features high scalability and robust parallel computational capability, positioning it a promising candidate for applications in optical neural networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.18186v1-abstract-full').style.display = 'none'; document.getElementById('2501.18186v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.17001">arXiv:2501.17001</a> <span> [<a href="https://arxiv.org/pdf/2501.17001">pdf</a>, <a href="https://arxiv.org/format/2501.17001">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Lateral migration and bouncing of a deformable bubble rising near a vertical wall. Part 2. Highly inertial regimes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shi%2C+P">Pengyu Shi</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jie Zhang</a>, <a href="/search/physics?searchtype=author&query=Magnaudet%2C+J">Jacques Magnaudet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.17001v1-abstract-short" style="display: inline;"> The fate of deformable buoyancy-driven bubbles rising near a vertical wall under highly inertial conditions is investigated numerically. In the absence of path instability, simulations reveal that when the Galilei number, $Ga$, which represents the buoyancy-to-viscous force ratio, exceeds a critical value, bubbles escape from the near-wall region after one to two rounds of bouncing, while at small… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.17001v1-abstract-full').style.display = 'inline'; document.getElementById('2501.17001v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.17001v1-abstract-full" style="display: none;"> The fate of deformable buoyancy-driven bubbles rising near a vertical wall under highly inertial conditions is investigated numerically. In the absence of path instability, simulations reveal that when the Galilei number, $Ga$, which represents the buoyancy-to-viscous force ratio, exceeds a critical value, bubbles escape from the near-wall region after one to two rounds of bouncing, while at smaller $Ga$ they perform periodic bounces without escaping. The escape mechanism is rooted in the vigorous rotational flow that forms around a bubble during its bounce at high enough $Ga$, resulting in a Magnus-like repulsive force capable of driving it away from the wall. Path instability takes place with bubbles whose Bond number, the buoyancy-to-capillary force ratio, exceeds a critical $Ga$-dependent value. Such bubbles may or may not escape from the wall region, depending on the competition between the classical repulsive wake-wall interaction mechanism and a specific wall-ward trapping mechanism. The latter results from the reduction of the bubble oblateness caused by the abrupt drop of the rise speed when the bubble-wall gap becomes very thin. Owing to this transient shape variation, bubbles exhibiting zigzagging motions with a large enough amplitude experience larger transverse drag and virtual mass forces when departing from the wall than when returning to it. With moderately oblate bubbles, i.e. in an intermediate Bond number range, this effect is large enough to counteract the repulsive interaction force, forcing such bubbles to perform a periodic zigzagging-like motion at a constant distance from the wall. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.17001v1-abstract-full').style.display = 'none'; document.getElementById('2501.17001v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 22 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.16203">arXiv:2501.16203</a> <span> [<a href="https://arxiv.org/pdf/2501.16203">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2413802121">10.1073/pnas.2413802121 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Completion of Lunar Magma Ocean Solidification at 4.43 Ga </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dauphas%2C+N">Nicolas Dauphas</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z+J">Zhe J. Zhang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xi Chen</a>, <a href="/search/physics?searchtype=author&query=Barboni%2C+M">M茅lanie Barboni</a>, <a href="/search/physics?searchtype=author&query=Szymanowski%2C+D">Dawid Szymanowski</a>, <a href="/search/physics?searchtype=author&query=Schoene%2C+B">Blair Schoene</a>, <a href="/search/physics?searchtype=author&query=Leya%2C+I">Ingo Leya</a>, <a href="/search/physics?searchtype=author&query=McKeegan%2C+K+D">Kevin D. McKeegan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.16203v1-abstract-short" style="display: inline;"> Crystallization of the lunar magma ocean yielded a chemically unique liquid residuum named KREEP. This component is expressed as a large patch on the near side of the Moon, and a possible smaller patch in the northwest portion of the Moon's South Pole-Aitken basin on the far side. Thermal models estimate that the crystallization of the lunar magma ocean (LMO) could have spanned from 10 and 200 Myr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16203v1-abstract-full').style.display = 'inline'; document.getElementById('2501.16203v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.16203v1-abstract-full" style="display: none;"> Crystallization of the lunar magma ocean yielded a chemically unique liquid residuum named KREEP. This component is expressed as a large patch on the near side of the Moon, and a possible smaller patch in the northwest portion of the Moon's South Pole-Aitken basin on the far side. Thermal models estimate that the crystallization of the lunar magma ocean (LMO) could have spanned from 10 and 200 Myr, while studies of radioactive decay systems have yielded inconsistent ages for the completion of LMO crystallization covering over 160 Myr. Here, we show that the Moon achieved over 99 percent crystallization at 4429+/-76 Myr, indicating a lunar formation age of 4450 Myr or possibly older. Using the 176Lu-176Hf decay system (t1/2=37 Gyr), we found that the initial 176Hf/177Hf ratios of lunar zircons with varied U-Pb ages are consistent with their crystallization from a KREEP-rich reservoir with a consistently low 176Lu/177Hf ratio of 0.0167 that emerged ~140 Myr after solar system formation. The previously proposed younger model age of 4.33 Ga for the source of mare basalts (240 Myr after solar system formation) might reflect the timing of a large impact. Our results demonstrate that lunar magma ocean crystallization took place while the Moon was still battered by planetary embryos and planetesimals leftover from the main stage of planetary accretion. Study of Lu-Hf model ages for samples brought back from the South Pole-Aitken basin will help to assess the lateral continuity of KREEP and further understand its significance in the early history of the Moon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16203v1-abstract-full').style.display = 'none'; document.getElementById('2501.16203v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">N. Dauphas, Z.J. Zhang, X. Chen, M. Barboni, D. Szymanowski, B. Schoene, I. Leya, K.D. McKeegan, Completion of lunar magma ocean solidification at 4.43 Ga, Proc. Natl. Acad. Sci. U.S.A. 122 (2) e2413802121</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.16148">arXiv:2501.16148</a> <span> [<a href="https://arxiv.org/pdf/2501.16148">pdf</a>, <a href="https://arxiv.org/ps/2501.16148">ps</a>, <a href="https://arxiv.org/format/2501.16148">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Velocity-comb modulation transfer spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Guan%2C+X">Xiaolei Guan</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+Z">Zheng Xiao</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zijie Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhiyang Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jia Zhang</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+X">Xun Gao</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+P">Pengyuan Chang</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+T">Tiantian Shi</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jingbiao Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.16148v1-abstract-short" style="display: inline;"> Sub-Doppler laser spectroscopy is a crucial technique for laser frequency stabilization, playing a significant role in atomic physics, precision measurement, and quantum communication. However, recent efforts to improve frequency stability appear to have reached a bottleneck, as they primarily focus on external technical approaches while neglecting the fundamental issue of low atomic utilization (… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16148v1-abstract-full').style.display = 'inline'; document.getElementById('2501.16148v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.16148v1-abstract-full" style="display: none;"> Sub-Doppler laser spectroscopy is a crucial technique for laser frequency stabilization, playing a significant role in atomic physics, precision measurement, and quantum communication. However, recent efforts to improve frequency stability appear to have reached a bottleneck, as they primarily focus on external technical approaches while neglecting the fundamental issue of low atomic utilization (< 1%), caused by only near-zero transverse velocity atoms involved in the transition. Here, we propose a velocity-comb modulation transfer spectroscopy (MTS) solution that takes advantage of the velocity-selective resonance effect of multi-frequency comb lasers to enhance the utilization of non-zero-velocity atoms. In the probe-pump configuration, each pair of counter-propagating lasers interacts with atoms from different transverse velocity-comb groups, independently contributing to the spectral amplitude and signal-to-noise ratio. Preliminary proof-of-principle results show that the frequency stability of the triple-frequency laser is optimized by nearly a factor of \sqrt{3} compared to the single-frequency laser, consistent with theoretical expectations. With more frequency comb components, MTS-stabilized lasers are expected to achieve order-of-magnitude breakthroughs in frequency stability, taking an important step toward next-generation compact optical clocks. This unique method can also be widely applied to any quantum system with a wide velocity distribution, inspiring innovative advances in numerous fields with a fresh perspective. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16148v1-abstract-full').style.display = 'none'; document.getElementById('2501.16148v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.15350">arXiv:2501.15350</a> <span> [<a href="https://arxiv.org/pdf/2501.15350">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/jacs.4c13166">10.1021/jacs.4c13166 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pyrochlore NaYbO2: A potential Quantum Spin Liquid Candidate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Fan%2C+C">Chuanyan Fan</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+T">Tieyan Chang</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+L">Longlong Fan</a>, <a href="/search/physics?searchtype=author&query=Teat%2C+S+J">Simon J. Teat</a>, <a href="/search/physics?searchtype=author&query=Li%2C+F">Feiyu Li</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+X">Xiaoran Feng</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+C">Chao Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+S">Shi-lei Wang</a>, <a href="/search/physics?searchtype=author&query=Ren%2C+H">Huifen Ren</a>, <a href="/search/physics?searchtype=author&query=Hao%2C+J">Jiazheng Hao</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+Z">Zhaohui Dong</a>, <a href="/search/physics?searchtype=author&query=He%2C+L">Lunhua He</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+S">Shanpeng Wang</a>, <a href="/search/physics?searchtype=author&query=Niu%2C+C">Chengwang Niu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yu-Sheng Chen</a>, <a href="/search/physics?searchtype=author&query=Tao%2C+X">Xutang Tao</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Junjie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.15350v1-abstract-short" style="display: inline;"> The search for quantum spin liquids (QSL) and chemical doping in such materials to explore superconductivity have continuously attracted intense interest. Here, we report the discovery of a potential QSL candidate, pyrochlore-lattice beta-NaYbO2. Colorless and transparent NaYbO2 single crystals, layered alpha-NaYbO2 (~250 um on edge) and octahedral beta-NaYbO2 (~50 um on edge), were grown for the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15350v1-abstract-full').style.display = 'inline'; document.getElementById('2501.15350v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.15350v1-abstract-full" style="display: none;"> The search for quantum spin liquids (QSL) and chemical doping in such materials to explore superconductivity have continuously attracted intense interest. Here, we report the discovery of a potential QSL candidate, pyrochlore-lattice beta-NaYbO2. Colorless and transparent NaYbO2 single crystals, layered alpha-NaYbO2 (~250 um on edge) and octahedral beta-NaYbO2 (~50 um on edge), were grown for the first time. Synchrotron X-ray single crystal diffraction unambiguously determined that the newfound beta-NaYbO2 belongs to the three-dimensional pyrochlore structure characterized by the R-3m space group, corroborated by synchrotron X-ray and neutron powder diffraction and pair distribution function. Magnetic measurements revealed no long-range magnetic order or spin glass behavior down to 0.4 K with a low boundary spin frustration factor of 17.5, suggesting a potential QSL ground state. Under high magnetic fields, the potential QSL state was broken and spins order. Our findings reveal that NaYbO2 is a fertile playground for studying novel quantum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15350v1-abstract-full').style.display = 'none'; document.getElementById('2501.15350v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This document is the unedited author's version of a Submitted Work that was subsequently accepted for publication in Journal of the American Chemical Society, copyright American Chemical Society after peer review. To access the final edited and published work, a link will be provided soon</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of the American Chemical Society 147, 5693-5702 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13647">arXiv:2501.13647</a> <span> [<a href="https://arxiv.org/pdf/2501.13647">pdf</a>, <a href="https://arxiv.org/format/2501.13647">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Polarization-Analyzed Small-Angle Neutron Scattering with an $\textit{in-situ}$ $^{3}$He neutron spin filter at the China Spallation Neutron Source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tian%2C+L">Long Tian</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+H">Han Gao</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+T">Tianhao Wang</a>, <a href="/search/physics?searchtype=author&query=Teng%2C+H">Haiyun Teng</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jian Tang</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+Q">Qingbo Zheng</a>, <a href="/search/physics?searchtype=author&query=Zuo%2C+T">Taisen Zuo</a>, <a href="/search/physics?searchtype=author&query=Cui%2C+T">Tengfei Cui</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+B">Bin Wang</a>, <a href="/search/physics?searchtype=author&query=Qin%2C+X">Xu Qin</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+Y">Yongxiang Qiu</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+Y">Yuchen Dong</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+Y">Yujie Zheng</a>, <a href="/search/physics?searchtype=author&query=Qin%2C+Z">Zecong Qin</a>, <a href="/search/physics?searchtype=author&query=Han%2C+Z">Zehua Han</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Junpei Zhang</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+H">He Cheng</a>, <a href="/search/physics?searchtype=author&query=Tong%2C+X">Xin Tong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13647v1-abstract-short" style="display: inline;"> Polarization-analyzed small-angle neutron scattering (PASANS) is an advanced technique that enables the selective investigation of magnetic scattering phenomena in magnetic materials and distinguishes coherent scattering obscured by incoherent backgrounds, making it particularly valuable for cutting-edge research. The successful implementation of PASANS in China was achieved for the first time at… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13647v1-abstract-full').style.display = 'inline'; document.getElementById('2501.13647v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13647v1-abstract-full" style="display: none;"> Polarization-analyzed small-angle neutron scattering (PASANS) is an advanced technique that enables the selective investigation of magnetic scattering phenomena in magnetic materials and distinguishes coherent scattering obscured by incoherent backgrounds, making it particularly valuable for cutting-edge research. The successful implementation of PASANS in China was achieved for the first time at the newly commissioned Very Small Angle Neutron Scattering (VSANS) instrument at the China Spallation Neutron Source (CSNS). This technique employs a combination of a double-V cavity supermirror polarizer and a radio frequency (RF) neutron spin flipper to manipulate the polarization of the incident neutrons. The scattered neutron polarization is stably analyzed by a specially designed $\textit{in-situ}$ optical pumping $^{3}$He neutron spin filter, which covers a spatially symmetric scattering angle coverage of about 4.8 $^{\circ}$. A comprehensive PASANS data reduction method, aimed at pulsed neutron beams, has been established and validated with a silver behenate powder sample, indicating a maximum momentum transfer coverage of approximately 0.25 脜 $^{-1}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13647v1-abstract-full').style.display = 'none'; document.getElementById('2501.13647v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13537">arXiv:2501.13537</a> <span> [<a href="https://arxiv.org/pdf/2501.13537">pdf</a>, <a href="https://arxiv.org/format/2501.13537">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Precision determination of the excited-state hyperfine splitting of Cadmium ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zheng%2C+Y">Ying Zheng</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+Y">Yanmei Yu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yiting Chen</a>, <a href="/search/physics?searchtype=author&query=Miao%2C+S">Shengnan Miao</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+W">Wenxin Shi</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jianwei Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+L">Lijun Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13537v1-abstract-short" style="display: inline;"> Precision determination of the hyperfine splitting of cadmium ions is essential to study space-time variation of fundamental physical constants and isotope shifts. In this work, we present the precision frequency measurement of the excited-state $^2{P}_{3/2}$ hyperfine splitting of $^{111,113}\mathrm{Cd}^+$ ions using the laser-induced fluorescence technique. By introducing the technology of sympa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13537v1-abstract-full').style.display = 'inline'; document.getElementById('2501.13537v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13537v1-abstract-full" style="display: none;"> Precision determination of the hyperfine splitting of cadmium ions is essential to study space-time variation of fundamental physical constants and isotope shifts. In this work, we present the precision frequency measurement of the excited-state $^2{P}_{3/2}$ hyperfine splitting of $^{111,113}\mathrm{Cd}^+$ ions using the laser-induced fluorescence technique. By introducing the technology of sympathetic cooling and setting up free-space beat detection unit based on the optical comb, the uncertainties are improved to 14.8 kHz and 10.0 kHz, respectively, two orders of magnitude higher than the reported results from the linear transformation of isotope shifts. The magnetic dipole constants $A_{P_{3/2}}$ of $^{111}\mathrm{Cd}^+$ and $^{113}\mathrm{Cd}^+$ are estimated to be 395 938.8(7.4) kHz and 411 276.0(5.0) kHz, respectively. The difference between the measured and theoretical hyperfine structure constants indicates that more physical effects are required to be considered in the theoretical calculation, and provides critical data for the examination of deviation from King-plot linearity in isotope shifts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13537v1-abstract-full').style.display = 'none'; document.getElementById('2501.13537v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13495">arXiv:2501.13495</a> <span> [<a href="https://arxiv.org/pdf/2501.13495">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.111.035439">10.1103/PhysRevB.111.035439 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-dimensional multiferroic NbPc COF with strong magnetoelectric coupling and room-temperature ferroelectricity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+W">Wei Li</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+D">Dongyang Zhu</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+S">Shuai Dong</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jun-Jie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13495v1-abstract-short" style="display: inline;"> The realization of two-dimensional multiferroics offers significant potential for nanoscale device functionality. However, type-I two-dimensional multiferroics with strong magnetoelectric coupling, enabling electric field control of spin, remain scarce. In this study, using density functional theory and Monte Carlo simulations, we predict that the niobium phthalocyanine covalent organic framework… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13495v1-abstract-full').style.display = 'inline'; document.getElementById('2501.13495v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13495v1-abstract-full" style="display: none;"> The realization of two-dimensional multiferroics offers significant potential for nanoscale device functionality. However, type-I two-dimensional multiferroics with strong magnetoelectric coupling, enabling electric field control of spin, remain scarce. In this study, using density functional theory and Monte Carlo simulations, we predict that the niobium phthalocyanine covalent organic framework (NbPc COF) monolayer exhibits type-I multiferroic behavior, with a ferroelectric transition occurring above room temperature. Remarkably, the strong magnetoelectric coupling in NbPc COF monolayer arises from the same origin of magnetism and ferroelectricity. Our findings offer flexible pathways for the design and development of organic nanoscale multiferroic devices with broad applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13495v1-abstract-full').style.display = 'none'; document.getElementById('2501.13495v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 111, 035439 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13454">arXiv:2501.13454</a> <span> [<a href="https://arxiv.org/pdf/2501.13454">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> A simplified method for full-wave simulation of metamaterials: utilizing near-field decoupling technology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Junming Zhang</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+W">Weijia Luo</a>, <a href="/search/physics?searchtype=author&query=Wen%2C+Y">Yongzheng Wen</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+J">Jingbo Sun</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+J">Ji Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13454v1-abstract-short" style="display: inline;"> Simulating the electromagnetic properties of large-scale, complex metamaterial structures demands significant time and memory resources. If these large-scale structures can be divided into smaller, simpler components, the overall cost of studying all the smaller structures could be much lower than directly simulating the entire structure. Unfortunately, decoupling complex structures has been chall… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13454v1-abstract-full').style.display = 'inline'; document.getElementById('2501.13454v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13454v1-abstract-full" style="display: none;"> Simulating the electromagnetic properties of large-scale, complex metamaterial structures demands significant time and memory resources. If these large-scale structures can be divided into smaller, simpler components, the overall cost of studying all the smaller structures could be much lower than directly simulating the entire structure. Unfortunately, decoupling complex structures has been challenging due to the unclear mechanisms of near-field coupling in metamaterials. In this paper, we identify that the key to understanding near-field coupling in metamaterials lies in evanescent wave interactions, which can be captured through full-wave simulations. Our findings suggest that by accounting for the influence of evanescent waves, it becomes possible to analytically decouple and then recouple structures, even when the types of metamaterial structures vary. Building on this insight, we successfully decomposed complex structures into multiple groups of simpler components. By studying these simpler components, the electromagnetic properties of the entire structure can be calculated analytically. This decoupling method dramatically reduces the computation time or memory required for research into the electromagnetic properties of metamaterials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13454v1-abstract-full').style.display = 'none'; document.getElementById('2501.13454v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Zhang%2C+J&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Zhang%2C+J&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhang%2C+J&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhang%2C+J&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhang%2C+J&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhang%2C+J&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>