CINXE.COM

Trigonometri - Wikipedia bahasa Indonesia, ensiklopedia bebas

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="id" dir="ltr"> <head> <meta charset="UTF-8"> <title>Trigonometri - Wikipedia bahasa Indonesia, ensiklopedia bebas</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )idwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","Januari","Februari","Maret","April","Mei","Juni","Juli","Agustus","September","Oktober","November","Desember"],"wgRequestId":"98de756e-1ee6-4f6f-a8c6-7078675b5d8f","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Trigonometri","wgTitle":"Trigonometri","wgCurRevisionId":26500080,"wgRevisionId":26500080,"wgArticleId":30133,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 sumber berbahasa Inggris (en)","Artikel yang tidak memiliki referensi November 2024","Pemeliharaan CS1: Teks tambahan","Halaman dengan rujukan yang menggunakan parameter yang tidak didukung","Pranala Commons ditentukan secara lokal","Templat webarchive tautan wayback","Halaman yang menggunakan pranala magis ISBN","Trigonometri","Persamaan trigonometri","Persamaan matematika","Persamaan","Penemuan bangsa Yunani"],"wgPageViewLanguage":"id", "wgPageContentLanguage":"id","wgPageContentModel":"wikitext","wgRelevantPageName":"Trigonometri","wgRelevantArticleId":30133,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"accuracy":{"levels":2}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"id","pageLanguageDir":"ltr","pageVariantFallbacks":"id"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q8084", "wgCheckUserClientHintsHeadersJsApi":["architecture","bitness","brands","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.charinsert-styles":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready", "jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.watchlist-notice","ext.gadget.charinsert","ext.gadget.refToolbar","ext.gadget.AdvancedSiteNotices","ext.gadget.switcher","ext.gadget.Bagikan","ext.gadget.CurIDLink","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","oojs-ui.styles.icons-media","oojs-ui-core.icons","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=id&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=id&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=id&amp;modules=ext.gadget.charinsert-styles&amp;only=styles&amp;skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=id&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.3"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Circle-trig6.svg/1200px-Circle-trig6.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="768"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Circle-trig6.svg/800px-Circle-trig6.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="512"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Circle-trig6.svg/640px-Circle-trig6.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="410"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Trigonometri - Wikipedia bahasa Indonesia, ensiklopedia bebas"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//id.m.wikipedia.org/wiki/Trigonometri"> <link rel="alternate" type="application/x-wiki" title="Sunting" href="/w/index.php?title=Trigonometri&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (id)"> <link rel="EditURI" type="application/rsd+xml" href="//id.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://id.wikipedia.org/wiki/Trigonometri"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.id"> <link rel="alternate" type="application/atom+xml" title="Umpan Atom Wikipedia" href="/w/index.php?title=Istimewa:Perubahan_terbaru&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Trigonometri rootpage-Trigonometri skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Lompat ke isi</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Situs"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Menu utama" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Menu utama</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Menu utama</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">pindah ke bilah sisi</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">sembunyikan</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigasi </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage" class="mw-list-item"><a href="/wiki/Halaman_Utama" title="Kunjungi Halaman Utama [z]" accesskey="z"><span>Halaman Utama</span></a></li><li id="n-Daftar-isi" class="mw-list-item"><a href="/wiki/Wikipedia:Isi"><span>Daftar isi</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Istimewa:Perubahan_terbaru" title="Daftar perubahan terbaru dalam wiki. [r]" accesskey="r"><span>Perubahan terbaru</span></a></li><li id="n-Artikel-pilihan" class="mw-list-item"><a href="/wiki/Wikipedia:Artikel_pilihan/Topik"><span>Artikel pilihan</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Peristiwa_terkini" title="Temukan informasi tentang peristiwa terkini"><span>Peristiwa terkini</span></a></li><li id="n-newpage" class="mw-list-item"><a href="/wiki/Istimewa:Halaman_baru"><span>Halaman baru</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Istimewa:Halaman_sembarang" title="Tampilkan sembarang halaman [x]" accesskey="x"><span>Halaman sembarang</span></a></li> </ul> </div> </div> <div id="p-Komunitas" class="vector-menu mw-portlet mw-portlet-Komunitas" > <div class="vector-menu-heading"> Komunitas </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-Warung-Kopi" class="mw-list-item"><a href="/wiki/Wikipedia:Warung_Kopi"><span>Warung Kopi</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Portal:Komunitas" title="Tentang proyek, apa yang dapat Anda lakukan, di mana untuk mencari sesuatu"><span>Portal komunitas</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Bantuan:Isi" title="Tempat mencari bantuan."><span>Bantuan</span></a></li> </ul> </div> </div> <div id="p-Wikipedia" class="vector-menu mw-portlet mw-portlet-Wikipedia" > <div class="vector-menu-heading"> Wikipedia </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:Perihal"><span>Tentang Wikipedia</span></a></li><li id="n-Pancapilar" class="mw-list-item"><a href="/wiki/Wikipedia:Pancapilar"><span>Pancapilar</span></a></li><li id="n-Kebijakan" class="mw-list-item"><a href="/wiki/Wikipedia:Kebijakan_dan_pedoman"><span>Kebijakan</span></a></li><li id="n-Hubungi-kami" class="mw-list-item"><a href="/wiki/Wikipedia:Hubungi_kami"><span>Hubungi kami</span></a></li><li id="n-Bak-pasir" class="mw-list-item"><a href="/wiki/Wikipedia:Bak_pasir"><span>Bak pasir</span></a></li> </ul> </div> </div> <div id="p-Bagikan" class="vector-menu mw-portlet mw-portlet-Bagikan emptyPortlet" > <div class="vector-menu-heading"> Bagikan </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Halaman_Utama" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="Ensiklopedia Bebas" src="/static/images/mobile/copyright/wikipedia-tagline-id.svg" width="120" height="14" style="width: 7.5em; height: 0.875em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Istimewa:Pencarian" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Cari di Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Pencarian</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Telusuri Wikipedia" aria-label="Telusuri Wikipedia" autocapitalize="sentences" title="Cari di Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Istimewa:Pencarian"> </div> <button class="cdx-button cdx-search-input__end-button">Cari</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Perkakas pribadi"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Tampilan"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Tampilan" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Tampilan</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_id.wikipedia.org&amp;uselang=id" class=""><span>Menyumbang</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Istimewa:Buat_akun&amp;returnto=Trigonometri" title="Anda dianjurkan untuk membuat akun dan masuk log; meskipun, hal itu tidak diwajibkan" class=""><span>Buat akun baru</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Istimewa:Masuk_log&amp;returnto=Trigonometri" title="Anda disarankan untuk masuk log, meskipun hal itu tidak diwajibkan. [o]" accesskey="o" class=""><span>Masuk log</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Opsi lainnya" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Perkakas pribadi" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Perkakas pribadi</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Menu pengguna" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_id.wikipedia.org&amp;uselang=id"><span>Menyumbang</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Istimewa:Buat_akun&amp;returnto=Trigonometri" title="Anda dianjurkan untuk membuat akun dan masuk log; meskipun, hal itu tidak diwajibkan"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Buat akun baru</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Istimewa:Masuk_log&amp;returnto=Trigonometri" title="Anda disarankan untuk masuk log, meskipun hal itu tidak diwajibkan. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Masuk log</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Halaman penyunting yang telah keluar log <a href="/wiki/Bantuan:Pengantar" aria-label="Pelajari lebih lanjut tentang menyunting"><span>pelajari lebih lanjut</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Istimewa:Kontribusi_saya" title="Daftar suntingan yang dibuat dari alamat IP ini [y]" accesskey="y"><span>Kontribusi</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Istimewa:Pembicaraan_saya" title="Pembicaraan tentang suntingan dari alamat IP ini [n]" accesskey="n"><span>Pembicaraan</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Situs"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Daftar isi" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Daftar isi</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">pindah ke bilah sisi</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">sembunyikan</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Awal</div> </a> </li> <li id="toc-Sejarah_awal" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Sejarah_awal"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Sejarah awal</span> </div> </a> <ul id="toc-Sejarah_awal-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Konsep" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Konsep"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Konsep</span> </div> </a> <ul id="toc-Konsep-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Kegunaan" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Kegunaan"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Kegunaan</span> </div> </a> <ul id="toc-Kegunaan-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fungsi_trigonometri" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Fungsi_trigonometri"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Fungsi trigonometri</span> </div> </a> <button aria-controls="toc-Fungsi_trigonometri-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Gulingkan subbagian Fungsi trigonometri</span> </button> <ul id="toc-Fungsi_trigonometri-sublist" class="vector-toc-list"> <li id="toc-Definisi_dasar" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Definisi_dasar"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Definisi dasar</span> </div> </a> <ul id="toc-Definisi_dasar-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Grafik_fungsi_trigonometri" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Grafik_fungsi_trigonometri"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Grafik fungsi trigonometri</span> </div> </a> <ul id="toc-Grafik_fungsi_trigonometri-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Identitas_trigonometri" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Identitas_trigonometri"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Identitas trigonometri</span> </div> </a> <button aria-controls="toc-Identitas_trigonometri-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Gulingkan subbagian Identitas trigonometri</span> </button> <ul id="toc-Identitas_trigonometri-sublist" class="vector-toc-list"> <li id="toc-Identitas_Pythagoras" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Identitas_Pythagoras"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Identitas Pythagoras</span> </div> </a> <ul id="toc-Identitas_Pythagoras-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Kesamaan_nilai_trigonometri" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Kesamaan_nilai_trigonometri"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Kesamaan nilai trigonometri</span> </div> </a> <ul id="toc-Kesamaan_nilai_trigonometri-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Rumus_jumlah_dan_selisih_sudut" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Rumus_jumlah_dan_selisih_sudut"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Rumus jumlah dan selisih sudut</span> </div> </a> <ul id="toc-Rumus_jumlah_dan_selisih_sudut-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Rumus_Perkalian_Trigonometri" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Rumus_Perkalian_Trigonometri"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Rumus Perkalian Trigonometri</span> </div> </a> <ul id="toc-Rumus_Perkalian_Trigonometri-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Rumus_jumlah_dan_selisih_trigonometri" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Rumus_jumlah_dan_selisih_trigonometri"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Rumus jumlah dan selisih trigonometri</span> </div> </a> <ul id="toc-Rumus_jumlah_dan_selisih_trigonometri-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Rumus_sudut_rangkap_dua" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Rumus_sudut_rangkap_dua"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Rumus sudut rangkap dua</span> </div> </a> <ul id="toc-Rumus_sudut_rangkap_dua-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Rumus_sudut_rangkap_tiga" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Rumus_sudut_rangkap_tiga"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Rumus sudut rangkap tiga</span> </div> </a> <ul id="toc-Rumus_sudut_rangkap_tiga-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Rumus_setengah_sudut" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Rumus_setengah_sudut"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Rumus setengah sudut</span> </div> </a> <ul id="toc-Rumus_setengah_sudut-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Persamaan_trigonometri" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Persamaan_trigonometri"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>Persamaan trigonometri</span> </div> </a> <ul id="toc-Persamaan_trigonometri-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lihat_pula" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Lihat_pula"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>Lihat pula</span> </div> </a> <ul id="toc-Lihat_pula-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Referensi" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Referensi"> <div class="vector-toc-text"> <span class="vector-toc-numb">15</span> <span>Referensi</span> </div> </a> <button aria-controls="toc-Referensi-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Gulingkan subbagian Referensi</span> </button> <ul id="toc-Referensi-sublist" class="vector-toc-list"> <li id="toc-Pustaka" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Pustaka"> <div class="vector-toc-text"> <span class="vector-toc-numb">15.1</span> <span>Pustaka</span> </div> </a> <ul id="toc-Pustaka-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Pranala_luar" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Pranala_luar"> <div class="vector-toc-text"> <span class="vector-toc-numb">16</span> <span>Pranala luar</span> </div> </a> <ul id="toc-Pranala_luar-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Daftar isi" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Gulingkan daftar isi" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Gulingkan daftar isi</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Trigonometri</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Pergi ke artikel dalam bahasa lain. Terdapat 139 bahasa" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-139" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">139 bahasa</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Driehoeksmeting" title="Driehoeksmeting – Afrikaans" lang="af" hreflang="af" data-title="Driehoeksmeting" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Trigonometrie" title="Trigonometrie – Jerman (Swiss)" lang="gsw" hreflang="gsw" data-title="Trigonometrie" data-language-autonym="Alemannisch" data-language-local-name="Jerman (Swiss)" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%89%B5%E1%88%AA%E1%8C%8E%E1%8A%96%E1%88%9C%E1%89%B5%E1%88%AA" title="ትሪጎኖሜትሪ – Amharik" lang="am" hreflang="am" data-title="ትሪጎኖሜትሪ" data-language-autonym="አማርኛ" data-language-local-name="Amharik" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Trigonometr%C3%ADa" title="Trigonometría – Aragon" lang="an" hreflang="an" data-title="Trigonometría" data-language-autonym="Aragonés" data-language-local-name="Aragon" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-anp mw-list-item"><a href="https://anp.wikipedia.org/wiki/%E0%A4%A4%E0%A5%8D%E0%A4%B0%E0%A4%BF%E0%A4%95%E0%A5%8B%E0%A4%A3%E0%A4%AE%E0%A4%BF%E0%A4%A4%E0%A4%BF" title="त्रिकोणमिति – Angika" lang="anp" hreflang="anp" data-title="त्रिकोणमिति" data-language-autonym="अंगिका" data-language-local-name="Angika" class="interlanguage-link-target"><span>अंगिका</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AD%D8%B3%D8%A7%D8%A8_%D8%A7%D9%84%D9%85%D8%AB%D9%84%D8%AB%D8%A7%D8%AA" title="حساب المثلثات – Arab" lang="ar" hreflang="ar" data-title="حساب المثلثات" data-language-autonym="العربية" data-language-local-name="Arab" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-arz mw-list-item"><a href="https://arz.wikipedia.org/wiki/%D8%AD%D8%B3%D8%A7%D8%A8_%D8%A7%D9%84%D9%85%D8%AB%D9%84%D8%AB%D8%A7%D8%AA" title="حساب المثلثات – Arab Mesir" lang="arz" hreflang="arz" data-title="حساب المثلثات" data-language-autonym="مصرى" data-language-local-name="Arab Mesir" class="interlanguage-link-target"><span>مصرى</span></a></li><li class="interlanguage-link interwiki-as mw-list-item"><a href="https://as.wikipedia.org/wiki/%E0%A6%A4%E0%A7%8D%E0%A7%B0%E0%A6%BF%E0%A6%95%E0%A7%8B%E0%A6%A3%E0%A6%AE%E0%A6%BF%E0%A6%A4%E0%A6%BF" title="ত্ৰিকোণমিতি – Assam" lang="as" hreflang="as" data-title="ত্ৰিকোণমিতি" data-language-autonym="অসমীয়া" data-language-local-name="Assam" class="interlanguage-link-target"><span>অসমীয়া</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Trigonometr%C3%ADa" title="Trigonometría – Asturia" lang="ast" hreflang="ast" data-title="Trigonometría" data-language-autonym="Asturianu" data-language-local-name="Asturia" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Triqonometriya" title="Triqonometriya – Azerbaijani" lang="az" hreflang="az" data-title="Triqonometriya" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%D8%A7%D9%88%DA%86%E2%80%8C%D8%A8%D9%88%D8%AC%D8%A7%D9%82_%D8%A8%DB%8C%D9%84%DB%8C%D9%85%DB%8C" title="اوچ‌بوجاق بیلیمی – South Azerbaijani" lang="azb" hreflang="azb" data-title="اوچ‌بوجاق بیلیمی" data-language-autonym="تۆرکجه" data-language-local-name="South Azerbaijani" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%A2%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Тригонометрия – Bashkir" lang="ba" hreflang="ba" data-title="Тригонометрия" data-language-autonym="Башҡортса" data-language-local-name="Bashkir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-bat-smg mw-list-item"><a href="https://bat-smg.wikipedia.org/wiki/Tr%C4%97guonuometr%C4%97j%C4%97" title="Trėguonuometrėjė – Samogitian" lang="sgs" hreflang="sgs" data-title="Trėguonuometrėjė" data-language-autonym="Žemaitėška" data-language-local-name="Samogitian" class="interlanguage-link-target"><span>Žemaitėška</span></a></li><li class="interlanguage-link interwiki-bcl mw-list-item"><a href="https://bcl.wikipedia.org/wiki/Trigonometriya" title="Trigonometriya – Central Bikol" lang="bcl" hreflang="bcl" data-title="Trigonometriya" data-language-autonym="Bikol Central" data-language-local-name="Central Bikol" class="interlanguage-link-target"><span>Bikol Central</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A2%D1%80%D1%8B%D0%B3%D0%B0%D0%BD%D0%B0%D0%BC%D0%B5%D1%82%D1%80%D1%8B%D1%8F" title="Трыганаметрыя – Belarusia" lang="be" hreflang="be" data-title="Трыганаметрыя" data-language-autonym="Беларуская" data-language-local-name="Belarusia" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%A2%D1%80%D1%8B%D0%B3%D0%B0%D0%BD%D0%B0%D0%BC%D1%8D%D1%82%D1%80%D1%8B%D1%8F" title="Трыганамэтрыя – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Трыганамэтрыя" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A2%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Тригонометрия – Bulgaria" lang="bg" hreflang="bg" data-title="Тригонометрия" data-language-autonym="Български" data-language-local-name="Bulgaria" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%A4%E0%A7%8D%E0%A6%B0%E0%A6%BF%E0%A6%95%E0%A7%8B%E0%A6%A3%E0%A6%AE%E0%A6%BF%E0%A6%A4%E0%A6%BF" title="ত্রিকোণমিতি – Bengali" lang="bn" hreflang="bn" data-title="ত্রিকোণমিতি" data-language-autonym="বাংলা" data-language-local-name="Bengali" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-br mw-list-item"><a href="https://br.wikipedia.org/wiki/Trigonometriezh" title="Trigonometriezh – Breton" lang="br" hreflang="br" data-title="Trigonometriezh" data-language-autonym="Brezhoneg" data-language-local-name="Breton" class="interlanguage-link-target"><span>Brezhoneg</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Trigonometrija" title="Trigonometrija – Bosnia" lang="bs" hreflang="bs" data-title="Trigonometrija" data-language-autonym="Bosanski" data-language-local-name="Bosnia" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Trigonometria" title="Trigonometria – Katalan" lang="ca" hreflang="ca" data-title="Trigonometria" data-language-autonym="Català" data-language-local-name="Katalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D8%B3%DB%8E%DA%AF%DB%86%D8%B4%DB%95%D8%B2%D8%A7%D9%86%DB%8C" title="سێگۆشەزانی – Kurdi Sorani" lang="ckb" hreflang="ckb" data-title="سێگۆشەزانی" data-language-autonym="کوردی" data-language-local-name="Kurdi Sorani" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-co mw-list-item"><a href="https://co.wikipedia.org/wiki/Trigunumitria" title="Trigunumitria – Korsika" lang="co" hreflang="co" data-title="Trigunumitria" data-language-autonym="Corsu" data-language-local-name="Korsika" class="interlanguage-link-target"><span>Corsu</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Trigonometrie" title="Trigonometrie – Cheska" lang="cs" hreflang="cs" data-title="Trigonometrie" data-language-autonym="Čeština" data-language-local-name="Cheska" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A2%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8" title="Тригонометри – Chuvash" lang="cv" hreflang="cv" data-title="Тригонометри" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Trigonometreg" title="Trigonometreg – Welsh" lang="cy" hreflang="cy" data-title="Trigonometreg" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Trigonometri" title="Trigonometri – Dansk" lang="da" hreflang="da" data-title="Trigonometri" data-language-autonym="Dansk" data-language-local-name="Dansk" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Trigonometrie" title="Trigonometrie – Jerman" lang="de" hreflang="de" data-title="Trigonometrie" data-language-autonym="Deutsch" data-language-local-name="Jerman" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A4%CF%81%CE%B9%CE%B3%CF%89%CE%BD%CE%BF%CE%BC%CE%B5%CF%84%CF%81%CE%AF%CE%B1" title="Τριγωνομετρία – Yunani" lang="el" hreflang="el" data-title="Τριγωνομετρία" data-language-autonym="Ελληνικά" data-language-local-name="Yunani" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-eml mw-list-item"><a href="https://eml.wikipedia.org/wiki/Trigonometr%C3%AE" title="Trigonometrî – Emiliano-Romagnolo" lang="egl" hreflang="egl" data-title="Trigonometrî" data-language-autonym="Emiliàn e rumagnòl" data-language-local-name="Emiliano-Romagnolo" class="interlanguage-link-target"><span>Emiliàn e rumagnòl</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Trigonometry" title="Trigonometry – Inggris" lang="en" hreflang="en" data-title="Trigonometry" data-language-autonym="English" data-language-local-name="Inggris" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Trigonometrio" title="Trigonometrio – Esperanto" lang="eo" hreflang="eo" data-title="Trigonometrio" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Trigonometr%C3%ADa" title="Trigonometría – Spanyol" lang="es" hreflang="es" data-title="Trigonometría" data-language-autonym="Español" data-language-local-name="Spanyol" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Trigonomeetria" title="Trigonomeetria – Esti" lang="et" hreflang="et" data-title="Trigonomeetria" data-language-autonym="Eesti" data-language-local-name="Esti" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Trigonometria" title="Trigonometria – Basque" lang="eu" hreflang="eu" data-title="Trigonometria" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-ext mw-list-item"><a href="https://ext.wikipedia.org/wiki/Trigonometria" title="Trigonometria – Extremaduran" lang="ext" hreflang="ext" data-title="Trigonometria" data-language-autonym="Estremeñu" data-language-local-name="Extremaduran" class="interlanguage-link-target"><span>Estremeñu</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%D8%AB%D9%84%D8%AB%D8%A7%D8%AA" title="مثلثات – Persia" lang="fa" hreflang="fa" data-title="مثلثات" data-language-autonym="فارسی" data-language-local-name="Persia" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Trigonometria" title="Trigonometria – Suomi" lang="fi" hreflang="fi" data-title="Trigonometria" data-language-autonym="Suomi" data-language-local-name="Suomi" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fiu-vro mw-list-item"><a href="https://fiu-vro.wikipedia.org/wiki/Trigonomeetri%C3%A4" title="Trigonomeetriä – Võro" lang="vro" hreflang="vro" data-title="Trigonomeetriä" data-language-autonym="Võro" data-language-local-name="Võro" class="interlanguage-link-target"><span>Võro</span></a></li><li class="interlanguage-link interwiki-fo mw-list-item"><a href="https://fo.wikipedia.org/wiki/Trigonometri" title="Trigonometri – Faroe" lang="fo" hreflang="fo" data-title="Trigonometri" data-language-autonym="Føroyskt" data-language-local-name="Faroe" class="interlanguage-link-target"><span>Føroyskt</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Trigonom%C3%A9trie" title="Trigonométrie – Prancis" lang="fr" hreflang="fr" data-title="Trigonométrie" data-language-autonym="Français" data-language-local-name="Prancis" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Trigonometrii" title="Trigonometrii – Frisia Utara" lang="frr" hreflang="frr" data-title="Trigonometrii" data-language-autonym="Nordfriisk" data-language-local-name="Frisia Utara" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Triant%C3%A1nacht" title="Triantánacht – Irlandia" lang="ga" hreflang="ga" data-title="Triantánacht" data-language-autonym="Gaeilge" data-language-local-name="Irlandia" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gan mw-list-item"><a href="https://gan.wikipedia.org/wiki/%E4%B8%89%E8%A7%92%E5%AD%B8" title="三角學 – Gan" lang="gan" hreflang="gan" data-title="三角學" data-language-autonym="贛語" data-language-local-name="Gan" class="interlanguage-link-target"><span>贛語</span></a></li><li class="interlanguage-link interwiki-gcr mw-list-item"><a href="https://gcr.wikipedia.org/wiki/Trigonom%C3%A9tri" title="Trigonométri – Guianan Creole" lang="gcr" hreflang="gcr" data-title="Trigonométri" data-language-autonym="Kriyòl gwiyannen" data-language-local-name="Guianan Creole" class="interlanguage-link-target"><span>Kriyòl gwiyannen</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Trigonometr%C3%ADa" title="Trigonometría – Galisia" lang="gl" hreflang="gl" data-title="Trigonometría" data-language-autonym="Galego" data-language-local-name="Galisia" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-gu mw-list-item"><a href="https://gu.wikipedia.org/wiki/%E0%AA%A4%E0%AB%8D%E0%AA%B0%E0%AA%BF%E0%AA%95%E0%AB%8B%E0%AA%A3%E0%AA%AE%E0%AA%BF%E0%AA%A4%E0%AA%BF" title="ત્રિકોણમિતિ – Gujarat" lang="gu" hreflang="gu" data-title="ત્રિકોણમિતિ" data-language-autonym="ગુજરાતી" data-language-local-name="Gujarat" class="interlanguage-link-target"><span>ગુજરાતી</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%98%D7%A8%D7%99%D7%92%D7%95%D7%A0%D7%95%D7%9E%D7%98%D7%A8%D7%99%D7%94" title="טריגונומטריה – Ibrani" lang="he" hreflang="he" data-title="טריגונומטריה" data-language-autonym="עברית" data-language-local-name="Ibrani" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%A4%E0%A5%8D%E0%A4%B0%E0%A4%BF%E0%A4%95%E0%A5%8B%E0%A4%A3%E0%A4%AE%E0%A4%BF%E0%A4%A4%E0%A4%BF" title="त्रिकोणमिति – Hindi" lang="hi" hreflang="hi" data-title="त्रिकोणमिति" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hif mw-list-item"><a href="https://hif.wikipedia.org/wiki/Trigonometry" title="Trigonometry – Hindi Fiji" lang="hif" hreflang="hif" data-title="Trigonometry" data-language-autonym="Fiji Hindi" data-language-local-name="Hindi Fiji" class="interlanguage-link-target"><span>Fiji Hindi</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Trigonometrija" title="Trigonometrija – Kroasia" lang="hr" hreflang="hr" data-title="Trigonometrija" data-language-autonym="Hrvatski" data-language-local-name="Kroasia" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Trigonometria" title="Trigonometria – Hungaria" lang="hu" hreflang="hu" data-title="Trigonometria" data-language-autonym="Magyar" data-language-local-name="Hungaria" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B5%D5%BC%D5%A1%D5%B6%D5%AF%D5%B5%D5%B8%D6%82%D5%B6%D5%A1%D5%B9%D5%A1%D6%83%D5%B8%D6%82%D5%A9%D5%B5%D5%B8%D6%82%D5%B6" title="Եռանկյունաչափություն – Armenia" lang="hy" hreflang="hy" data-title="Եռանկյունաչափություն" data-language-autonym="Հայերեն" data-language-local-name="Armenia" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Trigonometria" title="Trigonometria – Interlingua" lang="ia" hreflang="ia" data-title="Trigonometria" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-iba mw-list-item"><a href="https://iba.wikipedia.org/wiki/Trigonometri" title="Trigonometri – Iban" lang="iba" hreflang="iba" data-title="Trigonometri" data-language-autonym="Jaku Iban" data-language-local-name="Iban" class="interlanguage-link-target"><span>Jaku Iban</span></a></li><li class="interlanguage-link interwiki-ilo mw-list-item"><a href="https://ilo.wikipedia.org/wiki/Trigonometria" title="Trigonometria – Iloko" lang="ilo" hreflang="ilo" data-title="Trigonometria" data-language-autonym="Ilokano" data-language-local-name="Iloko" class="interlanguage-link-target"><span>Ilokano</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Trigonometrio" title="Trigonometrio – Ido" lang="io" hreflang="io" data-title="Trigonometrio" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Hornafr%C3%A6%C3%B0i" title="Hornafræði – Islandia" lang="is" hreflang="is" data-title="Hornafræði" data-language-autonym="Íslenska" data-language-local-name="Islandia" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Trigonometria" title="Trigonometria – Italia" lang="it" hreflang="it" data-title="Trigonometria" data-language-autonym="Italiano" data-language-local-name="Italia" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E4%B8%89%E8%A7%92%E6%B3%95" title="三角法 – Jepang" lang="ja" hreflang="ja" data-title="三角法" data-language-autonym="日本語" data-language-local-name="Jepang" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-jam mw-list-item"><a href="https://jam.wikipedia.org/wiki/Chriganamichri" title="Chriganamichri – Jamaican Creole English" lang="jam" hreflang="jam" data-title="Chriganamichri" data-language-autonym="Patois" data-language-local-name="Jamaican Creole English" class="interlanguage-link-target"><span>Patois</span></a></li><li class="interlanguage-link interwiki-jv mw-list-item"><a href="https://jv.wikipedia.org/wiki/Trigonom%C3%A8tri" title="Trigonomètri – Jawa" lang="jv" hreflang="jv" data-title="Trigonomètri" data-language-autonym="Jawa" data-language-local-name="Jawa" class="interlanguage-link-target"><span>Jawa</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%A2%E1%83%A0%E1%83%98%E1%83%92%E1%83%9D%E1%83%9C%E1%83%9D%E1%83%9B%E1%83%94%E1%83%A2%E1%83%A0%E1%83%98%E1%83%90" title="ტრიგონომეტრია – Georgia" lang="ka" hreflang="ka" data-title="ტრიგონომეტრია" data-language-autonym="ქართული" data-language-local-name="Georgia" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kaa mw-list-item"><a href="https://kaa.wikipedia.org/wiki/Trigonometriya" title="Trigonometriya – Kara-Kalpak" lang="kaa" hreflang="kaa" data-title="Trigonometriya" data-language-autonym="Qaraqalpaqsha" data-language-local-name="Kara-Kalpak" class="interlanguage-link-target"><span>Qaraqalpaqsha</span></a></li><li class="interlanguage-link interwiki-kbp mw-list-item"><a href="https://kbp.wikipedia.org/wiki/K%C9%94l%C9%94m%C9%A9%C5%8B_naadozo_t%CA%8A_pilinzi_maz%CA%8A%CA%8A" title="Kɔlɔmɩŋ naadozo tʊ pilinzi mazʊʊ – Kabiye" lang="kbp" hreflang="kbp" data-title="Kɔlɔmɩŋ naadozo tʊ pilinzi mazʊʊ" data-language-autonym="Kabɩyɛ" data-language-local-name="Kabiye" class="interlanguage-link-target"><span>Kabɩyɛ</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%A2%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Тригонометрия – Kazakh" lang="kk" hreflang="kk" data-title="Тригонометрия" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-km mw-list-item"><a href="https://km.wikipedia.org/wiki/%E1%9E%8F%E1%9F%92%E1%9E%9A%E1%9E%B8%E1%9E%80%E1%9F%84%E1%9E%8E%E1%9E%98%E1%9E%B6%E1%9E%8F%E1%9F%92%E1%9E%9A" title="ត្រីកោណមាត្រ – Khmer" lang="km" hreflang="km" data-title="ត្រីកោណមាត្រ" data-language-autonym="ភាសាខ្មែរ" data-language-local-name="Khmer" class="interlanguage-link-target"><span>ភាសាខ្មែរ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%82%BC%EA%B0%81%EB%B2%95" title="삼각법 – Korea" lang="ko" hreflang="ko" data-title="삼각법" data-language-autonym="한국어" data-language-local-name="Korea" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-ku mw-list-item"><a href="https://ku.wikipedia.org/wiki/S%C3%AAgo%C5%9Fenas%C3%AE" title="Sêgoşenasî – Kurdi" lang="ku" hreflang="ku" data-title="Sêgoşenasî" data-language-autonym="Kurdî" data-language-local-name="Kurdi" class="interlanguage-link-target"><span>Kurdî</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%A2%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Тригонометрия – Kirgiz" lang="ky" hreflang="ky" data-title="Тригонометрия" data-language-autonym="Кыргызча" data-language-local-name="Kirgiz" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Trigonometria" title="Trigonometria – Latin" lang="la" hreflang="la" data-title="Trigonometria" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lfn mw-list-item"><a href="https://lfn.wikipedia.org/wiki/Trigonometria" title="Trigonometria – Lingua Franca Nova" lang="lfn" hreflang="lfn" data-title="Trigonometria" data-language-autonym="Lingua Franca Nova" data-language-local-name="Lingua Franca Nova" class="interlanguage-link-target"><span>Lingua Franca Nova</span></a></li><li class="interlanguage-link interwiki-lg mw-list-item"><a href="https://lg.wikipedia.org/wiki/Essomampuyisatu_(Trigonometry)" title="Essomampuyisatu (Trigonometry) – Ganda" lang="lg" hreflang="lg" data-title="Essomampuyisatu (Trigonometry)" data-language-autonym="Luganda" data-language-local-name="Ganda" class="interlanguage-link-target"><span>Luganda</span></a></li><li class="interlanguage-link interwiki-li mw-list-item"><a href="https://li.wikipedia.org/wiki/Goniometrie" title="Goniometrie – Limburgia" lang="li" hreflang="li" data-title="Goniometrie" data-language-autonym="Limburgs" data-language-local-name="Limburgia" class="interlanguage-link-target"><span>Limburgs</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Trigonometria" title="Trigonometria – Lombard" lang="lmo" hreflang="lmo" data-title="Trigonometria" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-lo mw-list-item"><a href="https://lo.wikipedia.org/wiki/%E0%BB%84%E0%BA%95%E0%BA%A1%E0%BA%B8%E0%BA%A1" title="ໄຕມຸມ – Lao" lang="lo" hreflang="lo" data-title="ໄຕມຸມ" data-language-autonym="ລາວ" data-language-local-name="Lao" class="interlanguage-link-target"><span>ລາວ</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Trigonometrija" title="Trigonometrija – Lituavi" lang="lt" hreflang="lt" data-title="Trigonometrija" data-language-autonym="Lietuvių" data-language-local-name="Lituavi" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Trigonometrija" title="Trigonometrija – Latvi" lang="lv" hreflang="lv" data-title="Trigonometrija" data-language-autonym="Latviešu" data-language-local-name="Latvi" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%A2%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%98%D0%B0" title="Тригонометрија – Makedonia" lang="mk" hreflang="mk" data-title="Тригонометрија" data-language-autonym="Македонски" data-language-local-name="Makedonia" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%A4%E0%B5%8D%E0%B4%B0%E0%B4%BF%E0%B4%95%E0%B5%8B%E0%B4%A3%E0%B4%AE%E0%B4%BF%E0%B4%A4%E0%B4%BF" title="ത്രികോണമിതി – Malayalam" lang="ml" hreflang="ml" data-title="ത്രികോണമിതി" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%A4%E0%A5%8D%E0%A4%B0%E0%A4%BF%E0%A4%95%E0%A5%8B%E0%A4%A3%E0%A4%AE%E0%A4%BF%E0%A4%A4%E0%A5%80" title="त्रिकोणमिती – Marathi" lang="mr" hreflang="mr" data-title="त्रिकोणमिती" data-language-autonym="मराठी" data-language-local-name="Marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Trigonometri" title="Trigonometri – Melayu" lang="ms" hreflang="ms" data-title="Trigonometri" data-language-autonym="Bahasa Melayu" data-language-local-name="Melayu" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%90%E1%80%BC%E1%80%AE%E1%80%82%E1%80%AD%E1%80%AF%E1%80%94%E1%80%AD%E1%80%AF%E1%80%99%E1%80%B1%E1%80%90%E1%80%BC%E1%80%AE" title="တြီဂိုနိုမေတြီ – Burma" lang="my" hreflang="my" data-title="တြီဂိုနိုမေတြီ" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="Burma" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Trigonometrie" title="Trigonometrie – Jerman Rendah" lang="nds" hreflang="nds" data-title="Trigonometrie" data-language-autonym="Plattdüütsch" data-language-local-name="Jerman Rendah" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-ne mw-list-item"><a href="https://ne.wikipedia.org/wiki/%E0%A4%A4%E0%A5%8D%E0%A4%B0%E0%A4%BF%E0%A4%95%E0%A5%8B%E0%A4%A3%E0%A4%AE%E0%A4%BF%E0%A4%A4%E0%A4%BF" title="त्रिकोणमिति – Nepali" lang="ne" hreflang="ne" data-title="त्रिकोणमिति" data-language-autonym="नेपाली" data-language-local-name="Nepali" class="interlanguage-link-target"><span>नेपाली</span></a></li><li class="interlanguage-link interwiki-new mw-list-item"><a href="https://new.wikipedia.org/wiki/%E0%A4%A4%E0%A5%8D%E0%A4%B0%E0%A4%BF%E0%A4%97%E0%A5%8B%E0%A4%A8%E0%A5%8B%E0%A4%AE%E0%A5%87%E0%A4%A4%E0%A5%8D%E0%A4%B0%E0%A4%BF" title="त्रिगोनोमेत्रि – Newari" lang="new" hreflang="new" data-title="त्रिगोनोमेत्रि" data-language-autonym="नेपाल भाषा" data-language-local-name="Newari" class="interlanguage-link-target"><span>नेपाल भाषा</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Goniometrie" title="Goniometrie – Belanda" lang="nl" hreflang="nl" data-title="Goniometrie" data-language-autonym="Nederlands" data-language-local-name="Belanda" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Trigonometri" title="Trigonometri – Nynorsk Norwegia" lang="nn" hreflang="nn" data-title="Trigonometri" data-language-autonym="Norsk nynorsk" data-language-local-name="Nynorsk Norwegia" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Trigonometri" title="Trigonometri – Bokmål Norwegia" lang="nb" hreflang="nb" data-title="Trigonometri" data-language-autonym="Norsk bokmål" data-language-local-name="Bokmål Norwegia" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Trigonometria" title="Trigonometria – Ositania" lang="oc" hreflang="oc" data-title="Trigonometria" data-language-autonym="Occitan" data-language-local-name="Ositania" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-om mw-list-item"><a href="https://om.wikipedia.org/wiki/Rogkofa" title="Rogkofa – Oromo" lang="om" hreflang="om" data-title="Rogkofa" data-language-autonym="Oromoo" data-language-local-name="Oromo" class="interlanguage-link-target"><span>Oromoo</span></a></li><li class="interlanguage-link interwiki-or mw-list-item"><a href="https://or.wikipedia.org/wiki/%E0%AC%A4%E0%AD%8D%E0%AC%B0%E0%AC%BF%E0%AC%95%E0%AD%8B%E0%AC%A3%E0%AC%AE%E0%AC%BF%E0%AC%A4%E0%AC%BF" title="ତ୍ରିକୋଣମିତି – Oriya" lang="or" hreflang="or" data-title="ତ୍ରିକୋଣମିତି" data-language-autonym="ଓଡ଼ିଆ" data-language-local-name="Oriya" class="interlanguage-link-target"><span>ଓଡ଼ିଆ</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%A4%E0%A8%BF%E0%A8%95%E0%A9%8B%E0%A8%A3%E0%A8%AE%E0%A8%BF%E0%A8%A4%E0%A9%80" title="ਤਿਕੋਣਮਿਤੀ – Punjabi" lang="pa" hreflang="pa" data-title="ਤਿਕੋਣਮਿਤੀ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Trygonometria" title="Trygonometria – Polski" lang="pl" hreflang="pl" data-title="Trygonometria" data-language-autonym="Polski" data-language-local-name="Polski" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Trigonometr%C3%ACa" title="Trigonometrìa – Piedmontese" lang="pms" hreflang="pms" data-title="Trigonometrìa" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D9%B9%D8%B1%DB%8C%DA%AF%D9%86%D9%88%D9%85%DB%8C%D9%B9%D8%B1%DB%8C" title="ٹریگنومیٹری – Western Punjabi" lang="pnb" hreflang="pnb" data-title="ٹریگنومیٹری" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Trigonometria" title="Trigonometria – Portugis" lang="pt" hreflang="pt" data-title="Trigonometria" data-language-autonym="Português" data-language-local-name="Portugis" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-qu mw-list-item"><a href="https://qu.wikipedia.org/wiki/Wamp%27artupuykama" title="Wamp&#039;artupuykama – Quechua" lang="qu" hreflang="qu" data-title="Wamp&#039;artupuykama" data-language-autonym="Runa Simi" data-language-local-name="Quechua" class="interlanguage-link-target"><span>Runa Simi</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Trigonometrie" title="Trigonometrie – Rumania" lang="ro" hreflang="ro" data-title="Trigonometrie" data-language-autonym="Română" data-language-local-name="Rumania" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A2%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Тригонометрия – Rusia" lang="ru" hreflang="ru" data-title="Тригонометрия" data-language-autonym="Русский" data-language-local-name="Rusia" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-rue mw-list-item"><a href="https://rue.wikipedia.org/wiki/%D0%A2%D1%80%D1%96%D2%91%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D1%96%D1%8F" title="Тріґонометрія – Rusyn" lang="rue" hreflang="rue" data-title="Тріґонометрія" data-language-autonym="Русиньскый" data-language-local-name="Rusyn" class="interlanguage-link-target"><span>Русиньскый</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Trigunomitr%C3%ACa" title="Trigunomitrìa – Sisilia" lang="scn" hreflang="scn" data-title="Trigunomitrìa" data-language-autonym="Sicilianu" data-language-local-name="Sisilia" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-sco mw-list-item"><a href="https://sco.wikipedia.org/wiki/Trigonometry" title="Trigonometry – Skotlandia" lang="sco" hreflang="sco" data-title="Trigonometry" data-language-autonym="Scots" data-language-local-name="Skotlandia" class="interlanguage-link-target"><span>Scots</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Trigonometrija" title="Trigonometrija – Serbo-Kroasia" lang="sh" hreflang="sh" data-title="Trigonometrija" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Kroasia" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-shi mw-list-item"><a href="https://shi.wikipedia.org/wiki/Askti%C9%A3mr" title="Asktiɣmr – Tachelhit" lang="shi" hreflang="shi" data-title="Asktiɣmr" data-language-autonym="Taclḥit" data-language-local-name="Tachelhit" class="interlanguage-link-target"><span>Taclḥit</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B6%AD%E0%B7%8A%E2%80%8D%E0%B6%BB%E0%B7%92%E0%B6%9A%E0%B7%9D%E0%B6%AB%E0%B6%B8%E0%B7%92%E0%B6%AD%E0%B7%92%E0%B6%BA" title="ත්‍රිකෝණමිතිය – Sinhala" lang="si" hreflang="si" data-title="ත්‍රිකෝණමිතිය" data-language-autonym="සිංහල" data-language-local-name="Sinhala" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Trigonometry" title="Trigonometry – Simple English" lang="en-simple" hreflang="en-simple" data-title="Trigonometry" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Trigonometria" title="Trigonometria – Slovak" lang="sk" hreflang="sk" data-title="Trigonometria" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Trigonometrija" title="Trigonometrija – Sloven" lang="sl" hreflang="sl" data-title="Trigonometrija" data-language-autonym="Slovenščina" data-language-local-name="Sloven" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sn mw-list-item"><a href="https://sn.wikipedia.org/wiki/Pimagonyonhatu" title="Pimagonyonhatu – Shona" lang="sn" hreflang="sn" data-title="Pimagonyonhatu" data-language-autonym="ChiShona" data-language-local-name="Shona" class="interlanguage-link-target"><span>ChiShona</span></a></li><li class="interlanguage-link interwiki-so mw-list-item"><a href="https://so.wikipedia.org/wiki/Tirignoometeri" title="Tirignoometeri – Somalia" lang="so" hreflang="so" data-title="Tirignoometeri" data-language-autonym="Soomaaliga" data-language-local-name="Somalia" class="interlanguage-link-target"><span>Soomaaliga</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Trigonometria" title="Trigonometria – Albania" lang="sq" hreflang="sq" data-title="Trigonometria" data-language-autonym="Shqip" data-language-local-name="Albania" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A2%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%98%D0%B0" title="Тригонометрија – Serbia" lang="sr" hreflang="sr" data-title="Тригонометрија" data-language-autonym="Српски / srpski" data-language-local-name="Serbia" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-stq mw-list-item"><a href="https://stq.wikipedia.org/wiki/Trigonometrie" title="Trigonometrie – Saterland Frisian" lang="stq" hreflang="stq" data-title="Trigonometrie" data-language-autonym="Seeltersk" data-language-local-name="Saterland Frisian" class="interlanguage-link-target"><span>Seeltersk</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Trigonometri" title="Trigonometri – Swedia" lang="sv" hreflang="sv" data-title="Trigonometri" data-language-autonym="Svenska" data-language-local-name="Swedia" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://sw.wikipedia.org/wiki/Trigonometria" title="Trigonometria – Swahili" lang="sw" hreflang="sw" data-title="Trigonometria" data-language-autonym="Kiswahili" data-language-local-name="Swahili" class="interlanguage-link-target"><span>Kiswahili</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AE%E0%AF%81%E0%AE%95%E0%AF%8D%E0%AE%95%E0%AF%8B%E0%AE%A3%E0%AE%B5%E0%AE%BF%E0%AE%AF%E0%AE%B2%E0%AF%8D" title="முக்கோணவியல் – Tamil" lang="ta" hreflang="ta" data-title="முக்கோணவியல்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%A4%E0%B1%8D%E0%B0%B0%E0%B0%BF%E0%B0%95%E0%B1%8B%E0%B0%A3%E0%B0%AE%E0%B0%BF%E0%B0%A4%E0%B0%BF" title="త్రికోణమితి – Telugu" lang="te" hreflang="te" data-title="త్రికోణమితి" data-language-autonym="తెలుగు" data-language-local-name="Telugu" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-tg mw-list-item"><a href="https://tg.wikipedia.org/wiki/%D0%A2%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Тригонометрия – Tajik" lang="tg" hreflang="tg" data-title="Тригонометрия" data-language-autonym="Тоҷикӣ" data-language-local-name="Tajik" class="interlanguage-link-target"><span>Тоҷикӣ</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%95%E0%B8%A3%E0%B8%B5%E0%B9%82%E0%B8%81%E0%B8%93%E0%B8%A1%E0%B8%B4%E0%B8%95%E0%B8%B4" title="ตรีโกณมิติ – Thai" lang="th" hreflang="th" data-title="ตรีโกณมิติ" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tk mw-list-item"><a href="https://tk.wikipedia.org/wiki/Trigonometri%C3%BDa" title="Trigonometriýa – Turkmen" lang="tk" hreflang="tk" data-title="Trigonometriýa" data-language-autonym="Türkmençe" data-language-local-name="Turkmen" class="interlanguage-link-target"><span>Türkmençe</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Trigonometriya" title="Trigonometriya – Tagalog" lang="tl" hreflang="tl" data-title="Trigonometriya" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Trigonometri" title="Trigonometri – Turki" lang="tr" hreflang="tr" data-title="Trigonometri" data-language-autonym="Türkçe" data-language-local-name="Turki" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%A2%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Тригонометрия – Tatar" lang="tt" hreflang="tt" data-title="Тригонометрия" data-language-autonym="Татарча / tatarça" data-language-local-name="Tatar" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A2%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D1%96%D1%8F" title="Тригонометрія – Ukraina" lang="uk" hreflang="uk" data-title="Тригонометрія" data-language-autonym="Українська" data-language-local-name="Ukraina" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%85%D8%AB%D9%84%D8%AB%DB%8C%D8%A7%D8%AA" title="مثلثیات – Urdu" lang="ur" hreflang="ur" data-title="مثلثیات" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Trigonometriya" title="Trigonometriya – Uzbek" lang="uz" hreflang="uz" data-title="Trigonometriya" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vec mw-list-item"><a href="https://vec.wikipedia.org/wiki/Trigonometria" title="Trigonometria – Venesia" lang="vec" hreflang="vec" data-title="Trigonometria" data-language-autonym="Vèneto" data-language-local-name="Venesia" class="interlanguage-link-target"><span>Vèneto</span></a></li><li class="interlanguage-link interwiki-vep mw-list-item"><a href="https://vep.wikipedia.org/wiki/Trigonometrii" title="Trigonometrii – Veps" lang="vep" hreflang="vep" data-title="Trigonometrii" data-language-autonym="Vepsän kel’" data-language-local-name="Veps" class="interlanguage-link-target"><span>Vepsän kel’</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/L%C6%B0%E1%BB%A3ng_gi%C3%A1c" title="Lượng giác – Vietnam" lang="vi" hreflang="vi" data-title="Lượng giác" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnam" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wa mw-list-item"><a href="https://wa.wikipedia.org/wiki/Trigonometreye" title="Trigonometreye – Walloon" lang="wa" hreflang="wa" data-title="Trigonometreye" data-language-autonym="Walon" data-language-local-name="Walloon" class="interlanguage-link-target"><span>Walon</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Trigonometriya" title="Trigonometriya – Warai" lang="war" hreflang="war" data-title="Trigonometriya" data-language-autonym="Winaray" data-language-local-name="Warai" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E4%B8%89%E8%A7%92%E5%AD%A6" title="三角学 – Wu Tionghoa" lang="wuu" hreflang="wuu" data-title="三角学" data-language-autonym="吴语" data-language-local-name="Wu Tionghoa" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-xmf mw-list-item"><a href="https://xmf.wikipedia.org/wiki/%E1%83%A2%E1%83%A0%E1%83%98%E1%83%92%E1%83%9D%E1%83%9C%E1%83%9D%E1%83%9B%E1%83%94%E1%83%A2%E1%83%A0%E1%83%98%E1%83%90" title="ტრიგონომეტრია – Mingrelian" lang="xmf" hreflang="xmf" data-title="ტრიგონომეტრია" data-language-autonym="მარგალური" data-language-local-name="Mingrelian" class="interlanguage-link-target"><span>მარგალური</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%98%D7%A8%D7%99%D7%92%D7%90%D7%A0%D7%90%D7%9E%D7%A2%D7%98%D7%A8%D7%99%D7%A2" title="טריגאנאמעטריע – Yiddish" lang="yi" hreflang="yi" data-title="טריגאנאמעטריע" data-language-autonym="ייִדיש" data-language-local-name="Yiddish" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-yo mw-list-item"><a href="https://yo.wikipedia.org/wiki/Trigonom%E1%BA%B9%CC%81tr%C3%AC" title="Trigonomẹ́trì – Yoruba" lang="yo" hreflang="yo" data-title="Trigonomẹ́trì" data-language-autonym="Yorùbá" data-language-local-name="Yoruba" class="interlanguage-link-target"><span>Yorùbá</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E4%B8%89%E8%A7%92%E5%AD%A6" title="三角学 – Tionghoa" lang="zh" hreflang="zh" data-title="三角学" data-language-autonym="中文" data-language-local-name="Tionghoa" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/Sa%E2%81%BF-kak-hoat" title="Saⁿ-kak-hoat – Minnan" lang="nan" hreflang="nan" data-title="Saⁿ-kak-hoat" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Minnan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E4%B8%89%E8%A7%92%E5%AD%B8" title="三角學 – Kanton" lang="yue" hreflang="yue" data-title="三角學" data-language-autonym="粵語" data-language-local-name="Kanton" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q8084#sitelinks-wikipedia" title="Sunting pranala interwiki" class="wbc-editpage">Sunting pranala</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Ruang nama"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Trigonometri" title="Lihat halaman isi [c]" accesskey="c"><span>Halaman</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Pembicaraan:Trigonometri" rel="discussion" title="Pembicaraan halaman isi [t]" accesskey="t"><span>Pembicaraan</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Ubah varian bahasa" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Bahasa Indonesia</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Tampilan"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Trigonometri"><span>Baca</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Trigonometri&amp;veaction=edit" title="Sunting halaman ini [v]" accesskey="v"><span>Sunting</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Trigonometri&amp;action=edit" title="Sunting kode sumber halaman ini [e]" accesskey="e"><span>Sunting sumber</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Trigonometri&amp;action=history" title="Revisi sebelumnya dari halaman ini. [h]" accesskey="h"><span>Lihat riwayat</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Peralatan halaman"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Perkakas" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Perkakas</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Perkakas</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">pindah ke bilah sisi</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">sembunyikan</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Opsi lainnya" > <div class="vector-menu-heading"> Tindakan </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Trigonometri"><span>Baca</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Trigonometri&amp;veaction=edit" title="Sunting halaman ini [v]" accesskey="v"><span>Sunting</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Trigonometri&amp;action=edit" title="Sunting kode sumber halaman ini [e]" accesskey="e"><span>Sunting sumber</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Trigonometri&amp;action=history"><span>Lihat riwayat</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Umum </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Istimewa:Pranala_balik/Trigonometri" title="Daftar semua halaman wiki yang memiliki pranala ke halaman ini [j]" accesskey="j"><span>Pranala balik</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Istimewa:Perubahan_terkait/Trigonometri" rel="nofollow" title="Perubahan terbaru halaman-halaman yang memiliki pranala ke halaman ini [k]" accesskey="k"><span>Perubahan terkait</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Istimewa:Halaman_istimewa" title="Daftar semua halaman istimewa [q]" accesskey="q"><span>Halaman istimewa</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Trigonometri&amp;oldid=26500080" title="Pranala permanen untuk revisi halaman ini"><span>Pranala permanen</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Trigonometri&amp;action=info" title="Informasi lanjut tentang halaman ini"><span>Informasi halaman</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Istimewa:Kutip&amp;page=Trigonometri&amp;id=26500080&amp;wpFormIdentifier=titleform" title="Informasi tentang bagaimana mengutip halaman ini"><span>Kutip halaman ini</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Istimewa:UrlShortener&amp;url=https%3A%2F%2Fid.wikipedia.org%2Fwiki%2FTrigonometri"><span>Lihat URL pendek</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Istimewa:QrCode&amp;url=https%3A%2F%2Fid.wikipedia.org%2Fwiki%2FTrigonometri"><span>Unduh kode QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Cetak/ekspor </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Istimewa:Buku&amp;bookcmd=book_creator&amp;referer=Trigonometri"><span>Buat buku</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Istimewa:DownloadAsPdf&amp;page=Trigonometri&amp;action=show-download-screen"><span>Unduh versi PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Trigonometri&amp;printable=yes" title="Versi cetak halaman ini [p]" accesskey="p"><span>Versi cetak</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> Dalam proyek lain </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Trigonometry" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikibooks mw-list-item"><a href="https://id.wikibooks.org/wiki/Subjek:Matematika/Materi:Trigonometri" hreflang="id"><span>Wikibuku</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q8084" title="Pranala untuk menghubungkan butir pada ruang penyimpanan data [g]" accesskey="g"><span>Butir di Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Peralatan halaman"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Tampilan"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Tampilan</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">pindah ke bilah sisi</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">sembunyikan</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Dari Wikipedia bahasa Indonesia, ensiklopedia bebas</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="id" dir="ltr"><figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Berkas:Circle-trig6.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Circle-trig6.svg/350px-Circle-trig6.svg.png" decoding="async" width="350" height="224" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Circle-trig6.svg/525px-Circle-trig6.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Circle-trig6.svg/700px-Circle-trig6.svg.png 2x" data-file-width="1250" data-file-height="800" /></a><figcaption>Semua <a href="/wiki/Fungsi_trigonometrik" class="mw-redirect" title="Fungsi trigonometrik">fungsi trigonometrik</a> dari sudut <i>θ</i> dapat dibangun secara geometri dalam lingkaran satuan yang berpusat pada <i>O</i>.</figcaption></figure> <p><b>Trigonometri</b> (dari <a href="/wiki/Bahasa_Yunani" title="Bahasa Yunani">bahasa Yunani</a> <i>trigonon</i> = "tiga sudut" dan <i>metron</i> = "mengukur")<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> adalah sebuah cabang <a href="/wiki/Matematika" title="Matematika">matematika</a> yang mempelajari hubungan yang meliputi panjang dan sudut segitiga. Bidang ini muncul di <a href="/wiki/Periode_Helenistik" title="Periode Helenistik">masa Helenistik</a> pada abad ke-3 SM dari penggunaan <a href="/wiki/Geometri" title="Geometri">geometri</a> untuk mempelajari <a href="/wiki/Astronomi" title="Astronomi">astronomi</a>. </p><p>Trigonometri mudah dikaitkan dalam <a href="/wiki/Bidang_(geometri)" title="Bidang (geometri)">bidang</a> segitiga siku-siku (dengan hasil jumlah besar kedua sudut lancip sama dengan besar sudut siku-siku). Peranan untuk selain segitiga siku-siku juga ada. Sejak segitiga yang bukan siku-siku dapat dibagi menjadi dua segitiga siku-siku, banyak masalah yang dapat diatasi dengan penghitungan segitiga siku-siku. Karena itu, sebagian besar penggunaan trigonometri berhubungan dengan segitiga siku-siku. Satu pengecualian untuk <i>spherical trigonometry</i>, yakni pelajaran trigonometri dalam <i><a href="/wiki/Bola_(geometri)" title="Bola (geometri)">sphere</a></i> atau permukaan dari <i>curvature</i> relatif positif dalam elips geometri (bagian yang berperan dalam menemukan <a href="/wiki/Astronomi" title="Astronomi">astronomi</a> dan <a href="/wiki/Navigasi" title="Navigasi">navigasi</a>). Trigonometri dalam <i>curvature</i> negatif merupakan bagian dari geometri hiperbola. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Sejarah_awal">Sejarah awal</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometri&amp;veaction=edit&amp;section=1" title="Sunting bagian: Sejarah awal" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometri&amp;action=edit&amp;section=1" title="Sunting kode sumber bagian: Sejarah awal"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r18844875">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}</style><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/w/index.php?title=Sejarah_trigonometri&amp;action=edit&amp;redlink=1" class="new" title="Sejarah trigonometri (halaman belum tersedia)">Sejarah trigonometri</a></div><style data-mw-deduplicate="TemplateStyles:r26333525">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-Tanpa_referensi plainlinks metadata ambox ambox-content ambox-Refimprove" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/Berkas:Question_book-new.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">Bab atau bagian ini <b>tidak memiliki <a href="/wiki/Wikipedia:Kutip_sumber_tulisan" title="Wikipedia:Kutip sumber tulisan">referensi</a> atau <a href="/wiki/Wikipedia:Sumber_tepercaya" title="Wikipedia:Sumber tepercaya">sumber tepercaya</a></b> sehingga isinya tidak bisa <a href="/wiki/Wikipedia:Pemastian" title="Wikipedia:Pemastian">dipastikan</a>.<span class="hide-when-compact"> Tolong bantu <span class="plainlinks"><a class="external text" href="https://id.wikipedia.org/w/index.php?title=Trigonometri&amp;action=edit">perbaiki artikel ini</a></span> dengan menambahkan referensi yang layak. <a href="/wiki/Wikipedia:Warung_Kopi/Kembangkan#Bab_atau_bagian" title="Wikipedia:Warung Kopi/Kembangkan">Bab atau bagian</a> ini akan dihapus bila tidak tersedia referensi ke <a href="/wiki/Wikipedia:Sumber_tepercaya" title="Wikipedia:Sumber tepercaya">sumber tepercaya</a> dalam bentuk <a href="/wiki/Bantuan:Catatan_kaki" title="Bantuan:Catatan kaki">catatan kaki</a> atau <a href="/wiki/Wikipedia:Pranala_luar" title="Wikipedia:Pranala luar">pranala luar</a>.</span></div></td></tr></tbody></table> <p>Awal trigonometri dapat dilacak hingga zaman <a href="/wiki/Mesir" title="Mesir">Mesir</a> Kuno dan <a href="/wiki/Babilonia" title="Babilonia">Babilonia</a> dan peradaban <a href="/wiki/Lembah_Indus" class="mw-redirect" title="Lembah Indus">Lembah Indus</a>, lebih dari 3000 tahun yang lalu. Matematikawan India adalah perintis penghitungan variabel <a href="/wiki/Aljabar" title="Aljabar">aljabar</a> yang digunakan untuk menghitung <a href="/wiki/Astronomi" title="Astronomi">astronomi</a> dan juga trigonometri. <a href="/w/index.php?title=Lagadha&amp;action=edit&amp;redlink=1" class="new" title="Lagadha (halaman belum tersedia)">Lagadha</a> adalah matematikawan yang dikenal sampai sekarang yang menggunakan geometri dan trigonometri untuk penghitungan astronomi dalam bukunya <a href="/wiki/Vedanga" class="mw-redirect" title="Vedanga">Vedanga</a>, <a href="/wiki/Jyotisha" title="Jyotisha">Jyotisha</a>, yang sebagian besar hasil kerjanya hancur oleh penjajah India. </p><p>Matematikawan Yunani <a href="/wiki/Hipparchus" class="mw-redirect" title="Hipparchus">Hipparchus</a> sekitar 150 SM menyusun tabel trigonometri untuk menyelesaikan segitiga. Matematikawan Yunani lainnya, <a href="/wiki/Ptolemy" class="mw-redirect" title="Ptolemy">Ptolemy</a> sekitar tahun <a href="/wiki/100" class="mw-redirect" title="100">100</a> mengembangkan penghitungan trigonometri lebih lanjut. </p><p>Definisi modern dari sinus pertama kali dibuktikan dalam Surya Siddhanta, dan sifatnya didokumentasikan lebih lanjut pada abad ke-5 (AD) oleh matematikawan dan astronom India Aryabhata. Berbagai karya Matematikawan Yunani dan India ini diterjemahkan dan diperluas oleh ahli matematika Islam abad pertengahan. Pada tahun 830 M, matematikawan Persia Habash al-Hasib al-Marwazi membuat tabel kotangen pertama. Pada abad ke-10 M, pada karya matematikawan Persia Abū al-Wafā' al-Būzjānī, keenam fungsi trigonometri digunakan. Abu al-Wafa memiliki tabel sinus dengan kelipatan 0,25°, akurasi hingga 8 desimal, dan tabel nilai tangen yang akurat. Dia juga membuat inovasi penting dalam trigonometri bola Polimatik Persia Nasir al-Din al-Tusi telah digambarkan sebagai pencipta trigonometri sebagai disiplin matematika tersendiri. Dia adalah orang pertama yang memperlakukan trigonometri sebagai disiplin matematika yang independen dari astronomi, dan dia mengembangkan trigonometri bola menjadi bentuknya yang sekarang. Dia membuat daftar enam kasus berbeda dari segitiga siku-siku dalam trigonometri bola, dan dalam bukunya <i>On the Sector Figure</i>, dia menyatakan hukum sinus untuk segitiga bidang dan bola, menemukan hukum garis singgung untuk segitiga bola, dan memberikan bukti untuk keduanya. hukum-hukum ini. Pengetahuan tentang fungsi dan metode trigonometri mencapai Eropa Barat melalui terjemahan Latin <i>Almagest</i> Yunani karya Ptolemeus serta karya astronom Persia dan Arab seperti Al Battani dan Nasir al-Din al-Tusi. Salah satu karya paling awal tentang trigonometri oleh matematikawan Eropa utara adalah De Triangulis oleh matematikawan Jerman abad ke-15 Regiomontanus, yang didorong untuk menulis, dan diberi salinan Almagest, oleh kardinal sarjana Yunani Bizantium Basilios Bessarion yang tinggal bersamanya. selama beberapa tahun. Pada saat yang sama, terjemahan Almagest lainnya dari bahasa Yunani ke bahasa Latin diselesaikan oleh George dari Trebizond dari Kreta. Trigonometri masih sangat sedikit diketahui di Eropa utara abad ke-16 sehingga Nicolaus Copernicus mencurahkan dua bab De revolutionibus orbium coelestium untuk menjelaskan konsep dasarnya. </p><p>Matematikawan <a href="/wiki/Silesia" title="Silesia">Silesia</a> <a href="/w/index.php?title=Bartholemaeus_Pitiskus&amp;action=edit&amp;redlink=1" class="new" title="Bartholemaeus Pitiskus (halaman belum tersedia)">Bartholemaeus Pitiskus</a> menerbitkan sebuah karya yang berpengaruh tentang trigonometri pada <a href="/wiki/1595" title="1595">1595</a> dan memperkenalkan kata ini ke dalam <a href="/wiki/Bahasa_Inggris" title="Bahasa Inggris">bahasa Inggris</a> dan <a href="/wiki/Bahasa_Prancis" title="Bahasa Prancis">Prancis</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Konsep">Konsep</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometri&amp;veaction=edit&amp;section=2" title="Sunting bagian: Konsep" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometri&amp;action=edit&amp;section=2" title="Sunting kode sumber bagian: Konsep"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Jika salah satu satu sudut 90<sup>o</sup> dan sudut lainnya diketahui, dengan demikian sudut ketiga dapat ditemukan, karena tiga sudut segitiga bila dijumlahkan menjadi 180 derajat. Karena itu dua sudut (yang kurang dari 90 derajat) bila dijumlahkan menjadi 90<sup>o</sup>: ini sudut komplementer. </p> <div class="mw-heading mw-heading2"><h2 id="Kegunaan">Kegunaan</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometri&amp;veaction=edit&amp;section=3" title="Sunting bagian: Kegunaan" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometri&amp;action=edit&amp;section=3" title="Sunting kode sumber bagian: Kegunaan"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Voyager_2" title="Voyager 2"><img resource="/wiki/Berkas:Animation_of_Voyager_2_trajectory.gif" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1d/Animation_of_Voyager_2_trajectory.gif/220px-Animation_of_Voyager_2_trajectory.gif" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1d/Animation_of_Voyager_2_trajectory.gif/330px-Animation_of_Voyager_2_trajectory.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1d/Animation_of_Voyager_2_trajectory.gif/440px-Animation_of_Voyager_2_trajectory.gif 2x" data-file-width="560" data-file-height="420" /></a><figcaption>Animasi Voyager 2 lintasan dari Agustus 20, 1977 hingga Desember 30, 2000<br /><span style="margin:0px; font-size:90%;"><span style="border:none; background-color:magenta; color:magenta;">&#160;&#160;&#160;&#160;&#160;</span>&#160; Voyager 2 </span><span style="font-weight:bold;">&#160;·</span>&#32;<span style="margin:0px; font-size:90%;"><span style="border:none; background-color:Royalblue; color:Royalblue;">&#160;&#160;&#160;&#160;&#160;</span>&#160;<a href="/wiki/Bumi" title="Bumi">Bumi</a></span><span style="font-weight:bold;">&#160;·</span>&#32;<span style="margin:0px; font-size:90%;"><span style="border:none; background-color:Lime; color:Lime;">&#160;&#160;&#160;&#160;&#160;</span>&#160;<a href="/wiki/Jupiter" title="Jupiter">Jupiter</a></span> <span style="font-weight:bold;">&#160;·</span>&#32;<span style="margin:0px; font-size:90%;"><span style="border:none; background-color: Cyan ; color: Cyan ;">&#160;&#160;&#160;&#160;&#160;</span>&#160;<a href="/wiki/Saturnus" title="Saturnus">Saturnus</a></span><span style="font-weight:bold;">&#160;·</span>&#32;<span style="margin:0px; font-size:90%;"><span style="border:none; background-color: Gold ; color: Gold ;">&#160;&#160;&#160;&#160;&#160;</span>&#160;<a href="/wiki/Uranus" title="Uranus">Uranus</a> </span><span style="font-weight:bold;">&#160;·</span>&#32;<span style="margin:0px; font-size:90%;"><span style="border:none; background-color: OrangeRed ; color: OrangeRed ;">&#160;&#160;&#160;&#160;&#160;</span>&#160;<a href="/wiki/Neptunus" title="Neptunus">Neptunus</a> </span><span style="font-weight:bold;">&#160;·</span>&#32;<span style="margin:0px; font-size:90%;"><span style="border:none; background-color: Yellow ; color: Yellow ;">&#160;&#160;&#160;&#160;&#160;</span>&#160;<a href="/wiki/Matahari" title="Matahari">Matahari</a> </span>. Trigonometri salah satu perhitungan yang harus digunakan dalam bidang astronomi</figcaption></figure> <p>Ada banyak <a href="/w/index.php?title=Kegunaan_trigonometri&amp;action=edit&amp;redlink=1" class="new" title="Kegunaan trigonometri (halaman belum tersedia)">aplikasi trigonometri</a>. Terutama adalah teknik <a href="/wiki/Triangulasi" title="Triangulasi">triangulasi</a> yang digunakan dalam <a href="/wiki/Astronomi" title="Astronomi">astronomi</a> untuk menghitung jarak ke bintang-bintang terdekat, dalam <a href="/wiki/Geografi" title="Geografi">geografi</a> untuk menghitung antara titik tertentu, dan dalam <a href="/wiki/Sistem_navigasi_satelit" title="Sistem navigasi satelit">sistem navigasi satelit</a>. </p><p>Bidang lainnya yang menggunakan trigonometri termasuk <a href="/wiki/Astronomi" title="Astronomi">astronomi</a> (dan termasuk <a href="/wiki/Navigasi" title="Navigasi">navigasi</a>, di laut, udara, dan angkasa), <a href="/wiki/Teori_musik" title="Teori musik">teori musik</a>, <a href="/wiki/Akustik" class="mw-disambig" title="Akustik">akustik</a>, <a href="/wiki/Optik" class="mw-redirect" title="Optik">optik</a>, analisis pasar finansial, <a href="/wiki/Elektronik" class="mw-disambig" title="Elektronik">elektronik</a>, <a href="/wiki/Teori_probabilitas" class="mw-redirect" title="Teori probabilitas">teori probabilitas</a>, <a href="/wiki/Statistika" title="Statistika">statistika</a>, <a href="/wiki/Biologi" title="Biologi">biologi</a>, pencitraan medis/<i><a href="/w/index.php?title=Medical_imaging&amp;action=edit&amp;redlink=1" class="new" title="Medical imaging (halaman belum tersedia)">medical imaging</a></i> (<i><a href="/w/index.php?title=CAT_scan&amp;action=edit&amp;redlink=1" class="new" title="CAT scan (halaman belum tersedia)">CAT scan</a></i> dan <i><a href="/w/index.php?title=Ultrasound&amp;action=edit&amp;redlink=1" class="new" title="Ultrasound (halaman belum tersedia)">ultrasound</a></i>), <a href="/wiki/Farmasi" title="Farmasi">farmasi</a>, <a href="/wiki/Kimia" title="Kimia">kimia</a>, <a href="/w/index.php?title=Teori_angka&amp;action=edit&amp;redlink=1" class="new" title="Teori angka (halaman belum tersedia)">teori angka</a> (dan termasuk <a href="/w/index.php?title=Kriptologi&amp;action=edit&amp;redlink=1" class="new" title="Kriptologi (halaman belum tersedia)">kriptologi</a>), <a href="/wiki/Seismologi" title="Seismologi">seismologi</a>, <a href="/wiki/Meteorologi" title="Meteorologi">meteorologi</a>, <a href="/wiki/Oseanografi" title="Oseanografi">oseanografi</a>, berbagai cabang dalam ilmu <a href="/wiki/Fisika" title="Fisika">fisika</a>, <a href="/wiki/Survei" class="mw-redirect" title="Survei">survei</a> darat dan <a href="/wiki/Geodesi" title="Geodesi">geodesi</a>, <a href="/wiki/Arsitektur" title="Arsitektur">arsitektur</a>, <a href="/wiki/Fonetika" class="mw-redirect" title="Fonetika">fonetika</a>, <a href="/wiki/Ekonomi" title="Ekonomi">ekonomi</a>, <a href="/wiki/Teknik_listrik" title="Teknik listrik">teknik listrik</a>, <a href="/w/index.php?title=Teknik_mekanik&amp;action=edit&amp;redlink=1" class="new" title="Teknik mekanik (halaman belum tersedia)">teknik mekanik</a>, <a href="/wiki/Teknik_sipil" title="Teknik sipil">teknik sipil</a>, <a href="/wiki/Grafik_komputer" class="mw-redirect" title="Grafik komputer">grafik komputer</a>, <a href="/wiki/Kartografi" title="Kartografi">kartografi</a>, <a href="/wiki/Kristalografi" title="Kristalografi">kristalografi</a>. </p><p>Pada abad ke-3 Masehi, <a href="/wiki/Astronom" title="Astronom">astronom</a> pertama kali mencatat panjang sisi-sisi dan sudut-sudut dari <a href="/wiki/Segitiga_siku-siku" title="Segitiga siku-siku">segitiga siku-siku</a> antara masing-masing sisi yang memiliki hubungan: ini dia, jika setidaknya salah satu panjang sisi dan salah satu nilai sudut diketahui, lalu semua sudut dan panjang dapat ditentukan secara <a href="/wiki/Algoritma" title="Algoritma">algoritme</a>. Penghitungan ini didefiniskan menjadi <a href="/wiki/Fungsi_trigonometrik" class="mw-redirect" title="Fungsi trigonometrik">fungsi trigonometrik</a> dan saat ini menjadi dalam bagian matematika <a href="/wiki/Matematika_murni" title="Matematika murni">murni</a> dan <a href="/wiki/Matematika_terapan" title="Matematika terapan">terapan</a>: contohnya untuk menganalisis metode dasar seperti <a href="/wiki/Transformasi_fourier" class="mw-redirect" title="Transformasi fourier">transformasi fourier</a> atau <a href="/w/index.php?title=Gelombang_persamaan&amp;action=edit&amp;redlink=1" class="new" title="Gelombang persamaan (halaman belum tersedia)">gelombang persamaan</a>, menggunakan <a href="/wiki/Fungsi_trigonometrik" class="mw-redirect" title="Fungsi trigonometrik">fungsi trigonometrik</a> untuk memahami fenomena hal yang berhubungan dengan lingkaran melalui banyak penggunaan dibidang yang berbeda seperti fisika, teknik <a href="/wiki/Teknik_mesin" title="Teknik mesin">mesin</a> dan <a href="/wiki/Teknik_listrik" title="Teknik listrik">listrik</a>, musik dan akustik, astronomi, dan biologi. Trigonometri juga memiliki peranan dalam menemukan <i><a href="/wiki/Ilmu_ukur_wilayah" title="Ilmu ukur wilayah">surveying</a></i>. </p><p>Ada pengembangan modern trigonometri yang melibatkan "penyebaran" dan "<i>quadrance</i>", bukan sudut dan panjang. Pendekatan baru ini disebut <a href="/w/index.php?title=Trigonometri_rasional&amp;action=edit&amp;redlink=1" class="new" title="Trigonometri rasional (halaman belum tersedia)">trigonometri rasional</a> dan merupakan hasil kerja dari Dr. Norman Wildberger dari <a href="/wiki/Universitas_New_South_Wales" title="Universitas New South Wales">Universitas New South Wales</a>. Informasi lebih lanjut bisa dilihat di situs webnya <a rel="nofollow" class="external autonumber" href="http://web.maths.unsw.edu.au/~norman/book.htm">[1]</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Fungsi_trigonometri">Fungsi trigonometri</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometri&amp;veaction=edit&amp;section=4" title="Sunting bagian: Fungsi trigonometri" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometri&amp;action=edit&amp;section=4" title="Sunting kode sumber bagian: Fungsi trigonometri"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/Berkas:TrigonometryTriangle.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4f/TrigonometryTriangle.svg/440px-TrigonometryTriangle.svg.png" decoding="async" width="440" height="330" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4f/TrigonometryTriangle.svg/660px-TrigonometryTriangle.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4f/TrigonometryTriangle.svg/880px-TrigonometryTriangle.svg.png 2x" data-file-width="400" data-file-height="300" /></a><figcaption>Segitiga siku-siku <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ABC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ABC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e55b44cfd965fbdc7a328d5db8a35a619db0971" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.273ex; height:2.176ex;" alt="{\displaystyle ABC}"></span> dengan mana <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AC=b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>C</mi> <mo>=</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AC=b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af26d5d0dca665d8e54649165f3744386219c53b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.605ex; height:2.176ex;" alt="{\displaystyle AC=b}"></span> dan <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle BC=a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mi>C</mi> <mo>=</mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle BC=a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92c04741ed02954f35e4e1e74b5598e78992dac2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.859ex; height:2.176ex;" alt="{\displaystyle BC=a}"></span> adalah <a href="/wiki/Kaki_(geometri)" class="mw-redirect" title="Kaki (geometri)">sisi segitiga</a> dan <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AB=c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> <mo>=</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AB=c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12a8f8e1f317adde321726ac0aa3518e7a12d553" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.612ex; height:2.176ex;" alt="{\displaystyle AB=c}"></span> adalah <a href="/wiki/Hipotenusa" title="Hipotenusa">hipotenusa</a>.</figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Definisi_dasar">Definisi dasar</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometri&amp;veaction=edit&amp;section=5" title="Sunting bagian: Definisi dasar" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometri&amp;action=edit&amp;section=5" title="Sunting kode sumber bagian: Definisi dasar"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Fungsi trigonometri dapat didefinisikan melalui segitiga siku-siku, dengan mana <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ABC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ABC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e55b44cfd965fbdc7a328d5db8a35a619db0971" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.273ex; height:2.176ex;" alt="{\displaystyle ABC}"></span> adalah <a href="/wiki/Segitiga_siku-siku" title="Segitiga siku-siku">segitiga siku-siku</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> dan <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> adalah sisi-sisi segitiga beserta <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> adalah <a href="/wiki/Hipotenusa" title="Hipotenusa">hipotenusa</a> atau sisi miring segitiga. Misalkan <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> adalah sudut yang diketahui. </p> <ul><li>Fungsi <b><a href="/wiki/Sinus_(trigonometri)" class="mw-redirect" title="Sinus (trigonometri)">sin</a></b> didefinisikan sebagai rasio sisi depan dengan hipotenusa.</li></ul> <blockquote><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin A={\frac {\text{sisi depan}}{\text{hipotenusa}}}={\frac {a}{c}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mtext>sisi depan</mtext> <mtext>hipotenusa</mtext> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mi>c</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin A={\frac {\text{sisi depan}}{\text{hipotenusa}}}={\frac {a}{c}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d896bc68c06bfc588ac14562c5e8c2cd6dce270e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:25.08ex; height:5.843ex;" alt="{\displaystyle \sin A={\frac {\text{sisi depan}}{\text{hipotenusa}}}={\frac {a}{c}}}"></span>.</p></blockquote> <ul><li>Fungsi <b><a href="/wiki/Kosinus" class="mw-redirect" title="Kosinus">cos</a></b> didefinisikan sebagai rasio sisi samping dengan hipotenusa.</li></ul> <blockquote><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos A={\frac {\text{sisi samping}}{\text{hipotenusa}}}={\frac {b}{c}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mtext>sisi samping</mtext> <mtext>hipotenusa</mtext> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>b</mi> <mi>c</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos A={\frac {\text{sisi samping}}{\text{hipotenusa}}}={\frac {b}{c}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f92ca42b297221c9f91eaf5d86df7f44363d6a5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.233ex; height:5.843ex;" alt="{\displaystyle \cos A={\frac {\text{sisi samping}}{\text{hipotenusa}}}={\frac {b}{c}}}"></span>.</p></blockquote> <ul><li>Fungsi <a href="/wiki/Tangen" title="Tangen"><b>tan</b></a> didefinisikan sebagai rasio sisi depan dengan sisi samping.</li></ul> <blockquote><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tan A={\frac {\text{sisi depan}}{\text{sisi samping}}}={\frac {a}{b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mtext>sisi depan</mtext> <mtext>sisi samping</mtext> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mi>b</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tan A={\frac {\text{sisi depan}}{\text{sisi samping}}}={\frac {a}{b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/355879db20063aa140a6894c8bffcb896739f142" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.705ex; height:5.843ex;" alt="{\displaystyle \tan A={\frac {\text{sisi depan}}{\text{sisi samping}}}={\frac {a}{b}}}"></span></p></blockquote> <dl><dd>Fungsi <b>tan</b> juga didefinisikan sebagai rasio fungsi sinus dengan kosinus</dd></dl> <blockquote><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tan A={\frac {\sin A}{\cos A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tan A={\frac {\sin A}{\cos A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3665089b00eb02101dd112c68d8b2a1a45871b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:14.666ex; height:5.509ex;" alt="{\displaystyle \tan A={\frac {\sin A}{\cos A}}}"></span>. </p></blockquote> <p>Ketiga fungsi di atas merupakan salah satu fungsi trigonometri paling dasar. Kita dapat mencari suatu panjang maupun sudut segitiga sembarang dengan fungsi sinus dan kosinus melalui <a href="/wiki/Hukum_sinus" class="mw-redirect" title="Hukum sinus">hukum sinus</a> dan <a href="/wiki/Hukum_kosinus" class="mw-redirect" title="Hukum kosinus">kosinus</a>.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-courses.lumenlearning.com_3-0" class="reference"><a href="#cite_note-courses.lumenlearning.com-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> Beberapa fungsi trigonometri lainnya, antara lain, <a href="/wiki/Kosekan" title="Kosekan">kosekan</a> (<b>csc</b>), <a href="/wiki/Sekan" title="Sekan">sekan</a> (<b>sec</b>), dan <a href="/wiki/Kotangen" title="Kotangen">kotangen</a> (<b>cot</b>). </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cot A={\frac {1}{\tan A}}={\frac {\cos A}{\sin A}}={\frac {b}{a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>b</mi> <mi>a</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cot A={\frac {1}{\tan A}}={\frac {\cos A}{\sin A}}={\frac {b}{a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79be34a8e0ca2ce4ef20377917f53803c032654c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:28.994ex; height:5.509ex;" alt="{\displaystyle \cot A={\frac {1}{\tan A}}={\frac {\cos A}{\sin A}}={\frac {b}{a}}}"></span>.</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sec A={\frac {1}{\cos A}}={\frac {c}{b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sec</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>c</mi> <mi>b</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sec A={\frac {1}{\cos A}}={\frac {c}{b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/469e9868f8e9e1edf6cddf82f3aad93b1a7e8c06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:19.229ex; height:5.343ex;" alt="{\displaystyle \sec A={\frac {1}{\cos A}}={\frac {c}{b}}}"></span>.</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \csc A={\frac {1}{\sin A}}={\frac {c}{a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>csc</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>c</mi> <mi>a</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \csc A={\frac {1}{\sin A}}={\frac {c}{a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e59d6aa25e14b6b7485221b7067c0329ab914f35" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:19.196ex; height:5.343ex;" alt="{\displaystyle \csc A={\frac {1}{\sin A}}={\frac {c}{a}}}"></span>.</dd></dl> <div class="mw-heading mw-heading3"><h3 id="Grafik_fungsi_trigonometri">Grafik fungsi trigonometri</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometri&amp;veaction=edit&amp;section=6" title="Sunting bagian: Grafik fungsi trigonometri" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometri&amp;action=edit&amp;section=6" title="Sunting kode sumber bagian: Grafik fungsi trigonometri"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Berikut adalah grafik mengenai fungsi trigonometri. </p> <table class="wikitable" style="text-align:center; margin:1em auto 1em auto;"> <tbody><tr> <th>Fungsi </th> <th>Periode </th> <th><a href="/w/index.php?title=Ranah/Domain&amp;action=edit&amp;redlink=1" class="new" title="Ranah/Domain (halaman belum tersedia)">Ranah</a>/Domain </th> <th>Kisaran/Range </th> <th>Grafik </th></tr> <tr> <th>sinus </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73efd1f6493490b058097060a572606d2c550a06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.494ex; height:2.176ex;" alt="{\displaystyle 2\pi }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-\infty ,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-\infty ,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c8c11c44279888c9e395eeb5f45d121348ae10a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.299ex; height:2.843ex;" alt="{\displaystyle (-\infty ,\infty )}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [-1,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [-1,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51e3b7f14a6f70e614728c583409a0b9a8b9de01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.461ex; height:2.843ex;" alt="{\displaystyle [-1,1]}"></span> </td> <td><span typeof="mw:File"><a href="/wiki/Berkas:Sine_one_period.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d2/Sine_one_period.svg/400px-Sine_one_period.svg.png" decoding="async" width="400" height="160" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d2/Sine_one_period.svg/600px-Sine_one_period.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d2/Sine_one_period.svg/800px-Sine_one_period.svg.png 2x" data-file-width="600" data-file-height="240" /></a></span> </td></tr> <tr> <th>kosinus </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73efd1f6493490b058097060a572606d2c550a06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.494ex; height:2.176ex;" alt="{\displaystyle 2\pi }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-\infty ,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-\infty ,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c8c11c44279888c9e395eeb5f45d121348ae10a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.299ex; height:2.843ex;" alt="{\displaystyle (-\infty ,\infty )}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [-1,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [-1,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51e3b7f14a6f70e614728c583409a0b9a8b9de01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.461ex; height:2.843ex;" alt="{\displaystyle [-1,1]}"></span> </td> <td><span typeof="mw:File"><a href="/wiki/Berkas:Cosine_one_period.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Cosine_one_period.svg/400px-Cosine_one_period.svg.png" decoding="async" width="400" height="160" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Cosine_one_period.svg/600px-Cosine_one_period.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Cosine_one_period.svg/800px-Cosine_one_period.svg.png 2x" data-file-width="600" data-file-height="240" /></a></span> </td></tr> <tr> <th>tangen </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9be4ba0bb8df3af72e90a0535fabcc17431e540a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.332ex; height:1.676ex;" alt="{\displaystyle \pi }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\neq n\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>n</mi> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\neq n\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba07b0a25bc552e7cf22783cc256b7f95333ddc5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.155ex; height:2.676ex;" alt="{\displaystyle x\neq n\pi }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-\infty ,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-\infty ,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c8c11c44279888c9e395eeb5f45d121348ae10a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.299ex; height:2.843ex;" alt="{\displaystyle (-\infty ,\infty )}"></span> </td> <td><span typeof="mw:File"><a href="/wiki/Berkas:Tangent-plot.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/74/Tangent-plot.svg/400px-Tangent-plot.svg.png" decoding="async" width="400" height="187" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/74/Tangent-plot.svg/600px-Tangent-plot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/74/Tangent-plot.svg/800px-Tangent-plot.svg.png 2x" data-file-width="590" data-file-height="276" /></a></span> </td></tr> <tr> <th>sekan </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73efd1f6493490b058097060a572606d2c550a06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.494ex; height:2.176ex;" alt="{\displaystyle 2\pi }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\neq \pi /2+n\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>+</mo> <mi>n</mi> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\neq \pi /2+n\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a7a8f0eb7a10c0794219ef1fdc38bba14ee45f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.652ex; height:2.843ex;" alt="{\displaystyle x\neq \pi /2+n\pi }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-\infty ,-1]\cup [1,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">]</mo> <mo>&#x222A;<!-- ∪ --></mo> <mo stretchy="false">[</mo> <mn>1</mn> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-\infty ,-1]\cup [1,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e3448e2de68557e598967fb8b1f8900260c4a64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.342ex; height:2.843ex;" alt="{\displaystyle (-\infty ,-1]\cup [1,\infty )}"></span> </td> <td><span typeof="mw:File"><a href="/wiki/Berkas:Secant.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Secant.svg/400px-Secant.svg.png" decoding="async" width="400" height="235" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Secant.svg/600px-Secant.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Secant.svg/800px-Secant.svg.png 2x" data-file-width="590" data-file-height="346" /></a></span> </td></tr> <tr> <th>kosekan </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73efd1f6493490b058097060a572606d2c550a06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.494ex; height:2.176ex;" alt="{\displaystyle 2\pi }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\neq \pi /2+n\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>+</mo> <mi>n</mi> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\neq \pi /2+n\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a7a8f0eb7a10c0794219ef1fdc38bba14ee45f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.652ex; height:2.843ex;" alt="{\displaystyle x\neq \pi /2+n\pi }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-\infty ,-1]\cup [1,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">]</mo> <mo>&#x222A;<!-- ∪ --></mo> <mo stretchy="false">[</mo> <mn>1</mn> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-\infty ,-1]\cup [1,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e3448e2de68557e598967fb8b1f8900260c4a64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.342ex; height:2.843ex;" alt="{\displaystyle (-\infty ,-1]\cup [1,\infty )}"></span> </td> <td><span typeof="mw:File"><a href="/wiki/Berkas:Cosecant.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Cosecant.svg/400px-Cosecant.svg.png" decoding="async" width="400" height="235" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Cosecant.svg/600px-Cosecant.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Cosecant.svg/800px-Cosecant.svg.png 2x" data-file-width="590" data-file-height="346" /></a></span> </td></tr> <tr> <th>kotangen </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9be4ba0bb8df3af72e90a0535fabcc17431e540a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.332ex; height:1.676ex;" alt="{\displaystyle \pi }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\neq n\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>n</mi> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\neq n\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba07b0a25bc552e7cf22783cc256b7f95333ddc5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.155ex; height:2.676ex;" alt="{\displaystyle x\neq n\pi }"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-\infty ,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-\infty ,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c8c11c44279888c9e395eeb5f45d121348ae10a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.299ex; height:2.843ex;" alt="{\displaystyle (-\infty ,\infty )}"></span> </td> <td><span typeof="mw:File"><a href="/wiki/Berkas:Cotangent.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bf/Cotangent.svg/400px-Cotangent.svg.png" decoding="async" width="400" height="187" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bf/Cotangent.svg/600px-Cotangent.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bf/Cotangent.svg/800px-Cotangent.svg.png 2x" data-file-width="590" data-file-height="276" /></a></span> </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Identitas_trigonometri">Identitas trigonometri</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometri&amp;veaction=edit&amp;section=7" title="Sunting bagian: Identitas trigonometri" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometri&amp;action=edit&amp;section=7" title="Sunting kode sumber bagian: Identitas trigonometri"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Identitas_Pythagoras">Identitas Pythagoras</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometri&amp;veaction=edit&amp;section=8" title="Sunting bagian: Identitas Pythagoras" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometri&amp;action=edit&amp;section=8" title="Sunting kode sumber bagian: Identitas Pythagoras"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r18844875"><div role="note" class="hatnote navigation-not-searchable">Artikel utama: <a href="/wiki/Identitas_Pythagoras" title="Identitas Pythagoras">Identitas Pythagoras</a></div> <p><a href="/wiki/Identitas_Pythagoras" title="Identitas Pythagoras">Identitas Pythagoras</a> adalah identitas trigonometri yang diturunkan dari identitas Pythagoras.<sup id="cite_ref-courses.lumenlearning.com_3-1" class="reference"><a href="#cite_note-courses.lumenlearning.com-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> Dengan kata lain, identitas Pythagoras merupakan konsep <a href="/wiki/Teorema_Pythagoras" title="Teorema Pythagoras">teorema Pythagoras</a> melalui fungsi trigonometri. Berikut adalah identitas Pythagoras, antara lain: </p> <dl><dd><table cellpadding="6" style="border:2px solid #0073CF;background: #F5FFFA; text-align: center;"> <tbody><tr> <td> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin ^{2}A+\cos ^{2}A=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>+</mo> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin ^{2}A+\cos ^{2}A=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/658942bc98fa7d01c13273846f666ddc491edd94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:19.437ex; height:2.843ex;" alt="{\displaystyle \sin ^{2}A+\cos ^{2}A=1}"></span> </p> </td></tr></tbody></table></dd></dl> <div style="margin-left:0"> <table class="mw-collapsible mw-collapsed" style="background: transparent; text-align: left; border: 1px solid Silver; margin: 0.2em auto auto; width:100%; clear: both; padding: 1px;"> <tbody><tr> <th style="background: #F0F2F5; font-size:87%; padding:0.2em 0.3em; text-align:center;"><span style="font-size:115%">Klik "tampil" untuk melihat bukti </span> </th></tr> <tr> <td style="border: solid 1px Silver; padding: 0.6em; background: White;"> <p>Dengan menggunakan definisi dari fungsi sinus dan kosinus, maka </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin ^{2}A+\cos ^{2}A=\left({\frac {b}{c}}\right)^{2}+\left({\frac {a}{c}}\right)^{2}={\frac {a^{2}+b^{2}}{c^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>+</mo> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>b</mi> <mi>c</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mi>c</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin ^{2}A+\cos ^{2}A=\left({\frac {b}{c}}\right)^{2}+\left({\frac {a}{c}}\right)^{2}={\frac {a^{2}+b^{2}}{c^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d46d2d853003680ccc7cc2340fe6812b73b6373" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:44.44ex; height:6.509ex;" alt="{\displaystyle \sin ^{2}A+\cos ^{2}A=\left({\frac {b}{c}}\right)^{2}+\left({\frac {a}{c}}\right)^{2}={\frac {a^{2}+b^{2}}{c^{2}}}}"></span></dd></dl> <p>Karena berupa segitiga siku-siku, maka menurut teorema Pythagoras, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{2}+b^{2}=c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{2}+b^{2}=c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ef0a5a4b8ab98870ae5d6d7c7b4dfe3fb6612e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.336ex; height:2.843ex;" alt="{\displaystyle a^{2}+b^{2}=c^{2}}"></span>. Jadi, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin ^{2}A+\cos ^{2}A={\frac {c^{2}}{c^{2}}}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>+</mo> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin ^{2}A+\cos ^{2}A={\frac {c^{2}}{c^{2}}}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fef51266fd1c8ea9481b4544b49fa40a56222e82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:25.433ex; height:6.009ex;" alt="{\displaystyle \sin ^{2}A+\cos ^{2}A={\frac {c^{2}}{c^{2}}}=1}"></span>. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \blacksquare }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x25FC;<!-- ◼ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \blacksquare }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8733090f2d787d03101c3e16dc3f6404f0e7dd4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \blacksquare }"></span></dd></dl> </td></tr></tbody></table></div> <dl><dd><table cellpadding="6" style="border:2px solid #0073CF;background: #F5FFFA; text-align: center;"> <tbody><tr> <td> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+\tan ^{2}A=\sec ^{2}A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>=</mo> <msup> <mi>sec</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+\tan ^{2}A=\sec ^{2}A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/134ee5e474172ba7bfb8de06c900bdbbec2e92ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:19.811ex; height:2.843ex;" alt="{\displaystyle 1+\tan ^{2}A=\sec ^{2}A}"></span> </p> </td></tr></tbody></table></dd></dl> <div style="margin-left:0"> <table class="mw-collapsible mw-collapsed" style="background: transparent; text-align: left; border: 1px solid Silver; margin: 0.2em auto auto; width:100%; clear: both; padding: 1px;"> <tbody><tr> <th style="background: #F0F2F5; font-size:87%; padding:0.2em 0.3em; text-align:center;"><span style="font-size:115%">Klik "tampil" untuk melihat bukti </span> </th></tr> <tr> <td style="border: solid 1px Silver; padding: 0.6em; background: White;"> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+\tan ^{2}A={\frac {\cos ^{2}A}{\cos ^{2}A}}+{\frac {\sin ^{2}A}{\cos ^{2}A}}={\frac {1}{\cos ^{2}A}}=\sec ^{2}A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> <mrow> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> <mrow> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <msup> <mi>sec</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+\tan ^{2}A={\frac {\cos ^{2}A}{\cos ^{2}A}}+{\frac {\sin ^{2}A}{\cos ^{2}A}}={\frac {1}{\cos ^{2}A}}=\sec ^{2}A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65f511a45ad4999377cfdcf0bdf657b3be996c53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:50.243ex; height:6.009ex;" alt="{\displaystyle 1+\tan ^{2}A={\frac {\cos ^{2}A}{\cos ^{2}A}}+{\frac {\sin ^{2}A}{\cos ^{2}A}}={\frac {1}{\cos ^{2}A}}=\sec ^{2}A}"></span>. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \blacksquare }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x25FC;<!-- ◼ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \blacksquare }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8733090f2d787d03101c3e16dc3f6404f0e7dd4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \blacksquare }"></span></dd></dl> </td></tr></tbody></table></div> <dl><dd><table cellpadding="6" style="border:2px solid #0073CF;background: #F5FFFA; text-align: center;"> <tbody><tr> <td> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+\cot ^{2}A=\csc ^{2}A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <msup> <mi>cot</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>=</mo> <msup> <mi>csc</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+\cot ^{2}A=\csc ^{2}A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fb88626b17cb0687ec4cde6490fe8faf6c9eb5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:19.551ex; height:2.843ex;" alt="{\displaystyle 1+\cot ^{2}A=\csc ^{2}A}"></span> </p> </td></tr></tbody></table></dd></dl> <div style="margin-left:0"> <table class="mw-collapsible mw-collapsed" style="background: transparent; text-align: left; border: 1px solid Silver; margin: 0.2em auto auto; width:100%; clear: both; padding: 1px;"> <tbody><tr> <th style="background: #F0F2F5; font-size:87%; padding:0.2em 0.3em; text-align:center;"><span style="font-size:115%">Klik "tampil" untuk melihat bukti </span> </th></tr> <tr> <td style="border: solid 1px Silver; padding: 0.6em; background: White;"> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+\cot ^{2}A={\frac {\sin ^{2}A}{\sin ^{2}A}}+{\frac {\cos ^{2}A}{\sin ^{2}A}}={\frac {1}{\sin ^{2}A}}=\csc ^{2}A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <msup> <mi>cot</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <msup> <mi>csc</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+\cot ^{2}A={\frac {\sin ^{2}A}{\sin ^{2}A}}+{\frac {\cos ^{2}A}{\sin ^{2}A}}={\frac {1}{\sin ^{2}A}}=\csc ^{2}A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fc470718ed242417f19e4a2b04269b1c44a1d25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:49.472ex; height:6.176ex;" alt="{\displaystyle 1+\cot ^{2}A={\frac {\sin ^{2}A}{\sin ^{2}A}}+{\frac {\cos ^{2}A}{\sin ^{2}A}}={\frac {1}{\sin ^{2}A}}=\csc ^{2}A}"></span>. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \blacksquare }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x25FC;<!-- ◼ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \blacksquare }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8733090f2d787d03101c3e16dc3f6404f0e7dd4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \blacksquare }"></span></dd></dl> </td></tr></tbody></table></div> <div class="mw-heading mw-heading2"><h2 id="Kesamaan_nilai_trigonometri">Kesamaan nilai trigonometri</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometri&amp;veaction=edit&amp;section=9" title="Sunting bagian: Kesamaan nilai trigonometri" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometri&amp;action=edit&amp;section=9" title="Sunting kode sumber bagian: Kesamaan nilai trigonometri"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin A=\cos(90-A){\text{atau}}\cos \left({\frac {\pi }{2}}-A\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>90</mn> <mo>&#x2212;<!-- − --></mo> <mi>A</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>atau</mtext> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>A</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin A=\cos(90-A){\text{atau}}\cos \left({\frac {\pi }{2}}-A\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d323fa6aa06db806ecfaf11670c0bbb14d0e562" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:37.461ex; height:4.843ex;" alt="{\displaystyle \sin A=\cos(90-A){\text{atau}}\cos \left({\frac {\pi }{2}}-A\right)}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tan A=\cot(90-A){\text{atau}}\cot \left({\frac {\pi }{2}}-A\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>=</mo> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>90</mn> <mo>&#x2212;<!-- − --></mo> <mi>A</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>atau</mtext> </mrow> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>A</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tan A=\cot(90-A){\text{atau}}\cot \left({\frac {\pi }{2}}-A\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73e086785de13688d99377828c5f0cd9ec59d120" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:37.941ex; height:4.843ex;" alt="{\displaystyle \tan A=\cot(90-A){\text{atau}}\cot \left({\frac {\pi }{2}}-A\right)}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sec A=\csc(90-A){\text{atau}}\csc \left({\frac {\pi }{2}}-A\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sec</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>=</mo> <mi>csc</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>90</mn> <mo>&#x2212;<!-- − --></mo> <mi>A</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>atau</mtext> </mrow> <mi>csc</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>A</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sec A=\csc(90-A){\text{atau}}\csc \left({\frac {\pi }{2}}-A\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1942de2e6e948a80f6d0940a4354a4835d228d8b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:37.326ex; height:4.843ex;" alt="{\displaystyle \sec A=\csc(90-A){\text{atau}}\csc \left({\frac {\pi }{2}}-A\right)}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Rumus_jumlah_dan_selisih_sudut">Rumus jumlah dan selisih sudut</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometri&amp;veaction=edit&amp;section=10" title="Sunting bagian: Rumus jumlah dan selisih sudut" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometri&amp;action=edit&amp;section=10" title="Sunting kode sumber bagian: Rumus jumlah dan selisih sudut"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin(A+B)=\sin A\cos B+\cos A\sin B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>B</mi> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin(A+B)=\sin A\cos B+\cos A\sin B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13e456d1fc51e01d7487a12188cdfd8f01d00cf2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.222ex; height:2.843ex;" alt="{\displaystyle \sin(A+B)=\sin A\cos B+\cos A\sin B}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin(A-B)=\sin A\cos B-\cos A\sin B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>B</mi> <mo>&#x2212;<!-- − --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin(A-B)=\sin A\cos B-\cos A\sin B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/055e2b736140c406b4bfb010d1be54d1d4b62aab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.222ex; height:2.843ex;" alt="{\displaystyle \sin(A-B)=\sin A\cos B-\cos A\sin B}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos(A+B)=\cos A\cos B-\sin A\sin B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>B</mi> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos(A+B)=\cos A\cos B-\sin A\sin B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c637996095a798c55e6489bd7988a264b52d843" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.477ex; height:2.843ex;" alt="{\displaystyle \cos(A+B)=\cos A\cos B-\sin A\sin B}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle cos(A-B)=\cos A\cos B+\sin A\sin B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>B</mi> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle cos(A-B)=\cos A\cos B+\sin A\sin B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1969afee458f8edbfaa21593dde6f351472ea14" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.591ex; height:2.843ex;" alt="{\displaystyle cos(A-B)=\cos A\cos B+\sin A\sin B}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tan(A+B)={\frac {\tan A+\tan B}{1-\tan A\tan B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>+</mo> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>B</mi> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>B</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tan(A+B)={\frac {\tan A+\tan B}{1-\tan A\tan B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/329d3fc792eb794aa7df0b34811b40de8aede26a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:30.842ex; height:5.676ex;" alt="{\displaystyle \tan(A+B)={\frac {\tan A+\tan B}{1-\tan A\tan B}}}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tan(A-B)={\frac {\tan A-\tan B}{1+\tan A\tan B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>B</mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>B</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tan(A-B)={\frac {\tan A-\tan B}{1+\tan A\tan B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c150b7ac78b45c701f628255246417986a51db11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:30.842ex; height:5.676ex;" alt="{\displaystyle \tan(A-B)={\frac {\tan A-\tan B}{1+\tan A\tan B}}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Rumus_Perkalian_Trigonometri">Rumus Perkalian Trigonometri</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometri&amp;veaction=edit&amp;section=11" title="Sunting bagian: Rumus Perkalian Trigonometri" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometri&amp;action=edit&amp;section=11" title="Sunting kode sumber bagian: Rumus Perkalian Trigonometri"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\sin A\cos B=\sin(A+B)+\sin(A-B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>B</mi> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\sin A\cos B=\sin(A+B)+\sin(A-B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/152ba1cca1059d252d6e20048bc917cf1730596a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.148ex; height:2.843ex;" alt="{\displaystyle 2\sin A\cos B=\sin(A+B)+\sin(A-B)}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\cos A\sin B=\sin(A+B)-\sin(A-B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>B</mi> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\cos A\sin B=\sin(A+B)-\sin(A-B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af4d6f6978f6beb95ee044e0af972be892e4a09c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.148ex; height:2.843ex;" alt="{\displaystyle 2\cos A\sin B=\sin(A+B)-\sin(A-B)}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\cos A\cos B=\cos(A+B)+\cos(A-B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>B</mi> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\cos A\cos B=\cos(A+B)+\cos(A-B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7850f8cc85dd9870bcd1c7c9f4362ca19d6b713f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.915ex; height:2.843ex;" alt="{\displaystyle 2\cos A\cos B=\cos(A+B)+\cos(A-B)}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\sin A\sin B=-\cos(A+B)+\cos(A-B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>B</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\sin A\sin B=-\cos(A+B)+\cos(A-B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4abf56f8ba91089ef512eb91fb3625ffb8a12715" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.599ex; height:2.843ex;" alt="{\displaystyle 2\sin A\sin B=-\cos(A+B)+\cos(A-B)}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Rumus_jumlah_dan_selisih_trigonometri">Rumus jumlah dan selisih trigonometri</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometri&amp;veaction=edit&amp;section=12" title="Sunting bagian: Rumus jumlah dan selisih trigonometri" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometri&amp;action=edit&amp;section=12" title="Sunting kode sumber bagian: Rumus jumlah dan selisih trigonometri"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin A+\sin B=2\sin \left({\frac {A+B}{2}}\right)\cos \left({\frac {A-B}{2}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>B</mi> <mo>=</mo> <mn>2</mn> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>A</mi> <mo>+</mo> <mi>B</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mi>B</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin A+\sin B=2\sin \left({\frac {A+B}{2}}\right)\cos \left({\frac {A-B}{2}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4e3263e08e24d89788c52072cb3607bd6f79700" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:45.044ex; height:6.176ex;" alt="{\displaystyle \sin A+\sin B=2\sin \left({\frac {A+B}{2}}\right)\cos \left({\frac {A-B}{2}}\right)}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin A-\sin B=2\cos \left({\frac {A+B}{2}}\right)\sin \left({\frac {A-B}{2}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>B</mi> <mo>=</mo> <mn>2</mn> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>A</mi> <mo>+</mo> <mi>B</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mi>B</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin A-\sin B=2\cos \left({\frac {A+B}{2}}\right)\sin \left({\frac {A-B}{2}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6406c51747f434ef366c8cec68596a2a2a40472a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:45.044ex; height:6.176ex;" alt="{\displaystyle \sin A-\sin B=2\cos \left({\frac {A+B}{2}}\right)\sin \left({\frac {A-B}{2}}\right)}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos A+\cos B=2\cos \left({\frac {A+B}{2}}\right)\cos \left({\frac {A-B}{2}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>B</mi> <mo>=</mo> <mn>2</mn> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>A</mi> <mo>+</mo> <mi>B</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mi>B</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos A+\cos B=2\cos \left({\frac {A+B}{2}}\right)\cos \left({\frac {A-B}{2}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64efb1902e5a0684d866e569e8e48b3f7cbbbb64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:45.811ex; height:6.176ex;" alt="{\displaystyle \cos A+\cos B=2\cos \left({\frac {A+B}{2}}\right)\cos \left({\frac {A-B}{2}}\right)}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos A-\cos B=-2\sin \left({\frac {A+B}{2}}\right)\sin \left({\frac {A-B}{2}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>B</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>A</mi> <mo>+</mo> <mi>B</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mi>B</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos A-\cos B=-2\sin \left({\frac {A+B}{2}}\right)\sin \left({\frac {A-B}{2}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14a37485f6ed0b7eca1f7390a2c15c4ed5034afb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:47.108ex; height:6.176ex;" alt="{\displaystyle \cos A-\cos B=-2\sin \left({\frac {A+B}{2}}\right)\sin \left({\frac {A-B}{2}}\right)}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tan A+\tan B=\tan(A+B)\cdot (1-\tan A\tan B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>+</mo> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>B</mi> <mo>=</mo> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tan A+\tan B=\tan(A+B)\cdot (1-\tan A\tan B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be89d7b0fa8d5338c6da7a37a473ecff60b5a1fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:47.335ex; height:2.843ex;" alt="{\displaystyle \tan A+\tan B=\tan(A+B)\cdot (1-\tan A\tan B)}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tan A-\tan B=\tan(A-B)\cdot (1+\tan A\tan B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>B</mi> <mo>=</mo> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tan A-\tan B=\tan(A-B)\cdot (1+\tan A\tan B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65a576b321b426130ae8d5432e61545a6928450e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:47.335ex; height:2.843ex;" alt="{\displaystyle \tan A-\tan B=\tan(A-B)\cdot (1+\tan A\tan B)}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin A+\sin B+\sin C=4\cos \left({\frac {A}{2}}\right)\cdot \cos \left({\frac {B}{2}}\right)\cdot \cos \left({\frac {C}{2}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>B</mi> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>C</mi> <mo>=</mo> <mn>4</mn> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>A</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>B</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>C</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin A+\sin B+\sin C=4\cos \left({\frac {A}{2}}\right)\cdot \cos \left({\frac {B}{2}}\right)\cdot \cos \left({\frac {C}{2}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c018b2368bada2252a7cfe5e847ded303d03eb20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:56.067ex; height:6.176ex;" alt="{\displaystyle \sin A+\sin B+\sin C=4\cos \left({\frac {A}{2}}\right)\cdot \cos \left({\frac {B}{2}}\right)\cdot \cos \left({\frac {C}{2}}\right)}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos A+\cos B+\cos C=1+4\sin \left({\frac {A}{2}}\right)\cdot \sin \left({\frac {B}{2}}\right)\cdot \sin \left({\frac {C}{2}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>B</mi> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>C</mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mn>4</mn> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>A</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>B</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>C</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos A+\cos B+\cos C=1+4\sin \left({\frac {A}{2}}\right)\cdot \sin \left({\frac {B}{2}}\right)\cdot \sin \left({\frac {C}{2}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d21851053fb55f7f2110df1684a9f3c1e2c6b85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:60.07ex; height:6.176ex;" alt="{\displaystyle \cos A+\cos B+\cos C=1+4\sin \left({\frac {A}{2}}\right)\cdot \sin \left({\frac {B}{2}}\right)\cdot \sin \left({\frac {C}{2}}\right)}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tan A+\tan B+\tan C=\tan A\cdot \tan B\cdot \tan C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>+</mo> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>B</mi> <mo>+</mo> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>C</mi> <mo>=</mo> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>B</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tan A+\tan B+\tan C=\tan A\cdot \tan B\cdot \tan C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea564bd7fe11c4e9da769baefda9d3a1356c8874" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:45.165ex; height:2.343ex;" alt="{\displaystyle \tan A+\tan B+\tan C=\tan A\cdot \tan B\cdot \tan C}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Rumus_sudut_rangkap_dua">Rumus sudut rangkap dua</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometri&amp;veaction=edit&amp;section=13" title="Sunting bagian: Rumus sudut rangkap dua" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometri&amp;action=edit&amp;section=13" title="Sunting kode sumber bagian: Rumus sudut rangkap dua"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin 2A=2\sin A\cos A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mn>2</mn> <mi>A</mi> <mo>=</mo> <mn>2</mn> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin 2A=2\sin A\cos A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f86d41ae093745731421999c8ad1fa687199a83" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:21.411ex; height:2.176ex;" alt="{\displaystyle \sin 2A=2\sin A\cos A}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos 2A=\cos ^{2}A-\sin ^{2}A=1-2\sin ^{2}A=2\cos ^{2}A-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mn>2</mn> <mi>A</mi> <mo>=</mo> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>=</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>=</mo> <mn>2</mn> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos 2A=\cos ^{2}A-\sin ^{2}A=1-2\sin ^{2}A=2\cos ^{2}A-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da028a8dcb3a16dbdbe920b6dfcdd99716c803b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:54.316ex; height:2.843ex;" alt="{\displaystyle \cos 2A=\cos ^{2}A-\sin ^{2}A=1-2\sin ^{2}A=2\cos ^{2}A-1}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tan 2A={\frac {2\tan A}{1-\tan ^{2}A}}={\frac {2\cot A}{\cot ^{2}A-1}}={\frac {2}{\cot A-\tan A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mn>2</mn> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> <mrow> <msup> <mi>cot</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mrow> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tan 2A={\frac {2\tan A}{1-\tan ^{2}A}}={\frac {2\cot A}{\cot ^{2}A-1}}={\frac {2}{\cot A-\tan A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b05b4789150aad9d9284fa391e6bd84dad00a3d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:52.85ex; height:5.843ex;" alt="{\displaystyle \tan 2A={\frac {2\tan A}{1-\tan ^{2}A}}={\frac {2\cot A}{\cot ^{2}A-1}}={\frac {2}{\cot A-\tan A}}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Rumus_sudut_rangkap_tiga">Rumus sudut rangkap tiga</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometri&amp;veaction=edit&amp;section=14" title="Sunting bagian: Rumus sudut rangkap tiga" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometri&amp;action=edit&amp;section=14" title="Sunting kode sumber bagian: Rumus sudut rangkap tiga"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin 3A=3\sin A-4\sin ^{3}A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mn>3</mn> <mi>A</mi> <mo>=</mo> <mn>3</mn> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin 3A=3\sin A-4\sin ^{3}A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f57a6e5c4c302970cc4005d480d90b538d94fadf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:26.212ex; height:2.843ex;" alt="{\displaystyle \sin 3A=3\sin A-4\sin ^{3}A}"></span>MN</dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos 3A=4\cos ^{3}A-3\cos A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mn>3</mn> <mi>A</mi> <mo>=</mo> <mn>4</mn> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos 3A=4\cos ^{3}A-3\cos A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce62f8a2307fa5dc7f043dae3f95097aa9f0b4a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:26.979ex; height:2.843ex;" alt="{\displaystyle \cos 3A=4\cos ^{3}A-3\cos A}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tan 3A={\frac {3\tan A-\tan ^{3}A}{1-3\tan ^{2}A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mn>3</mn> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>3</mn> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tan 3A={\frac {3\tan A-\tan ^{3}A}{1-3\tan ^{2}A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef55f64abde13c7c5fc03cc246fd058e95676b47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:27.011ex; height:6.176ex;" alt="{\displaystyle \tan 3A={\frac {3\tan A-\tan ^{3}A}{1-3\tan ^{2}A}}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Rumus_setengah_sudut">Rumus setengah sudut</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometri&amp;veaction=edit&amp;section=15" title="Sunting bagian: Rumus setengah sudut" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometri&amp;action=edit&amp;section=15" title="Sunting kode sumber bagian: Rumus setengah sudut"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin \left({\frac {A}{2}}\right)=\pm {\sqrt {\frac {1-\cos A}{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>A</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo>&#x00B1;<!-- ± --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> <mn>2</mn> </mfrac> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin \left({\frac {A}{2}}\right)=\pm {\sqrt {\frac {1-\cos A}{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9eccf7d79200864556011aa5a7492cd19259145" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:26.167ex; height:6.509ex;" alt="{\displaystyle \sin \left({\frac {A}{2}}\right)=\pm {\sqrt {\frac {1-\cos A}{2}}}}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos \left({\frac {A}{2}}\right)=\pm {\sqrt {\frac {1+\cos A}{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>A</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo>&#x00B1;<!-- ± --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> <mn>2</mn> </mfrac> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos \left({\frac {A}{2}}\right)=\pm {\sqrt {\frac {1+\cos A}{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d1cc62d357111cc5c78ab60961dc8250297469b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:26.422ex; height:6.509ex;" alt="{\displaystyle \cos \left({\frac {A}{2}}\right)=\pm {\sqrt {\frac {1+\cos A}{2}}}}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tan \left({\frac {A}{2}}\right)=\pm {\sqrt {\frac {1-\cos A}{1+\cos A}}}={\frac {\sin A}{1+\cos A}}={\frac {1-\cos A}{\sin A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>A</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo>&#x00B1;<!-- ± --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> </mfrac> </msqrt> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>A</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tan \left({\frac {A}{2}}\right)=\pm {\sqrt {\frac {1-\cos A}{1+\cos A}}}={\frac {\sin A}{1+\cos A}}={\frac {1-\cos A}{\sin A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53dc3f79357a53a9bb904a31d95804e243c5e3a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:53.028ex; height:7.676ex;" alt="{\displaystyle \tan \left({\frac {A}{2}}\right)=\pm {\sqrt {\frac {1-\cos A}{1+\cos A}}}={\frac {\sin A}{1+\cos A}}={\frac {1-\cos A}{\sin A}}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Persamaan_trigonometri">Persamaan trigonometri</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometri&amp;veaction=edit&amp;section=16" title="Sunting bagian: Persamaan trigonometri" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometri&amp;action=edit&amp;section=16" title="Sunting kode sumber bagian: Persamaan trigonometri"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd>Jika <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin x=\sin \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin x=\sin \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2229ea2919d6c28d8e345a75c4bf78f8f9ef952c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:12.401ex; height:2.176ex;" alt="{\displaystyle \sin x=\sin \alpha }"></span>, maka <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=\alpha +k\cdot 360^{\circ }{\text{ atau }}x=(180^{\circ }-\alpha )+k\cdot 360^{\circ }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <mi>k</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mn>360</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;atau&#xA0;</mtext> </mrow> <mi>x</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mn>180</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>k</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mn>360</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=\alpha +k\cdot 360^{\circ }{\text{ atau }}x=(180^{\circ }-\alpha )+k\cdot 360^{\circ }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8df23513ea554e8b349530fcadc246309a4a22f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:47.251ex; height:2.843ex;" alt="{\displaystyle x=\alpha +k\cdot 360^{\circ }{\text{ atau }}x=(180^{\circ }-\alpha )+k\cdot 360^{\circ }}"></span> serta <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=\alpha +k\cdot 2\pi {\text{ atau }}x=(2\pi -\alpha )+k\cdot 2\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <mi>k</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;atau&#xA0;</mtext> </mrow> <mi>x</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>k</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=\alpha +k\cdot 2\pi {\text{ atau }}x=(2\pi -\alpha )+k\cdot 2\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4627517e024754fbee76bb21314a1f6937d44f2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.109ex; height:2.843ex;" alt="{\displaystyle x=\alpha +k\cdot 2\pi {\text{ atau }}x=(2\pi -\alpha )+k\cdot 2\pi }"></span></dd> <dd>Jika <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos x=\cos \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos x=\cos \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88491e0639019e5a58e3a37bb228ecae7ea215a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:12.912ex; height:1.676ex;" alt="{\displaystyle \cos x=\cos \alpha }"></span>, maka <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=\pm \alpha +k\cdot 360^{\circ }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mo>&#x00B1;<!-- ± --></mo> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <mi>k</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mn>360</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=\pm \alpha +k\cdot 360^{\circ }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a90761b9171a827bc7c87b300a40435c35414fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:17.996ex; height:2.509ex;" alt="{\displaystyle x=\pm \alpha +k\cdot 360^{\circ }}"></span> serta <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=\pm \alpha +k\cdot 2\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mo>&#x00B1;<!-- ± --></mo> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <mi>k</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=\pm \alpha +k\cdot 2\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3082df68a188b516b5aebbc2a5674fae06383909" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:15.949ex; height:2.343ex;" alt="{\displaystyle x=\pm \alpha +k\cdot 2\pi }"></span></dd> <dd>Jika <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tan x=\tan \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>=</mo> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tan x=\tan \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afc75a36073de33e916f7ccb2a7ff0b61c89829f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:13.409ex; height:2.009ex;" alt="{\displaystyle \tan x=\tan \alpha }"></span>, maka <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=\alpha +k\cdot 180^{\circ }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <mi>k</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mn>180</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=\alpha +k\cdot 180^{\circ }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d77713234e69738ac51d1cb6b3ba3eadfe05cef3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:16.188ex; height:2.509ex;" alt="{\displaystyle x=\alpha +k\cdot 180^{\circ }}"></span> serta <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=\alpha +k\cdot \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <mi>k</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=\alpha +k\cdot \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d43fcef06792a3d292858bc6c885afce7e5b6bb6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.978ex; height:2.343ex;" alt="{\displaystyle x=\alpha +k\cdot \pi }"></span></dd> <dd>Persamaan <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\cos x+b\sin x=c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>+</mo> <mi>b</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>=</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\cos x+b\sin x=c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1393ec98caeef6a7cb2db6672617cbbdad24c6a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:19.348ex; height:2.343ex;" alt="{\displaystyle a\cos x+b\sin x=c}"></span> dapat diubah menjadi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\cos(x-\alpha )=c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\cos(x-\alpha )=c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e84d77d3ec2c041c93a185b6ffdf97bc212fabaf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.282ex; height:2.843ex;" alt="{\displaystyle k\cos(x-\alpha )=c}"></span>, maka <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k={\sqrt {a^{2}+b^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k={\sqrt {a^{2}+b^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/beb229cb3736d7aa65a32a89a00d3c56ef446095" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.81ex; height:3.509ex;" alt="{\displaystyle k={\sqrt {a^{2}+b^{2}}}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tan \alpha ={\frac {b}{a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>b</mi> <mi>a</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tan \alpha ={\frac {b}{a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b0be0ef76d4de94d7d8689cf884ecf70b0039a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:10.399ex; height:5.343ex;" alt="{\displaystyle \tan \alpha ={\frac {b}{a}}}"></span> serta <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{2}+b^{2}\geq c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2265;<!-- ≥ --></mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{2}+b^{2}\geq c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/520c4c9ed54aee8d4ee8d45e6ca02a47b95372d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.336ex; height:2.843ex;" alt="{\displaystyle a^{2}+b^{2}\geq c^{2}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Lihat_pula">Lihat pula</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometri&amp;veaction=edit&amp;section=17" title="Sunting bagian: Lihat pula" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometri&amp;action=edit&amp;section=17" title="Sunting kode sumber bagian: Lihat pula"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r18261910">.mw-parser-output .div-col{margin-top:.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-count:3;"> <ul><li><a href="/wiki/Sinus_(trigonometri)" class="mw-redirect" title="Sinus (trigonometri)">Sinus</a></li> <li><a href="/wiki/Cosinus" class="mw-redirect" title="Cosinus">Cosinus</a></li> <li><a href="/wiki/Tangen" title="Tangen">Tangen</a></li> <li><a href="/wiki/Secan" class="mw-redirect" title="Secan">Secan</a></li> <li><a href="/wiki/Cosecan" class="mw-redirect" title="Cosecan">Cosecan</a></li> <li><a href="/wiki/Cotangen" class="mw-redirect" title="Cotangen">Cotangen</a></li> <li><a href="/w/index.php?title=Trigonometri_umum&amp;action=edit&amp;redlink=1" class="new" title="Trigonometri umum (halaman belum tersedia)">Trigonometri umum</a></li> <li><a href="/wiki/Daftar_topik_segitiga" title="Daftar topik segitiga">Daftar topik segitiga</a></li> <li><a href="/wiki/Fungsi_trigonometri" title="Fungsi trigonometri">Fungsi trigonometri</a></li> <li><a href="/w/index.php?title=Tabel_sin_Aryabhata&amp;action=edit&amp;redlink=1" class="new" title="Tabel sin Aryabhata (halaman belum tersedia)">Tabel sin Aryabhata</a></li> <li><a href="/wiki/Daftar_identitas_trigonometri" title="Daftar identitas trigonometri">Daftar identitas trigonometri</a></li> <li><a href="/w/index.php?title=Trigonometri_rasional&amp;action=edit&amp;redlink=1" class="new" title="Trigonometri rasional (halaman belum tersedia)">Trigonometri rasional</a></li> <li><a href="/w/index.php?title=Trigonometri_di_bidang_Galois&amp;action=edit&amp;redlink=1" class="new" title="Trigonometri di bidang Galois (halaman belum tersedia)">Trigonometri di bidang Galois</a></li> <li><a href="/wiki/Lingkaran_satuan" title="Lingkaran satuan">Lingkaran satuan</a></li> <li><a href="/w/index.php?title=Pemanfaatan_trigonometri&amp;action=edit&amp;redlink=1" class="new" title="Pemanfaatan trigonometri (halaman belum tersedia)">Pemanfaatan trigonometri</a></li> <li><a href="/w/index.php?title=Perkiraan_sudut_kecil&amp;action=edit&amp;redlink=1" class="new" title="Perkiraan sudut kecil (halaman belum tersedia)">Perkiraan sudut kecil</a></li> <li><a href="/w/index.php?title=Segitiga_kurus&amp;action=edit&amp;redlink=1" class="new" title="Segitiga kurus (halaman belum tersedia)">Segitiga kurus</a></li> <li><a href="/w/index.php?title=Bola_Lenart&amp;action=edit&amp;redlink=1" class="new" title="Bola Lenart (halaman belum tersedia)">Bola Lenart</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Referensi">Referensi</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometri&amp;veaction=edit&amp;section=18" title="Sunting bagian: Referensi" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometri&amp;action=edit&amp;section=18" title="Sunting kode sumber bagian: Referensi"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r18833634">.mw-parser-output .reflist{font-size:90%;margin-bottom:0.5em;list-style-type:decimal}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 35em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><cite class="citation web"><a rel="nofollow" class="external text" href="http://www.etymonline.com/index.php?term=trigonometry">"trigonometry"</a>. Online Etymology Dictionary.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=trigonometry&amp;rft.pub=Online+Etymology+Dictionary&amp;rft_id=http%3A%2F%2Fwww.etymonline.com%2Findex.php%3Fterm%3Dtrigonometry&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3ATrigonometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><cite class="citation book">Forseth, Krystle Rose; Burger, Christopher; Gilman, Michelle Rose; Rumsey, Deborah J. (2008-04-07). <a rel="nofollow" class="external text" href="https://books.google.co.id/books?id=nfwGEJaLlgsC&amp;pg=PA218&amp;redir_esc=y#v=onepage&amp;q&amp;f=false"><i>Pre-Calculus For Dummies</i></a> (dalam bahasa Inggris). John Wiley &amp; Sons. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-0-470-16984-1" title="Istimewa:Sumber buku/978-0-470-16984-1">978-0-470-16984-1</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Pre-Calculus+For+Dummies&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2008-04-07&amp;rft.isbn=978-0-470-16984-1&amp;rft.aulast=Forseth&amp;rft.aufirst=Krystle+Rose&amp;rft.au=Burger%2C+Christopher&amp;rft.au=Gilman%2C+Michelle+Rose&amp;rft.au=Rumsey%2C+Deborah+J.&amp;rft_id=https%3A%2F%2Fbooks.google.co.id%2Fbooks%3Fid%3DnfwGEJaLlgsC%26pg%3DPA218%26redir_esc%3Dy%23v%3Donepage%26q%26f%3Dfalse&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3ATrigonometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-courses.lumenlearning.com-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-courses.lumenlearning.com_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-courses.lumenlearning.com_3-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><cite class="citation web"><a rel="nofollow" class="external text" href="https://courses.lumenlearning.com/boundless-algebra/chapter/trigonometric-identities/">"Trigonometric Identities | Boundless Algebra"</a>. <i>courses.lumenlearning.com</i><span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2021-11-26</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=courses.lumenlearning.com&amp;rft.atitle=Trigonometric+Identities+%7C+Boundless+Algebra&amp;rft_id=https%3A%2F%2Fcourses.lumenlearning.com%2Fboundless-algebra%2Fchapter%2Ftrigonometric-identities%2F&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3ATrigonometri" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> </ol></div> <div class="mw-heading mw-heading3"><h3 id="Pustaka">Pustaka</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometri&amp;veaction=edit&amp;section=19" title="Sunting bagian: Pustaka" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometri&amp;action=edit&amp;section=19" title="Sunting kode sumber bagian: Pustaka"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><cite class="citation book"><a href="/w/index.php?title=Carl_Benjamin_Boyer&amp;action=edit&amp;redlink=1" class="new" title="Carl Benjamin Boyer (halaman belum tersedia)">Boyer, Carl B.</a> (1991). <a rel="nofollow" class="external text" href="https://archive.org/details/historyofmathema00boye"><i>A History of Mathematics</i></a> (edisi ke-Second Edition). John Wiley &amp; Sons, Inc. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/0-471-54397-7" title="Istimewa:Sumber buku/0-471-54397-7">0-471-54397-7</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+History+of+Mathematics&amp;rft.edition=Second+Edition&amp;rft.pub=John+Wiley+%26+Sons%2C+Inc.&amp;rft.date=1991&amp;rft.isbn=0-471-54397-7&amp;rft.aulast=Boyer&amp;rft.aufirst=Carl+B.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fhistoryofmathema00boye&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3ATrigonometri" class="Z3988"><span style="display:none;">&#160;</span></span><span class="citation-comment" style="display:none; color:#33aa33; margin-left:0.3em">Pemeliharaan CS1: Teks tambahan (<a href="/wiki/Kategori:Pemeliharaan_CS1:_Teks_tambahan" title="Kategori:Pemeliharaan CS1: Teks tambahan">link</a>) </span></li> <li><cite id="CITEREFHazewinkel2001" class="citation"><a href="/wiki/Michiel_Hazewinkel" title="Michiel Hazewinkel">Hazewinkel, Michiel</a>, ed. (2001) [1994], <a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=p/t094210">"Trigonometric functions"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, Springer Science+Business Media B.V. / Kluwer Academic Publishers, <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/978-1-55608-010-4" title="Istimewa:Sumber buku/978-1-55608-010-4">978-1-55608-010-4</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Trigonometric+functions&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=Springer+Science%2BBusiness+Media+B.V.+%2F+Kluwer+Academic+Publishers&amp;rft.date=2001&amp;rft.isbn=978-1-55608-010-4&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3Dp%2Ft094210&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3ATrigonometri" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li>Christopher M. Linton (2004). From Eudoxus to Einstein: A History of Mathematical Astronomy . <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>.</li> <li><cite class="citation book"><a href="/w/index.php?title=Yosep_Dwi_Kristanto&amp;action=edit&amp;redlink=1" class="new" title="Yosep Dwi Kristanto (halaman belum tersedia)">Kristanto, Yosep Dwi</a> (2016). <a rel="nofollow" class="external text" href="https://books.google.co.id/books?id=4MNGDwAAQBAJ&amp;printsec=frontcover&amp;hl=id"><i>Matematika Langkah Demi Langkah untuk SMA/MA Kelas X</i></a>. Grasindo. <a href="/wiki/International_Standard_Book_Number" class="mw-redirect" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Istimewa:Sumber_buku/9786023756506" title="Istimewa:Sumber buku/9786023756506">9786023756506</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Matematika+Langkah+Demi+Langkah+untuk+SMA%2FMA+Kelas+X&amp;rft.pub=Grasindo&amp;rft.date=2016&amp;rft.isbn=9786023756506&amp;rft.aulast=Kristanto&amp;rft.aufirst=Yosep+Dwi&amp;rft_id=https%3A%2F%2Fbooks.google.co.id%2Fbooks%3Fid%3D4MNGDwAAQBAJ%26printsec%3Dfrontcover%26hl%3Did&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3ATrigonometri" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li>Weisstein, Eric W. "Trigonometric Addition Formulas". Wolfram MathWorld. Weiner.</li> <li><cite class="citation book">Kurnianingsih, Sri (2007). <i>Matematika SMA dan MA 1B Untuk Kelas X Semester 2</i>. Jakarta: Esis/Erlangga. <a href="/wiki/Istimewa:Sumber_buku/9797345017" class="internal mw-magiclink-isbn">ISBN 979-734-501-7</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Matematika+SMA+dan+MA+1B+Untuk+Kelas+X+Semester+2&amp;rft.place=Jakarta&amp;rft.pub=Esis%2FErlangga&amp;rft.date=2007&amp;rft.aulast=Kurnianingsih&amp;rft.aufirst=Sri&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3ATrigonometri" class="Z3988"><span style="display:none;">&#160;</span></span> <span style="display:none;font-size:100%" class="error citation-comment">Parameter <code style="color:inherit; border:inherit; padding:inherit;">&#124;coauthors=</code> yang tidak diketahui mengabaikan (<code style="color:inherit; border:inherit; padding:inherit;">&#124;author=</code> yang disarankan) (<a href="/wiki/Bantuan:Galat_CS1#parameter_ignored_suggest" title="Bantuan:Galat CS1">bantuan</a>)</span> <span style="font-size:0.95em; font-weight:bold; color:#777; cursor:help;" title="Bahasa Indonesia" lang="Indonesia">(Indonesia)</span></li> <li><cite class="citation book">Kurnianingsih, Sri (2007). <i>Matematika SMA dan MA 2A Untuk Kelas XI Semester 1 Program IPA</i>. Jakarta: Esis/Erlangga. <a href="/wiki/Istimewa:Sumber_buku/9797345025" class="internal mw-magiclink-isbn">ISBN 979-734-502-5</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Matematika+SMA+dan+MA+2A+Untuk+Kelas+XI+Semester+1+Program+IPA&amp;rft.place=Jakarta&amp;rft.pub=Esis%2FErlangga&amp;rft.date=2007&amp;rft.aulast=Kurnianingsih&amp;rft.aufirst=Sri&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3ATrigonometri" class="Z3988"><span style="display:none;">&#160;</span></span> <span style="display:none;font-size:100%" class="error citation-comment">Parameter <code style="color:inherit; border:inherit; padding:inherit;">&#124;coauthors=</code> yang tidak diketahui mengabaikan (<code style="color:inherit; border:inherit; padding:inherit;">&#124;author=</code> yang disarankan) (<a href="/wiki/Bantuan:Galat_CS1#parameter_ignored_suggest" title="Bantuan:Galat CS1">bantuan</a>)</span> <span style="font-size:0.95em; font-weight:bold; color:#777; cursor:help;" title="Bahasa Indonesia" lang="Indonesia">(Indonesia)</span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Pranala_luar">Pranala luar</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trigonometri&amp;veaction=edit&amp;section=20" title="Sunting bagian: Pranala luar" class="mw-editsection-visualeditor"><span>sunting</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Trigonometri&amp;action=edit&amp;section=20" title="Sunting kode sumber bagian: Pranala luar"><span>sunting sumber</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="metadata plainlinks mbox-small" style="border:1px solid #aaa; background-color:#f9f9f9;padding:3px;"> <tbody><tr style="height:25px;"> <td colspan="2" style="margin: auto; text-align: center;padding-bottom:5px;"><b>Cari tahu mengenai Trigonometry pada proyek-proyek Wikimedia lainnya:</b> </td></tr> <tr style="height:25px;"> <td><span typeof="mw:File"><a href="//id.wiktionary.org/wiki/Special:Search/Trigonometry" title="Cari di Wiktionary"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7f/Wiktionary-logo-id.svg/21px-Wiktionary-logo-id.svg.png" decoding="async" width="21" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7f/Wiktionary-logo-id.svg/31px-Wiktionary-logo-id.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7f/Wiktionary-logo-id.svg/41px-Wiktionary-logo-id.svg.png 2x" data-file-width="391" data-file-height="474" /></a></span></td> <td><a href="https://id.wiktionary.org/wiki/Special:Search/Trigonometry" class="extiw" title="wikt:Special:Search/Trigonometry">Definisi dan terjemahan</a> dari Wiktionary<br /> </td></tr> <tr style="height:25px;"> <td><span typeof="mw:File"><a href="//commons.wikimedia.org/wiki/Special:Search/Trigonometry" title="Cari di Commons"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png" decoding="async" width="18" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/28px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/37px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span></td> <td><a href="https://commons.wikimedia.org/wiki/Special:Search/Trigonometry" class="extiw" title="commons:Special:Search/Trigonometry">Gambar dan media</a> dari Commons<br /> </td></tr> <tr style="height:25px;"> <td><span typeof="mw:File"><a href="//id.wikinews.org/wiki/Special:Search/Trigonometry" title="Cari di Wikinews"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/25px-Wikinews-logo.svg.png" decoding="async" width="25" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/38px-Wikinews-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/50px-Wikinews-logo.svg.png 2x" data-file-width="759" data-file-height="415" /></a></span></td> <td><a href="https://id.wikinews.org/wiki/Special:Search/Trigonometry" class="extiw" title="n:Special:Search/Trigonometry">Berita</a> dari Wikinews<br /> </td></tr> <tr style="height:25px;"> <td><span typeof="mw:File"><a href="//id.wikiquote.org/wiki/Special:Search/Trigonometry" title="Cari di Wikiquote"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/21px-Wikiquote-logo.svg.png" decoding="async" width="21" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/32px-Wikiquote-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/42px-Wikiquote-logo.svg.png 2x" data-file-width="300" data-file-height="355" /></a></span></td> <td><a href="https://id.wikiquote.org/wiki/Special:Search/Trigonometry" class="extiw" title="q:Special:Search/Trigonometry">Kutipan</a> dari Wikiquote<br /> </td></tr> <tr style="height:25px;"> <td><span typeof="mw:File"><a href="//id.wikisource.org/wiki/Special:Search/Trigonometry" title="Cari di Wikisource"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/24px-Wikisource-logo.svg.png" decoding="async" width="24" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/36px-Wikisource-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/48px-Wikisource-logo.svg.png 2x" data-file-width="410" data-file-height="430" /></a></span></td> <td><a href="https://id.wikisource.org/wiki/Special:Search/Trigonometry" class="extiw" title="s:Special:Search/Trigonometry">Teks sumber</a> dari Wikisource<br /> </td></tr> <tr style="height:25px;"> <td><span typeof="mw:File"><a href="//id.wikibooks.org/wiki/Special:Search/Trigonometry" title="Cari di Wikibuku"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/25px-Wikibooks-logo.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/38px-Wikibooks-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/50px-Wikibooks-logo.svg.png 2x" data-file-width="300" data-file-height="300" /></a></span></td> <td><a href="https://id.wikibooks.org/wiki/Special:Search/Trigonometry" class="extiw" title="b:Special:Search/Trigonometry">Buku</a> dari Wikibuku<br /> </td></tr> </tbody></table> <style data-mw-deduplicate="TemplateStyles:r23035139">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:#f9f9f9}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r23782729">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/34px-Wikiquote-logo.svg.png" decoding="async" width="34" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/51px-Wikiquote-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/68px-Wikiquote-logo.svg.png 2x" data-file-width="300" data-file-height="355" /></span></span></div> <div class="side-box-text plainlist"><a href="/wiki/Wikiquote" class="mw-redirect" title="Wikiquote">Wikiquote</a> memiliki koleksi kutipan yang berkaitan dengan:<div style="margin-left: 10px;"> <i><b><a href="https://id.wikiquote.org/wiki/en:Mathematics" class="extiw" title="q:en:Mathematics">Mathematics</a></b></i> </div></div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r23035139"><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r23782729"> <div class="side-box-flex"> <div class="side-box-image"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons memiliki media mengenai <a href="https://commons.wikimedia.org/wiki/Category:Mathematics" class="extiw" title="commons:Category:Mathematics"><b><i>Matematika</i></b></a>.</div></div> </div> <ul><li><a rel="nofollow" class="external text" href="https://www.khanacademy.org/math/trigonometry">Khan Academy: Trigonometry, free online micro lectures</a></li> <li><a rel="nofollow" class="external text" href="http://www.pupress.princeton.edu/books/maor/">Trigonometric Delights</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20060414195120/http://www.pupress.princeton.edu/books/maor/">Diarsipkan</a> 2006-04-14 di <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>., by <a href="/w/index.php?title=Eli_Maor&amp;action=edit&amp;redlink=1" class="new" title="Eli Maor (halaman belum tersedia)">Eli Maor</a>, Princeton University Press, 1998. Ebook version, in PDF format, full text presented.</li> <li><a rel="nofollow" class="external text" href="http://baqaqi.chi.il.us/buecher/mathematics/trigonometry/index.html">Trigonometry</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20071104225720/http://baqaqi.chi.il.us/buecher/mathematics/trigonometry/index.html">Diarsipkan</a> 2007-11-04 di <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>. by Alfred Monroe Kenyon and Louis Ingold, The Macmillan Company, 1914. In images, full text presented.</li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20060212072618/http://mathdl.maa.org/convergence/1/">Benjamin Banneker's Trigonometry Puzzle</a> at</li> <li><a rel="nofollow" class="external text" href="http://www.clarku.edu/~djoyce/trig/">Dave's Short Course in Trigonometry</a> by David Joyce of <a href="/w/index.php?title=Clark_University&amp;action=edit&amp;redlink=1" class="new" title="Clark University (halaman belum tersedia)">Clark University</a></li> <li><a rel="nofollow" class="external text" href="http://www.mecmath.net/trig/trigbook.pdf">Trigonometry, by Michael Corral, Covers elementary trigonometry, Distributed under GNU Free Documentation License</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130729114530/http://www.mecmath.net/trig/trigbook.pdf">Diarsipkan</a> 2013-07-29 di <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>.</li> <li><a rel="nofollow" class="external text" href="https://grabnaukri.com/trigonometry-formulas/">Detailed knowledge of Trigonometry formulas</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210511133446/https://grabnaukri.com/trigonometry-formulas/">Diarsipkan</a> 2021-05-11 di <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>.</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r23782733">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r25847331">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}</style></div><div role="navigation" class="navbox" aria-labelledby="Matematika_(Bidang_matematika)" style="padding:3px"><table class="nowraplinks mw-collapsible expanded navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><style data-mw-deduplicate="TemplateStyles:r18590415">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}.mw-parser-output .infobox .navbar{font-size:100%}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-lihat"><a href="/wiki/Templat:Bidang_matematika" title="Templat:Bidang matematika"><abbr title="Lihat templat ini">l</abbr></a></li><li class="nv-bicara"><a href="/wiki/Pembicaraan_Templat:Bidang_matematika" title="Pembicaraan Templat:Bidang matematika"><abbr title="Diskusikan templat ini">b</abbr></a></li><li class="nv-sunting"><a class="external text" href="https://id.wikipedia.org/w/index.php?title=Templat:Bidang_matematika&amp;action=edit"><abbr title="Sunting templat ini">s</abbr></a></li></ul></div><div id="Matematika_(Bidang_matematika)" style="font-size:114%;margin:0 4em"><a href="/wiki/Matematika" title="Matematika">Matematika</a> (<a href="/wiki/Bidang_matematika" class="mw-redirect" title="Bidang matematika">Bidang matematika</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Fondasi_matematika" title="Fondasi matematika">Fondasi</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Filsafat_matematika" title="Filsafat matematika">Filsafat matematika</a></li> <li><a href="/wiki/Logika_matematika" title="Logika matematika">Logika matematika</a></li> <li><a href="/wiki/Teori_himpunan" title="Teori himpunan">Teori himpunan</a></li> <li><a href="/wiki/Teori_informasi" title="Teori informasi">Teori informasi</a></li> <li><a href="/wiki/Teori_kategori" title="Teori kategori">Teori kategori</a></li> <li><a href="/w/index.php?title=Teori_tipe&amp;action=edit&amp;redlink=1" class="new" title="Teori tipe (halaman belum tersedia)">Teori tipe</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Aljabar" title="Aljabar">Aljabar</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Aljabar_abstrak" title="Aljabar abstrak">Abstrak</a></li> <li><a href="/wiki/Aljabar_elementer" title="Aljabar elementer">Elementer</a></li> <li><a href="/wiki/Aljabar_homologis" title="Aljabar homologis">Homologis</a></li> <li><a href="/w/index.php?title=Aljabar_komutatif&amp;action=edit&amp;redlink=1" class="new" title="Aljabar komutatif (halaman belum tersedia)">Komutatif</a></li> <li><a href="/wiki/Aljabar_linear" title="Aljabar linear">Linear</a></li> <li><a href="/wiki/Aljabar_multilinear" title="Aljabar multilinear">Multilinear</a></li> <li><a href="/wiki/Aljabar_universal" title="Aljabar universal">Universal</a></li> <li><a href="/wiki/Teori_grup" title="Teori grup">Teori grup</a></li> <li><a href="/wiki/Teori_representasi" title="Teori representasi">Teori representasi</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Analisis_matematis" title="Analisis matematis">Analisis</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Kalkulus" title="Kalkulus">Kalkulus</a></li> <li><a href="/wiki/Analisis_fungsional" title="Analisis fungsional">Analisis fungsional</a></li> <li><a href="/w/index.php?title=Analisis_harmonik&amp;action=edit&amp;redlink=1" class="new" title="Analisis harmonik (halaman belum tersedia)">Analisis harmonik</a></li> <li><a href="/wiki/Analisis_kompleks" title="Analisis kompleks">Analisis kompleks</a></li> <li><a href="/wiki/Analisis_real" class="mw-redirect" title="Analisis real">Analisis real</a></li> <li><a href="/wiki/Persamaan_diferensial" title="Persamaan diferensial">Persamaan diferensial</a></li> <li><a href="/wiki/Ukuran_(matematika)" title="Ukuran (matematika)">Teori ukuran</a></li> <li><a href="/wiki/Teori_sistem_dinamis" class="mw-redirect" title="Teori sistem dinamis">Teori sistem dinamis</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Matematika_diskret" class="mw-redirect" title="Matematika diskret">Diskret</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Kombinatorika" title="Kombinatorika">Kombinatorika</a></li> <li><a href="/wiki/Teori_graf" title="Teori graf">Teori graf</a></li> <li><a href="/wiki/Teori_order" title="Teori order">Teori order</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Geometri" title="Geometri">Geometri</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Geometri_aljabar" title="Geometri aljabar">Aljabar</a></li> <li><a href="/wiki/Geometri_analitis" title="Geometri analitis">Analitis</a></li> <li><a href="/wiki/Geometri_diferensial" title="Geometri diferensial">Diferensial</a></li> <li><a href="/wiki/Geometri_diskrit" title="Geometri diskrit">Diskrit</a></li> <li><a href="/wiki/Geometri_Euklides" title="Geometri Euklides">Euklides</a></li> <li><a href="/wiki/Geometri_hingga" title="Geometri hingga">Hingga</a></li> <li><a class="mw-selflink selflink">Trigonometri</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Matematika_komputasi" title="Matematika komputasi">Komputasi</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Analisis_numerik" title="Analisis numerik">Analisis numerik</a> (<a href="/wiki/Daftar_topik_analisis_numerik" title="Daftar topik analisis numerik">Topik</a>)</li> <li><a href="/wiki/Ilmu_komputer" title="Ilmu komputer">Ilmu komputer</a></li> <li><a href="/w/index.php?title=Komputasi_simbolik&amp;action=edit&amp;redlink=1" class="new" title="Komputasi simbolik (halaman belum tersedia)">Komputasi simbolik</a></li> <li><a href="/wiki/Teori_komputasi" title="Teori komputasi">Teori komputasi</a></li> <li><a href="/w/index.php?title=Teori_kompleksitas_komputasi&amp;action=edit&amp;redlink=1" class="new" title="Teori kompleksitas komputasi (halaman belum tersedia)">Teori kompleksitas komputasi</a></li> <li><a href="/wiki/Optimisasi" title="Optimisasi">Optimisasi matematika</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Teori_bilangan" title="Teori bilangan">Teori bilangan</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Aritmetika" title="Aritmetika">Aritmetika</a></li> <li><a href="/w/index.php?title=Geometri_Diophantine&amp;action=edit&amp;redlink=1" class="new" title="Geometri Diophantine (halaman belum tersedia)">Geometri Diophantine</a></li> <li><a href="/wiki/Teori_bilangan_aljabar" title="Teori bilangan aljabar">Teori bilangan aljabar</a></li> <li><a href="/w/index.php?title=Teori_bilangan_analitis&amp;action=edit&amp;redlink=1" class="new" title="Teori bilangan analitis (halaman belum tersedia)">Teori bilangan analitis</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Topologi" title="Topologi">Topologi</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/w/index.php?title=Teori_homotopi&amp;action=edit&amp;redlink=1" class="new" title="Teori homotopi (halaman belum tersedia)">Teori homotopi</a></li> <li><a href="/wiki/Topologi_aljabar" title="Topologi aljabar">Aljabar</a></li> <li><a href="/w/index.php?title=Topologi_diferensial&amp;action=edit&amp;redlink=1" class="new" title="Topologi diferensial (halaman belum tersedia)">Diferensial</a></li> <li><a href="/w/index.php?title=Topologi_geometris&amp;action=edit&amp;redlink=1" class="new" title="Topologi geometris (halaman belum tersedia)">Geometris</a></li> <li><a href="/wiki/Topologi_umum" title="Topologi umum">Umum</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Matematika_terapan" title="Matematika terapan">Terapan</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Biologi_matematika_dan_teori" title="Biologi matematika dan teori">Matematika biologi</a></li> <li><a href="/wiki/Matematika_ekonomi" title="Matematika ekonomi">Matematika ekonomi</a></li> <li><a href="/wiki/Matematika_keuangan" title="Matematika keuangan">Matematika keuangan</a></li> <li><a href="/wiki/Fisika_matematis" title="Fisika matematis">Fisika matematis</a></li> <li><a href="/wiki/Kimia_matematika" title="Kimia matematika">Kimia matematika</a></li> <li><a href="/w/index.php?title=Psikologi_matematis&amp;action=edit&amp;redlink=1" class="new" title="Psikologi matematis (halaman belum tersedia)">Psikologi matematis</a></li> <li><a href="/wiki/Statistika" title="Statistika">Statistika</a></li> <li><a href="/wiki/Statistika_matematika" title="Statistika matematika">Statistika matematika</a></li> <li><a href="/wiki/Teori_peluang" title="Teori peluang">Teori peluang</a></li> <li><a href="/wiki/Ilmu_sistem" title="Ilmu sistem">Ilmu sistem</a> (<a href="/w/index.php?title=Teori_kendali&amp;action=edit&amp;redlink=1" class="new" title="Teori kendali (halaman belum tersedia)">Teori kendali</a>, <a href="/wiki/Teori_permainan" title="Teori permainan">Teori permainan</a>, <a href="/wiki/Riset_operasi" title="Riset operasi">Riset operasi</a>)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Divisi</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Matematika_murni" title="Matematika murni">Matematika murni</a></li> <li><a href="/wiki/Matematika_terapan" title="Matematika terapan">Matematika terapan</a></li> <li><a href="/wiki/Matematika_diskret" class="mw-redirect" title="Matematika diskret">Matematika diskret</a></li> <li><a href="/wiki/Matematika_komputasi" title="Matematika komputasi">Matematika komputasi</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Topik terkait</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Matematika_dan_seni" title="Matematika dan seni">Matematika dan seni</a></li> <li><a href="/wiki/Matematika_rekreasi" title="Matematika rekreasi">Matematika rekreasi</a></li> <li><a href="/wiki/Pendidikan_matematika" title="Pendidikan matematika">Pendidikan matematika</a></li> <li><a href="/wiki/Sejarah_matematika" title="Sejarah matematika">Sejarah matematika</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow hlist" colspan="2"><div> <ul><li><span typeof="mw:File"><a href="/wiki/Berkas:Symbol_category_class.svg" class="mw-file-description" title="Category"><img alt="Category" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></a></span> <b><a href="/wiki/Kategori:Matematika" title="Kategori:Matematika">Kategori</a></b></li> <li><span typeof="mw:File"><a href="/wiki/Berkas:Symbol_portal_class.svg" class="mw-file-description" title="Portal"><img alt="Portal" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e2/Symbol_portal_class.svg/16px-Symbol_portal_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e2/Symbol_portal_class.svg/23px-Symbol_portal_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e2/Symbol_portal_class.svg/31px-Symbol_portal_class.svg.png 2x" data-file-width="180" data-file-height="185" /></a></span> <b><a href="/wiki/Portal:Matematika" title="Portal:Matematika">Portal matematika</a></b></li> <li><a href="/w/index.php?title=Kerangka_matematika&amp;action=edit&amp;redlink=1" class="new" title="Kerangka matematika (halaman belum tersedia)">Kerangka</a></li> <li><a href="/wiki/Daftar_topik_matematika" class="mw-redirect" title="Daftar topik matematika">Daftar</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐84d8f4b96‐s5sxn Cached time: 20241115080157 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.488 seconds Real time usage: 0.813 seconds Preprocessor visited node count: 2605/1000000 Post‐expand include size: 56643/2097152 bytes Template argument size: 2744/2097152 bytes Highest expansion depth: 13/100 Expensive parser function count: 0/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 18601/5000000 bytes Lua time usage: 0.184/10.000 seconds Lua memory usage: 3209297/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 401.062 1 -total 23.14% 92.821 1 Templat:Bidang_matematika 21.76% 87.274 1 Templat:Navbox 14.92% 59.834 1 Templat:Reflist 13.88% 55.657 2 Templat:Side_box 11.29% 45.280 1 Templat:Bagian_tanpa_referensi 10.09% 40.467 1 Templat:Unreferenced 9.71% 38.928 1 Templat:Commons 9.22% 36.963 1 Templat:Sister_project 9.13% 36.600 1 Templat:Ambox --> <!-- Saved in parser cache with key idwiki:pcache:idhash:30133-0!canonical and timestamp 20241115080157 and revision id 26500080. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Diperoleh dari "<a dir="ltr" href="https://id.wikipedia.org/w/index.php?title=Trigonometri&amp;oldid=26500080">https://id.wikipedia.org/w/index.php?title=Trigonometri&amp;oldid=26500080</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Istimewa:Daftar_kategori" title="Istimewa:Daftar kategori">Kategori</a>: <ul><li><a href="/wiki/Kategori:Trigonometri" title="Kategori:Trigonometri">Trigonometri</a></li><li><a href="/wiki/Kategori:Persamaan_trigonometri" title="Kategori:Persamaan trigonometri">Persamaan trigonometri</a></li><li><a href="/wiki/Kategori:Persamaan_matematika" title="Kategori:Persamaan matematika">Persamaan matematika</a></li><li><a href="/wiki/Kategori:Persamaan" title="Kategori:Persamaan">Persamaan</a></li><li><a href="/w/index.php?title=Kategori:Penemuan_bangsa_Yunani&amp;action=edit&amp;redlink=1" class="new" title="Kategori:Penemuan bangsa Yunani (halaman belum tersedia)">Penemuan bangsa Yunani</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Kategori tersembunyi: <ul><li><a href="/wiki/Kategori:CS1_sumber_berbahasa_Inggris_(en)" title="Kategori:CS1 sumber berbahasa Inggris (en)">CS1 sumber berbahasa Inggris (en)</a></li><li><a href="/wiki/Kategori:Artikel_yang_tidak_memiliki_referensi_November_2024" title="Kategori:Artikel yang tidak memiliki referensi November 2024">Artikel yang tidak memiliki referensi November 2024</a></li><li><a href="/wiki/Kategori:Pemeliharaan_CS1:_Teks_tambahan" title="Kategori:Pemeliharaan CS1: Teks tambahan">Pemeliharaan CS1: Teks tambahan</a></li><li><a href="/wiki/Kategori:Halaman_dengan_rujukan_yang_menggunakan_parameter_yang_tidak_didukung" title="Kategori:Halaman dengan rujukan yang menggunakan parameter yang tidak didukung">Halaman dengan rujukan yang menggunakan parameter yang tidak didukung</a></li><li><a href="/wiki/Kategori:Pranala_Commons_ditentukan_secara_lokal" title="Kategori:Pranala Commons ditentukan secara lokal">Pranala Commons ditentukan secara lokal</a></li><li><a href="/wiki/Kategori:Templat_webarchive_tautan_wayback" title="Kategori:Templat webarchive tautan wayback">Templat webarchive tautan wayback</a></li><li><a href="/wiki/Kategori:Halaman_yang_menggunakan_pranala_magis_ISBN" title="Kategori:Halaman yang menggunakan pranala magis ISBN">Halaman yang menggunakan pranala magis ISBN</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Halaman ini terakhir diubah pada 7 November 2024, pukul 02.07.</li> <li id="footer-info-copyright">Teks tersedia di bawah <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en">Lisensi Atribusi-BerbagiSerupa Creative Commons</a>; ketentuan tambahan mungkin berlaku. Lihat <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Ketentuan Penggunaan</a> untuk rincian lebih lanjut.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Kebijakan privasi</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:Tentang">Tentang Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Penyangkalan_umum">Penyangkalan</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Kode Etik</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Pengembang</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/id.wikipedia.org">Statistik</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Pernyataan kuki</a></li> <li id="footer-places-mobileview"><a href="//id.m.wikipedia.org/w/index.php?title=Trigonometri&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Tampilan seluler</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-84d8f4b96-mgxgv","wgBackendResponseTime":170,"wgPageParseReport":{"limitreport":{"cputime":"0.488","walltime":"0.813","ppvisitednodes":{"value":2605,"limit":1000000},"postexpandincludesize":{"value":56643,"limit":2097152},"templateargumentsize":{"value":2744,"limit":2097152},"expansiondepth":{"value":13,"limit":100},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":18601,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 401.062 1 -total"," 23.14% 92.821 1 Templat:Bidang_matematika"," 21.76% 87.274 1 Templat:Navbox"," 14.92% 59.834 1 Templat:Reflist"," 13.88% 55.657 2 Templat:Side_box"," 11.29% 45.280 1 Templat:Bagian_tanpa_referensi"," 10.09% 40.467 1 Templat:Unreferenced"," 9.71% 38.928 1 Templat:Commons"," 9.22% 36.963 1 Templat:Sister_project"," 9.13% 36.600 1 Templat:Ambox"]},"scribunto":{"limitreport-timeusage":{"value":"0.184","limit":"10.000"},"limitreport-memusage":{"value":3209297,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-84d8f4b96-s5sxn","timestamp":"20241115080157","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Trigonometri","url":"https:\/\/id.wikipedia.org\/wiki\/Trigonometri","sameAs":"http:\/\/www.wikidata.org\/entity\/Q8084","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q8084","author":{"@type":"Organization","name":"Kontributor dari proyek Wikimedia."},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-09-21T13:31:04Z","dateModified":"2024-11-07T02:07:38Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/9\/9d\/Circle-trig6.svg","headline":"Cabang matematika yang mempelajari segitiga dan hubungan antar sisi dan sudut-sudut antara sisi"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10