CINXE.COM

Continuous & Built In Beams

<?xml version ="1.0" encoding ="UTF-8"?> <!DOCTYPE html PUBLIC "-//WC3//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd"> <html xmlns = "http://www.w3.org/1999/xhtml" xml:lang ="en" lang = "en"> <!-- Created with the CoffeeCup HTML Editor --> <!-- http://www.coffeecup.com --> <!-- Brewed on 18/04/2001 07:00:11 --> <head> <title>Continuous & Built In Beams</title> <meta name = "keywords" CONTENT = "Continous beams, mult span beams"> <meta name = "Description" CONTENT = "Notes on continuous beams" > <link rel=StyleSheet href="../../table.css" type="text/css"> <style type = "text/css"> td.a {background :#FEB8F7} td.b {background :#80FF80} td.c {background :#00FFFF} p.a {margin-left :5%} </style> </head> <body > <table align = "center" border = "1" cellspacing ="0" cellpadding = "2" width = "85%" bordercolor = "#000000" > <tr><td> Disclaimer: The information on this page has <u>not</u> been checked by an independent person.&nbsp;&nbsp; Use this information at your own risk. </td> </tr> </table> <div align = "center" >ROYMECH</div> <!-- Google Ads.. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx--> <script type="text/javascript"><!-- google_ad_client = "pub-9707185270827282"; google_ad_width = 728; google_ad_height = 90; google_ad_format = "728x90_as"; google_ad_channel =""; google_color_border = "EEFFFF"; google_color_bg = "FFFFFF"; google_color_link = "000000"; google_color_url = "666666"; google_color_text = "333333"; //--></script> <script type="text/javascript" src="http://pagead2.googlesyndication.com/pagead/show_ads.js"> </script> <!-- Google Ads.. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx--> <p><a href="../../index3.htm">Home</a><br /> <a href="Beam_Index.html#Links">Beams Index</a></p> <h2>Continuous Beams</h2> <table border = "1" bordercolor ="#000000" width="95%" cellspacing="0" align = "center" > <tr> <td class = "wide" > <b> Introduction</b><br /> Built -in (Encastre) beams are fixed at both ends.&nbsp;&nbsp;Continuous beam which are beams with more than two supports and covering more than one span.&nbsp;&nbsp;These beams are not statically determinate using the static equilibrium laws.&nbsp;&nbsp; <br /><br /> <b>Nomenclature</b><br /> <p class = "a">e = strain<br /> <span><span>&#963;</span></span> = stress (N/m<sup>2</sup>)<br /> E = Young's Modulus = <span>&#963;</span> /e (N/m<sup>2</sup>)<br /> y = distance of surface from neutral surface (m).<br /> R = Radius of neutral axis (m).<br /> I = Moment of Inertia (m<sup>4</sup> - more normally cm<sup>4</sup>) <br /> Z = section modulus = I/y<sub>max</sub>(m<sup>3</sup> - more normally cm<sup>3</sup>)<br /> M = Moment (Nm)<br /> w = Distrubuted load on beam (kg/m) or (N/m as force units) <br /> W = total load on beam (kg ) or (N as force units)<br /> F= Concentrated force on beam (N)<br /> L = length of beam (m)<br /> x = distance along beam (m)<br /> </p> <br /><br /> <b>Built in beams</b><br /> A built in beam is normally considered to be horizontal with both ends built-in at the same level and with zero slope at both ends. &nbsp;&nbsp;A loaded built in beam has a moment at both ends and normally the maximum moments at at one or both of the two end joints.&nbsp;&nbsp; A built in beam is generally much stronger than a simply supported beam of the same geometry.&nbsp;&nbsp;The bending moment reduces along the beam and changes sign at points of contraflexure between the supports and the load.&nbsp;&nbsp;A typical built-in beam is shown below. <p align = "center"><img src="../../images11/beam_59.gif" width="300" height="218" alt="" border="0"></p> It is not normally possible to determine the bending moments and the resulting stress using static equilibrium and deflection calculations are often used to enable the moments to be determined.<br /> <br /> Using the above beam as an example... <p align = "center"><img src="../../images11/beam_60.gif" width="552" height="271" alt="" border="0"></p> Using the above equations the bending moment, shear force, deflection, slope can be determined at any point along the beam. <br /><br /> <p class = "a"><big> M = EI d <sup>2</sup>y/dx <sup>2</sup> = w(- 6x<sup>2</sup>+6lx -l<sup>2</sup>)/12<br /> at x = 0 & l then M = -wl<sup>2</sup> /12 and at x = l/2 then M = wl<sup>2</sup> /24<br /><br /> S = EI d <sup>3</sup>y/dx <sup>3</sup> = w(l/2 - x)<br /> at x = 0 then S = w.l/2 at x = l then S = -w.l/2</big></p> </p> <br /><hr align="center" width="70%" noshade color="#FF6600"><br /><br /> <b>Continuous Beams</b><br /> This type of beam is normally considered using the Clapeyron's Theorem ( Three Moments theorem) <p align = "center"><img src="../../images11/beam_26.gif" width="445" height="196" alt="" border="0"></p> The three moments theorem identifies the relationship between the bending moments found at three consecutive supports in a continuous beam.&nbsp;&nbsp;This is achieved by evaluating the slope of of the beam at the end where the two spans join.&nbsp;&nbsp;The slopes are expressed in terms of the three moments and the supported loads which are then equated and the resulting equations solved.<br /><br /> This relationship for spans with supports at the same height and with spans of constant section results in the following expression.<sub></sub><br /><br /> <p align = "center"><big>M<sub>A</sub>.L<sub>1</sub> + 2.M<sub>B</sub>(L<sub>1</sub> + L<sub>2</sub>)+ M<sub>C</sub> = 6(A<sub>1</sub> . x<sub>1</sub> /L<sub>1</sub> &nbsp;&nbsp;+&nbsp;&nbsp;A<sub>1</sub> . x<sub>2</sub> /L<sub>2</sub> )</big></p> If the beams has a different section for each span then the more general expression applies as shown below <p align = "center"><big>M<sub>A</sub>.L<sub>1</sub>/I<sub>1</sub> + 2.M<sub>B</sub>(L<sub>1</sub>/I<sub>1</sub> + L<sub>2</sub>/I<sub>2</sub> ) + M<sub>C</sub> = 6 [A<sub>1</sub> . x<sub>1</sub> /(L<sub>1</sub> .I<sub>1</sub> )&nbsp;&nbsp;+&nbsp;&nbsp;A<sub>1</sub> . x<sub>2</sub> / (L<sub>2</sub> .I<sub>2</sub> ) ]</big></p> <br /><br /> Example Areas and x<sub>1</sub> value calculations<br /> <table align = "center" width = "70%" border = "1" cellspacing = "0" > <tr><td> <p align = "center"><img src="../../images11/beam_27.gif" width="327" height="126" alt="" border="0"></p> </td></tr> <tr><td> <p align = "center"><img src="../../images11/beam_28.gif" width="280" height="125" alt="" border="0"></p> </td></tr> </table> <br /><br /> <b> Example using theorem.</b><br /> This simple example is a two span continuous beam with the ends simple supported,therefore with no moments at the support points.. <p align = "center"><img src="../../images11/beam_29.gif" width="337" height="70" alt="" border="0"></p> <p align = "center"><img src="../../images11/beam_30.gif" width="266" height="68" alt="" border="0"></p> </td> </tr> </table> <br /><br /> <b>Sites Providing Relevant Information </b> <ol> <li><a href="http://www.duke.edu/~hpgavin/ce130/three-mom.pdf">The Moment equation for continous beam analysis</a>...Very advanced paper download</li> <li> <a href="http://www.Mitcalc.com">Mitcalc</a>...Excel based software including coded beam calculations</li> <li><a href="http://www.grantadesign.com/resources/shapes/solutions/index.htm">Granta -Solutions to Standard Problems</a>...Very accessible notes for beams and sections</li> <li><a href="http://www.engineerstoolbox.com/index.html">ETBX Engineers Toolbox</a>...A number of ver useful mechanical analysis tools with useful background notes ..Needs Java </li> </ol> <h2 align = "center">This page is being developed</h2> <p align ="center"> <a href="../../index3.htm">Home</a><br /> <a href="Beam_Index.html#Links">Beams Index</a></p> <p >Please Send Comments to <a href="mailto:Roy@roymech.co.uk"> Roy@roymech.co.uk</a> </p> <p> Last Updated 29/11/2005</p> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10