CINXE.COM

Search results for: Bagging Classifier

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Bagging Classifier</title> <meta name="description" content="Search results for: Bagging Classifier"> <meta name="keywords" content="Bagging Classifier"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Bagging Classifier" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Bagging Classifier"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 380</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Bagging Classifier</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">380</span> Parkinson’s Disease Detection Analysis through Machine Learning Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhtasim%20Shafi%20Kader">Muhtasim Shafi Kader</a>, <a href="https://publications.waset.org/abstracts/search?q=Fizar%20Ahmed"> Fizar Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Annesha%20Acharjee"> Annesha Acharjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Machine learning and data mining are crucial in health care, as well as medical information and detection. Machine learning approaches are now being utilized to improve awareness of a variety of critical health issues, including diabetes detection, neuron cell tumor diagnosis, COVID 19 identification, and so on. Parkinson’s disease is basically a disease for our senior citizens in Bangladesh. Parkinson's Disease indications often seem progressive and get worst with time. People got affected trouble walking and communicating with the condition advances. Patients can also have psychological and social vagaries, nap problems, hopelessness, reminiscence loss, and weariness. Parkinson's disease can happen in both men and women. Though men are affected by the illness at a proportion that is around partial of them are women. In this research, we have to get out the accurate ML algorithm to find out the disease with a predictable dataset and the model of the following machine learning classifiers. Therefore, nine ML classifiers are secondhand to portion study to use machine learning approaches like as follows, Naive Bayes, Adaptive Boosting, Bagging Classifier, Decision Tree Classifier, Random Forest classifier, XBG Classifier, K Nearest Neighbor Classifier, Support Vector Machine Classifier, and Gradient Boosting Classifier are used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=naive%20bayes" title="naive bayes">naive bayes</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20boosting" title=" adaptive boosting"> adaptive boosting</a>, <a href="https://publications.waset.org/abstracts/search?q=bagging%20classifier" title=" bagging classifier"> bagging classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree%20classifier" title=" decision tree classifier"> decision tree classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest%20classifier" title=" random forest classifier"> random forest classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=XBG%20classifier" title=" XBG classifier"> XBG classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=k%20nearest%20neighbor%20classifier" title=" k nearest neighbor classifier"> k nearest neighbor classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20classifier" title=" support vector classifier"> support vector classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=gradient%20boosting%20classifier" title=" gradient boosting classifier"> gradient boosting classifier</a> </p> <a href="https://publications.waset.org/abstracts/148163/parkinsons-disease-detection-analysis-through-machine-learning-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">379</span> Effect of Friction Parameters on the Residual Bagging Behaviors of Denim Fabrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Gazzah">M. Gazzah</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Jaouachi"> B. Jaouachi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Sakli"> F. Sakli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research focuses on the yarn-to-yarn and metal-to-fabric friction effects on the residual bagging behavior expressed by residual bagging height, volume and recovery of some denim fabrics. The results show, that both residual bagging height and residual bagging volume, which is determined using image analysis method, are significantly affected due to the most influential fabric parameter variations, the weft yarns density and the mean frictional coefficients. After the applied number of fatigue cycles, the findings revealed that the weft yarn rigidity contributes on fabric bagging behavior accurately. Among the tested samples, our results show that the elastic fabrics present a high recovery ability to give low bagging height and volume values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bagging%20recovery" title="bagging recovery">bagging recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=denim%20fabric" title=" denim fabric"> denim fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-to-fabric%20friction" title=" metal-to-fabric friction"> metal-to-fabric friction</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20bagging%20height" title=" residual bagging height"> residual bagging height</a>, <a href="https://publications.waset.org/abstracts/search?q=yarn-to-yarn%20friction" title=" yarn-to-yarn friction"> yarn-to-yarn friction</a> </p> <a href="https://publications.waset.org/abstracts/25575/effect-of-friction-parameters-on-the-residual-bagging-behaviors-of-denim-fabrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">577</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">378</span> Complex Shaped Prepreg Part Drapability Using Vacuum Bagging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saran%20Toure">Saran Toure</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Complex shaped parts manufactured using out of autoclave prepreg vacuum bagging has a high quality finish. This is not only due to in the control of resin to fibre ratio in prepregs, but also to a reduction in fibre misalignment, slippage and stresses occurring within plies during compaction. In a bid to further reduce deformation modes and control failure modes, we carried experiments where, we introduced wetted fabrics within a prepreg plybook during compaction. Here are presented the results obtained from the vacuum bagging of a complex shaped part. The shape is that of a turbine fan blade with smooth curves all throughout ending with sharp edged angles. The quality of the final part made from this blade is compared to that of the same blade made from standard vacuum bagging process of prepregs, without introducing wetted fabrics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20shaped%20part" title="complex shaped part">complex shaped part</a>, <a href="https://publications.waset.org/abstracts/search?q=prepregs" title=" prepregs"> prepregs</a>, <a href="https://publications.waset.org/abstracts/search?q=drapability" title=" drapability"> drapability</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20bagging" title=" vacuum bagging"> vacuum bagging</a> </p> <a href="https://publications.waset.org/abstracts/17132/complex-shaped-prepreg-part-drapability-using-vacuum-bagging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">377</span> Random Subspace Ensemble of CMAC Classifiers </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somaiyeh%20Dehghan">Somaiyeh Dehghan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Kheirkhahan%20Haghighi"> Mohammad Reza Kheirkhahan Haghighi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid growth of domains that have data with a large number of features, while the number of samples is limited has caused difficulty in constructing strong classifiers. To reduce the dimensionality of the feature space becomes an essential step in classification task. Random subspace method (or attribute bagging) is an ensemble classifier that consists of several classifiers that each base learner in ensemble has subset of features. In the present paper, we introduce Random Subspace Ensemble of CMAC neural network (RSE-CMAC), each of which has training with subset of features. Then we use this model for classification task. For evaluation performance of our model, we compare it with bagging algorithm on 36 UCI datasets. The results reveal that the new model has better performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20subspace" title=" random subspace"> random subspace</a>, <a href="https://publications.waset.org/abstracts/search?q=ensemble" title=" ensemble"> ensemble</a>, <a href="https://publications.waset.org/abstracts/search?q=CMAC%20neural%20network" title=" CMAC neural network"> CMAC neural network</a> </p> <a href="https://publications.waset.org/abstracts/14371/random-subspace-ensemble-of-cmac-classifiers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">376</span> Sentiment Analysis of Ensemble-Based Classifiers for E-Mail Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muthukumarasamy%20Govindarajan">Muthukumarasamy Govindarajan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Detection of unwanted, unsolicited mails called spam from email is an interesting area of research. It is necessary to evaluate the performance of any new spam classifier using standard data sets. Recently, ensemble-based classifiers have gained popularity in this domain. In this research work, an efficient email filtering approach based on ensemble methods is addressed for developing an accurate and sensitive spam classifier. The proposed approach employs Naive Bayes (NB), Support Vector Machine (SVM) and Genetic Algorithm (GA) as base classifiers along with different ensemble methods. The experimental results show that the ensemble classifier was performing with accuracy greater than individual classifiers, and also hybrid model results are found to be better than the combined models for the e-mail dataset. The proposed ensemble-based classifiers turn out to be good in terms of classification accuracy, which is considered to be an important criterion for building a robust spam classifier. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accuracy" title="accuracy">accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=arcing" title=" arcing"> arcing</a>, <a href="https://publications.waset.org/abstracts/search?q=bagging" title=" bagging"> bagging</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Naive%20Bayes" title=" Naive Bayes"> Naive Bayes</a>, <a href="https://publications.waset.org/abstracts/search?q=sentiment%20mining" title=" sentiment mining"> sentiment mining</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/112240/sentiment-analysis-of-ensemble-based-classifiers-for-e-mail-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">375</span> Application of Machine Learning Techniques in Forest Cover-Type Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saba%20Ebrahimi">Saba Ebrahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hedieh%20Ashrafi"> Hedieh Ashrafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Predicting the cover type of forests is a challenge for natural resource managers. In this project, we aim to perform a comprehensive comparative study of two well-known classification methods, support vector machine (SVM) and decision tree (DT). The comparison is first performed among different types of each classifier, and then the best of each classifier will be compared by considering different evaluation metrics. The effect of boosting and bagging for decision trees is also explored. Furthermore, the effect of principal component analysis (PCA) and feature selection is also investigated. During the project, the forest cover-type dataset from the remote sensing and GIS program is used in all computations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification%20methods" title="classification methods">classification methods</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20cover-type%20dataset" title=" forest cover-type dataset"> forest cover-type dataset</a> </p> <a href="https://publications.waset.org/abstracts/137985/application-of-machine-learning-techniques-in-forest-cover-type-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">374</span> Classification of Red, Green and Blue Values from Face Images Using k-NN Classifier to Predict the Skin or Non-Skin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kemal%20Polat">Kemal Polat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, it has been estimated whether there is skin by using RBG values obtained from the camera and k-nearest neighbor (k-NN) classifier. The dataset used in this study has an unbalanced distribution and a linearly non-separable structure. This problem can also be called a big data problem. The Skin dataset was taken from UCI machine learning repository. As the classifier, we have used the k-NN method to handle this big data problem. For k value of k-NN classifier, we have used as 1. To train and test the k-NN classifier, 50-50% training-testing partition has been used. As the performance metrics, TP rate, FP Rate, Precision, recall, f-measure and AUC values have been used to evaluate the performance of k-NN classifier. These obtained results are as follows: 0.999, 0.001, 0.999, 0.999, 0.999, and 1,00. As can be seen from the obtained results, this proposed method could be used to predict whether the image is skin or not. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=k-NN%20classifier" title="k-NN classifier">k-NN classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20or%20non-skin%20classification" title=" skin or non-skin classification"> skin or non-skin classification</a>, <a href="https://publications.waset.org/abstracts/search?q=RGB%20values" title=" RGB values"> RGB values</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a> </p> <a href="https://publications.waset.org/abstracts/86538/classification-of-red-green-and-blue-values-from-face-images-using-k-nn-classifier-to-predict-the-skin-or-non-skin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">373</span> Comparative Analysis of Classification Methods in Determining Non-Active Student Characteristics in Indonesia Open University</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dewi%20Juliah%20Ratnaningsih">Dewi Juliah Ratnaningsih</a>, <a href="https://publications.waset.org/abstracts/search?q=Imas%20Sukaesih%20Sitanggang"> Imas Sukaesih Sitanggang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Classification is one of data mining techniques that aims to discover a model from training data that distinguishes records into the appropriate category or class. Data mining classification methods can be applied in education, for example, to determine the classification of non-active students in Indonesia Open University. This paper presents a comparison of three methods of classification: Naïve Bayes, Bagging, and C.45. The criteria used to evaluate the performance of three methods of classification are stratified cross-validation, confusion matrix, the value of the area under the ROC Curve (AUC), Recall, Precision, and F-measure. The data used for this paper are from the non-active Indonesia Open University students in registration period of 2004.1 to 2012.2. Target analysis requires that non-active students were divided into 3 groups: C1, C2, and C3. Data analyzed are as many as 4173 students. Results of the study show: (1) Bagging method gave a high degree of classification accuracy than Naïve Bayes and C.45, (2) the Bagging classification accuracy rate is 82.99 %, while the Naïve Bayes and C.45 are 80.04 % and 82.74 % respectively, (3) the result of Bagging classification tree method has a large number of nodes, so it is quite difficult in decision making, (4) classification of non-active Indonesia Open University student characteristics uses algorithms C.45, (5) based on the algorithm C.45, there are 5 interesting rules which can describe the characteristics of non-active Indonesia Open University students. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comparative%20analysis" title="comparative analysis">comparative analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=clasiffication" title=" clasiffication"> clasiffication</a>, <a href="https://publications.waset.org/abstracts/search?q=Bagging" title=" Bagging"> Bagging</a>, <a href="https://publications.waset.org/abstracts/search?q=Na%C3%AFve%20Bayes" title=" Naïve Bayes"> Naïve Bayes</a>, <a href="https://publications.waset.org/abstracts/search?q=C.45" title=" C.45"> C.45</a>, <a href="https://publications.waset.org/abstracts/search?q=non-active%20students" title=" non-active students"> non-active students</a>, <a href="https://publications.waset.org/abstracts/search?q=Indonesia%20Open%20University" title=" Indonesia Open University"> Indonesia Open University</a> </p> <a href="https://publications.waset.org/abstracts/8231/comparative-analysis-of-classification-methods-in-determining-non-active-student-characteristics-in-indonesia-open-university" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">372</span> Use of Fractal Geometry in Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fuad%20M.%20Alkoot">Fuad M. Alkoot</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main component of a machine learning system is the classifier. Classifiers are mathematical models that can perform classification tasks for a specific application area. Additionally, many classifiers are combined using any of the available methods to reduce the classifier error rate. The benefits gained from the combination of multiple classifier designs has motivated the development of diverse approaches to multiple classifiers. We aim to investigate using fractal geometry to develop an improved classifier combiner. Initially we experiment with measuring the fractal dimension of data and use the results in the development of a combiner strategy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractal%20geometry" title="fractal geometry">fractal geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=classifier" title=" classifier"> classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal%20dimension" title=" fractal dimension"> fractal dimension</a> </p> <a href="https://publications.waset.org/abstracts/141274/use-of-fractal-geometry-in-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">371</span> Evaluation of Ensemble Classifiers for Intrusion Detection </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Govindarajan">M. Govindarajan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. In this research work, new ensemble classification methods are proposed with homogeneous ensemble classifier using bagging and heterogeneous ensemble classifier using arcing and their performances are analyzed in terms of accuracy. A Classifier ensemble is designed using Radial Basis Function (RBF) and Support Vector Machine (SVM) as base classifiers. The feasibility and the benefits of the proposed approaches are demonstrated by the means of standard datasets of intrusion detection. The main originality of the proposed approach is based on three main parts: preprocessing phase, classification phase, and combining phase. A wide range of comparative experiments is conducted for standard datasets of intrusion detection. The performance of the proposed homogeneous and heterogeneous ensemble classifiers are compared to the performance of other standard homogeneous and heterogeneous ensemble methods. The standard homogeneous ensemble methods include Error correcting output codes, Dagging and heterogeneous ensemble methods include majority voting, stacking. The proposed ensemble methods provide significant improvement of accuracy compared to individual classifiers and the proposed bagged RBF and SVM performs significantly better than ECOC and Dagging and the proposed hybrid RBF-SVM performs significantly better than voting and stacking. Also heterogeneous models exhibit better results than homogeneous models for standard datasets of intrusion detection.&nbsp; <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title="data mining">data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=ensemble" title=" ensemble"> ensemble</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function" title=" radial basis function"> radial basis function</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a>, <a href="https://publications.waset.org/abstracts/search?q=accuracy" title=" accuracy"> accuracy</a> </p> <a href="https://publications.waset.org/abstracts/43650/evaluation-of-ensemble-classifiers-for-intrusion-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">370</span> Speaker Recognition Using LIRA Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nestor%20A.%20Garcia%20Fragoso">Nestor A. Garcia Fragoso</a>, <a href="https://publications.waset.org/abstracts/search?q=Tetyana%20Baydyk"> Tetyana Baydyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Ernst%20Kussul"> Ernst Kussul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article contains information from our investigation in the field of voice recognition. For this purpose, we created a voice database that contains different phrases in two languages, English and Spanish, for men and women. As a classifier, the LIRA (Limited Receptive Area) grayscale neural classifier was selected. The LIRA grayscale neural classifier was developed for image recognition tasks and demonstrated good results. Therefore, we decided to develop a recognition system using this classifier for voice recognition. From a specific set of speakers, we can recognize the speaker&rsquo;s voice. For this purpose, the system uses spectrograms of the voice signals as input to the system, extracts the characteristics and identifies the speaker. The results are described and analyzed in this article. The classifier can be used for speaker identification in security system or smart buildings for different types of intelligent devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extreme%20learning" title="extreme learning">extreme learning</a>, <a href="https://publications.waset.org/abstracts/search?q=LIRA%20neural%20classifier" title=" LIRA neural classifier"> LIRA neural classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=speaker%20identification" title=" speaker identification"> speaker identification</a>, <a href="https://publications.waset.org/abstracts/search?q=voice%20recognition" title=" voice recognition"> voice recognition</a> </p> <a href="https://publications.waset.org/abstracts/112384/speaker-recognition-using-lira-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">369</span> Multi-Class Text Classification Using Ensembles of Classifiers </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Basit%20Ali%20Shah%20Bukhari">Syed Basit Ali Shah Bukhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20%20Qiang"> Yan Qiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Saad%20Abdul%20Rauf"> Saad Abdul Rauf</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Saqlaina%20Bukhari"> Syed Saqlaina Bukhari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Text Classification is the methodology to classify any given text into the respective category from a given set of categories. It is highly important and vital to use proper set of pre-processing , feature selection and classification techniques to achieve this purpose. In this paper we have used different ensemble techniques along with variance in feature selection parameters to see the change in overall accuracy of the result and also on some other individual class based features which include precision value of each individual category of the text. After subjecting our data through pre-processing and feature selection techniques , different individual classifiers were tested first and after that classifiers were combined to form ensembles to increase their accuracy. Later we also studied the impact of decreasing the classification categories on over all accuracy of data. Text classification is highly used in sentiment analysis on social media sites such as twitter for realizing people’s opinions about any cause or it is also used to analyze customer’s reviews about certain products or services. Opinion mining is a vital task in data mining and text categorization is a back-bone to opinion mining. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natural%20Language%20Processing" title="Natural Language Processing">Natural Language Processing</a>, <a href="https://publications.waset.org/abstracts/search?q=Ensemble%20Classifier" title=" Ensemble Classifier"> Ensemble Classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=Bagging%20Classifier" title=" Bagging Classifier"> Bagging Classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=AdaBoost" title=" AdaBoost"> AdaBoost</a> </p> <a href="https://publications.waset.org/abstracts/123394/multi-class-text-classification-using-ensembles-of-classifiers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">368</span> Comparing SVM and Naïve Bayes Classifier for Automatic Microaneurysm Detections </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Sopharak">A. Sopharak</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Uyyanonvara"> B. Uyyanonvara</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Barman"> S. Barman </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetic retinopathy is characterized by the development of retinal microaneurysms. The damage can be prevented if disease is treated in its early stages. In this paper, we are comparing Support Vector Machine (SVM) and Naïve Bayes (NB) classifiers for automatic microaneurysm detection in images acquired through non-dilated pupils. The Nearest Neighbor classifier is used as a baseline for comparison. Detected microaneurysms are validated with expert ophthalmologists’ hand-drawn ground-truths. The sensitivity, specificity, precision and accuracy of each method are also compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetic%20retinopathy" title="diabetic retinopathy">diabetic retinopathy</a>, <a href="https://publications.waset.org/abstracts/search?q=microaneurysm" title=" microaneurysm"> microaneurysm</a>, <a href="https://publications.waset.org/abstracts/search?q=naive%20Bayes%20classifier" title=" naive Bayes classifier"> naive Bayes classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM%20classifier" title=" SVM classifier"> SVM classifier</a> </p> <a href="https://publications.waset.org/abstracts/3939/comparing-svm-and-naive-bayes-classifier-for-automatic-microaneurysm-detections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">367</span> Efficacy of Different Pest Control Strategies against Citrus Rind Borer (Prays Eendolemma Diakonoff) Infesting Pummelo (Citrus maxima)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Larry%20V.%20Aceres">Larry V. Aceres</a>, <a href="https://publications.waset.org/abstracts/search?q=Jesryl%20B.%20Paulite"> Jesryl B. Paulite</a>, <a href="https://publications.waset.org/abstracts/search?q=Emelie%20M.%20Pelicano"> Emelie M. Pelicano</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20Esteban"> J. A. Esteban</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamangun"> Mamangun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Citrus rind borer still the most important pest infesting pummelo in the Philippines particularly in the Davao region. Hence, management of the pest is very important for successful pummelo production. This study was conducted to assess the effectiveness of the different control strategies against citrus rind borer; to determine the best treatment in controlling citrus rind borer; and to calculate the profitability of the various treatments in pummelo production. The experiment was laid-out in Completely Randomized Design (CRD) with five treatments replicated three times. The treatments were: T1- curry tree leaf leachate, T2- neem tree leaf leachate, T3- bagging with an ordinary net, T4- treated check (chlorpyrifos & betacyflutrin) and T5- untreated check. Data were analyzed using the Analysis of Variance and the differences among treatment means were computed using the Tukey’s Honest Significant Difference. The results of the study revealed that the curry tree leaf leachate and bagging treatments provide significant protection to the pummelo fruits which is comparable with the treated check (chlorpyrifos & betacyflutrin). Neem tree leaf leachate is not effective in controlling citrus rind borer which is comparable with the untreated check. In cost and return analysis, the most economical and effective is the bagging treatment using ordinary net. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curry%20tree" title="curry tree">curry tree</a>, <a href="https://publications.waset.org/abstracts/search?q=neem%20tree" title=" neem tree"> neem tree</a>, <a href="https://publications.waset.org/abstracts/search?q=bagging" title=" bagging"> bagging</a>, <a href="https://publications.waset.org/abstracts/search?q=citrus%20rind%20borer" title=" citrus rind borer"> citrus rind borer</a> </p> <a href="https://publications.waset.org/abstracts/46057/efficacy-of-different-pest-control-strategies-against-citrus-rind-borer-prays-eendolemma-diakonoff-infesting-pummelo-citrus-maxima" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">366</span> Measuring Multi-Class Linear Classifier for Image Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Susilawati%20Mohamad">Fatma Susilawati Mohamad</a>, <a href="https://publications.waset.org/abstracts/search?q=Azizah%20Abdul%20Manaf"> Azizah Abdul Manaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadhillah%20Ahmad"> Fadhillah Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Zarina%20Mohamad"> Zarina Mohamad</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan%20Suryani%20Wan%20Awang"> Wan Suryani Wan Awang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simple and robust multi-class linear classifier is proposed and implemented. For a pair of classes of the linear boundary, a collection of segments of hyper planes created as perpendicular bisectors of line segments linking centroids of the classes or part of classes. Nearest Neighbor and Linear Discriminant Analysis are compared in the experiments to see the performances of each classifier in discriminating ripeness of oil palm. This paper proposes a multi-class linear classifier using Linear Discriminant Analysis (LDA) for image identification. Result proves that LDA is well capable in separating multi-class features for ripeness identification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-class" title="multi-class">multi-class</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20classifier" title=" linear classifier"> linear classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=nearest%20neighbor" title=" nearest neighbor"> nearest neighbor</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20discriminant%20analysis" title=" linear discriminant analysis"> linear discriminant analysis</a> </p> <a href="https://publications.waset.org/abstracts/51310/measuring-multi-class-linear-classifier-for-image-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">538</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">365</span> Educational Data Mining: The Case of the Department of Mathematics and Computing in the Period 2009-2018</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M%C3%A1rio%20Ernesto%20Sitoe">Mário Ernesto Sitoe</a>, <a href="https://publications.waset.org/abstracts/search?q=Orlando%20Zacarias"> Orlando Zacarias</a> </p> <p class="card-text"><strong>Abstract:</strong></p> University education is influenced by several factors that range from the adoption of strategies to strengthen the whole process to the academic performance improvement of the students themselves. This work uses data mining techniques to develop a predictive model to identify students with a tendency to evasion and retention. To this end, a database of real students’ data from the Department of University Admission (DAU) and the Department of Mathematics and Informatics (DMI) was used. The data comprised 388 undergraduate students admitted in the years 2009 to 2014. The Weka tool was used for model building, using three different techniques, namely: K-nearest neighbor, random forest, and logistic regression. To allow for training on multiple train-test splits, a cross-validation approach was employed with a varying number of folds. To reduce bias variance and improve the performance of the models, ensemble methods of Bagging and Stacking were used. After comparing the results obtained by the three classifiers, Logistic Regression using Bagging with seven folds obtained the best performance, showing results above 90% in all evaluated metrics: accuracy, rate of true positives, and precision. Retention is the most common tendency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evasion%20and%20retention" title="evasion and retention">evasion and retention</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-validation" title=" cross-validation"> cross-validation</a>, <a href="https://publications.waset.org/abstracts/search?q=bagging" title=" bagging"> bagging</a>, <a href="https://publications.waset.org/abstracts/search?q=stacking" title=" stacking"> stacking</a> </p> <a href="https://publications.waset.org/abstracts/170812/educational-data-mining-the-case-of-the-department-of-mathematics-and-computing-in-the-period-2009-2018" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">364</span> Forecasting 24-Hour Ahead Electricity Load Using Time Series Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Vafadary">Ramin Vafadary</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Khanbaghi"> Maryam Khanbaghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forecasting electricity load is important for various purposes like planning, operation, and control. Forecasts can save operating and maintenance costs, increase the reliability of power supply and delivery systems, and correct decisions for future development. This paper compares various time series methods to forecast 24 hours ahead of electricity load. The methods considered are the Holt-Winters smoothing, SARIMA Modeling, LSTM Network, Fbprophet, and Tensorflow probability. The performance of each method is evaluated by using the forecasting accuracy criteria, namely, the mean absolute error and root mean square error. The National Renewable Energy Laboratory (NREL) residential energy consumption data is used to train the models. The results of this study show that the SARIMA model is superior to the others for 24 hours ahead forecasts. Furthermore, a Bagging technique is used to make the predictions more robust. The obtained results show that by Bagging multiple time-series forecasts, we can improve the robustness of the models for 24 hours ahead of electricity load forecasting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bagging" title="bagging">bagging</a>, <a href="https://publications.waset.org/abstracts/search?q=Fbprophet" title=" Fbprophet"> Fbprophet</a>, <a href="https://publications.waset.org/abstracts/search?q=Holt-Winters" title=" Holt-Winters"> Holt-Winters</a>, <a href="https://publications.waset.org/abstracts/search?q=LSTM" title=" LSTM"> LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20forecast" title=" load forecast"> load forecast</a>, <a href="https://publications.waset.org/abstracts/search?q=SARIMA" title=" SARIMA"> SARIMA</a>, <a href="https://publications.waset.org/abstracts/search?q=TensorFlow%20probability" title=" TensorFlow probability"> TensorFlow probability</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series" title=" time series"> time series</a> </p> <a href="https://publications.waset.org/abstracts/147192/forecasting-24-hour-ahead-electricity-load-using-time-series-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">363</span> A Comparative Study of k-NN and MLP-NN Classifiers Using GA-kNN Based Feature Selection Method for Wood Recognition System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uswah%20Khairuddin">Uswah Khairuddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Rubiyah%20Yusof"> Rubiyah Yusof</a>, <a href="https://publications.waset.org/abstracts/search?q=Nenny%20Ruthfalydia%20Rosli"> Nenny Ruthfalydia Rosli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a comparative study between k-Nearest Neighbour (k-NN) and Multi-Layer Perceptron Neural Network (MLP-NN) classifier using Genetic Algorithm (GA) as feature selector for wood recognition system. The features have been extracted from the images using Grey Level Co-Occurrence Matrix (GLCM). The use of GA based feature selection is mainly to ensure that the database used for training the features for the wood species pattern classifier consists of only optimized features. The feature selection process is aimed at selecting only the most discriminating features of the wood species to reduce the confusion for the pattern classifier. This feature selection approach maintains the ‘good’ features that minimizes the inter-class distance and maximizes the intra-class distance. Wrapper GA is used with k-NN classifier as fitness evaluator (GA-kNN). The results shows that k-NN is the best choice of classifier because it uses a very simple distance calculation algorithm and classification tasks can be done in a short time with good classification accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title="feature selection">feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20recognition%20system" title=" wood recognition system "> wood recognition system </a> </p> <a href="https://publications.waset.org/abstracts/25573/a-comparative-study-of-k-nn-and-mlp-nn-classifiers-using-ga-knn-based-feature-selection-method-for-wood-recognition-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">362</span> Using Machine Learning to Build a Real-Time COVID-19 Mask Safety Monitor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yash%20Jain">Yash Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The US Center for Disease Control has recommended wearing masks to slow the spread of the virus. The research uses a video feed from a camera to conduct real-time classifications of whether or not a human is correctly wearing a mask, incorrectly wearing a mask, or not wearing a mask at all. Utilizing two distinct datasets from the open-source website Kaggle, a mask detection network had been trained. The first dataset that was used to train the model was titled 'Face Mask Detection' on Kaggle, where the dataset was retrieved from and the second dataset was titled 'Face Mask Dataset, which provided the data in a (YOLO Format)' so that the TinyYoloV3 model could be trained. Based on the data from Kaggle, two machine learning models were implemented and trained: a Tiny YoloV3 Real-time model and a two-stage neural network classifier. The two-stage neural network classifier had a first step of identifying distinct faces within the image, and the second step was a classifier to detect the state of the mask on the face and whether it was worn correctly, incorrectly, or no mask at all. The TinyYoloV3 was used for the live feed as well as for a comparison standpoint against the previous two-stage classifier and was trained using the darknet neural network framework. The two-stage classifier attained a mean average precision (MAP) of 80%, while the model trained using TinyYoloV3 real-time detection had a mean average precision (MAP) of 59%. Overall, both models were able to correctly classify stages/scenarios of no mask, mask, and incorrectly worn masks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=datasets" title="datasets">datasets</a>, <a href="https://publications.waset.org/abstracts/search?q=classifier" title=" classifier"> classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=mask-detection" title=" mask-detection"> mask-detection</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time" title=" real-time"> real-time</a>, <a href="https://publications.waset.org/abstracts/search?q=TinyYoloV3" title=" TinyYoloV3"> TinyYoloV3</a>, <a href="https://publications.waset.org/abstracts/search?q=two-stage%20neural%20network%20classifier" title=" two-stage neural network classifier"> two-stage neural network classifier</a> </p> <a href="https://publications.waset.org/abstracts/137207/using-machine-learning-to-build-a-real-time-covid-19-mask-safety-monitor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">361</span> The Diminished Online Persona: A Semantic Change of Chinese Classifier Mei on Weibo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hui%20Shi">Hui Shi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates a newly emerged usage of Chinese numeral classifier mei (枚) in the cyberspace. In modern Chinese grammar, mei as a classifier should occupy the pre-nominal position, and its valid accompanying nouns are restricted to small, flat, fragile inanimate objects rather than humans. To examine the semantic change of mei, two types of data from Weibo.com were collected. First, 500 mei-included Weibo posts constructed a corpus for analyzing this classifier's word order distribution (post-nominal or pre-nominal) as well as its accompanying nouns' semantics (inanimate or human). Second, considering that mei accompanies a remarkable number of human nouns in the first corpus, the second corpus is composed of mei-involved Weibo IDs from users located in first and third-tier cities (n=8 respectively). The findings show that in the cyber community, mei frequently classifies human-related neologisms at the archaic post-normal position. Besides, the 23 to 29-year-old females as well as Weibo users from third-tier cities are the major populations who adopt mei in their user IDs for self-description and identity expression. This paper argues that the creative usage of mei gains popularity in the Chinese internet due to a humor effect. The marked word order switch and semantic misapplication combined to trigger incongruity and jocularity. This study has significance for research on Chinese cyber neologism. It may also lay a foundation for further studies on Chinese classifier change and Chinese internet communication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinese%20classifier" title="Chinese classifier">Chinese classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=humor" title=" humor"> humor</a>, <a href="https://publications.waset.org/abstracts/search?q=neologism" title=" neologism"> neologism</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20change" title=" semantic change"> semantic change</a> </p> <a href="https://publications.waset.org/abstracts/95249/the-diminished-online-persona-a-semantic-change-of-chinese-classifier-mei-on-weibo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95249.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">360</span> Breast Cancer Survivability Prediction via Classifier Ensemble</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Al-Badrashiny">Mohamed Al-Badrashiny</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelghani%20Bellaachia"> Abdelghani Bellaachia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na&uml;ıve Bayes algorithms for the underlying classifiers and Na&uml;ıve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classifier%20ensemble" title="classifier ensemble">classifier ensemble</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer%20survivability" title=" breast cancer survivability"> breast cancer survivability</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=SEER" title=" SEER"> SEER</a> </p> <a href="https://publications.waset.org/abstracts/42621/breast-cancer-survivability-prediction-via-classifier-ensemble" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">359</span> Multi-Sensor Target Tracking Using Ensemble Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhekisipho%20Twala">Bhekisipho Twala</a>, <a href="https://publications.waset.org/abstracts/search?q=Mantepu%20Masetshaba"> Mantepu Masetshaba</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramapulana%20Nkoana"> Ramapulana Nkoana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiple classifier systems combine several individual classifiers to deliver a final classification decision. However, an increasingly controversial question is whether such systems can outperform the single best classifier, and if so, what form of multiple classifiers system yields the most significant benefit. Also, multi-target tracking detection using multiple sensors is an important research field in mobile techniques and military applications. In this paper, several multiple classifiers systems are evaluated in terms of their ability to predict a system’s failure or success for multi-sensor target tracking tasks. The Bristol Eden project dataset is utilised for this task. Experimental and simulation results show that the human activity identification system can fulfill requirements of target tracking due to improved sensors classification performances with multiple classifier systems constructed using boosting achieving higher accuracy rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20classifier" title="single classifier">single classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=ensemble%20learning" title=" ensemble learning"> ensemble learning</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-target%20tracking" title=" multi-target tracking"> multi-target tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20classifiers" title=" multiple classifiers"> multiple classifiers</a> </p> <a href="https://publications.waset.org/abstracts/140816/multi-sensor-target-tracking-using-ensemble-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">358</span> Using Classifiers to Predict Student Outcome at Higher Institute of Telecommunication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fuad%20M.%20Alkoot">Fuad M. Alkoot</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We aim at highlighting the benefits of classifier systems especially in supporting educational management decisions. The paper aims at using classifiers in an educational application where an outcome is predicted based on given input parameters that represent various conditions at the institute. We present a classifier system that is designed using a limited training set with data for only one semester. The achieved system is able to reach at previously known outcomes accurately. It is also tested on new input parameters representing variations of input conditions to see its prediction on the possible outcome value. Given the supervised expectation of the outcome for the new input we find the system is able to predict the correct outcome. Experiments were conducted on one semester data from two departments only, Switching and Mathematics. Future work on other departments with larger training sets and wider input variations will show additional benefits of classifier systems in supporting the management decisions at an educational institute. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20recognition" title=" pattern recognition"> pattern recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=classifier%20design" title=" classifier design"> classifier design</a>, <a href="https://publications.waset.org/abstracts/search?q=educational%20management" title=" educational management"> educational management</a>, <a href="https://publications.waset.org/abstracts/search?q=outcome%20estimation" title=" outcome estimation"> outcome estimation</a> </p> <a href="https://publications.waset.org/abstracts/50309/using-classifiers-to-predict-student-outcome-at-higher-institute-of-telecommunication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">357</span> Random Subspace Neural Classifier for Meteor Recognition in the Night Sky </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Vera">Carlos Vera</a>, <a href="https://publications.waset.org/abstracts/search?q=Tetyana%20Baydyk"> Tetyana Baydyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Ernst%20Kussul"> Ernst Kussul</a>, <a href="https://publications.waset.org/abstracts/search?q=Graciela%20Velasco"> Graciela Velasco</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Aparicio"> Miguel Aparicio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article describes the Random Subspace Neural Classifier (RSC) for the recognition of meteors in the night sky. We used images of meteors entering the atmosphere at night between 8:00 p.m.-5: 00 a.m. The objective of this project is to classify meteor and star images (with stars as the image background). The monitoring of the sky and the classification of meteors are made for future applications by scientists. The image database was collected from different websites. We worked with RGB-type images with dimensions of 220x220 pixels stored in the BitMap Protocol (BMP) format. Subsequent window scanning and processing were carried out for each image. The scan window where the characteristics were extracted had the size of 20x20 pixels with a scanning step size of 10 pixels. Brightness, contrast and contour orientation histograms were used as inputs for the RSC. The RSC worked with two classes and classified into: 1) with meteors and 2) without meteors. Different tests were carried out by varying the number of training cycles and the number of images for training and recognition. The percentage error for the neural classifier was calculated. The results show a good RSC classifier response with 89% correct recognition. The results of these experiments are presented and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contour%20orientation%20histogram" title="contour orientation histogram">contour orientation histogram</a>, <a href="https://publications.waset.org/abstracts/search?q=meteors" title=" meteors"> meteors</a>, <a href="https://publications.waset.org/abstracts/search?q=night%20sky" title=" night sky"> night sky</a>, <a href="https://publications.waset.org/abstracts/search?q=RSC%20neural%20classifier" title=" RSC neural classifier"> RSC neural classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=stars" title=" stars "> stars </a> </p> <a href="https://publications.waset.org/abstracts/136153/random-subspace-neural-classifier-for-meteor-recognition-in-the-night-sky" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">356</span> A Reliable Multi-Type Vehicle Classification System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghada%20S.%20Moussa">Ghada S. Moussa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vehicle classification is an important task in traffic surveillance and intelligent transportation systems. Classification of vehicle images is facing several problems such as: high intra-class vehicle variations, occlusion, shadow, illumination. These problems and others must be considered to develop a reliable vehicle classification system. In this study, a reliable multi-type vehicle classification system based on Bag-of-Words (BoW) paradigm is developed. Our proposed system used and compared four well-known classifiers; Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), k-Nearest Neighbour (KNN), and Decision Tree to classify vehicles into four categories: motorcycles, small, medium and large. Experiments on a large dataset show that our approach is efficient and reliable in classifying vehicles with accuracy of 95.7%. The SVM outperforms other classification algorithms in terms of both accuracy and robustness alongside considerable reduction in execution time. The innovativeness of developed system is it can serve as a framework for many vehicle classification systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vehicle%20classification" title="vehicle classification">vehicle classification</a>, <a href="https://publications.waset.org/abstracts/search?q=bag-of-words%20technique" title=" bag-of-words technique"> bag-of-words technique</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM%20classifier" title=" SVM classifier"> SVM classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=LDA%20classifier" title=" LDA classifier"> LDA classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=KNN%20classifier" title=" KNN classifier"> KNN classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree%20classifier" title=" decision tree classifier"> decision tree classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=SIFT%20algorithm" title=" SIFT algorithm"> SIFT algorithm</a> </p> <a href="https://publications.waset.org/abstracts/7262/a-reliable-multi-type-vehicle-classification-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">355</span> Cardiokey: A Binary and Multi-Class Machine Learning Approach to Identify Individuals Using Electrocardiographic Signals on Wearable Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Chami">S. Chami</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Chauvin"> J. Chauvin</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Demarest"> T. Demarest</a>, <a href="https://publications.waset.org/abstracts/search?q=Stan%20Ng"> Stan Ng</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Straus"> M. Straus</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Jahner"> W. Jahner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biometrics tools such as fingerprint and iris are widely used in industry to protect critical assets. However, their vulnerability and lack of robustness raise several worries about the protection of highly critical assets. Biometrics based on Electrocardiographic (ECG) signals is a robust identification tool. However, most of the state-of-the-art techniques have worked on clinical signals, which are of high quality and less noisy, extracted from wearable devices like a smartwatch. In this paper, we are presenting a complete machine learning pipeline that identifies people using ECG extracted from an off-person device. An off-person device is a wearable device that is not used in a medical context such as a smartwatch. In addition, one of the main challenges of ECG biometrics is the variability of the ECG of different persons and different situations. To solve this issue, we proposed two different approaches: per person classifier, and one-for-all classifier. The first approach suggests making binary classifier to distinguish one person from others. The second approach suggests a multi-classifier that distinguishes the selected set of individuals from non-selected individuals (others). The preliminary results, the binary classifier obtained a performance 90% in terms of accuracy within a balanced data. The second approach has reported a log loss of 0.05 as a multi-class score. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biometrics" title="biometrics">biometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocardiographic" title=" electrocardiographic"> electrocardiographic</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=signals%20processing" title=" signals processing"> signals processing</a> </p> <a href="https://publications.waset.org/abstracts/114879/cardiokey-a-binary-and-multi-class-machine-learning-approach-to-identify-individuals-using-electrocardiographic-signals-on-wearable-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">354</span> Bundle Block Detection Using Spectral Coherence and Levenberg Marquardt Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Padmavathi">K. Padmavathi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Sri%20Ramakrishna"> K. Sri Ramakrishna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study describes a procedure for the detection of Left and Right Bundle Branch Block (LBBB and RBBB) ECG patterns using spectral Coherence(SC) technique and LM Neural Network. The Coherence function finds common frequencies between two signals and evaluate the similarity of the two signals. The QT variations of Bundle Blocks are observed in lead V1 of ECG. Spectral Coherence technique uses Welch method for calculating PSD. For the detection of normal and Bundle block beats, SC output values are given as the input features for the LMNN classifier. Overall accuracy of LMNN classifier is 99.5 percent. The data was collected from MIT-BIH Arrhythmia database. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bundle%20block" title="bundle block">bundle block</a>, <a href="https://publications.waset.org/abstracts/search?q=SC" title=" SC"> SC</a>, <a href="https://publications.waset.org/abstracts/search?q=LMNN%20classifier" title=" LMNN classifier"> LMNN classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=welch%20method" title=" welch method"> welch method</a>, <a href="https://publications.waset.org/abstracts/search?q=PSD" title=" PSD"> PSD</a>, <a href="https://publications.waset.org/abstracts/search?q=MIT-BIH" title=" MIT-BIH"> MIT-BIH</a>, <a href="https://publications.waset.org/abstracts/search?q=arrhythmia%20database" title=" arrhythmia database"> arrhythmia database</a> </p> <a href="https://publications.waset.org/abstracts/17530/bundle-block-detection-using-spectral-coherence-and-levenberg-marquardt-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">353</span> Studies on Mechanical Behavior of Kevlar/Kenaf/Graphene Reinforced Polymer Based Hybrid Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20K.%20Shivanand">H. K. Shivanand</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjith%20R.%20Hombal"> Ranjith R. Hombal</a>, <a href="https://publications.waset.org/abstracts/search?q=Paraveej%20Shirahatti"> Paraveej Shirahatti</a>, <a href="https://publications.waset.org/abstracts/search?q=Gujjalla%20Anil%20Babu"> Gujjalla Anil Babu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20ShivaPrakash"> S. ShivaPrakash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When it comes to the selection of materials the knowledge of materials science plays a vital role in selection and enhancements of materials properties. In the world of material science a composite material has the significant role based on its application. The composite materials are those in which two or more components having different physical and chemical properties are combined to create a new enhanced property substance. In this study three different materials (Kenaf, Kevlar and Graphene) been chosen based on their properties and a composite material is developed with help of vacuum bagging process. The fibers (Kenaf and Kevlar) and Resin(vinyl ester) ratio was maintained at 70:30 during the process and 0.5% 1% and 1.5% of Graphene was added during fabrication process. The material was machined to thedimension ofASTM standards(300×300mm and thickness 3mm)with help of water jet cutting machine. The composite materials were tested for Mechanical properties such as Interlaminar shear strength(ILSS) and Flexural strength. It is found that there is significant increase in material properties in the developed composite material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kevlar" title="Kevlar">Kevlar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenaf" title=" Kenaf"> Kenaf</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20bagging%20process" title=" vacuum bagging process"> vacuum bagging process</a>, <a href="https://publications.waset.org/abstracts/search?q=Interlaminar%20shear%20strength%20test" title=" Interlaminar shear strength test"> Interlaminar shear strength test</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20test" title=" flexural test"> flexural test</a> </p> <a href="https://publications.waset.org/abstracts/174472/studies-on-mechanical-behavior-of-kevlarkenafgraphene-reinforced-polymer-based-hybrid-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">352</span> Performance Evaluation of Contemporary Classifiers for Automatic Detection of Epileptic EEG</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20E.%20Ch.%20Vidyasagar">K. E. Ch. Vidyasagar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Moghavvemi"> M. Moghavvemi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20S.%20T.%20Prabhat"> T. S. S. T. Prabhat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Epilepsy is a global problem, and with seizures eluding even the smartest of diagnoses a requirement for automatic detection of the same using electroencephalogram (EEG) would have a huge impact in diagnosis of the disorder. Among a multitude of methods for automatic epilepsy detection, one should find the best method out, based on accuracy, for classification. This paper reasons out, and rationalizes, the best methods for classification. Accuracy is based on the classifier, and thus this paper discusses classifiers like quadratic discriminant analysis (QDA), classification and regression tree (CART), support vector machine (SVM), naive Bayes classifier (NBC), linear discriminant analysis (LDA), K-nearest neighbor (KNN) and artificial neural networks (ANN). Results show that ANN is the most accurate of all the above stated classifiers with 97.7% accuracy, 97.25% specificity and 98.28% sensitivity in its merit. This is followed closely by SVM with 1% variation in result. These results would certainly help researchers choose the best classifier for detection of epilepsy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/abstracts/search?q=seizure" title=" seizure"> seizure</a>, <a href="https://publications.waset.org/abstracts/search?q=KNN" title=" KNN"> KNN</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM" title=" SVM"> SVM</a>, <a href="https://publications.waset.org/abstracts/search?q=LDA" title=" LDA"> LDA</a>, <a href="https://publications.waset.org/abstracts/search?q=ANN" title=" ANN"> ANN</a>, <a href="https://publications.waset.org/abstracts/search?q=epilepsy" title=" epilepsy"> epilepsy</a> </p> <a href="https://publications.waset.org/abstracts/14692/performance-evaluation-of-contemporary-classifiers-for-automatic-detection-of-epileptic-eeg" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">351</span> Short Text Classification for Saudi Tweets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20A.%20Alsufyani">Asma A. Alsufyani</a>, <a href="https://publications.waset.org/abstracts/search?q=Maram%20A.%20Alharthi"> Maram A. Alharthi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maha%20J.%20Althobaiti"> Maha J. Althobaiti</a>, <a href="https://publications.waset.org/abstracts/search?q=Manal%20S.%20Alharthi"> Manal S. Alharthi</a>, <a href="https://publications.waset.org/abstracts/search?q=Huda%20Rizq"> Huda Rizq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Twitter is one of the most popular microblogging sites that allows users to publish short text messages called 'tweets'. Increasing the number of accounts to follow (followings) increases the number of tweets that will be displayed from different topics in an unclassified manner in the timeline of the user. Therefore, it can be a vital solution for many Twitter users to have their tweets in a timeline classified into general categories to save the user’s time and to provide easy and quick access to tweets based on topics. In this paper, we developed a classifier for timeline tweets trained on a dataset consisting of 3600 tweets in total, which were collected from Saudi Twitter and annotated manually. We experimented with the well-known Bag-of-Words approach to text classification, and we used support vector machines (SVM) in the training process. The trained classifier performed well on a test dataset, with an average F1-measure equal to 92.3%. The classifier has been integrated into an application, which practically proved the classifier’s ability to classify timeline tweets of the user. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corpus%20creation" title="corpus creation">corpus creation</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=short%20text%20classification" title=" short text classification"> short text classification</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20media" title=" social media"> social media</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a>, <a href="https://publications.waset.org/abstracts/search?q=Twitter" title=" Twitter"> Twitter</a> </p> <a href="https://publications.waset.org/abstracts/130952/short-text-classification-for-saudi-tweets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bagging%20Classifier&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bagging%20Classifier&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bagging%20Classifier&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bagging%20Classifier&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bagging%20Classifier&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bagging%20Classifier&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bagging%20Classifier&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bagging%20Classifier&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bagging%20Classifier&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bagging%20Classifier&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bagging%20Classifier&amp;page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bagging%20Classifier&amp;page=13">13</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bagging%20Classifier&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10