CINXE.COM

Atle Nesje | University of Bergen - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Atle Nesje | University of Bergen - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="kvSg5qQslz_fKj07EAaCjO2EUZ9Ox2FJFSGO7hC49XuV1T_-TPksAPaqYUyFEJuCZSclaykOKswq1-YGF4gj_Q" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/single_work_page/figure_carousel-2004283e0948681916eefa74772df54f56cb5c7413d82b160212231c2f474bb3.css" media="all" /><script type="application/ld+json">{"@context":"https://schema.org","@type":"ProfilePage","mainEntity":{"@context":"https://schema.org","@type":"Person","name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje","sameAs":[]},"dateCreated":"2015-07-29T13:25:19-07:00","dateModified":"2019-08-11T22:39:24-07:00","name":"Atle Nesje","description":"","sameAs":[],"relatedLink":"https://www.academia.edu/35746378/The_chronology_of_reindeer_hunting_on_Norways_highest_ice_patches"}</script><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/button-8c9ae4b5c8a2531640c354d92a1f3579c8ff103277ef74913e34c8a76d4e6c00.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/single_work_page/figure_carousel-2004283e0948681916eefa74772df54f56cb5c7413d82b160212231c2f474bb3.css" media="all" /><style type="text/css">@media(max-width: 567px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 32px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 30px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 30px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 24px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 24px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 18px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 32px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 20px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 32px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 40px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 24px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 26px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 48px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 52px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 48px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 58px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 80px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 64px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 568px)and (max-width: 1279px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 104px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 1280px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 38px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 152px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}</style><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/common-57f9da13cef3fd4e2a8b655342c6488eded3e557e823fe67571f2ac77acd7b6f.css" media="all" /> <meta name="author" content="atle nesje" /> <meta name="description" content="Atle Nesje, University of Bergen: 133 Followers, 37 Following, 169 Research papers. Research interests: Palaeoclimatology, Palaeoecology, and Applications of…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'fc9704ab29969ace70ae5a7183a1ea87c53b7b1c'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":13898,"monthly_visitors":"31 million","monthly_visitor_count":31300000,"monthly_visitor_count_in_millions":31,"user_count":286389803,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1743849789000); window.Aedu.timeDifference = new Date().getTime() - 1743849789000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" media="all" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/academia-9982828ed1de4777566441c35ccf7157c55ca779141fce69380d727ebdbbb926.css" media="all" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" media="all" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-7a64a3c38a29bc41c7f849e23ebd5bcb2b2df1201e0997a11aeca732433c8f4f.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-fcdc3d92f84da311a1719c39a9ce23e4fc404efc061db3295349654890f352b9.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://uib.academia.edu/AtleNesje" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-f7aa9c07f7280b761db42ad8596e5fda81657e2511386a62cbe852b9a6f8fa36.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje","photo":"/images/s65_no_pic.png","has_photo":false,"department":{"id":43069,"name":"Department of Earth Science","url":"https://uib.academia.edu/Departments/Department_of_Earth_Science/Documents","university":{"id":1349,"name":"University of Bergen","url":"https://uib.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":292,"name":"Palaeoclimatology","url":"https://www.academia.edu/Documents/in/Palaeoclimatology"},{"id":17472,"name":"Palaeoecology","url":"https://www.academia.edu/Documents/in/Palaeoecology"},{"id":64700,"name":"Applications of Geoinformatics in Earth science","url":"https://www.academia.edu/Documents/in/Applications_of_Geoinformatics_in_Earth_science"},{"id":1184568,"name":"Macrofossil Analysis","url":"https://www.academia.edu/Documents/in/Macrofossil_Analysis"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://uib.academia.edu/AtleNesje&quot;,&quot;location&quot;:&quot;/AtleNesje&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;uib.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/AtleNesje&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-7cff5d03-4710-4c57-9846-979b57dae34d"></div> <div id="ProfileCheckPaperUpdate-react-component-7cff5d03-4710-4c57-9846-979b57dae34d"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Atle Nesje</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://uib.academia.edu/">University of Bergen</a>, <a class="u-tcGrayDarker" href="https://uib.academia.edu/Departments/Department_of_Earth_Science/Documents">Department of Earth Science</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Atle" data-follow-user-id="33441460" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="33441460"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">133</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">37</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">37</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="suggested-academics-container"><div class="suggested-academics--header"><h3 class="ds2-5-heading-sans-serif-xs">Related Authors</h3></div><ul class="suggested-user-card-list" data-nosnippet="true"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://oppland.academia.edu/LarsPil%C3%B8"><img class="profile-avatar u-positionAbsolute" alt="Lars Pilø related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/3066100/1007859/1260203/s200_lars.pil_.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://oppland.academia.edu/LarsPil%C3%B8">Lars Pilø</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://ntnu-no.academia.edu/James_H_Barrett"><img class="profile-avatar u-positionAbsolute" alt="James H Barrett related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/183864/760574/30845997/s200_james.barrett.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ntnu-no.academia.edu/James_H_Barrett">James H Barrett</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Norwegian University of Science and Technology</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://uio.academia.edu/VivianWangen"><img class="profile-avatar u-positionAbsolute" alt="Vivian Wangen related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uio.academia.edu/VivianWangen">Vivian Wangen</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Oslo</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://uio.academia.edu/BritSolli"><img class="profile-avatar u-positionAbsolute" alt="Brit Solli related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/11596466/16046964/16519508/s200_brit.solli.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uio.academia.edu/BritSolli">Brit Solli</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Oslo</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://uibk.academia.edu/ThomasBachnetzer"><img class="profile-avatar u-positionAbsolute" alt="Thomas Bachnetzer related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/27338974/7774177/144691806/s200_thomas.bachnetzer.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uibk.academia.edu/ThomasBachnetzer">Thomas Bachnetzer</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Innsbruck</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://uio.academia.edu/JulianRobertPostMartinsen"><img class="profile-avatar u-positionAbsolute" alt="Julian R O B E R T Post-Melbye related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/50692515/15239154/18838266/s200_julian_robert_post.martinsen.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uio.academia.edu/JulianRobertPostMartinsen">Julian R O B E R T Post-Melbye</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Oslo</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/RunarHole"><img class="profile-avatar u-positionAbsolute" alt="Runar Hole related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/40176341/11683849/13027089/s200_runar.hole.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/RunarHole">Runar Hole</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://ntnu-no.academia.edu/MartinCallanan"><img class="profile-avatar u-positionAbsolute" alt="Martin Callanan related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/29792829/9364804/10437207/s200_martin.callanan.jpeg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ntnu-no.academia.edu/MartinCallanan">Martin Callanan</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Norwegian University of Science and Technology</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://unibe-ch2.academia.edu/ChiaraUglietti"><img class="profile-avatar u-positionAbsolute" alt="Chiara Uglietti related author profile picture" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/2585883/812150/1010129/s200_chiara.uglietti.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://unibe-ch2.academia.edu/ChiaraUglietti">Chiara Uglietti</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Bern</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://ntnu-no.academia.edu/EinarKristensen"><img class="profile-avatar u-positionAbsolute" alt="Einar Kristensen related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ntnu-no.academia.edu/EinarKristensen">Einar Kristensen</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Norwegian University of Science and Technology</p></div></div></ul></div><style type="text/css">.suggested-academics--header h3{font-size:16px;font-weight:500;line-height:20px}</style><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33441460" href="https://www.academia.edu/Documents/in/Palaeoclimatology"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://uib.academia.edu/AtleNesje&quot;,&quot;location&quot;:&quot;/AtleNesje&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;uib.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/AtleNesje&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Palaeoclimatology&quot;]}" data-trace="false" data-dom-id="Pill-react-component-71806f7b-eb77-488a-9ad7-cc2b3adce25f"></div> <div id="Pill-react-component-71806f7b-eb77-488a-9ad7-cc2b3adce25f"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33441460" href="https://www.academia.edu/Documents/in/Macrofossil_Analysis"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Macrofossil Analysis&quot;]}" data-trace="false" data-dom-id="Pill-react-component-4c36d3ae-83d7-4309-85b8-389f56daf504"></div> <div id="Pill-react-component-4c36d3ae-83d7-4309-85b8-389f56daf504"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="nav-container backbone-profile-documents-nav hidden-xs"><ul class="nav-tablist" role="tablist"><li class="nav-chip active" role="presentation"><a data-section-name="" data-toggle="tab" href="#all" role="tab">all</a></li><li class="nav-chip" role="presentation"><a class="js-profile-docs-nav-section u-textTruncate" data-click-track="profile-works-tab" data-section-name="Papers" data-toggle="tab" href="#papers" role="tab" title="Papers"><span>164</span>&nbsp;<span class="ds2-5-body-sm-bold">Papers</span></a></li><li class="nav-chip" role="presentation"><a class="js-profile-docs-nav-section u-textTruncate" data-click-track="profile-works-tab" data-section-name="Articles" data-toggle="tab" href="#articles" role="tab" title="Articles"><span>1</span>&nbsp;<span class="ds2-5-body-sm-bold">Articles</span></a></li><li class="nav-chip" role="presentation"><a class="js-profile-docs-nav-section u-textTruncate" data-click-track="profile-works-tab" data-section-name="Books" data-toggle="tab" href="#books" role="tab" title="Books"><span>1</span>&nbsp;<span class="ds2-5-body-sm-bold">Books</span></a></li><li class="nav-chip" role="presentation"><a class="js-profile-docs-nav-section u-textTruncate" data-click-track="profile-works-tab" data-section-name="Journal-Articles" data-toggle="tab" href="#journalarticles" role="tab" title="Journal Articles"><span>1</span>&nbsp;<span class="ds2-5-body-sm-bold">Journal Articles</span></a></li></ul></div><div class="divider ds-divider-16" style="margin: 0px;"></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Atle Nesje</h3></div><div class="js-work-strip profile--work_container" data-work-id="1360476"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1360476/Holocene_glaciation_and_climate_evolution_of_Baffin_Island_Arctic_Canada"><img alt="Research paper thumbnail of Holocene glaciation and climate evolution of Baffin Island, Arctic Canada" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Holocene glaciation and climate evolution of Baffin Island, Arctic Canada</div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://uib.academia.edu/AtleNesje">Atle Nesje</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://indiana.academia.edu/PeterSauer">Peter E Sauer</a></span></div><div class="wp-workCard_item"><span>Quaternary Science …</span><span>, Jan 1, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Lake sediment cores and cosmogenic exposure (CE) dates constrain the pattern of deglaciation and ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Lake sediment cores and cosmogenic exposure (CE) dates constrain the pattern of deglaciation and evolution of climate across Baffin Island since the last glacial maximum (LGM). CE dating of erratics demonstrates that the northeastern coastal lowlands became ice-free ca.14ka as the Laurentide Ice Sheet (LIS) receded from its LGM margin on the continental shelf. Coastal lakes in southeastern Baffin Island</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1360476"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1360476"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1360476; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1360476]").text(description); $(".js-view-count[data-work-id=1360476]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1360476; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1360476']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1360476]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1360476,"title":"Holocene glaciation and climate evolution of Baffin Island, Arctic Canada","translated_title":"","metadata":{"abstract":"Lake sediment cores and cosmogenic exposure (CE) dates constrain the pattern of deglaciation and evolution of climate across Baffin Island since the last glacial maximum (LGM). CE dating of erratics demonstrates that the northeastern coastal lowlands became ice-free ca.14ka as the Laurentide Ice Sheet (LIS) receded from its LGM margin on the continental shelf. Coastal lakes in southeastern Baffin Island","publisher":"Elsevier","publication_date":{"day":1,"month":1,"year":2005,"errors":{}},"publication_name":"Quaternary Science …"},"translated_abstract":"Lake sediment cores and cosmogenic exposure (CE) dates constrain the pattern of deglaciation and evolution of climate across Baffin Island since the last glacial maximum (LGM). CE dating of erratics demonstrates that the northeastern coastal lowlands became ice-free ca.14ka as the Laurentide Ice Sheet (LIS) receded from its LGM margin on the continental shelf. Coastal lakes in southeastern Baffin Island","internal_url":"https://www.academia.edu/1360476/Holocene_glaciation_and_climate_evolution_of_Baffin_Island_Arctic_Canada","translated_internal_url":"","created_at":"2012-02-08T05:50:19.734-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":477144,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":32896831,"work_id":1360476,"tagging_user_id":477144,"tagged_user_id":33441460,"co_author_invite_id":null,"email":"a***e@geo.uib.no","affiliation":"University of Bergen","display_order":0,"name":"Atle Nesje","title":"Holocene glaciation and climate evolution of Baffin Island, Arctic Canada"},{"id":32896846,"work_id":1360476,"tagging_user_id":477144,"tagged_user_id":null,"co_author_invite_id":470150,"email":"j***r@buffalo.edu","display_order":4194304,"name":"Jason Briner","title":"Holocene glaciation and climate evolution of Baffin Island, Arctic Canada"},{"id":32896852,"work_id":1360476,"tagging_user_id":477144,"tagged_user_id":16930839,"co_author_invite_id":null,"email":"a***e@ualberta.ca","display_order":6291456,"name":"Alex Wolfe","title":"Holocene glaciation and climate evolution of Baffin Island, Arctic Canada"},{"id":32896857,"work_id":1360476,"tagging_user_id":477144,"tagged_user_id":42411574,"co_author_invite_id":null,"email":"g***r@colorado.edu","display_order":7340032,"name":"Gifford Miller","title":"Holocene glaciation and climate evolution of Baffin Island, Arctic Canada"}],"downloadable_attachments":[],"slug":"Holocene_glaciation_and_climate_evolution_of_Baffin_Island_Arctic_Canada","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Lake sediment cores and cosmogenic exposure (CE) dates constrain the pattern of deglaciation and evolution of climate across Baffin Island since the last glacial maximum (LGM). CE dating of erratics demonstrates that the northeastern coastal lowlands became ice-free ca.14ka as the Laurentide Ice Sheet (LIS) receded from its LGM margin on the continental shelf. Coastal lakes in southeastern Baffin Island","impression_tracking_id":null,"owner":{"id":477144,"first_name":"Peter","middle_initials":"E","last_name":"Sauer","page_name":"PeterSauer","domain_name":"indiana","created_at":"2011-06-07T00:16:50.301-07:00","display_name":"Peter E Sauer","url":"https://indiana.academia.edu/PeterSauer"},"attachments":[],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":29759,"name":"Sea Ice","url":"https://www.academia.edu/Documents/in/Sea_Ice"},{"id":79294,"name":"Quaternary Science","url":"https://www.academia.edu/Documents/in/Quaternary_Science"},{"id":93755,"name":"History and archaeology","url":"https://www.academia.edu/Documents/in/History_and_archaeology"},{"id":142810,"name":"Surface Water","url":"https://www.academia.edu/Documents/in/Surface_Water"},{"id":150013,"name":"Late Holocene","url":"https://www.academia.edu/Documents/in/Late_Holocene"},{"id":152776,"name":"Younger Dryas","url":"https://www.academia.edu/Documents/in/Younger_Dryas"},{"id":175472,"name":"Arctic Ocean","url":"https://www.academia.edu/Documents/in/Arctic_Ocean"},{"id":182364,"name":"Little Ice Age","url":"https://www.academia.edu/Documents/in/Little_Ice_Age"},{"id":185526,"name":"Last Glacial Maximum","url":"https://www.academia.edu/Documents/in/Last_Glacial_Maximum"},{"id":214119,"name":"Laurentide Ice Sheet","url":"https://www.academia.edu/Documents/in/Laurentide_Ice_Sheet"},{"id":230435,"name":"Continental shelf","url":"https://www.academia.edu/Documents/in/Continental_shelf"},{"id":289852,"name":"Primary Production","url":"https://www.academia.edu/Documents/in/Primary_Production"},{"id":338205,"name":"Early Holocene","url":"https://www.academia.edu/Documents/in/Early_Holocene"},{"id":373417,"name":"Quaternary Science Reviews","url":"https://www.academia.edu/Documents/in/Quaternary_Science_Reviews"},{"id":970387,"name":"Organic Matter","url":"https://www.academia.edu/Documents/in/Organic_Matter"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1360476-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874042"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30874042/Geometry_thickness_and_isostatic_loading_of_the_late_weichselian_scandinavian_ice_sheet"><img alt="Research paper thumbnail of Geometry, thickness and isostatic loading of the late weichselian scandinavian ice sheet" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Geometry, thickness and isostatic loading of the late weichselian scandinavian ice sheet</div><div class="wp-workCard_item"><span>Norsk Geologisk Tidsskrift</span><span>, 1992</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874042"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874042"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874042; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874042]").text(description); $(".js-view-count[data-work-id=30874042]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874042; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874042']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30874042]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874042,"title":"Geometry, thickness and isostatic loading of the late weichselian scandinavian ice sheet","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_date":{"day":null,"month":null,"year":1992,"errors":{}},"publication_name":"Norsk Geologisk Tidsskrift"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/30874042/Geometry_thickness_and_isostatic_loading_of_the_late_weichselian_scandinavian_ice_sheet","translated_internal_url":"","created_at":"2017-01-11T05:01:34.265-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Geometry_thickness_and_isostatic_loading_of_the_late_weichselian_scandinavian_ice_sheet","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[],"research_interests":[{"id":35587,"name":"Quaternary","url":"https://www.academia.edu/Documents/in/Quaternary"},{"id":65140,"name":"Models","url":"https://www.academia.edu/Documents/in/Models"},{"id":958658,"name":"Ice Sheets","url":"https://www.academia.edu/Documents/in/Ice_Sheets"}],"urls":[{"id":7880225,"url":"http://cat.inist.fr/?aModele=afficheN\u0026cpsidt=5555947"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874042-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874041"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30874041/Quantification_of_late_Cenozoic_erosion_and_denudation_in_the_Sognefjord_drainage_basin_western_Norway"><img alt="Research paper thumbnail of Quantification of late Cenozoic erosion and denudation in the Sognefjord drainage basin, western Norway" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Quantification of late Cenozoic erosion and denudation in the Sognefjord drainage basin, western Norway</div><div class="wp-workCard_item"><span>Norsk Geogr Tidsskr Nor J Geo</span><span>, 1994</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT The total late Cenozoic erosion and denudation in the Sognefjord drainage basin, western...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT The total late Cenozoic erosion and denudation in the Sognefjord drainage basin, western Norway, has been calculated to about 5400 km3 by subtracting the present topography from a reconstructed preglacial (paléic) surface. This volume corresponds to a mean erosion and denudation of 440 m in the Sognefjord drainage basin. The total volume of subaerial denudation and fluvial activity amounts to about 400 km3. The remaining volume of about 5000 km3 yields a mean glacial erosion of about 400 m in the Sognefjord drainage basin. Assuming glacial erosion in a period of 1 million years during the past 2.57 million years, the average rate of glacial erosion in the Sognefjord drainage basin was about 40cm 1000 yr-1 (0.4mm yr-1).</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874041"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874041"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874041; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874041]").text(description); $(".js-view-count[data-work-id=30874041]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874041; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874041']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30874041]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874041,"title":"Quantification of late Cenozoic erosion and denudation in the Sognefjord drainage basin, western Norway","translated_title":"","metadata":{"abstract":"ABSTRACT The total late Cenozoic erosion and denudation in the Sognefjord drainage basin, western Norway, has been calculated to about 5400 km3 by subtracting the present topography from a reconstructed preglacial (paléic) surface. This volume corresponds to a mean erosion and denudation of 440 m in the Sognefjord drainage basin. The total volume of subaerial denudation and fluvial activity amounts to about 400 km3. The remaining volume of about 5000 km3 yields a mean glacial erosion of about 400 m in the Sognefjord drainage basin. Assuming glacial erosion in a period of 1 million years during the past 2.57 million years, the average rate of glacial erosion in the Sognefjord drainage basin was about 40cm 1000 yr-1 (0.4mm yr-1).","publication_date":{"day":null,"month":null,"year":1994,"errors":{}},"publication_name":"Norsk Geogr Tidsskr Nor J Geo"},"translated_abstract":"ABSTRACT The total late Cenozoic erosion and denudation in the Sognefjord drainage basin, western Norway, has been calculated to about 5400 km3 by subtracting the present topography from a reconstructed preglacial (paléic) surface. This volume corresponds to a mean erosion and denudation of 440 m in the Sognefjord drainage basin. The total volume of subaerial denudation and fluvial activity amounts to about 400 km3. The remaining volume of about 5000 km3 yields a mean glacial erosion of about 400 m in the Sognefjord drainage basin. Assuming glacial erosion in a period of 1 million years during the past 2.57 million years, the average rate of glacial erosion in the Sognefjord drainage basin was about 40cm 1000 yr-1 (0.4mm yr-1).","internal_url":"https://www.academia.edu/30874041/Quantification_of_late_Cenozoic_erosion_and_denudation_in_the_Sognefjord_drainage_basin_western_Norway","translated_internal_url":"","created_at":"2017-01-11T05:01:33.864-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Quantification_of_late_Cenozoic_erosion_and_denudation_in_the_Sognefjord_drainage_basin_western_Norway","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT The total late Cenozoic erosion and denudation in the Sognefjord drainage basin, western Norway, has been calculated to about 5400 km3 by subtracting the present topography from a reconstructed preglacial (paléic) surface. This volume corresponds to a mean erosion and denudation of 440 m in the Sognefjord drainage basin. The total volume of subaerial denudation and fluvial activity amounts to about 400 km3. The remaining volume of about 5000 km3 yields a mean glacial erosion of about 400 m in the Sognefjord drainage basin. Assuming glacial erosion in a period of 1 million years during the past 2.57 million years, the average rate of glacial erosion in the Sognefjord drainage basin was about 40cm 1000 yr-1 (0.4mm yr-1).","impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[],"research_interests":[{"id":262,"name":"Human Geography","url":"https://www.academia.edu/Documents/in/Human_Geography"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874041-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874040"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30874040/Glacial_landforms_and_Quaternary_landscape_development_in_Norway"><img alt="Research paper thumbnail of Glacial landforms and Quaternary landscape development in Norway" class="work-thumbnail" src="https://attachments.academia-assets.com/51300480/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30874040/Glacial_landforms_and_Quaternary_landscape_development_in_Norway">Glacial landforms and Quaternary landscape development in Norway</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Norwegian landscape is a function of geological processes working over very long time spans, ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Norwegian landscape is a function of geological processes working over very long time spans, and first order structures might for example be traced to the ancient denudational processes, the Caledonian orogeny or break-up of the North Atlantic. However, a large portion of large-, intermediate-, and small-scale landforms in Norway owe their existence to Quaternary glaciations or periglacial processes. The Quaternary time period (the last c. 3 million years), is characterised by cool and variable climate with temperatures oscillating between relative mildness to frigid ice-age conditions. A wide spectrum of climate-driven geomorphological processes has thus been acting in Norway, but the numerous glaciations have had the most profound effect with the production of large U-shaped valleys, fjords and Alpine relief. On the other hand, interior and upland areas in Norway seem to be largely unaffected by glacial erosion and exhibit a possibly pre-Quaternary landscape with only some periglacial influence. The ice sheets in Scandinavia thus have redistributed rock mass and sediments in the landscape with the largest glaciogenic deposits being found on the continental shelf. Large Quaternary deposits and valley fills can also be found onshore and these are now valuable resources for aggregates, ground water and agriculture. Important Quaternary processes have also been acting along the Norwegian coast with denudation of the famous strandflat, where the formation processes are not fully understood. The isostatic depression of crust under the vast ice sheets have also lead to important consequences, with thick deposits of potentially unstable, fine-grained glaciomarine sediments in quite large areas of Norway. It is thus clear that much of Norway&#39;s beauty but also geohazard problems can be explained with the actions of Quaternary geomorphological processes.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-30874040-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-30874040-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375406/figure-1-first-order-glacial-erosion-landforms-are-centred"><img alt="Figure 1. First-order glacial erosion landforms are centred around the Scandinavian mountain chain with fords on the Norwegian coast and deep piedmont lakes east of the mountains " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375407/figure-2-relict-nonglacial-surfaces-east-of-the-lyngen-fjord"><img alt="Figure 2. Relict nonglacial surfaces east of the Lyngen fjord in Troms. Note that all mountains reach essentially the same altitude and the very flat appearance of the surfaces. These surfaces have probably been connected into a flat, undulating landscape which was uplifted and eroded through fluvial and glacial processes in the Neogene. Total relief in the area, including the ford, is on the order of 2 km. It is evident that glacial erosion has altered the preglacial landscape profoundly in many areas but conversely it also seems likely that pre-Quaternary topography has conditioned glacial erosion. Pre-Quaternary fluvial valleys probably focused glacier ice flow early on in the Quaternary glacial history, thus creating a positive feedback where subsequent ice flow continued to deepen these valleys. It follows, which a large body of geomorphological literature also shows, that Quaternary glaciations have eroded the landscape selectively (e.g., Sugden 1978, Nesje and Whillans 1994, Lidmar-Bergstrém et al. 2000, Li et al. 2005, Fjellanger et al. 2006, Staiger et al. 2005, Phillips et al. 2006), creating mountainous areas with deeply incised troughs and virtually nonaffected uplands. These noneroded uplands are henceforth called relict nonglacial " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375408/figure-3-was-able-to-create-features-similar-to-both"><img alt="was able to create features similar to both crescentic fractures and gouges. Up-ice concave and convex features were shown to be conditioned by the effective pressure applied by the ball bearing during these experiments, where up-ice concave features preferably formed when a high level of pressure was applied (Smith 1984). Good examples of striae, crescentic fractures and gouges can e.g., be found in the coastal landscape of southern Norway and in front of contemporary glaciers. Roches moutonées and rock drumlins are bedrock cnolls that have been polished by glacial abrasion. Depending yn bedrock joints and grains these landforms often become he glacier has evacuated pre-Quaternary) topogra ‘longated in the ice-flow direction and are thus excellent ndicators of former ice flow. Roches moutonées differ from ‘ock drumlins in that they have a plucked lee-side slope, where parts of the bedrock knoll, probably hrough freeze-on processes. It is debated whether roches noutonées and rock drumlins are governed by a pre-existing phy, perhaps akin to a stripped etch urface or if they are primarily formed by glacial abrasion Lindstr6m 1988, Johansson et al. 2001). Many areas in outhern Norway exhibit beautiful Roches moutonées and rock rumlins; this is probably due to rapid ice movement in the ‘un-up zone for the Norwegian channel ice stream (Sejrup et U. 2000, 2003). knolls that have been polished by glacial abrasion. Depending " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375409/figure-4-shaped-valley-with-overdeepened-lake-basin-at-lake"><img alt="Figure 4, U-shaped valley with overdeepened lake basin at lake Loen close to Nordford, western Norway Fjords are essentially glacial troughs cut into bedrock below today’s sea level and is perhaps the most prominent landscape feature in Norway (Figure 4). Fjords are formed much in the same way as U-shaped valleys although the overdeepening in fjords may be even more pronounced forming sills at the fford mouth (Lysa et al. 2009). It is thought that these sills were formed due to less glacial erosion at the coast where the former ice tongues spread out and became thinner (Aarseth 1997). As with U-shaped valleys, fords often follows fault zones, which may give rise to distinct fjord networks as is evident for example on the Mare coast (Gabrielsen et al. 2002). Fjords are important sinks for interglacial sediments (Aarseth 1997, Lysa et al. 2009). Indeed Aarseth (1997), calculated that about 150 km3 Holocene sediments reside in the main Norwegian fjords. Aarseth (1997) also considered most fjord sediments to be evacuated during main glaciations and, consequently, transported and deposited onto the continental shelf or shelf break. Subglacial channels may be formed by highly pressurised water, which is governed by the hydraulic potential gradient within the glacier. The subglacial water may thus defy gravity and cause subglacial meltwater channels that are at odds with topography or with an irregular longitudinal profile. Subglacial meltwater channels, naturally, require flowing water beneath the ice and thus indicate warm-based ice. Subglacial channels may be formed by highly pressurised " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375411/figure-6-smaller-glaciofluvial-erosional-landforms-include"><img alt="Smaller glaciofluvial erosional landforms include potholes (Figure 6) and P-forms. These are local features that are thought to represent highly dynamical, subglacial conditions where large volumes of meltwater are involved (Dahl 1965). formed through the catastrophic drainage of the vast “Nedre Glamsjo’ ice dammed lake about 10,300 years ago (Longva and Toresen 1991). " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_005.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375413/figure-7-end-moraines-or-more-generally-ice-marginal"><img alt="End moraines or more generally ice-marginal moraines are formed at the glacier margin by either: 1) glacier dumping of debris, 2) ablation or freeze-out of debris and, 3) glaciotectonic processes including pushing of proglacial sediments. Other pro- cesses might also be involved, such as rockfall or slope processes depositing material at the glacier margin. A vast amount of lit- erature describes the various types of ice-marginal moraines and depositional processes (e.g., Clayton and Moran 1974, Boulton and Eyles 1979, Hambrey and Huddart 1995, Bennet 2001). End moraines are important glacial landforms since they in- dicate a glacier advance or still-stand and are thus diagnostic in reconstructing ice-sheet dynamics and configurations. One orwegian end moraine, the Vassryggen Younger Dryas end moraine southeast of Stavanger, was used by Jens Esmark to support the theory of ice ages already in 1824 (Worsley 2006, Figure 7). Ice-marginal moraines are common in Norway and are commonly found in the proglacial areas of present glaciers. Many of these end moraines were formed during the ‘Little Ice Age’ (maximum at about AD 1750) and subsequent glacier re- treat (Nesje et al. 1991, Mathews 2005, Burki et al. 2009). Also other Holocene end-moraine zones are common (e.g., Nesje and Kvamme 1991, Figure 8) but the most prominent ice-marginal " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_006.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375414/figure-8-the-olfjellet-moraine-in-nordland-of-likely-pre"><img alt="Figure 8. The Olfjellet moraine in Nordland of likely Pre-Boreal age. Note multiple and complex ridges indicating an oscillating ice margin " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_007.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375416/figure-9-rogen-moraine-at-hartkjolen-in-nord-trondelag"><img alt="Figure 9. Rogen moraine at Hartkjolen in Nord-Trondelag. " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_008.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375418/figure-10-drumlins-on-lista-in-south-norway-shown-in-shaded"><img alt="Figure 10. Drumlins on Lista in South Norway shown in a shaded relief map produced through high-resolution LiDAR digital-elevation data. The drumlins show ice flow from ENE towards the Skagerrak ice stream. " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_009.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375420/figure-10-terrain-such-as-in-jotunheimen-al-hattestrand"><img alt="terrain such as in Jotunheimen. al. 1989, Hattestrand 1997). Based on extensive mapping o ribbed moraines Kleman and Hattestrand (1999) argued that ribbed moraine forms at the transition between cold-based ice and warm-based ice, which is also indicated by Sollid and Sorbe (1994). Ribbed moraine might thus be a good indication of areas beneath an ice sheet where basal temperatures have been low. Extensive areas of ribbed moraine may be found in north- ernmost and eastern Norway (Sollid and Torp 1984, Sollid and Serbel 1994) and many smaller areas can be found in elevated terrain such as in Jotunheimen. " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_010.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375422/figure-11-glacial-striae-reported-by-vorren-and-sollid-and"><img alt="Glacial striae reported by Vorren (1977, 1979) and Sollid and Torp (1984) in South Norway are perhaps the only likely Landforms from the Early and Middle Weichselian (marine isotope stages 5—3) are rare, although several localities from many parts of Norway with Early to Middle Weichselian sediments have been reported (overviews by Mangerud 2004, Mangerud et al. 2011, Olsen et al. this volume). Much of the landform record from these stages has probably been obliterated in Norway by subsequent glacial stages, although widespread glacial-landform systems of Early Weichselian age have been reported from Sweden and Finland (e.g., Lagerback 1998, Hirvas 1991, Kleman 1992, Hattestrand 1998, Fredin and Hattestrand 2002). " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_011.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375424/figure-12-in-interior-areas-in-southeast-norway-there-are"><img alt="In interior areas in southeast Norway there are numerous sets of end moraines, drumlins, Rogen moraine and glacial meltwater channels that likely predate the last glacial maximum (Sollid and Sorbel 1994, Fredin 2004). Nice examples of supposedly pre-LGM meltwater channels and marginal moraines are for example found on and around the Stwlen mountains close to lake Femunden. This general supposition is based on the observation that these landforms are generally incompatible with known LGM and deglaciation ice-flow patterns in the area and considerations of the thermal regime in the ice (Sollid and Sorbel 1994, Fredin 2004). " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_012.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375426/figure-14-shaded-relief-in-combined-bathymetric-and"><img alt="Figure 14. Shaded relief in a combined bathymetric and topographic dataset show- ing the floor of Tafjord. Note the very large submarine rock-avalanche deposits in the fjord. 11). Because the main ice divide in South Norway was situated south of the water divide, large ice-dammed lakes formed, at least partly subglacially—sublaterally, during the deglaciation leading to deposition of ice-dammed lake deposits. When these lakes drained, extensive meltwater erosional landforms were formed together with erosional marks from floating icebergs (Longva and Thoresen 1991). to deposition of ice-dammed lake deposits. When these lakes " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_013.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375428/figure-18-shorelines-are-usually-erosional-landforms"><img alt="Shorelines are usually erosional landforms indicating wave action for a prolonged time period, and are thus indicative of a sustained sea-level stand. On the Norwegian coast, shorelines are common and the most pronounced shorelines typically reflect the highest sea-level stand following the deglaciation, the Younger Dryas ‘main line’, or the Tapes transgression shoreline at around 6300 BP (cf., Andersen 1968, Svendsen and Mangerud 1987, Sorensen et al. 1987, Reite et al. 1999, Romundset et al. 2011). Shorelines may also be formed at the shores of glacial lakes and perched shorelines may be found in abandoned glacial-lake basins. Somewhat related to shorelines are coastal caves, which are also created by coastal erosion (Figure 18). They typically form where a lithological weakness zone in coastal cliffs coincides in altitude with a prolonged sea-level stand, thus allowing wave erosion to act on the weakness zone. Coastal caves are found, e.g., on the More coast and probably date to the Eemian high sea-level stand (Larsen and Mangerud 1989). " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_014.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375430/figure-16-landscape-at-ulset-dominated-by-glaciomarine-clays"><img alt="Figure 16. A landscape at Ulset dominated by glaciomarine clays with significant quick-clay slide scars. " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_015.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375432/figure-16-the-strandflat-is-flat-bedrock-platform-along-most"><img alt="The strandflat is a flat bedrock platform along most of the Norwegian west coast, which extends both above and below Norwegian west coast, which extends both above and below " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_016.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375434/figure-17-gravitational-processes-by-structural-geology"><img alt="Gravitational processes by structural geology (bedrock competence and structure) and the " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_017.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375436/figure-20-photograph-of-potential-rock-avalanche-on"><img alt="Figure 20. Photograph of a potential rock avalanche on Nornesfellet, threatening to fall into the Lyngen fjord and thus jeopardising several communities in the area. There are several similar sites in the area. All are situated on relatively steep glacial trough walls in a zone of high seismic activity (Iain Henderson, pers. comm.). " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_018.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375438/figure-19-glacial-landforms-and-quaternary-landscape"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_019.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-30874040-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3eedc86c7b187333bbaad19f09f428ee" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:51300480,&quot;asset_id&quot;:30874040,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/51300480/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874040"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874040"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874040; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874040]").text(description); $(".js-view-count[data-work-id=30874040]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874040; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874040']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3eedc86c7b187333bbaad19f09f428ee" } } $('.js-work-strip[data-work-id=30874040]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874040,"title":"Glacial landforms and Quaternary landscape development in Norway","translated_title":"","metadata":{"ai_title_tag":"Quaternary Glacial Processes Shaping Norway's Landscape","grobid_abstract":"The Norwegian landscape is a function of geological processes working over very long time spans, and first order structures might for example be traced to the ancient denudational processes, the Caledonian orogeny or break-up of the North Atlantic. However, a large portion of large-, intermediate-, and small-scale landforms in Norway owe their existence to Quaternary glaciations or periglacial processes. The Quaternary time period (the last c. 3 million years), is characterised by cool and variable climate with temperatures oscillating between relative mildness to frigid ice-age conditions. A wide spectrum of climate-driven geomorphological processes has thus been acting in Norway, but the numerous glaciations have had the most profound effect with the production of large U-shaped valleys, fjords and Alpine relief. On the other hand, interior and upland areas in Norway seem to be largely unaffected by glacial erosion and exhibit a possibly pre-Quaternary landscape with only some periglacial influence. The ice sheets in Scandinavia thus have redistributed rock mass and sediments in the landscape with the largest glaciogenic deposits being found on the continental shelf. Large Quaternary deposits and valley fills can also be found onshore and these are now valuable resources for aggregates, ground water and agriculture. Important Quaternary processes have also been acting along the Norwegian coast with denudation of the famous strandflat, where the formation processes are not fully understood. The isostatic depression of crust under the vast ice sheets have also lead to important consequences, with thick deposits of potentially unstable, fine-grained glaciomarine sediments in quite large areas of Norway. It is thus clear that much of Norway's beauty but also geohazard problems can be explained with the actions of Quaternary geomorphological processes.","publication_date":{"day":1,"month":6,"year":2013,"errors":{}},"grobid_abstract_attachment_id":51300480},"translated_abstract":null,"internal_url":"https://www.academia.edu/30874040/Glacial_landforms_and_Quaternary_landscape_development_in_Norway","translated_internal_url":"","created_at":"2017-01-11T05:01:33.459-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":51300480,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300480/thumbnails/1.jpg","file_name":"Glacial_landforms_and_Quaternary_landsca20170111-6810-1gmlzqp.pdf","download_url":"https://www.academia.edu/attachments/51300480/download_file","bulk_download_file_name":"Glacial_landforms_and_Quaternary_landsca.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300480/Glacial_landforms_and_Quaternary_landsca20170111-6810-1gmlzqp-libre.pdf?1484140267=\u0026response-content-disposition=attachment%3B+filename%3DGlacial_landforms_and_Quaternary_landsca.pdf\u0026Expires=1743853385\u0026Signature=P3M7srlDghzgIrV3P15aF6V3o2ABJ46TPV538WxUhxFKvcN-8GZ-Ztdq96TN4g7~YeKSpunWdR-ayRAiHT9TNypsIAlV7TUwa44dMPwUL3u7jg97sayn5Dnp-tmqZ2pRbZs0k7OFP~hp40FTbujFaKl2FW51IL0VUpeDc-ResiEojSb9aAJ0Pfvn6m5K6ISASH9E1OboA27~2YfZq5LY~8IersQH~4w7cSt5cXyDBONWQzxXxNQUIgmOtx8wpqRkA8~FOHinsbU0xG6vPvmtELzLD~A2qmiRAXYjrlzO-zXSb~TMYsnNkC~4O96tg9PxZ-07qmlpZJTGYXkyBxpU6Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Glacial_landforms_and_Quaternary_landscape_development_in_Norway","translated_slug":"","page_count":23,"language":"en","content_type":"Work","summary":"The Norwegian landscape is a function of geological processes working over very long time spans, and first order structures might for example be traced to the ancient denudational processes, the Caledonian orogeny or break-up of the North Atlantic. However, a large portion of large-, intermediate-, and small-scale landforms in Norway owe their existence to Quaternary glaciations or periglacial processes. The Quaternary time period (the last c. 3 million years), is characterised by cool and variable climate with temperatures oscillating between relative mildness to frigid ice-age conditions. A wide spectrum of climate-driven geomorphological processes has thus been acting in Norway, but the numerous glaciations have had the most profound effect with the production of large U-shaped valleys, fjords and Alpine relief. On the other hand, interior and upland areas in Norway seem to be largely unaffected by glacial erosion and exhibit a possibly pre-Quaternary landscape with only some periglacial influence. The ice sheets in Scandinavia thus have redistributed rock mass and sediments in the landscape with the largest glaciogenic deposits being found on the continental shelf. Large Quaternary deposits and valley fills can also be found onshore and these are now valuable resources for aggregates, ground water and agriculture. Important Quaternary processes have also been acting along the Norwegian coast with denudation of the famous strandflat, where the formation processes are not fully understood. The isostatic depression of crust under the vast ice sheets have also lead to important consequences, with thick deposits of potentially unstable, fine-grained glaciomarine sediments in quite large areas of Norway. It is thus clear that much of Norway's beauty but also geohazard problems can be explained with the actions of Quaternary geomorphological processes.","impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[{"id":51300480,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300480/thumbnails/1.jpg","file_name":"Glacial_landforms_and_Quaternary_landsca20170111-6810-1gmlzqp.pdf","download_url":"https://www.academia.edu/attachments/51300480/download_file","bulk_download_file_name":"Glacial_landforms_and_Quaternary_landsca.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300480/Glacial_landforms_and_Quaternary_landsca20170111-6810-1gmlzqp-libre.pdf?1484140267=\u0026response-content-disposition=attachment%3B+filename%3DGlacial_landforms_and_Quaternary_landsca.pdf\u0026Expires=1743853385\u0026Signature=P3M7srlDghzgIrV3P15aF6V3o2ABJ46TPV538WxUhxFKvcN-8GZ-Ztdq96TN4g7~YeKSpunWdR-ayRAiHT9TNypsIAlV7TUwa44dMPwUL3u7jg97sayn5Dnp-tmqZ2pRbZs0k7OFP~hp40FTbujFaKl2FW51IL0VUpeDc-ResiEojSb9aAJ0Pfvn6m5K6ISASH9E1OboA27~2YfZq5LY~8IersQH~4w7cSt5cXyDBONWQzxXxNQUIgmOtx8wpqRkA8~FOHinsbU0xG6vPvmtELzLD~A2qmiRAXYjrlzO-zXSb~TMYsnNkC~4O96tg9PxZ-07qmlpZJTGYXkyBxpU6Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-30874040-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874039"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30874039/Recycling_of_glacial_and_non_glacial_sediments_duringt_the_Little_Ice_Age_advance_around_Jostedalsbreen_south_central_Norway"><img alt="Research paper thumbnail of Recycling of glacial and non-glacial sediments duringt the &#39;Little Ice Age&#39; advance around Jostedalsbreen, south-central Norway" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Recycling of glacial and non-glacial sediments duringt the &#39;Little Ice Age&#39; advance around Jostedalsbreen, south-central Norway</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874039"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874039"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874039; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874039]").text(description); $(".js-view-count[data-work-id=30874039]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874039; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874039']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30874039]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874039,"title":"Recycling of glacial and non-glacial sediments duringt the 'Little Ice Age' advance around Jostedalsbreen, south-central Norway","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2007,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/30874039/Recycling_of_glacial_and_non_glacial_sediments_duringt_the_Little_Ice_Age_advance_around_Jostedalsbreen_south_central_Norway","translated_internal_url":"","created_at":"2017-01-11T05:01:32.779-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Recycling_of_glacial_and_non_glacial_sediments_duringt_the_Little_Ice_Age_advance_around_Jostedalsbreen_south_central_Norway","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[],"research_interests":[],"urls":[{"id":7880224,"url":"http://www.diva-portal.org/smash/record.jsf?pid=diva2:178304"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874039-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874038"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30874038/Nordic_seas_climate_variability_over_the_past_2_millennia_a_tropical_link"><img alt="Research paper thumbnail of Nordic seas climate variability over the past 2 millennia - a tropical link" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Nordic seas climate variability over the past 2 millennia - a tropical link</div><div class="wp-workCard_item"><span>Egs Agu Eug Joint Assembly</span><span>, Apr 1, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">High resolution records of mean annual and summer temperatures over the past 2 millennia have bee...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">High resolution records of mean annual and summer temperatures over the past 2 millennia have been developed for the Nordic Seas and adjacent land areas with decadal resolution. A new high quality age model for these records has been developed using a novel tree-ring correlation. The data show a very strong land-ocean coherence. Correlation to instrumental time series is also strong. A remarkable correspondance with proxy records of the nortward extent of the ITZC is apparent in the data, based on correlations to a rainfall/runoff proxy from Cariaco Basin off Venezuela. Further comparisons with long time series of North Atlantic indices based on instrumental data and proxy records are underway and will be reported. The strong tropical linkage is also noticeable in the instrumental time series, indicating possible tropical influence on decadal to century climate changes in the high latitude North Atlantic.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874038"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874038"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874038; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874038]").text(description); $(".js-view-count[data-work-id=30874038]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874038; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874038']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30874038]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874038,"title":"Nordic seas climate variability over the past 2 millennia - a tropical link","translated_title":"","metadata":{"abstract":"High resolution records of mean annual and summer temperatures over the past 2 millennia have been developed for the Nordic Seas and adjacent land areas with decadal resolution. A new high quality age model for these records has been developed using a novel tree-ring correlation. The data show a very strong land-ocean coherence. Correlation to instrumental time series is also strong. A remarkable correspondance with proxy records of the nortward extent of the ITZC is apparent in the data, based on correlations to a rainfall/runoff proxy from Cariaco Basin off Venezuela. Further comparisons with long time series of North Atlantic indices based on instrumental data and proxy records are underway and will be reported. The strong tropical linkage is also noticeable in the instrumental time series, indicating possible tropical influence on decadal to century climate changes in the high latitude North Atlantic.","publication_date":{"day":1,"month":4,"year":2003,"errors":{}},"publication_name":"Egs Agu Eug Joint Assembly"},"translated_abstract":"High resolution records of mean annual and summer temperatures over the past 2 millennia have been developed for the Nordic Seas and adjacent land areas with decadal resolution. A new high quality age model for these records has been developed using a novel tree-ring correlation. The data show a very strong land-ocean coherence. Correlation to instrumental time series is also strong. A remarkable correspondance with proxy records of the nortward extent of the ITZC is apparent in the data, based on correlations to a rainfall/runoff proxy from Cariaco Basin off Venezuela. Further comparisons with long time series of North Atlantic indices based on instrumental data and proxy records are underway and will be reported. The strong tropical linkage is also noticeable in the instrumental time series, indicating possible tropical influence on decadal to century climate changes in the high latitude North Atlantic.","internal_url":"https://www.academia.edu/30874038/Nordic_seas_climate_variability_over_the_past_2_millennia_a_tropical_link","translated_internal_url":"","created_at":"2017-01-11T05:01:32.004-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Nordic_seas_climate_variability_over_the_past_2_millennia_a_tropical_link","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"High resolution records of mean annual and summer temperatures over the past 2 millennia have been developed for the Nordic Seas and adjacent land areas with decadal resolution. A new high quality age model for these records has been developed using a novel tree-ring correlation. The data show a very strong land-ocean coherence. Correlation to instrumental time series is also strong. A remarkable correspondance with proxy records of the nortward extent of the ITZC is apparent in the data, based on correlations to a rainfall/runoff proxy from Cariaco Basin off Venezuela. Further comparisons with long time series of North Atlantic indices based on instrumental data and proxy records are underway and will be reported. The strong tropical linkage is also noticeable in the instrumental time series, indicating possible tropical influence on decadal to century climate changes in the high latitude North Atlantic.","impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[],"research_interests":[{"id":1512,"name":"Climate Change","url":"https://www.academia.edu/Documents/in/Climate_Change"},{"id":4456,"name":"Time Series","url":"https://www.academia.edu/Documents/in/Time_Series"},{"id":4753,"name":"Climate variability","url":"https://www.academia.edu/Documents/in/Climate_variability"},{"id":82675,"name":"North Atlantic","url":"https://www.academia.edu/Documents/in/North_Atlantic"},{"id":309086,"name":"High Resolution","url":"https://www.academia.edu/Documents/in/High_Resolution"},{"id":630543,"name":"Tree Ring","url":"https://www.academia.edu/Documents/in/Tree_Ring"}],"urls":[{"id":7880223,"url":"http://adsabs.harvard.edu/abs/2003EAEJA....13421J"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874038-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="25981257"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/25981257/Holocene_glacier_fluctuations"><img alt="Research paper thumbnail of Holocene glacier fluctuations" class="work-thumbnail" src="https://attachments.academia-assets.com/46331647/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/25981257/Holocene_glacier_fluctuations">Holocene glacier fluctuations</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/VJomelli">V. Jomelli</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/GregoryWiles">Gregory Wiles</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://ncsu.academia.edu/LewisOwen">Lewis A Owen</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://uib.academia.edu/AtleNesje">Atle Nesje</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/HodgsonDominic">Dominic Hodgson</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A global overview of glacier advances and retreats (grouped by regions and by millennia) for the ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A global overview of glacier advances and retreats (grouped by regions and by millennia) for the Holocene is compiled from previous studies. The reconstructions of glacier fluctuations are based on 1) mapping and dating moraines defined by 14 C, TCN, OSL, lichenometry and tree rings (discontinuous records/time series), and 2) sediments from proglacial lakes and speleothems (continuous records/ time series). Using 189 continuous and discontinuous time series, the long-term trends and centennial fluctuations of glaciers were compared to trends in the recession of Northern and mountain tree lines, and with orbital, solar and volcanic studies to examine the likely forcing factors that drove the changes recorded. A general trend of increasing glacier size from the earlyemid Holocene, to the late</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4b9c23e02878a0de47d709dce89d193c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46331647,&quot;asset_id&quot;:25981257,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46331647/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="25981257"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="25981257"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 25981257; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=25981257]").text(description); $(".js-view-count[data-work-id=25981257]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 25981257; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='25981257']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4b9c23e02878a0de47d709dce89d193c" } } $('.js-work-strip[data-work-id=25981257]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":25981257,"title":"Holocene glacier fluctuations","translated_title":"","metadata":{"abstract":"A global overview of glacier advances and retreats (grouped by regions and by millennia) for the Holocene is compiled from previous studies. The reconstructions of glacier fluctuations are based on 1) mapping and dating moraines defined by 14 C, TCN, OSL, lichenometry and tree rings (discontinuous records/time series), and 2) sediments from proglacial lakes and speleothems (continuous records/ time series). Using 189 continuous and discontinuous time series, the long-term trends and centennial fluctuations of glaciers were compared to trends in the recession of Northern and mountain tree lines, and with orbital, solar and volcanic studies to examine the likely forcing factors that drove the changes recorded. A general trend of increasing glacier size from the earlyemid Holocene, to the late"},"translated_abstract":"A global overview of glacier advances and retreats (grouped by regions and by millennia) for the Holocene is compiled from previous studies. The reconstructions of glacier fluctuations are based on 1) mapping and dating moraines defined by 14 C, TCN, OSL, lichenometry and tree rings (discontinuous records/time series), and 2) sediments from proglacial lakes and speleothems (continuous records/ time series). Using 189 continuous and discontinuous time series, the long-term trends and centennial fluctuations of glaciers were compared to trends in the recession of Northern and mountain tree lines, and with orbital, solar and volcanic studies to examine the likely forcing factors that drove the changes recorded. A general trend of increasing glacier size from the earlyemid Holocene, to the late","internal_url":"https://www.academia.edu/25981257/Holocene_glacier_fluctuations","translated_internal_url":"","created_at":"2016-06-08T00:02:19.141-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32472660,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":21101664,"work_id":25981257,"tagging_user_id":32472660,"tagged_user_id":32587852,"co_author_invite_id":null,"email":"a***h@vuw.ac.nz","affiliation":"Victoria University of Wellington","display_order":0,"name":"A. Mackintosh","title":"Holocene glacier fluctuations"},{"id":21101665,"work_id":25981257,"tagging_user_id":32472660,"tagged_user_id":6563464,"co_author_invite_id":null,"email":"g***s@wooster.edu","display_order":4194304,"name":"Gregory Wiles","title":"Holocene glacier fluctuations"},{"id":21101666,"work_id":25981257,"tagging_user_id":32472660,"tagged_user_id":34314936,"co_author_invite_id":null,"email":"r***7@gmail.com","display_order":6291456,"name":"Raymond Bradley","title":"Holocene glacier fluctuations"},{"id":21101667,"work_id":25981257,"tagging_user_id":32472660,"tagged_user_id":32571282,"co_author_invite_id":null,"email":"r***y@geo.umass.edu","display_order":7340032,"name":"R. Bradley","title":"Holocene glacier fluctuations"},{"id":21101668,"work_id":25981257,"tagging_user_id":32472660,"tagged_user_id":36843320,"co_author_invite_id":null,"email":"l***n@ncsu.edu","affiliation":"North Carolina State University","display_order":7864320,"name":"Lewis A Owen","title":"Holocene glacier fluctuations"},{"id":21101669,"work_id":25981257,"tagging_user_id":32472660,"tagged_user_id":null,"co_author_invite_id":2008903,"email":"s***a@gol.ru","display_order":8126464,"name":"Olga Solomina","title":"Holocene glacier fluctuations"},{"id":21101670,"work_id":25981257,"tagging_user_id":32472660,"tagged_user_id":33441460,"co_author_invite_id":null,"email":"a***e@geo.uib.no","affiliation":"University of Bergen","display_order":8257536,"name":"Atle Nesje","title":"Holocene glacier fluctuations"},{"id":21101671,"work_id":25981257,"tagging_user_id":32472660,"tagged_user_id":32492285,"co_author_invite_id":null,"email":"w***r@giub.unibe.ch","display_order":8323072,"name":"Heinz Wanner","title":"Holocene glacier fluctuations"},{"id":21101672,"work_id":25981257,"tagging_user_id":32472660,"tagged_user_id":40901816,"co_author_invite_id":null,"email":"d***o@bas.ac.uk","display_order":8355840,"name":"Dominic Hodgson","title":"Holocene glacier fluctuations"},{"id":28421560,"work_id":25981257,"tagging_user_id":36843320,"tagged_user_id":null,"co_author_invite_id":3010326,"email":"n***g@magnet.fsu.edu","display_order":8372224,"name":"Nicolas Young","title":"Holocene glacier fluctuations"},{"id":28421561,"work_id":25981257,"tagging_user_id":36843320,"tagged_user_id":883906,"co_author_invite_id":null,"email":"i***y@phys.ethz.ch","affiliation":"Swiss Federal Institute of Technology (ETH)","display_order":8380416,"name":"Susan Ivy-Ochs","title":"Holocene glacier fluctuations"}],"downloadable_attachments":[{"id":46331647,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46331647/thumbnails/1.jpg","file_name":"Solominaet_al.pdf","download_url":"https://www.academia.edu/attachments/46331647/download_file","bulk_download_file_name":"Holocene_glacier_fluctuations.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46331647/Solominaet_al-libre.pdf?1465369433=\u0026response-content-disposition=attachment%3B+filename%3DHolocene_glacier_fluctuations.pdf\u0026Expires=1743853386\u0026Signature=JGKSRbAhexZF3bES26dmy6K2jyO5QzXWcsjdzUL8g6rrSo6z0iYZI1GFC0Wv8dj0fkrU1H0JI7HrRQhlFpiVhs1qgNpBrwAzaEsoewwYz0SeyPdDXXaXpai45IoNqCQHLUTS8sEflGnUt52J2mVzGDxmYMxCiHiaDgOQ5V-PBfCbj69UffWJECDalrxRXzCcGf1TyFWshnq1-STlt-ESXoeAZXP1sA1RjEUlIWmb6dM2XHaA9z~q1sxlcizXvGEVPwm3n5JVIbD4gnN4I9FQOMY63qdWD09eaI37hLQzNDfRnhg4l8m0DMFAAbQqAS7Co2BS0jC-D3Vlb2lCOzNbmg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Holocene_glacier_fluctuations","translated_slug":"","page_count":26,"language":"en","content_type":"Work","summary":"A global overview of glacier advances and retreats (grouped by regions and by millennia) for the Holocene is compiled from previous studies. The reconstructions of glacier fluctuations are based on 1) mapping and dating moraines defined by 14 C, TCN, OSL, lichenometry and tree rings (discontinuous records/time series), and 2) sediments from proglacial lakes and speleothems (continuous records/ time series). Using 189 continuous and discontinuous time series, the long-term trends and centennial fluctuations of glaciers were compared to trends in the recession of Northern and mountain tree lines, and with orbital, solar and volcanic studies to examine the likely forcing factors that drove the changes recorded. A general trend of increasing glacier size from the earlyemid Holocene, to the late","impression_tracking_id":null,"owner":{"id":32472660,"first_name":"V.","middle_initials":null,"last_name":"Jomelli","page_name":"VJomelli","domain_name":"independent","created_at":"2015-06-23T12:00:38.757-07:00","display_name":"V. Jomelli","url":"https://independent.academia.edu/VJomelli"},"attachments":[{"id":46331647,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46331647/thumbnails/1.jpg","file_name":"Solominaet_al.pdf","download_url":"https://www.academia.edu/attachments/46331647/download_file","bulk_download_file_name":"Holocene_glacier_fluctuations.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46331647/Solominaet_al-libre.pdf?1465369433=\u0026response-content-disposition=attachment%3B+filename%3DHolocene_glacier_fluctuations.pdf\u0026Expires=1743853386\u0026Signature=JGKSRbAhexZF3bES26dmy6K2jyO5QzXWcsjdzUL8g6rrSo6z0iYZI1GFC0Wv8dj0fkrU1H0JI7HrRQhlFpiVhs1qgNpBrwAzaEsoewwYz0SeyPdDXXaXpai45IoNqCQHLUTS8sEflGnUt52J2mVzGDxmYMxCiHiaDgOQ5V-PBfCbj69UffWJECDalrxRXzCcGf1TyFWshnq1-STlt-ESXoeAZXP1sA1RjEUlIWmb6dM2XHaA9z~q1sxlcizXvGEVPwm3n5JVIbD4gnN4I9FQOMY63qdWD09eaI37hLQzNDfRnhg4l8m0DMFAAbQqAS7Co2BS0jC-D3Vlb2lCOzNbmg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":410,"name":"Glaciology","url":"https://www.academia.edu/Documents/in/Glaciology"},{"id":417,"name":"Paleontology","url":"https://www.academia.edu/Documents/in/Paleontology"},{"id":29499,"name":"Glacial Geomorphology","url":"https://www.academia.edu/Documents/in/Glacial_Geomorphology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-25981257-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874036"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30874036/Late_Holocene_glaciers_and_avalanche_activity_in_the_%C3%85lfotbreen_area_western_Norway_evidence_from_a_lacustrine_sedimentary_record"><img alt="Research paper thumbnail of Late Holocene glaciers and avalanche activity in the Ålfotbreen area, western Norway: evidence from a lacustrine sedimentary record" class="work-thumbnail" src="https://attachments.academia-assets.com/51300478/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30874036/Late_Holocene_glaciers_and_avalanche_activity_in_the_%C3%85lfotbreen_area_western_Norway_evidence_from_a_lacustrine_sedimentary_record">Late Holocene glaciers and avalanche activity in the Ålfotbreen area, western Norway: evidence from a lacustrine sedimentary record</a></div><div class="wp-workCard_item"><span>Norsk Geologisk Tiddsskrift</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d4214eef2cb5b251cf423f8bf574d85e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:51300478,&quot;asset_id&quot;:30874036,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/51300478/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874036"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874036"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874036; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874036]").text(description); $(".js-view-count[data-work-id=30874036]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874036; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874036']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d4214eef2cb5b251cf423f8bf574d85e" } } $('.js-work-strip[data-work-id=30874036]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874036,"title":"Late Holocene glaciers and avalanche activity in the Ålfotbreen area, western Norway: evidence from a lacustrine sedimentary record","translated_title":"","metadata":{"ai_abstract":"Lakes serve as continuous sedimentary basins that record regional climate history and glacial responses. This study investigates the lacustrine sedimentary record in the Ålfotbreen area of western Norway, focusing on the evidence for glacier dynamics over the Late Holocene. By evaluating sediment composition and structure, the research aims to clarify glacier behavior in relation to climatic factors and to differentiate glacial signals from non-glacial sedimentary influences.","publication_name":"Norsk Geologisk Tiddsskrift"},"translated_abstract":null,"internal_url":"https://www.academia.edu/30874036/Late_Holocene_glaciers_and_avalanche_activity_in_the_%C3%85lfotbreen_area_western_Norway_evidence_from_a_lacustrine_sedimentary_record","translated_internal_url":"","created_at":"2017-01-11T05:01:30.607-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":51300478,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300478/thumbnails/1.jpg","file_name":"Late_Holocene_glaciers_and_avalanche_act20170111-6807-19jil6a.pdf","download_url":"https://www.academia.edu/attachments/51300478/download_file","bulk_download_file_name":"Late_Holocene_glaciers_and_avalanche_act.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300478/Late_Holocene_glaciers_and_avalanche_act20170111-6807-19jil6a-libre.pdf?1484140087=\u0026response-content-disposition=attachment%3B+filename%3DLate_Holocene_glaciers_and_avalanche_act.pdf\u0026Expires=1743853386\u0026Signature=Imv2ET8Y5pXghXK2TfJ6SQef5AhwYBRVrarEABqOFZ-yIYEt0DohcSbVqJAIrkLZv01a1gREkbPDJeLJM6DzUEn3EQaRZhgwSUg5-M7FpZTo8hIjn8yeCZU~lqzRuAWtjpo-SrRYJMoG6Z~z~Hu8cY9MTFtvIbGtDX96g8THJE-3WvmTt4WGj-LB9dt9ZeE3LCPwtvt~GOPg96gldzVN7m4c5LfSOremfaRmzqioBZ1fz9YYwmUkTTNJirt6MAuFBudtVsGZSckOArBSyd2jXM9gd8VyCYYJz-TBgEVQW111C~QmGFSWzVwox77N~wmTV3DtOoewtTHu7iTjLD5SqQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Late_Holocene_glaciers_and_avalanche_activity_in_the_Ålfotbreen_area_western_Norway_evidence_from_a_lacustrine_sedimentary_record","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[{"id":51300478,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300478/thumbnails/1.jpg","file_name":"Late_Holocene_glaciers_and_avalanche_act20170111-6807-19jil6a.pdf","download_url":"https://www.academia.edu/attachments/51300478/download_file","bulk_download_file_name":"Late_Holocene_glaciers_and_avalanche_act.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300478/Late_Holocene_glaciers_and_avalanche_act20170111-6807-19jil6a-libre.pdf?1484140087=\u0026response-content-disposition=attachment%3B+filename%3DLate_Holocene_glaciers_and_avalanche_act.pdf\u0026Expires=1743853386\u0026Signature=Imv2ET8Y5pXghXK2TfJ6SQef5AhwYBRVrarEABqOFZ-yIYEt0DohcSbVqJAIrkLZv01a1gREkbPDJeLJM6DzUEn3EQaRZhgwSUg5-M7FpZTo8hIjn8yeCZU~lqzRuAWtjpo-SrRYJMoG6Z~z~Hu8cY9MTFtvIbGtDX96g8THJE-3WvmTt4WGj-LB9dt9ZeE3LCPwtvt~GOPg96gldzVN7m4c5LfSOremfaRmzqioBZ1fz9YYwmUkTTNJirt6MAuFBudtVsGZSckOArBSyd2jXM9gd8VyCYYJz-TBgEVQW111C~QmGFSWzVwox77N~wmTV3DtOoewtTHu7iTjLD5SqQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874036-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874035"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30874035/Holocene_mean_July_temperature_and_winter_precipitation_in_western_Norway_inferred_from_lake_sediment_proxies"><img alt="Research paper thumbnail of Holocene mean July temperature and winter precipitation in western Norway inferred from lake sediment proxies" class="work-thumbnail" src="https://attachments.academia-assets.com/51300474/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30874035/Holocene_mean_July_temperature_and_winter_precipitation_in_western_Norway_inferred_from_lake_sediment_proxies">Holocene mean July temperature and winter precipitation in western Norway inferred from lake sediment proxies</a></div><div class="wp-workCard_item"><span>The Holocene</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Reconstructions of mean July temperature (T jul ) and winter precipitation (P w ) for the last 11...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Reconstructions of mean July temperature (T jul ) and winter precipitation (P w ) for the last 11/500 years on the Folgefonna peninsula are presented. T jul was reconstructed using pollen Á/climate transfer functions and P w was reconstructed based on the exponential relationship between mean solid winter precipitation and ablation-season temperature at the equilibrium-line altitude (ELA) with a reconstructed former ELA, using T jul as the proxy for ablation-season temperature. The reconstructions from the Folgefonna peninsula suggest that the early Holocene was relatively cool and dry until c. 8000 cal. yr BP, followed by a warm and humid mid-Holocene until c. 4000 cal. yr BP with inferred T jul above 128C and P w reaching as high as 225% of the present day. Subsequent to c. 4000 cal. yr BP a reduction is seen in both inferred T jul and P w with large fluctuations during the last 500 years. In addition, new calculations of P w from two glaciers (Hardangerjøkulen and Jostedalsbreen) in southern Norway are presented. The results show that P w varied in phase at all glaciers, probably as a response to the same climate forcing factor. During the early Holocene a major shift is suggested between winds from the west and the east.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2b626bfa6982729c2b552c3fddedff48" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:51300474,&quot;asset_id&quot;:30874035,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/51300474/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874035"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874035"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874035; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874035]").text(description); $(".js-view-count[data-work-id=30874035]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874035; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874035']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2b626bfa6982729c2b552c3fddedff48" } } $('.js-work-strip[data-work-id=30874035]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874035,"title":"Holocene mean July temperature and winter precipitation in western Norway inferred from lake sediment proxies","translated_title":"","metadata":{"grobid_abstract":"Reconstructions of mean July temperature (T jul ) and winter precipitation (P w ) for the last 11/500 years on the Folgefonna peninsula are presented. T jul was reconstructed using pollen Á/climate transfer functions and P w was reconstructed based on the exponential relationship between mean solid winter precipitation and ablation-season temperature at the equilibrium-line altitude (ELA) with a reconstructed former ELA, using T jul as the proxy for ablation-season temperature. The reconstructions from the Folgefonna peninsula suggest that the early Holocene was relatively cool and dry until c. 8000 cal. yr BP, followed by a warm and humid mid-Holocene until c. 4000 cal. yr BP with inferred T jul above 128C and P w reaching as high as 225% of the present day. Subsequent to c. 4000 cal. yr BP a reduction is seen in both inferred T jul and P w with large fluctuations during the last 500 years. In addition, new calculations of P w from two glaciers (Hardangerjøkulen and Jostedalsbreen) in southern Norway are presented. The results show that P w varied in phase at all glaciers, probably as a response to the same climate forcing factor. During the early Holocene a major shift is suggested between winds from the west and the east.","publication_name":"The Holocene","grobid_abstract_attachment_id":51300474},"translated_abstract":null,"internal_url":"https://www.academia.edu/30874035/Holocene_mean_July_temperature_and_winter_precipitation_in_western_Norway_inferred_from_lake_sediment_proxies","translated_internal_url":"","created_at":"2017-01-11T05:01:30.164-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":51300474,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300474/thumbnails/1.jpg","file_name":"Holocene_mean_July_temperature_and_winte20170111-6810-qfr9yh.pdf","download_url":"https://www.academia.edu/attachments/51300474/download_file","bulk_download_file_name":"Holocene_mean_July_temperature_and_winte.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300474/Holocene_mean_July_temperature_and_winte20170111-6810-qfr9yh-libre.pdf?1484140080=\u0026response-content-disposition=attachment%3B+filename%3DHolocene_mean_July_temperature_and_winte.pdf\u0026Expires=1743853386\u0026Signature=YwttcNkNCTjn1GBeLj7xiyG2YAC1rAvyoiS1g2bg0bFVfdKp~w7OrFU~4E2XWurrupEugRQASmz182QH1M7~5KES8t3Lvxi-A8-vfor58JgDhYSbvlKIoPQj0bH-q7QgLKNRmbfAoTYjolqd3GxrPqkqxZC1Gh2fuK8EACDS2PdYyVspdwEthqJ4wHJ7QhfTiX5fWu8yKvHNZtNfXSyA6YCAeAWWUGnJuF-Rrlu3tR8x6tf8X43r0fL~cESdLa~oc8AOW56MxHDzI3tq9X4XHm4-bY~-gLhLcehvh2IxOQPXmCMwBJKyF4Nd6-RLzHXYNcDq69DFqDN~BeBU~FQujQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Holocene_mean_July_temperature_and_winter_precipitation_in_western_Norway_inferred_from_lake_sediment_proxies","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"Reconstructions of mean July temperature (T jul ) and winter precipitation (P w ) for the last 11/500 years on the Folgefonna peninsula are presented. T jul was reconstructed using pollen Á/climate transfer functions and P w was reconstructed based on the exponential relationship between mean solid winter precipitation and ablation-season temperature at the equilibrium-line altitude (ELA) with a reconstructed former ELA, using T jul as the proxy for ablation-season temperature. The reconstructions from the Folgefonna peninsula suggest that the early Holocene was relatively cool and dry until c. 8000 cal. yr BP, followed by a warm and humid mid-Holocene until c. 4000 cal. yr BP with inferred T jul above 128C and P w reaching as high as 225% of the present day. Subsequent to c. 4000 cal. yr BP a reduction is seen in both inferred T jul and P w with large fluctuations during the last 500 years. In addition, new calculations of P w from two glaciers (Hardangerjøkulen and Jostedalsbreen) in southern Norway are presented. The results show that P w varied in phase at all glaciers, probably as a response to the same climate forcing factor. During the early Holocene a major shift is suggested between winds from the west and the east.","impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[{"id":51300474,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300474/thumbnails/1.jpg","file_name":"Holocene_mean_July_temperature_and_winte20170111-6810-qfr9yh.pdf","download_url":"https://www.academia.edu/attachments/51300474/download_file","bulk_download_file_name":"Holocene_mean_July_temperature_and_winte.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300474/Holocene_mean_July_temperature_and_winte20170111-6810-qfr9yh-libre.pdf?1484140080=\u0026response-content-disposition=attachment%3B+filename%3DHolocene_mean_July_temperature_and_winte.pdf\u0026Expires=1743853386\u0026Signature=YwttcNkNCTjn1GBeLj7xiyG2YAC1rAvyoiS1g2bg0bFVfdKp~w7OrFU~4E2XWurrupEugRQASmz182QH1M7~5KES8t3Lvxi-A8-vfor58JgDhYSbvlKIoPQj0bH-q7QgLKNRmbfAoTYjolqd3GxrPqkqxZC1Gh2fuK8EACDS2PdYyVspdwEthqJ4wHJ7QhfTiX5fWu8yKvHNZtNfXSyA6YCAeAWWUGnJuF-Rrlu3tR8x6tf8X43r0fL~cESdLa~oc8AOW56MxHDzI3tq9X4XHm4-bY~-gLhLcehvh2IxOQPXmCMwBJKyF4Nd6-RLzHXYNcDq69DFqDN~BeBU~FQujQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":57433,"name":"Seasonality","url":"https://www.academia.edu/Documents/in/Seasonality"},{"id":78965,"name":"Holocene","url":"https://www.academia.edu/Documents/in/Holocene"},{"id":174781,"name":"Oscillations","url":"https://www.academia.edu/Documents/in/Oscillations"},{"id":244976,"name":"Transfer Function","url":"https://www.academia.edu/Documents/in/Transfer_Function"},{"id":338205,"name":"Early Holocene","url":"https://www.academia.edu/Documents/in/Early_Holocene"},{"id":2368477,"name":"Equilibrium Line Altitude","url":"https://www.academia.edu/Documents/in/Equilibrium_Line_Altitude"},{"id":2599525,"name":"present day","url":"https://www.academia.edu/Documents/in/present_day"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874035-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874034"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30874034/Geometry_thickness_and_isostatic_loading_of_the_Late_Weichselian_ice_sheet"><img alt="Research paper thumbnail of Geometry. thickness and isostatic loading of the Late Weichselian ice sheet" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Geometry. thickness and isostatic loading of the Late Weichselian ice sheet</div><div class="wp-workCard_item"><span>Norsk Geologisk Tidsskrift</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874034"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874034"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874034; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874034]").text(description); $(".js-view-count[data-work-id=30874034]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874034; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874034']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30874034]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874034,"title":"Geometry. thickness and isostatic loading of the Late Weichselian ice sheet","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_name":"Norsk Geologisk Tidsskrift"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/30874034/Geometry_thickness_and_isostatic_loading_of_the_Late_Weichselian_ice_sheet","translated_internal_url":"","created_at":"2017-01-11T05:01:29.726-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Geometry_thickness_and_isostatic_loading_of_the_Late_Weichselian_ice_sheet","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[],"research_interests":[{"id":35587,"name":"Quaternary","url":"https://www.academia.edu/Documents/in/Quaternary"},{"id":65140,"name":"Models","url":"https://www.academia.edu/Documents/in/Models"},{"id":958658,"name":"Ice Sheets","url":"https://www.academia.edu/Documents/in/Ice_Sheets"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874034-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874033"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30874033/Equilibrium_line_altitude_depressions_of_reconstructed_Younger_Dryas_and_Holocene_glaciers_in_Fosdalen_inner_Nord_Fjord"><img alt="Research paper thumbnail of Equilibrium-line altitude depressions of reconstructed Younger Dryas and Holocene glaciers in Fosdalen, inner Nord Fjord" class="work-thumbnail" src="https://attachments.academia-assets.com/51300473/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30874033/Equilibrium_line_altitude_depressions_of_reconstructed_Younger_Dryas_and_Holocene_glaciers_in_Fosdalen_inner_Nord_Fjord">Equilibrium-line altitude depressions of reconstructed Younger Dryas and Holocene glaciers in Fosdalen, inner Nord Fjord</a></div><div class="wp-workCard_item"><span>Norsk Geologisk Tiddsskrift</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f32e62089d4f2bd8a4ba67a01f0baf82" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:51300473,&quot;asset_id&quot;:30874033,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/51300473/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874033"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874033"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874033; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874033]").text(description); $(".js-view-count[data-work-id=30874033]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874033; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874033']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f32e62089d4f2bd8a4ba67a01f0baf82" } } $('.js-work-strip[data-work-id=30874033]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874033,"title":"Equilibrium-line altitude depressions of reconstructed Younger Dryas and Holocene glaciers in Fosdalen, inner Nord Fjord","translated_title":"","metadata":{"ai_abstract":"This study investigates the equilibrium-line altitudes (ELA) of reconstructed Younger Dryas and Holocene glaciers in Fosdalen, inner Nord Fjord, western Norway. By comparing numerous approaches for calculating ELA, significant findings reveal that the ELAs for late-glacial and Holocene periods exhibit distinctive depressions, with implications on climatic sensitivity, glacier dynamics, and historical reconstruction of glacier activity in the region.","publication_name":"Norsk Geologisk Tiddsskrift"},"translated_abstract":null,"internal_url":"https://www.academia.edu/30874033/Equilibrium_line_altitude_depressions_of_reconstructed_Younger_Dryas_and_Holocene_glaciers_in_Fosdalen_inner_Nord_Fjord","translated_internal_url":"","created_at":"2017-01-11T05:01:29.326-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":51300473,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300473/thumbnails/1.jpg","file_name":"Equilibrium-line_altitude_depressions_of20170111-6813-1ucw4x8.pdf","download_url":"https://www.academia.edu/attachments/51300473/download_file","bulk_download_file_name":"Equilibrium_line_altitude_depressions_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300473/Equilibrium-line_altitude_depressions_of20170111-6813-1ucw4x8-libre.pdf?1484140092=\u0026response-content-disposition=attachment%3B+filename%3DEquilibrium_line_altitude_depressions_of.pdf\u0026Expires=1743853387\u0026Signature=GE2w4sHhxyLDG6p9Z7x2rM-1QINtdBaApM7ymqxiysDATzEJWfvJh7EJRErKkSMrSgL39OyrhJ-qcRyIIt420a1hcyGgRIPxSIdmpaaolBAwQ10SAQG3Y3rCqqsXj3b8lJ41f2pCtmjJ3Xrh79Q-bn1noSPBsM8pErTQnQiHvxnQf4~GaLDA59MCqbBcfpfFV9KQew81ZVL0vnBbHXIo2Cdt~ucgfZEJJp~rlRiwi449D2idZY-ONDiA5aGyDxBUTMCAwpI34SlY6cA~2-TvHCFyObZ~FgvfeRXkyUzAh-GLmBiLohBIolykxiqPi0bZb~q2muU2wEh2kmfkSHoOaw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Equilibrium_line_altitude_depressions_of_reconstructed_Younger_Dryas_and_Holocene_glaciers_in_Fosdalen_inner_Nord_Fjord","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[{"id":51300473,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300473/thumbnails/1.jpg","file_name":"Equilibrium-line_altitude_depressions_of20170111-6813-1ucw4x8.pdf","download_url":"https://www.academia.edu/attachments/51300473/download_file","bulk_download_file_name":"Equilibrium_line_altitude_depressions_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300473/Equilibrium-line_altitude_depressions_of20170111-6813-1ucw4x8-libre.pdf?1484140092=\u0026response-content-disposition=attachment%3B+filename%3DEquilibrium_line_altitude_depressions_of.pdf\u0026Expires=1743853387\u0026Signature=GE2w4sHhxyLDG6p9Z7x2rM-1QINtdBaApM7ymqxiysDATzEJWfvJh7EJRErKkSMrSgL39OyrhJ-qcRyIIt420a1hcyGgRIPxSIdmpaaolBAwQ10SAQG3Y3rCqqsXj3b8lJ41f2pCtmjJ3Xrh79Q-bn1noSPBsM8pErTQnQiHvxnQf4~GaLDA59MCqbBcfpfFV9KQew81ZVL0vnBbHXIo2Cdt~ucgfZEJJp~rlRiwi449D2idZY-ONDiA5aGyDxBUTMCAwpI34SlY6cA~2-TvHCFyObZ~FgvfeRXkyUzAh-GLmBiLohBIolykxiqPi0bZb~q2muU2wEh2kmfkSHoOaw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874033-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874032"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30874032/The_lacustrine_sedimentary_sequence_in_Sygneskardvatnet_western_Norway_a_continuous_high_resolution_record_of_the_Jostedalsbreen_ice_cap_during_the_Holocene"><img alt="Research paper thumbnail of The lacustrine sedimentary sequence in Sygneskardvatnet, western Norway: a continuous, high-resolution record of the Jostedalsbreen ice cap during the Holocene" class="work-thumbnail" src="https://attachments.academia-assets.com/51300467/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30874032/The_lacustrine_sedimentary_sequence_in_Sygneskardvatnet_western_Norway_a_continuous_high_resolution_record_of_the_Jostedalsbreen_ice_cap_during_the_Holocene">The lacustrine sedimentary sequence in Sygneskardvatnet, western Norway: a continuous, high-resolution record of the Jostedalsbreen ice cap during the Holocene</a></div><div class="wp-workCard_item"><span>Quaternary Science Reviews</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="be2dd32f88dd755a7eba5b03167b6d67" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:51300467,&quot;asset_id&quot;:30874032,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/51300467/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874032"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874032"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874032; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874032]").text(description); $(".js-view-count[data-work-id=30874032]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874032; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874032']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "be2dd32f88dd755a7eba5b03167b6d67" } } $('.js-work-strip[data-work-id=30874032]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874032,"title":"The lacustrine sedimentary sequence in Sygneskardvatnet, western Norway: a continuous, high-resolution record of the Jostedalsbreen ice cap during the Holocene","translated_title":"","metadata":{"ai_abstract":"The research analyzes sedimentary records from Sygneskardvatnet, Norway, to reconstruct the climatic conditions and glacial activity associated with the Jostedalsbreen ice cap during the Holocene. Findings highlight significant variability in Holocene climate, challenging the notion of it being a stable period, with periods of both increased and decreased glacial activity recorded. The study emphasizes the importance of high-resolution sedimentary data for understanding millennial-scale climatic oscillations in the context of broader climatic patterns.","publication_name":"Quaternary Science Reviews"},"translated_abstract":null,"internal_url":"https://www.academia.edu/30874032/The_lacustrine_sedimentary_sequence_in_Sygneskardvatnet_western_Norway_a_continuous_high_resolution_record_of_the_Jostedalsbreen_ice_cap_during_the_Holocene","translated_internal_url":"","created_at":"2017-01-11T05:01:28.901-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":51300467,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300467/thumbnails/1.jpg","file_name":"The_lacustrine_sedimentary_sequence_in_S20170111-6810-1b8ls5d.pdf","download_url":"https://www.academia.edu/attachments/51300467/download_file","bulk_download_file_name":"The_lacustrine_sedimentary_sequence_in_S.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300467/The_lacustrine_sedimentary_sequence_in_S20170111-6810-1b8ls5d-libre.pdf?1484140090=\u0026response-content-disposition=attachment%3B+filename%3DThe_lacustrine_sedimentary_sequence_in_S.pdf\u0026Expires=1743853387\u0026Signature=XZy2Pf2seUjjFZbRE4PGVgDElwz6tbQpnOI8m0Bbi1yfTLRUzIzcjtW6ip3kMKEnyledgm2v9QOnGBiCCxGBLhWDMhSPYvzs3qH-YxTwPfc1~BzUUa3gYntqMwzgYfbYYAkT6geN~cGzbyMTun6a2J88bykJjKtArtiGIutac9v6ferzhv17Tj1wuWiRnRTWvuHMHci4cbEvzzDCmxjn0UPRzl6NDg02g3uF~8vRWnRKQ7RC6rxYswyoVI9VkblMQXtrLVv004fA1yJ3caRV~X1HCH6jt0X~pI02kXhwp0AS0oH3u6WvMEKe7-NyTUNgN9K07Hx5UqBHSAjROg75DQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_lacustrine_sedimentary_sequence_in_Sygneskardvatnet_western_Norway_a_continuous_high_resolution_record_of_the_Jostedalsbreen_ice_cap_during_the_Holocene","translated_slug":"","page_count":20,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[{"id":51300467,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300467/thumbnails/1.jpg","file_name":"The_lacustrine_sedimentary_sequence_in_S20170111-6810-1b8ls5d.pdf","download_url":"https://www.academia.edu/attachments/51300467/download_file","bulk_download_file_name":"The_lacustrine_sedimentary_sequence_in_S.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300467/The_lacustrine_sedimentary_sequence_in_S20170111-6810-1b8ls5d-libre.pdf?1484140090=\u0026response-content-disposition=attachment%3B+filename%3DThe_lacustrine_sedimentary_sequence_in_S.pdf\u0026Expires=1743853387\u0026Signature=XZy2Pf2seUjjFZbRE4PGVgDElwz6tbQpnOI8m0Bbi1yfTLRUzIzcjtW6ip3kMKEnyledgm2v9QOnGBiCCxGBLhWDMhSPYvzs3qH-YxTwPfc1~BzUUa3gYntqMwzgYfbYYAkT6geN~cGzbyMTun6a2J88bykJjKtArtiGIutac9v6ferzhv17Tj1wuWiRnRTWvuHMHci4cbEvzzDCmxjn0UPRzl6NDg02g3uF~8vRWnRKQ7RC6rxYswyoVI9VkblMQXtrLVv004fA1yJ3caRV~X1HCH6jt0X~pI02kXhwp0AS0oH3u6WvMEKe7-NyTUNgN9K07Hx5UqBHSAjROg75DQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":79294,"name":"Quaternary Science","url":"https://www.academia.edu/Documents/in/Quaternary_Science"},{"id":93755,"name":"History and archaeology","url":"https://www.academia.edu/Documents/in/History_and_archaeology"},{"id":150013,"name":"Late Holocene","url":"https://www.academia.edu/Documents/in/Late_Holocene"},{"id":167123,"name":"Loss on Ignition","url":"https://www.academia.edu/Documents/in/Loss_on_Ignition"},{"id":182364,"name":"Little Ice Age","url":"https://www.academia.edu/Documents/in/Little_Ice_Age"},{"id":188242,"name":"Organic production","url":"https://www.academia.edu/Documents/in/Organic_production"},{"id":198868,"name":"Ice Cores","url":"https://www.academia.edu/Documents/in/Ice_Cores"},{"id":309086,"name":"High Resolution","url":"https://www.academia.edu/Documents/in/High_Resolution"},{"id":333942,"name":"Marine Sediment","url":"https://www.academia.edu/Documents/in/Marine_Sediment"},{"id":373417,"name":"Quaternary Science Reviews","url":"https://www.academia.edu/Documents/in/Quaternary_Science_Reviews"},{"id":958194,"name":"Sedimentation Rate","url":"https://www.academia.edu/Documents/in/Sedimentation_Rate"},{"id":2007066,"name":"Return period","url":"https://www.academia.edu/Documents/in/Return_period"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874032-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874031"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30874031/Holocene_glacial_and_climate_history_of_the_Jostedalsbreen_region_Western_Norway_evidence_from_lake_sediments_and_terrestrial_deposits"><img alt="Research paper thumbnail of Holocene glacial and climate history of the Jostedalsbreen region, Western Norway; evidence from lake sediments and terrestrial deposits" class="work-thumbnail" src="https://attachments.academia-assets.com/51300471/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30874031/Holocene_glacial_and_climate_history_of_the_Jostedalsbreen_region_Western_Norway_evidence_from_lake_sediments_and_terrestrial_deposits">Holocene glacial and climate history of the Jostedalsbreen region, Western Norway; evidence from lake sediments and terrestrial deposits</a></div><div class="wp-workCard_item"><span>Quaternary Science Reviews</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The valleys surroundingthe Jostedalsbreen ice cap were deglaciated during the latter half of the ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The valleys surroundingthe Jostedalsbreen ice cap were deglaciated during the latter half of the Preboreal Chronozone. At the end of the Preboreal Chronozone, however, a glacier readvance occurred. Terminal moraines were deposited by outlet valley glaciers from the Jostedalsbreen Plateau up to 1 km beyond Little Ice A~ge moraines. Inferred from the altitude of lateral moraines formed during this readvance and calculations of the equilibrium-line altitude (ELA) depression based on an accumulation area ratio (AAR) of 0.6, the average depression of the ELA was 325 +75/-115 m below the present. By assuming a similar precipitation pattern as at present, this suggests a mean temperature decline of about 2°C. Palynological investigations from Sygneskardet, Sunndalen, indicate that climate like the present was achieved just after 9000 BP. The Holocene climatic optimum occurred during the Atlantic Chronozone, with elm (Ulmus) stands growing at the present birch (Betula) forest limit in Sunndalen and pine (Pinus) growing at Styggevatnet to an altitude of at least 1160 m. Durin[g this period the mean summer temperature is estimated to have been at least 2.7 and 1.8°C warmer than at present, with and wtthout the local climatic effect of Jostedalsbreen, respectively. An inferred rise of the ELA of about 400 m from the present altitude suggests that possibly no glaciers existed on the Jostedalsbreen Plateau during the Holocene climatic optimum. Vegetational chan~es as deduced from palynological studies, lowered tree limits and increased resedimentation in peat bogs indicate general climatic deterioration since the Late Atlantic Chronozone.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1dda190660f62119501b7ffa70db0dbc" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:51300471,&quot;asset_id&quot;:30874031,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/51300471/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874031"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874031"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874031; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874031]").text(description); $(".js-view-count[data-work-id=30874031]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874031; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874031']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1dda190660f62119501b7ffa70db0dbc" } } $('.js-work-strip[data-work-id=30874031]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874031,"title":"Holocene glacial and climate history of the Jostedalsbreen region, Western Norway; evidence from lake sediments and terrestrial deposits","translated_title":"","metadata":{"ai_title_tag":"Holocene Climate and Glacial History of Jostedalsbreen","grobid_abstract":"The valleys surroundingthe Jostedalsbreen ice cap were deglaciated during the latter half of the Preboreal Chronozone. At the end of the Preboreal Chronozone, however, a glacier readvance occurred. Terminal moraines were deposited by outlet valley glaciers from the Jostedalsbreen Plateau up to 1 km beyond Little Ice A~ge moraines. Inferred from the altitude of lateral moraines formed during this readvance and calculations of the equilibrium-line altitude (ELA) depression based on an accumulation area ratio (AAR) of 0.6, the average depression of the ELA was 325 +75/-115 m below the present. By assuming a similar precipitation pattern as at present, this suggests a mean temperature decline of about 2°C. Palynological investigations from Sygneskardet, Sunndalen, indicate that climate like the present was achieved just after 9000 BP. The Holocene climatic optimum occurred during the Atlantic Chronozone, with elm (Ulmus) stands growing at the present birch (Betula) forest limit in Sunndalen and pine (Pinus) growing at Styggevatnet to an altitude of at least 1160 m. Durin[g this period the mean summer temperature is estimated to have been at least 2.7 and 1.8°C warmer than at present, with and wtthout the local climatic effect of Jostedalsbreen, respectively. An inferred rise of the ELA of about 400 m from the present altitude suggests that possibly no glaciers existed on the Jostedalsbreen Plateau during the Holocene climatic optimum. Vegetational chan~es as deduced from palynological studies, lowered tree limits and increased resedimentation in peat bogs indicate general climatic deterioration since the Late Atlantic Chronozone.","publication_name":"Quaternary Science Reviews","grobid_abstract_attachment_id":51300471},"translated_abstract":null,"internal_url":"https://www.academia.edu/30874031/Holocene_glacial_and_climate_history_of_the_Jostedalsbreen_region_Western_Norway_evidence_from_lake_sediments_and_terrestrial_deposits","translated_internal_url":"","created_at":"2017-01-11T05:01:28.434-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":51300471,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300471/thumbnails/1.jpg","file_name":"Holocene_glacial_and_climate_history_of_20170111-6810-17x38bn.pdf","download_url":"https://www.academia.edu/attachments/51300471/download_file","bulk_download_file_name":"Holocene_glacial_and_climate_history_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300471/Holocene_glacial_and_climate_history_of_20170111-6810-17x38bn-libre.pdf?1484140105=\u0026response-content-disposition=attachment%3B+filename%3DHolocene_glacial_and_climate_history_of.pdf\u0026Expires=1743853387\u0026Signature=e~A880Cqd9dWh9ngMN4ejUu3NLTix3eSHTWo0QKZSIPjcz0kD~noUM-nYL9F9e0bwqU0MArZE39b86Ev-FLsty4ON8r5Ugwu4XhamHbQvfC8RdkbSyPxmR8pk-tsIavYctxNwX2r32MUfFO4rNz1Hhz3eeLSFwRvCN4XWjxy7Rm-d-ebMUg-foAv0cQgHceN~iBNngEOrOoWr4CnIFrPSU35BrbmJcrENFE5iw83zsQ1~UZ8c-g4B0aVToRI-Djku01wC13TmFX-nYqGYfMQQ-d1t6Cg2Tc60cGXTvpgpHHnGNBj67PRzw97qae-TI0nHtZbt7DJtScV0JxVVDdNnw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Holocene_glacial_and_climate_history_of_the_Jostedalsbreen_region_Western_Norway_evidence_from_lake_sediments_and_terrestrial_deposits","translated_slug":"","page_count":29,"language":"en","content_type":"Work","summary":"The valleys surroundingthe Jostedalsbreen ice cap were deglaciated during the latter half of the Preboreal Chronozone. At the end of the Preboreal Chronozone, however, a glacier readvance occurred. Terminal moraines were deposited by outlet valley glaciers from the Jostedalsbreen Plateau up to 1 km beyond Little Ice A~ge moraines. Inferred from the altitude of lateral moraines formed during this readvance and calculations of the equilibrium-line altitude (ELA) depression based on an accumulation area ratio (AAR) of 0.6, the average depression of the ELA was 325 +75/-115 m below the present. By assuming a similar precipitation pattern as at present, this suggests a mean temperature decline of about 2°C. Palynological investigations from Sygneskardet, Sunndalen, indicate that climate like the present was achieved just after 9000 BP. The Holocene climatic optimum occurred during the Atlantic Chronozone, with elm (Ulmus) stands growing at the present birch (Betula) forest limit in Sunndalen and pine (Pinus) growing at Styggevatnet to an altitude of at least 1160 m. Durin[g this period the mean summer temperature is estimated to have been at least 2.7 and 1.8°C warmer than at present, with and wtthout the local climatic effect of Jostedalsbreen, respectively. An inferred rise of the ELA of about 400 m from the present altitude suggests that possibly no glaciers existed on the Jostedalsbreen Plateau during the Holocene climatic optimum. Vegetational chan~es as deduced from palynological studies, lowered tree limits and increased resedimentation in peat bogs indicate general climatic deterioration since the Late Atlantic Chronozone.","impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[{"id":51300471,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300471/thumbnails/1.jpg","file_name":"Holocene_glacial_and_climate_history_of_20170111-6810-17x38bn.pdf","download_url":"https://www.academia.edu/attachments/51300471/download_file","bulk_download_file_name":"Holocene_glacial_and_climate_history_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300471/Holocene_glacial_and_climate_history_of_20170111-6810-17x38bn-libre.pdf?1484140105=\u0026response-content-disposition=attachment%3B+filename%3DHolocene_glacial_and_climate_history_of.pdf\u0026Expires=1743853387\u0026Signature=e~A880Cqd9dWh9ngMN4ejUu3NLTix3eSHTWo0QKZSIPjcz0kD~noUM-nYL9F9e0bwqU0MArZE39b86Ev-FLsty4ON8r5Ugwu4XhamHbQvfC8RdkbSyPxmR8pk-tsIavYctxNwX2r32MUfFO4rNz1Hhz3eeLSFwRvCN4XWjxy7Rm-d-ebMUg-foAv0cQgHceN~iBNngEOrOoWr4CnIFrPSU35BrbmJcrENFE5iw83zsQ1~UZ8c-g4B0aVToRI-Djku01wC13TmFX-nYqGYfMQQ-d1t6Cg2Tc60cGXTvpgpHHnGNBj67PRzw97qae-TI0nHtZbt7DJtScV0JxVVDdNnw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":93755,"name":"History and archaeology","url":"https://www.academia.edu/Documents/in/History_and_archaeology"},{"id":373417,"name":"Quaternary Science Reviews","url":"https://www.academia.edu/Documents/in/Quaternary_Science_Reviews"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874031-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874030"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30874030/Block_fields_in_southern_Norway_Significance_for_the_Late_Weichselian_ice_sheet"><img alt="Research paper thumbnail of Block fields in southern Norway: Significance for the Late Weichselian ice sheet" class="work-thumbnail" src="https://attachments.academia-assets.com/51300463/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30874030/Block_fields_in_southern_Norway_Significance_for_the_Late_Weichselian_ice_sheet">Block fields in southern Norway: Significance for the Late Weichselian ice sheet</a></div><div class="wp-workCard_item"><span>Norsk Geologisk Tidsskrift</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="31da85869277b584afe7ac3756a2fc80" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:51300463,&quot;asset_id&quot;:30874030,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/51300463/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874030"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874030"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874030; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874030]").text(description); $(".js-view-count[data-work-id=30874030]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874030; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874030']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "31da85869277b584afe7ac3756a2fc80" } } $('.js-work-strip[data-work-id=30874030]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874030,"title":"Block fields in southern Norway: Significance for the Late Weichselian ice sheet","translated_title":"","metadata":{"ai_abstract":"The geographical and altitudinal distribution of block fields in southern Norway is analyzed in the context of the Late Weichselian ice sheet's vertical extent. A new model is proposed, suggesting a low-gradient, polycentred ice sheet during maximum glaciation, with significant implications for understanding deglaciation patterns in the region.","publication_name":"Norsk Geologisk Tidsskrift"},"translated_abstract":null,"internal_url":"https://www.academia.edu/30874030/Block_fields_in_southern_Norway_Significance_for_the_Late_Weichselian_ice_sheet","translated_internal_url":"","created_at":"2017-01-11T05:01:27.946-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":51300463,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300463/thumbnails/1.jpg","file_name":"Block_fields_in_southern_Norway_Signific20170111-6810-1nyqhkh.pdf","download_url":"https://www.academia.edu/attachments/51300463/download_file","bulk_download_file_name":"Block_fields_in_southern_Norway_Signific.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300463/Block_fields_in_southern_Norway_Signific20170111-6810-1nyqhkh-libre.pdf?1484140120=\u0026response-content-disposition=attachment%3B+filename%3DBlock_fields_in_southern_Norway_Signific.pdf\u0026Expires=1743853387\u0026Signature=TzFniB14F8MYBMifU2k0qVCFunFisJSiunp9ZwccSb7YrrLXvWoFBqDj53sCdJJa6QqY-GiHU-LAkP5hsVejYrnvE~wNErnXomPzxvbAOsYoFzhEEG5f8eP~zjFrW1icSozjz~kEAAlAPHGzi~DqWXgUjyz2LJ1oM9GhNN-zQFMQQeXq3k4ePuGF5zdwp5jdqrom1xs7qfE-TgiK6H2EmQiWh5pje65yJANVwX0jCX~44lvHXC7pvE1DDHUBfXvshJloNGWje4c~x0P94rv6AMbML0pm2Hq75J4UKEOVVDC38a1t44CfAWiDgKZ84Z0Us3~jKd5nCVCrDDwANU0WyQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Block_fields_in_southern_Norway_Significance_for_the_Late_Weichselian_ice_sheet","translated_slug":"","page_count":22,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[{"id":51300463,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300463/thumbnails/1.jpg","file_name":"Block_fields_in_southern_Norway_Signific20170111-6810-1nyqhkh.pdf","download_url":"https://www.academia.edu/attachments/51300463/download_file","bulk_download_file_name":"Block_fields_in_southern_Norway_Signific.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300463/Block_fields_in_southern_Norway_Signific20170111-6810-1nyqhkh-libre.pdf?1484140120=\u0026response-content-disposition=attachment%3B+filename%3DBlock_fields_in_southern_Norway_Signific.pdf\u0026Expires=1743853387\u0026Signature=TzFniB14F8MYBMifU2k0qVCFunFisJSiunp9ZwccSb7YrrLXvWoFBqDj53sCdJJa6QqY-GiHU-LAkP5hsVejYrnvE~wNErnXomPzxvbAOsYoFzhEEG5f8eP~zjFrW1icSozjz~kEAAlAPHGzi~DqWXgUjyz2LJ1oM9GhNN-zQFMQQeXq3k4ePuGF5zdwp5jdqrom1xs7qfE-TgiK6H2EmQiWh5pje65yJANVwX0jCX~44lvHXC7pvE1DDHUBfXvshJloNGWje4c~x0P94rv6AMbML0pm2Hq75J4UKEOVVDC38a1t44CfAWiDgKZ84Z0Us3~jKd5nCVCrDDwANU0WyQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874030-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874029"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30874029/Glaciers_as_Indicators_of_Holocene_Climate_Change"><img alt="Research paper thumbnail of Glaciers as Indicators of Holocene Climate Change" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Glaciers as Indicators of Holocene Climate Change</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874029"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874029"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874029; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874029]").text(description); $(".js-view-count[data-work-id=30874029]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874029; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874029']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30874029]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874029,"title":"Glaciers as Indicators of Holocene Climate Change","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/30874029/Glaciers_as_Indicators_of_Holocene_Climate_Change","translated_internal_url":"","created_at":"2017-01-11T05:01:27.514-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Glaciers_as_Indicators_of_Holocene_Climate_Change","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874029-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874028"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30874028/The_Expression_of_the_8_2_ka_and_Younger_Dryas_Events_in_the_Eastern_Canadian_Arctic"><img alt="Research paper thumbnail of The Expression of the 8.2 ka and Younger Dryas Events in the Eastern Canadian Arctic" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">The Expression of the 8.2 ka and Younger Dryas Events in the Eastern Canadian Arctic</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The two largest climate coolings following the end of the last glaciation are the Younger Dryas a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The two largest climate coolings following the end of the last glaciation are the Younger Dryas and the 8.2 ka events. Evidence for these cold excursions is widespread around the North Atlantic and in more distant regions. Both events are well expressed in Greenland ice cores; glacier readvances occurred across much of NW Europe during the Younger Dryas and cold surface waters returned to the North Atlantic, with depressed summer temperatures in eastern North America. The 8.2 ka event has a similar pattern, but the magnitude is substantially lower, with a much shorter duration. However, surprisingly little evidence has been presented for either event from the North Atlantic Arctic. Recently acquired lake sediment records from the Eastern Canadian Arctic contain evidence for both excursions. The 8.2 ka event is recorded at two sites as a significant glacier readvance of cirque and outlet glaciers of local ice caps at 8.2±0.1 ka. In some non-glacially-dominated lakes, a reduction in primary productivity is apparent at the same time. These records suggest colder summers without a dramatic reduction in precipitation, producing positive mass balances and glacier readvances. For most local glaciers, this was the last significant readvance before they receded behind their Little Ice Age margins. Only a few lakes contain records that extend through the Younger Dryas chron. The best-dated lake record, Donard Lake, extends back to 15 ka. Lacustrine sedimentation is currently dominated by a meltwater from an outlet glacier that terminates a few hundred meters from the lake. The glacier has been within the drainage basin of the lake for the past 5.5 ka, although the contribution of glacial sediment has been larger since about 2.5 ka. Prior to 5.5 ka, there is no evidence of a glacier in the catchment of Donard Lake, suggesting that throughout the entire Neoglacial period, the local glacier has been more advanced than at any time since 15 ka. During the Younger Dryas chron, lacustrine primary productivity was greatly reduced, whether measured as the flux of organic carbon to the lake floor or as the percentage of organic matter in lake sediment. We interpret this change to reflect a substantial reduction in summer temperatures for more than 1 ka. However, this temperature drop was not accompanied by a significant glacier readvance, suggesting precipitation must have been very low. This differs from the 8.2 ka event when precipitation must have remained relatively high. These records indicate that in the Eastern Canadian Arctic, summers during the Younger Dryas were much colder than present, but precipitation was dramatically lower too, so glaciers did not advance, whereas during the briefer, and less severe summer cooling associated with the 8.2 ka event, precipitation was not dramatically reduced and glaciers readvanced.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874028"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874028"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874028; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874028]").text(description); $(".js-view-count[data-work-id=30874028]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874028; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874028']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30874028]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874028,"title":"The Expression of the 8.2 ka and Younger Dryas Events in the Eastern Canadian Arctic","translated_title":"","metadata":{"abstract":"The two largest climate coolings following the end of the last glaciation are the Younger Dryas and the 8.2 ka events. Evidence for these cold excursions is widespread around the North Atlantic and in more distant regions. Both events are well expressed in Greenland ice cores; glacier readvances occurred across much of NW Europe during the Younger Dryas and cold surface waters returned to the North Atlantic, with depressed summer temperatures in eastern North America. The 8.2 ka event has a similar pattern, but the magnitude is substantially lower, with a much shorter duration. However, surprisingly little evidence has been presented for either event from the North Atlantic Arctic. Recently acquired lake sediment records from the Eastern Canadian Arctic contain evidence for both excursions. The 8.2 ka event is recorded at two sites as a significant glacier readvance of cirque and outlet glaciers of local ice caps at 8.2±0.1 ka. In some non-glacially-dominated lakes, a reduction in primary productivity is apparent at the same time. These records suggest colder summers without a dramatic reduction in precipitation, producing positive mass balances and glacier readvances. For most local glaciers, this was the last significant readvance before they receded behind their Little Ice Age margins. Only a few lakes contain records that extend through the Younger Dryas chron. The best-dated lake record, Donard Lake, extends back to 15 ka. Lacustrine sedimentation is currently dominated by a meltwater from an outlet glacier that terminates a few hundred meters from the lake. The glacier has been within the drainage basin of the lake for the past 5.5 ka, although the contribution of glacial sediment has been larger since about 2.5 ka. Prior to 5.5 ka, there is no evidence of a glacier in the catchment of Donard Lake, suggesting that throughout the entire Neoglacial period, the local glacier has been more advanced than at any time since 15 ka. During the Younger Dryas chron, lacustrine primary productivity was greatly reduced, whether measured as the flux of organic carbon to the lake floor or as the percentage of organic matter in lake sediment. We interpret this change to reflect a substantial reduction in summer temperatures for more than 1 ka. However, this temperature drop was not accompanied by a significant glacier readvance, suggesting precipitation must have been very low. This differs from the 8.2 ka event when precipitation must have remained relatively high. These records indicate that in the Eastern Canadian Arctic, summers during the Younger Dryas were much colder than present, but precipitation was dramatically lower too, so glaciers did not advance, whereas during the briefer, and less severe summer cooling associated with the 8.2 ka event, precipitation was not dramatically reduced and glaciers readvanced."},"translated_abstract":"The two largest climate coolings following the end of the last glaciation are the Younger Dryas and the 8.2 ka events. Evidence for these cold excursions is widespread around the North Atlantic and in more distant regions. Both events are well expressed in Greenland ice cores; glacier readvances occurred across much of NW Europe during the Younger Dryas and cold surface waters returned to the North Atlantic, with depressed summer temperatures in eastern North America. The 8.2 ka event has a similar pattern, but the magnitude is substantially lower, with a much shorter duration. However, surprisingly little evidence has been presented for either event from the North Atlantic Arctic. Recently acquired lake sediment records from the Eastern Canadian Arctic contain evidence for both excursions. The 8.2 ka event is recorded at two sites as a significant glacier readvance of cirque and outlet glaciers of local ice caps at 8.2±0.1 ka. In some non-glacially-dominated lakes, a reduction in primary productivity is apparent at the same time. These records suggest colder summers without a dramatic reduction in precipitation, producing positive mass balances and glacier readvances. For most local glaciers, this was the last significant readvance before they receded behind their Little Ice Age margins. Only a few lakes contain records that extend through the Younger Dryas chron. The best-dated lake record, Donard Lake, extends back to 15 ka. Lacustrine sedimentation is currently dominated by a meltwater from an outlet glacier that terminates a few hundred meters from the lake. The glacier has been within the drainage basin of the lake for the past 5.5 ka, although the contribution of glacial sediment has been larger since about 2.5 ka. Prior to 5.5 ka, there is no evidence of a glacier in the catchment of Donard Lake, suggesting that throughout the entire Neoglacial period, the local glacier has been more advanced than at any time since 15 ka. During the Younger Dryas chron, lacustrine primary productivity was greatly reduced, whether measured as the flux of organic carbon to the lake floor or as the percentage of organic matter in lake sediment. We interpret this change to reflect a substantial reduction in summer temperatures for more than 1 ka. However, this temperature drop was not accompanied by a significant glacier readvance, suggesting precipitation must have been very low. This differs from the 8.2 ka event when precipitation must have remained relatively high. These records indicate that in the Eastern Canadian Arctic, summers during the Younger Dryas were much colder than present, but precipitation was dramatically lower too, so glaciers did not advance, whereas during the briefer, and less severe summer cooling associated with the 8.2 ka event, precipitation was not dramatically reduced and glaciers readvanced.","internal_url":"https://www.academia.edu/30874028/The_Expression_of_the_8_2_ka_and_Younger_Dryas_Events_in_the_Eastern_Canadian_Arctic","translated_internal_url":"","created_at":"2017-01-11T05:01:27.009-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Expression_of_the_8_2_ka_and_Younger_Dryas_Events_in_the_Eastern_Canadian_Arctic","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The two largest climate coolings following the end of the last glaciation are the Younger Dryas and the 8.2 ka events. Evidence for these cold excursions is widespread around the North Atlantic and in more distant regions. Both events are well expressed in Greenland ice cores; glacier readvances occurred across much of NW Europe during the Younger Dryas and cold surface waters returned to the North Atlantic, with depressed summer temperatures in eastern North America. The 8.2 ka event has a similar pattern, but the magnitude is substantially lower, with a much shorter duration. However, surprisingly little evidence has been presented for either event from the North Atlantic Arctic. Recently acquired lake sediment records from the Eastern Canadian Arctic contain evidence for both excursions. The 8.2 ka event is recorded at two sites as a significant glacier readvance of cirque and outlet glaciers of local ice caps at 8.2±0.1 ka. In some non-glacially-dominated lakes, a reduction in primary productivity is apparent at the same time. These records suggest colder summers without a dramatic reduction in precipitation, producing positive mass balances and glacier readvances. For most local glaciers, this was the last significant readvance before they receded behind their Little Ice Age margins. Only a few lakes contain records that extend through the Younger Dryas chron. The best-dated lake record, Donard Lake, extends back to 15 ka. Lacustrine sedimentation is currently dominated by a meltwater from an outlet glacier that terminates a few hundred meters from the lake. The glacier has been within the drainage basin of the lake for the past 5.5 ka, although the contribution of glacial sediment has been larger since about 2.5 ka. Prior to 5.5 ka, there is no evidence of a glacier in the catchment of Donard Lake, suggesting that throughout the entire Neoglacial period, the local glacier has been more advanced than at any time since 15 ka. During the Younger Dryas chron, lacustrine primary productivity was greatly reduced, whether measured as the flux of organic carbon to the lake floor or as the percentage of organic matter in lake sediment. We interpret this change to reflect a substantial reduction in summer temperatures for more than 1 ka. However, this temperature drop was not accompanied by a significant glacier readvance, suggesting precipitation must have been very low. This differs from the 8.2 ka event when precipitation must have remained relatively high. These records indicate that in the Eastern Canadian Arctic, summers during the Younger Dryas were much colder than present, but precipitation was dramatically lower too, so glaciers did not advance, whereas during the briefer, and less severe summer cooling associated with the 8.2 ka event, precipitation was not dramatically reduced and glaciers readvanced.","impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[],"research_interests":[{"id":42073,"name":"North Eastern North America Archaeology","url":"https://www.academia.edu/Documents/in/North_Eastern_North_America_Archaeology"},{"id":82675,"name":"North Atlantic","url":"https://www.academia.edu/Documents/in/North_Atlantic"},{"id":142810,"name":"Surface Water","url":"https://www.academia.edu/Documents/in/Surface_Water"},{"id":152776,"name":"Younger Dryas","url":"https://www.academia.edu/Documents/in/Younger_Dryas"},{"id":182364,"name":"Little Ice Age","url":"https://www.academia.edu/Documents/in/Little_Ice_Age"},{"id":198868,"name":"Ice Cores","url":"https://www.academia.edu/Documents/in/Ice_Cores"},{"id":289852,"name":"Primary Production","url":"https://www.academia.edu/Documents/in/Primary_Production"},{"id":585192,"name":"Organic carbon","url":"https://www.academia.edu/Documents/in/Organic_carbon"},{"id":970387,"name":"Organic Matter","url":"https://www.academia.edu/Documents/in/Organic_Matter"},{"id":1707373,"name":"Mass Balance","url":"https://www.academia.edu/Documents/in/Mass_Balance"},{"id":2196834,"name":"Canadian Arctic","url":"https://www.academia.edu/Documents/in/Canadian_Arctic"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874028-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874027"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30874027/Holocene_Changes_in_Atmospherical_Circulation_in_the_North_Atlantic_Region_Evidences_for_Millennial_Scale_coVariability_Between_Ocean_and_Atmosphere_Circulation"><img alt="Research paper thumbnail of Holocene Changes in Atmospherical Circulation in the North Atlantic Region - Evidences for Millennial-Scale coVariability Between Ocean and Atmosphere Circulation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Holocene Changes in Atmospherical Circulation in the North Atlantic Region - Evidences for Millennial-Scale coVariability Between Ocean and Atmosphere Circulation</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Whereas a number of records from the marine realm have demonstrated Holocene changes regarded to ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Whereas a number of records from the marine realm have demonstrated Holocene changes regarded to be related to overturning circulation in the North Atlantic region, independent information of atmospherical variability from the terrestrial realm have proven more elusive to capture in palaeo-records. This is a major concern, as several studies have suggested that atmospherical forcing may be an important factor</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874027"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874027"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874027; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874027]").text(description); $(".js-view-count[data-work-id=30874027]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874027; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874027']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30874027]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874027,"title":"Holocene Changes in Atmospherical Circulation in the North Atlantic Region - Evidences for Millennial-Scale coVariability Between Ocean and Atmosphere Circulation","translated_title":"","metadata":{"abstract":"Whereas a number of records from the marine realm have demonstrated Holocene changes regarded to be related to overturning circulation in the North Atlantic region, independent information of atmospherical variability from the terrestrial realm have proven more elusive to capture in palaeo-records. This is a major concern, as several studies have suggested that atmospherical forcing may be an important factor"},"translated_abstract":"Whereas a number of records from the marine realm have demonstrated Holocene changes regarded to be related to overturning circulation in the North Atlantic region, independent information of atmospherical variability from the terrestrial realm have proven more elusive to capture in palaeo-records. This is a major concern, as several studies have suggested that atmospherical forcing may be an important factor","internal_url":"https://www.academia.edu/30874027/Holocene_Changes_in_Atmospherical_Circulation_in_the_North_Atlantic_Region_Evidences_for_Millennial_Scale_coVariability_Between_Ocean_and_Atmosphere_Circulation","translated_internal_url":"","created_at":"2017-01-11T05:01:26.529-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Holocene_Changes_in_Atmospherical_Circulation_in_the_North_Atlantic_Region_Evidences_for_Millennial_Scale_coVariability_Between_Ocean_and_Atmosphere_Circulation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Whereas a number of records from the marine realm have demonstrated Holocene changes regarded to be related to overturning circulation in the North Atlantic region, independent information of atmospherical variability from the terrestrial realm have proven more elusive to capture in palaeo-records. This is a major concern, as several studies have suggested that atmospherical forcing may be an important factor","impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[],"research_interests":[{"id":30441,"name":"North Atlantic Ocean","url":"https://www.academia.edu/Documents/in/North_Atlantic_Ocean"},{"id":44265,"name":"North Atlantic Oscillation","url":"https://www.academia.edu/Documents/in/North_Atlantic_Oscillation"},{"id":62729,"name":"Air flow","url":"https://www.academia.edu/Documents/in/Air_flow"},{"id":82675,"name":"North Atlantic","url":"https://www.academia.edu/Documents/in/North_Atlantic"},{"id":113239,"name":"Ocean Circulation","url":"https://www.academia.edu/Documents/in/Ocean_Circulation"},{"id":150013,"name":"Late Holocene","url":"https://www.academia.edu/Documents/in/Late_Holocene"},{"id":236377,"name":"Spatial Distribution","url":"https://www.academia.edu/Documents/in/Spatial_Distribution"},{"id":303826,"name":"Atmospheric Circulation","url":"https://www.academia.edu/Documents/in/Atmospheric_Circulation"},{"id":314103,"name":"Inverse Modeling","url":"https://www.academia.edu/Documents/in/Inverse_Modeling"},{"id":2516014,"name":"temporal variation","url":"https://www.academia.edu/Documents/in/temporal_variation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874027-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874026"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30874026/Holocene_glacial_and_colluvial_activity_in_Leirungsdalen_eastern_Jotunheimen_south_central_Norway"><img alt="Research paper thumbnail of Holocene glacial and colluvial activity in Leirungsdalen, eastern Jotunheimen, south-central Norway" class="work-thumbnail" src="https://attachments.academia-assets.com/51300462/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30874026/Holocene_glacial_and_colluvial_activity_in_Leirungsdalen_eastern_Jotunheimen_south_central_Norway">Holocene glacial and colluvial activity in Leirungsdalen, eastern Jotunheimen, south-central Norway</a></div><div class="wp-workCard_item"><span>Norsk Geologisk Tidsskrift</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Two terrestrial sections have been studied in order to reconstruct the Holocene glacial and collu...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Two terrestrial sections have been studied in order to reconstruct the Holocene glacial and colluvial history in Leirungsdalen, eastern Jotunheimen. The interpretation of individual sedimentary units is based on the grain-size distribution and compared with modern analogue samples collected in the respective streams and at sites close to the present glaciers. Stages of enhanced debris flow or glacial activity are recognized as sand and silt layers, respectively, while periods of low colluvial and glacial activity in the catchment are characterised by continuous peat accumulation. Age/depth curves based on radiocarbon dates from the Svarthammarbu and Steinflybekken sections indicate debris flow activity &amp;gt; 7500, 7300-6800,6600-5500, 5800, 5700, 5300-4900,4700, 4500,4300, 2300, 2100-1500, 1300, 700-600 and 500-400 cal. yr BP. The first Holocene glacial signal is detected ca. 5300 cal. yr BP. The frequency of glacial events seems to have increased during the Late Holocene, especially...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d5b96cb3db7fcf5a11208098f5d18905" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:51300462,&quot;asset_id&quot;:30874026,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/51300462/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874026"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874026"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874026; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874026]").text(description); $(".js-view-count[data-work-id=30874026]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874026; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874026']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d5b96cb3db7fcf5a11208098f5d18905" } } $('.js-work-strip[data-work-id=30874026]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874026,"title":"Holocene glacial and colluvial activity in Leirungsdalen, eastern Jotunheimen, south-central Norway","translated_title":"","metadata":{"abstract":"Two terrestrial sections have been studied in order to reconstruct the Holocene glacial and colluvial history in Leirungsdalen, eastern Jotunheimen. The interpretation of individual sedimentary units is based on the grain-size distribution and compared with modern analogue samples collected in the respective streams and at sites close to the present glaciers. Stages of enhanced debris flow or glacial activity are recognized as sand and silt layers, respectively, while periods of low colluvial and glacial activity in the catchment are characterised by continuous peat accumulation. Age/depth curves based on radiocarbon dates from the Svarthammarbu and Steinflybekken sections indicate debris flow activity \u0026gt; 7500, 7300-6800,6600-5500, 5800, 5700, 5300-4900,4700, 4500,4300, 2300, 2100-1500, 1300, 700-600 and 500-400 cal. yr BP. The first Holocene glacial signal is detected ca. 5300 cal. yr BP. The frequency of glacial events seems to have increased during the Late Holocene, especially...","ai_title_tag":"Holocene Glacial History in Leirungsdalen","publication_name":"Norsk Geologisk Tidsskrift"},"translated_abstract":"Two terrestrial sections have been studied in order to reconstruct the Holocene glacial and colluvial history in Leirungsdalen, eastern Jotunheimen. The interpretation of individual sedimentary units is based on the grain-size distribution and compared with modern analogue samples collected in the respective streams and at sites close to the present glaciers. Stages of enhanced debris flow or glacial activity are recognized as sand and silt layers, respectively, while periods of low colluvial and glacial activity in the catchment are characterised by continuous peat accumulation. Age/depth curves based on radiocarbon dates from the Svarthammarbu and Steinflybekken sections indicate debris flow activity \u0026gt; 7500, 7300-6800,6600-5500, 5800, 5700, 5300-4900,4700, 4500,4300, 2300, 2100-1500, 1300, 700-600 and 500-400 cal. yr BP. The first Holocene glacial signal is detected ca. 5300 cal. yr BP. The frequency of glacial events seems to have increased during the Late Holocene, especially...","internal_url":"https://www.academia.edu/30874026/Holocene_glacial_and_colluvial_activity_in_Leirungsdalen_eastern_Jotunheimen_south_central_Norway","translated_internal_url":"","created_at":"2017-01-11T05:01:25.989-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":51300462,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300462/thumbnails/1.jpg","file_name":"Holocene_glacial_and_colluvial_activity_20170111-6813-108sp5p.pdf","download_url":"https://www.academia.edu/attachments/51300462/download_file","bulk_download_file_name":"Holocene_glacial_and_colluvial_activity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300462/Holocene_glacial_and_colluvial_activity_20170111-6813-108sp5p-libre.pdf?1484140117=\u0026response-content-disposition=attachment%3B+filename%3DHolocene_glacial_and_colluvial_activity.pdf\u0026Expires=1743853388\u0026Signature=ACiLdVjfr7Z-1rfBC73--WuzRNY9pxqZB8hP~26HdzOHaCmb50qQ0nvE2qnjKndSphELvR5PSs5CvIdETPznrIjA1QqomHHHb9Gu7KxeEBufG1paWAfarK9m0d0cbOwzddAt6~pvwHr5Wp3Cw-Q8AeaVt22CzV4096doLanlcZBUYUVVOulRf4kFlH~rEyfCra~ZykmhAtdWXBGM9XP1egxEQUrigHXyPEoi6CNnaO9J-6UwWZLMYiIDF5GLreA9yZW9OBWswBSrTDzg5-Retsh~HBCON0yOj9fqz3QbU4OA9ITt1SoDmwtgV1xHwfu2a6LAwogyVtduvtUif~GHuA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Holocene_glacial_and_colluvial_activity_in_Leirungsdalen_eastern_Jotunheimen_south_central_Norway","translated_slug":"","page_count":17,"language":"en","content_type":"Work","summary":"Two terrestrial sections have been studied in order to reconstruct the Holocene glacial and colluvial history in Leirungsdalen, eastern Jotunheimen. The interpretation of individual sedimentary units is based on the grain-size distribution and compared with modern analogue samples collected in the respective streams and at sites close to the present glaciers. Stages of enhanced debris flow or glacial activity are recognized as sand and silt layers, respectively, while periods of low colluvial and glacial activity in the catchment are characterised by continuous peat accumulation. Age/depth curves based on radiocarbon dates from the Svarthammarbu and Steinflybekken sections indicate debris flow activity \u0026gt; 7500, 7300-6800,6600-5500, 5800, 5700, 5300-4900,4700, 4500,4300, 2300, 2100-1500, 1300, 700-600 and 500-400 cal. yr BP. The first Holocene glacial signal is detected ca. 5300 cal. yr BP. The frequency of glacial events seems to have increased during the Late Holocene, especially...","impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[{"id":51300462,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300462/thumbnails/1.jpg","file_name":"Holocene_glacial_and_colluvial_activity_20170111-6813-108sp5p.pdf","download_url":"https://www.academia.edu/attachments/51300462/download_file","bulk_download_file_name":"Holocene_glacial_and_colluvial_activity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300462/Holocene_glacial_and_colluvial_activity_20170111-6813-108sp5p-libre.pdf?1484140117=\u0026response-content-disposition=attachment%3B+filename%3DHolocene_glacial_and_colluvial_activity.pdf\u0026Expires=1743853388\u0026Signature=ACiLdVjfr7Z-1rfBC73--WuzRNY9pxqZB8hP~26HdzOHaCmb50qQ0nvE2qnjKndSphELvR5PSs5CvIdETPznrIjA1QqomHHHb9Gu7KxeEBufG1paWAfarK9m0d0cbOwzddAt6~pvwHr5Wp3Cw-Q8AeaVt22CzV4096doLanlcZBUYUVVOulRf4kFlH~rEyfCra~ZykmhAtdWXBGM9XP1egxEQUrigHXyPEoi6CNnaO9J-6UwWZLMYiIDF5GLreA9yZW9OBWswBSrTDzg5-Retsh~HBCON0yOj9fqz3QbU4OA9ITt1SoDmwtgV1xHwfu2a6LAwogyVtduvtUif~GHuA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874026-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874025"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30874025/Time_Series_at_Decadal_Resolution_Show_Tropical_Influence_on_Climate_Variability_in_The_Eastern_Nordic_Seas_Over_the_Past_2_Millenia"><img alt="Research paper thumbnail of Time Series at Decadal Resolution Show Tropical Influence on Climate Variability in The Eastern Nordic Seas Over the Past 2 Millenia" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Time Series at Decadal Resolution Show Tropical Influence on Climate Variability in The Eastern Nordic Seas Over the Past 2 Millenia</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Multi-proxy paleoclimatic time series have been developed from IMAGES Sites and adjacent suppleme...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Multi-proxy paleoclimatic time series have been developed from IMAGES Sites and adjacent supplementary cores in the Eastern Norwegian Sea. The records cover the last 2000 years at decadal resolution, allowing for a detailed reconstruction of the surface hydrography of the main path of the northern limb of the north Atlantic circulation cell. Centennial to millennial scale events are recorded, such as the &amp;quot;Medieval Warm Phase&amp;quot; (MWP) and the &amp;quot;Little Ice Age&amp;quot; (LIA), which constitute the main long term century scale features. Superimposed on these are multidecadal variability of somewhat less amplitude. There is a close correspondance with continental records reflecting summer temperaure and winter precipitation in western Scandinavia over this period.SST changes are found to be in the range of 1-2 degrees. Significant land-sea correlation is observed. A cold phase in the early 20th Century, a series of cold phases in the LIA and two warm phases in the MWP are observ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874025"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874025"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874025; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874025]").text(description); $(".js-view-count[data-work-id=30874025]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874025; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874025']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30874025]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874025,"title":"Time Series at Decadal Resolution Show Tropical Influence on Climate Variability in The Eastern Nordic Seas Over the Past 2 Millenia","translated_title":"","metadata":{"abstract":"Multi-proxy paleoclimatic time series have been developed from IMAGES Sites and adjacent supplementary cores in the Eastern Norwegian Sea. The records cover the last 2000 years at decadal resolution, allowing for a detailed reconstruction of the surface hydrography of the main path of the northern limb of the north Atlantic circulation cell. Centennial to millennial scale events are recorded, such as the \u0026quot;Medieval Warm Phase\u0026quot; (MWP) and the \u0026quot;Little Ice Age\u0026quot; (LIA), which constitute the main long term century scale features. Superimposed on these are multidecadal variability of somewhat less amplitude. There is a close correspondance with continental records reflecting summer temperaure and winter precipitation in western Scandinavia over this period.SST changes are found to be in the range of 1-2 degrees. Significant land-sea correlation is observed. A cold phase in the early 20th Century, a series of cold phases in the LIA and two warm phases in the MWP are observ..."},"translated_abstract":"Multi-proxy paleoclimatic time series have been developed from IMAGES Sites and adjacent supplementary cores in the Eastern Norwegian Sea. The records cover the last 2000 years at decadal resolution, allowing for a detailed reconstruction of the surface hydrography of the main path of the northern limb of the north Atlantic circulation cell. Centennial to millennial scale events are recorded, such as the \u0026quot;Medieval Warm Phase\u0026quot; (MWP) and the \u0026quot;Little Ice Age\u0026quot; (LIA), which constitute the main long term century scale features. Superimposed on these are multidecadal variability of somewhat less amplitude. There is a close correspondance with continental records reflecting summer temperaure and winter precipitation in western Scandinavia over this period.SST changes are found to be in the range of 1-2 degrees. Significant land-sea correlation is observed. A cold phase in the early 20th Century, a series of cold phases in the LIA and two warm phases in the MWP are observ...","internal_url":"https://www.academia.edu/30874025/Time_Series_at_Decadal_Resolution_Show_Tropical_Influence_on_Climate_Variability_in_The_Eastern_Nordic_Seas_Over_the_Past_2_Millenia","translated_internal_url":"","created_at":"2017-01-11T05:01:25.461-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Time_Series_at_Decadal_Resolution_Show_Tropical_Influence_on_Climate_Variability_in_The_Eastern_Nordic_Seas_Over_the_Past_2_Millenia","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Multi-proxy paleoclimatic time series have been developed from IMAGES Sites and adjacent supplementary cores in the Eastern Norwegian Sea. The records cover the last 2000 years at decadal resolution, allowing for a detailed reconstruction of the surface hydrography of the main path of the northern limb of the north Atlantic circulation cell. Centennial to millennial scale events are recorded, such as the \u0026quot;Medieval Warm Phase\u0026quot; (MWP) and the \u0026quot;Little Ice Age\u0026quot; (LIA), which constitute the main long term century scale features. Superimposed on these are multidecadal variability of somewhat less amplitude. There is a close correspondance with continental records reflecting summer temperaure and winter precipitation in western Scandinavia over this period.SST changes are found to be in the range of 1-2 degrees. Significant land-sea correlation is observed. A cold phase in the early 20th Century, a series of cold phases in the LIA and two warm phases in the MWP are observ...","impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[],"research_interests":[{"id":4456,"name":"Time Series","url":"https://www.academia.edu/Documents/in/Time_Series"},{"id":4753,"name":"Climate variability","url":"https://www.academia.edu/Documents/in/Climate_variability"},{"id":82675,"name":"North Atlantic","url":"https://www.academia.edu/Documents/in/North_Atlantic"},{"id":182364,"name":"Little Ice Age","url":"https://www.academia.edu/Documents/in/Little_Ice_Age"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874025-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874024"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30874024/Holocene_glacier_variations_in_central_Jotunheimen_southern_Norway_based_on_distal_glaciolacustrine_sediment_cores"><img alt="Research paper thumbnail of Holocene glacier variations in central Jotunheimen, southern Norway based on distal glaciolacustrine sediment cores" class="work-thumbnail" src="https://attachments.academia-assets.com/51300464/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30874024/Holocene_glacier_variations_in_central_Jotunheimen_southern_Norway_based_on_distal_glaciolacustrine_sediment_cores">Holocene glacier variations in central Jotunheimen, southern Norway based on distal glaciolacustrine sediment cores</a></div><div class="wp-workCard_item"><span>Quaternary Science Reviews</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Sediment cores from two glacier-fed lakes are used to reconstruct a continuous record of glacier ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Sediment cores from two glacier-fed lakes are used to reconstruct a continuous record of glacier variations since about 10,000 cal. BP in the Smørstabbtinden massif of central Jotunheimen, southern Norway. Particular attention is paid to the century- to millennial-scale, pre-Little Ice Age glacial signal based on an estimated temporal resolution of ⩽55 and ⩽25 yr cm−1 for Bøvertunsvatnet and Dalsvatnet, respectively. Visible lithostratigraphic variations, organic content/loss-on-ignition, calcium carbonate content, magnetic susceptibility and grain-size fractions (especially the fine silt) are used as proxy indicators of glacier presence and extent in the lake catchments.Following deglaciation, the early Holocene was characterized by generally small glaciers until a major advance (the Finse Event) peaking at approximately 8200 cal. BP. From 7900 to at least 5300 cal. BP glaciers appear to have been absent from central Jotunheimen. There is evidence of glacier expansion between about...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="efbc5b648b0f6c8ae6bc85406a80c6c6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:51300464,&quot;asset_id&quot;:30874024,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/51300464/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874024"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874024"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874024; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874024]").text(description); $(".js-view-count[data-work-id=30874024]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874024; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874024']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "efbc5b648b0f6c8ae6bc85406a80c6c6" } } $('.js-work-strip[data-work-id=30874024]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874024,"title":"Holocene glacier variations in central Jotunheimen, southern Norway based on distal glaciolacustrine sediment cores","translated_title":"","metadata":{"abstract":"Sediment cores from two glacier-fed lakes are used to reconstruct a continuous record of glacier variations since about 10,000 cal. BP in the Smørstabbtinden massif of central Jotunheimen, southern Norway. Particular attention is paid to the century- to millennial-scale, pre-Little Ice Age glacial signal based on an estimated temporal resolution of ⩽55 and ⩽25 yr cm−1 for Bøvertunsvatnet and Dalsvatnet, respectively. Visible lithostratigraphic variations, organic content/loss-on-ignition, calcium carbonate content, magnetic susceptibility and grain-size fractions (especially the fine silt) are used as proxy indicators of glacier presence and extent in the lake catchments.Following deglaciation, the early Holocene was characterized by generally small glaciers until a major advance (the Finse Event) peaking at approximately 8200 cal. BP. From 7900 to at least 5300 cal. BP glaciers appear to have been absent from central Jotunheimen. There is evidence of glacier expansion between about...","ai_title_tag":"Holocene Glacier Changes in Jotunheimen, Norway","publication_name":"Quaternary Science Reviews"},"translated_abstract":"Sediment cores from two glacier-fed lakes are used to reconstruct a continuous record of glacier variations since about 10,000 cal. BP in the Smørstabbtinden massif of central Jotunheimen, southern Norway. Particular attention is paid to the century- to millennial-scale, pre-Little Ice Age glacial signal based on an estimated temporal resolution of ⩽55 and ⩽25 yr cm−1 for Bøvertunsvatnet and Dalsvatnet, respectively. Visible lithostratigraphic variations, organic content/loss-on-ignition, calcium carbonate content, magnetic susceptibility and grain-size fractions (especially the fine silt) are used as proxy indicators of glacier presence and extent in the lake catchments.Following deglaciation, the early Holocene was characterized by generally small glaciers until a major advance (the Finse Event) peaking at approximately 8200 cal. BP. From 7900 to at least 5300 cal. BP glaciers appear to have been absent from central Jotunheimen. There is evidence of glacier expansion between about...","internal_url":"https://www.academia.edu/30874024/Holocene_glacier_variations_in_central_Jotunheimen_southern_Norway_based_on_distal_glaciolacustrine_sediment_cores","translated_internal_url":"","created_at":"2017-01-11T05:01:24.935-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":51300464,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300464/thumbnails/1.jpg","file_name":"Holocene_glacier_variations_in_central_J20170111-6807-jkj07j.pdf","download_url":"https://www.academia.edu/attachments/51300464/download_file","bulk_download_file_name":"Holocene_glacier_variations_in_central_J.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300464/Holocene_glacier_variations_in_central_J20170111-6807-jkj07j-libre.pdf?1484140093=\u0026response-content-disposition=attachment%3B+filename%3DHolocene_glacier_variations_in_central_J.pdf\u0026Expires=1743853388\u0026Signature=V0Qcjj4sADzukWqvWwVpgU0HOOQpiEuOmJ~YrO4BF26SJ95YG0FjnzOrWJ8hx1LVWKlxncH0JxIdmi6~HXgajg2UIWxZEDxEkr8TLgOrwdV2vPihDvVPUF~2MM-DrMke8ipJqqKSLd8BJG39712LaMozts9JWSOLSHtEtYW6fBC8giU-~8I~kCwORItSHEzsGrbFEUYK5xzVDczF5A~I47mOjRASdpZ6-IAH8uFVRB2~WrKyG5bp2wZJswKY4NdWmGECvK8QqUH4B7tEPxI1LhM9iW1OaeqN-T4OH~YFkRPcukFyAsBzU2VtdzcD9wH3QHuZ~XOcOh9VMso~nZ5wtg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Holocene_glacier_variations_in_central_Jotunheimen_southern_Norway_based_on_distal_glaciolacustrine_sediment_cores","translated_slug":"","page_count":24,"language":"en","content_type":"Work","summary":"Sediment cores from two glacier-fed lakes are used to reconstruct a continuous record of glacier variations since about 10,000 cal. BP in the Smørstabbtinden massif of central Jotunheimen, southern Norway. Particular attention is paid to the century- to millennial-scale, pre-Little Ice Age glacial signal based on an estimated temporal resolution of ⩽55 and ⩽25 yr cm−1 for Bøvertunsvatnet and Dalsvatnet, respectively. Visible lithostratigraphic variations, organic content/loss-on-ignition, calcium carbonate content, magnetic susceptibility and grain-size fractions (especially the fine silt) are used as proxy indicators of glacier presence and extent in the lake catchments.Following deglaciation, the early Holocene was characterized by generally small glaciers until a major advance (the Finse Event) peaking at approximately 8200 cal. BP. From 7900 to at least 5300 cal. BP glaciers appear to have been absent from central Jotunheimen. There is evidence of glacier expansion between about...","impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[{"id":51300464,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300464/thumbnails/1.jpg","file_name":"Holocene_glacier_variations_in_central_J20170111-6807-jkj07j.pdf","download_url":"https://www.academia.edu/attachments/51300464/download_file","bulk_download_file_name":"Holocene_glacier_variations_in_central_J.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300464/Holocene_glacier_variations_in_central_J20170111-6807-jkj07j-libre.pdf?1484140093=\u0026response-content-disposition=attachment%3B+filename%3DHolocene_glacier_variations_in_central_J.pdf\u0026Expires=1743853388\u0026Signature=V0Qcjj4sADzukWqvWwVpgU0HOOQpiEuOmJ~YrO4BF26SJ95YG0FjnzOrWJ8hx1LVWKlxncH0JxIdmi6~HXgajg2UIWxZEDxEkr8TLgOrwdV2vPihDvVPUF~2MM-DrMke8ipJqqKSLd8BJG39712LaMozts9JWSOLSHtEtYW6fBC8giU-~8I~kCwORItSHEzsGrbFEUYK5xzVDczF5A~I47mOjRASdpZ6-IAH8uFVRB2~WrKyG5bp2wZJswKY4NdWmGECvK8QqUH4B7tEPxI1LhM9iW1OaeqN-T4OH~YFkRPcukFyAsBzU2VtdzcD9wH3QHuZ~XOcOh9VMso~nZ5wtg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":13839,"name":"Temporal Resolution","url":"https://www.academia.edu/Documents/in/Temporal_Resolution"},{"id":79294,"name":"Quaternary Science","url":"https://www.academia.edu/Documents/in/Quaternary_Science"},{"id":93755,"name":"History and archaeology","url":"https://www.academia.edu/Documents/in/History_and_archaeology"},{"id":149117,"name":"Magnetic Susceptibility","url":"https://www.academia.edu/Documents/in/Magnetic_Susceptibility"},{"id":150013,"name":"Late Holocene","url":"https://www.academia.edu/Documents/in/Late_Holocene"},{"id":167123,"name":"Loss on Ignition","url":"https://www.academia.edu/Documents/in/Loss_on_Ignition"},{"id":182364,"name":"Little Ice Age","url":"https://www.academia.edu/Documents/in/Little_Ice_Age"},{"id":186099,"name":"Grain size","url":"https://www.academia.edu/Documents/in/Grain_size"},{"id":338205,"name":"Early Holocene","url":"https://www.academia.edu/Documents/in/Early_Holocene"},{"id":373417,"name":"Quaternary Science Reviews","url":"https://www.academia.edu/Documents/in/Quaternary_Science_Reviews"},{"id":630941,"name":"Calcium Carbonate","url":"https://www.academia.edu/Documents/in/Calcium_Carbonate"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874024-figures'); } }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="3302982" id="papers"><div class="js-work-strip profile--work_container" data-work-id="1360476"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/1360476/Holocene_glaciation_and_climate_evolution_of_Baffin_Island_Arctic_Canada"><img alt="Research paper thumbnail of Holocene glaciation and climate evolution of Baffin Island, Arctic Canada" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Holocene glaciation and climate evolution of Baffin Island, Arctic Canada</div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://uib.academia.edu/AtleNesje">Atle Nesje</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://indiana.academia.edu/PeterSauer">Peter E Sauer</a></span></div><div class="wp-workCard_item"><span>Quaternary Science …</span><span>, Jan 1, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Lake sediment cores and cosmogenic exposure (CE) dates constrain the pattern of deglaciation and ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Lake sediment cores and cosmogenic exposure (CE) dates constrain the pattern of deglaciation and evolution of climate across Baffin Island since the last glacial maximum (LGM). CE dating of erratics demonstrates that the northeastern coastal lowlands became ice-free ca.14ka as the Laurentide Ice Sheet (LIS) receded from its LGM margin on the continental shelf. Coastal lakes in southeastern Baffin Island</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="1360476"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="1360476"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1360476; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1360476]").text(description); $(".js-view-count[data-work-id=1360476]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1360476; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='1360476']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=1360476]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":1360476,"title":"Holocene glaciation and climate evolution of Baffin Island, Arctic Canada","translated_title":"","metadata":{"abstract":"Lake sediment cores and cosmogenic exposure (CE) dates constrain the pattern of deglaciation and evolution of climate across Baffin Island since the last glacial maximum (LGM). CE dating of erratics demonstrates that the northeastern coastal lowlands became ice-free ca.14ka as the Laurentide Ice Sheet (LIS) receded from its LGM margin on the continental shelf. Coastal lakes in southeastern Baffin Island","publisher":"Elsevier","publication_date":{"day":1,"month":1,"year":2005,"errors":{}},"publication_name":"Quaternary Science …"},"translated_abstract":"Lake sediment cores and cosmogenic exposure (CE) dates constrain the pattern of deglaciation and evolution of climate across Baffin Island since the last glacial maximum (LGM). CE dating of erratics demonstrates that the northeastern coastal lowlands became ice-free ca.14ka as the Laurentide Ice Sheet (LIS) receded from its LGM margin on the continental shelf. Coastal lakes in southeastern Baffin Island","internal_url":"https://www.academia.edu/1360476/Holocene_glaciation_and_climate_evolution_of_Baffin_Island_Arctic_Canada","translated_internal_url":"","created_at":"2012-02-08T05:50:19.734-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":477144,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":32896831,"work_id":1360476,"tagging_user_id":477144,"tagged_user_id":33441460,"co_author_invite_id":null,"email":"a***e@geo.uib.no","affiliation":"University of Bergen","display_order":0,"name":"Atle Nesje","title":"Holocene glaciation and climate evolution of Baffin Island, Arctic Canada"},{"id":32896846,"work_id":1360476,"tagging_user_id":477144,"tagged_user_id":null,"co_author_invite_id":470150,"email":"j***r@buffalo.edu","display_order":4194304,"name":"Jason Briner","title":"Holocene glaciation and climate evolution of Baffin Island, Arctic Canada"},{"id":32896852,"work_id":1360476,"tagging_user_id":477144,"tagged_user_id":16930839,"co_author_invite_id":null,"email":"a***e@ualberta.ca","display_order":6291456,"name":"Alex Wolfe","title":"Holocene glaciation and climate evolution of Baffin Island, Arctic Canada"},{"id":32896857,"work_id":1360476,"tagging_user_id":477144,"tagged_user_id":42411574,"co_author_invite_id":null,"email":"g***r@colorado.edu","display_order":7340032,"name":"Gifford Miller","title":"Holocene glaciation and climate evolution of Baffin Island, Arctic Canada"}],"downloadable_attachments":[],"slug":"Holocene_glaciation_and_climate_evolution_of_Baffin_Island_Arctic_Canada","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Lake sediment cores and cosmogenic exposure (CE) dates constrain the pattern of deglaciation and evolution of climate across Baffin Island since the last glacial maximum (LGM). CE dating of erratics demonstrates that the northeastern coastal lowlands became ice-free ca.14ka as the Laurentide Ice Sheet (LIS) receded from its LGM margin on the continental shelf. Coastal lakes in southeastern Baffin Island","impression_tracking_id":null,"owner":{"id":477144,"first_name":"Peter","middle_initials":"E","last_name":"Sauer","page_name":"PeterSauer","domain_name":"indiana","created_at":"2011-06-07T00:16:50.301-07:00","display_name":"Peter E Sauer","url":"https://indiana.academia.edu/PeterSauer"},"attachments":[],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":29759,"name":"Sea Ice","url":"https://www.academia.edu/Documents/in/Sea_Ice"},{"id":79294,"name":"Quaternary Science","url":"https://www.academia.edu/Documents/in/Quaternary_Science"},{"id":93755,"name":"History and archaeology","url":"https://www.academia.edu/Documents/in/History_and_archaeology"},{"id":142810,"name":"Surface Water","url":"https://www.academia.edu/Documents/in/Surface_Water"},{"id":150013,"name":"Late Holocene","url":"https://www.academia.edu/Documents/in/Late_Holocene"},{"id":152776,"name":"Younger Dryas","url":"https://www.academia.edu/Documents/in/Younger_Dryas"},{"id":175472,"name":"Arctic Ocean","url":"https://www.academia.edu/Documents/in/Arctic_Ocean"},{"id":182364,"name":"Little Ice Age","url":"https://www.academia.edu/Documents/in/Little_Ice_Age"},{"id":185526,"name":"Last Glacial Maximum","url":"https://www.academia.edu/Documents/in/Last_Glacial_Maximum"},{"id":214119,"name":"Laurentide Ice Sheet","url":"https://www.academia.edu/Documents/in/Laurentide_Ice_Sheet"},{"id":230435,"name":"Continental shelf","url":"https://www.academia.edu/Documents/in/Continental_shelf"},{"id":289852,"name":"Primary Production","url":"https://www.academia.edu/Documents/in/Primary_Production"},{"id":338205,"name":"Early Holocene","url":"https://www.academia.edu/Documents/in/Early_Holocene"},{"id":373417,"name":"Quaternary Science Reviews","url":"https://www.academia.edu/Documents/in/Quaternary_Science_Reviews"},{"id":970387,"name":"Organic Matter","url":"https://www.academia.edu/Documents/in/Organic_Matter"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-1360476-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874042"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30874042/Geometry_thickness_and_isostatic_loading_of_the_late_weichselian_scandinavian_ice_sheet"><img alt="Research paper thumbnail of Geometry, thickness and isostatic loading of the late weichselian scandinavian ice sheet" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Geometry, thickness and isostatic loading of the late weichselian scandinavian ice sheet</div><div class="wp-workCard_item"><span>Norsk Geologisk Tidsskrift</span><span>, 1992</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874042"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874042"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874042; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874042]").text(description); $(".js-view-count[data-work-id=30874042]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874042; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874042']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30874042]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874042,"title":"Geometry, thickness and isostatic loading of the late weichselian scandinavian ice sheet","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_date":{"day":null,"month":null,"year":1992,"errors":{}},"publication_name":"Norsk Geologisk Tidsskrift"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/30874042/Geometry_thickness_and_isostatic_loading_of_the_late_weichselian_scandinavian_ice_sheet","translated_internal_url":"","created_at":"2017-01-11T05:01:34.265-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Geometry_thickness_and_isostatic_loading_of_the_late_weichselian_scandinavian_ice_sheet","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[],"research_interests":[{"id":35587,"name":"Quaternary","url":"https://www.academia.edu/Documents/in/Quaternary"},{"id":65140,"name":"Models","url":"https://www.academia.edu/Documents/in/Models"},{"id":958658,"name":"Ice Sheets","url":"https://www.academia.edu/Documents/in/Ice_Sheets"}],"urls":[{"id":7880225,"url":"http://cat.inist.fr/?aModele=afficheN\u0026cpsidt=5555947"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874042-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874041"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30874041/Quantification_of_late_Cenozoic_erosion_and_denudation_in_the_Sognefjord_drainage_basin_western_Norway"><img alt="Research paper thumbnail of Quantification of late Cenozoic erosion and denudation in the Sognefjord drainage basin, western Norway" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Quantification of late Cenozoic erosion and denudation in the Sognefjord drainage basin, western Norway</div><div class="wp-workCard_item"><span>Norsk Geogr Tidsskr Nor J Geo</span><span>, 1994</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT The total late Cenozoic erosion and denudation in the Sognefjord drainage basin, western...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT The total late Cenozoic erosion and denudation in the Sognefjord drainage basin, western Norway, has been calculated to about 5400 km3 by subtracting the present topography from a reconstructed preglacial (paléic) surface. This volume corresponds to a mean erosion and denudation of 440 m in the Sognefjord drainage basin. The total volume of subaerial denudation and fluvial activity amounts to about 400 km3. The remaining volume of about 5000 km3 yields a mean glacial erosion of about 400 m in the Sognefjord drainage basin. Assuming glacial erosion in a period of 1 million years during the past 2.57 million years, the average rate of glacial erosion in the Sognefjord drainage basin was about 40cm 1000 yr-1 (0.4mm yr-1).</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874041"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874041"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874041; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874041]").text(description); $(".js-view-count[data-work-id=30874041]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874041; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874041']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30874041]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874041,"title":"Quantification of late Cenozoic erosion and denudation in the Sognefjord drainage basin, western Norway","translated_title":"","metadata":{"abstract":"ABSTRACT The total late Cenozoic erosion and denudation in the Sognefjord drainage basin, western Norway, has been calculated to about 5400 km3 by subtracting the present topography from a reconstructed preglacial (paléic) surface. This volume corresponds to a mean erosion and denudation of 440 m in the Sognefjord drainage basin. The total volume of subaerial denudation and fluvial activity amounts to about 400 km3. The remaining volume of about 5000 km3 yields a mean glacial erosion of about 400 m in the Sognefjord drainage basin. Assuming glacial erosion in a period of 1 million years during the past 2.57 million years, the average rate of glacial erosion in the Sognefjord drainage basin was about 40cm 1000 yr-1 (0.4mm yr-1).","publication_date":{"day":null,"month":null,"year":1994,"errors":{}},"publication_name":"Norsk Geogr Tidsskr Nor J Geo"},"translated_abstract":"ABSTRACT The total late Cenozoic erosion and denudation in the Sognefjord drainage basin, western Norway, has been calculated to about 5400 km3 by subtracting the present topography from a reconstructed preglacial (paléic) surface. This volume corresponds to a mean erosion and denudation of 440 m in the Sognefjord drainage basin. The total volume of subaerial denudation and fluvial activity amounts to about 400 km3. The remaining volume of about 5000 km3 yields a mean glacial erosion of about 400 m in the Sognefjord drainage basin. Assuming glacial erosion in a period of 1 million years during the past 2.57 million years, the average rate of glacial erosion in the Sognefjord drainage basin was about 40cm 1000 yr-1 (0.4mm yr-1).","internal_url":"https://www.academia.edu/30874041/Quantification_of_late_Cenozoic_erosion_and_denudation_in_the_Sognefjord_drainage_basin_western_Norway","translated_internal_url":"","created_at":"2017-01-11T05:01:33.864-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Quantification_of_late_Cenozoic_erosion_and_denudation_in_the_Sognefjord_drainage_basin_western_Norway","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT The total late Cenozoic erosion and denudation in the Sognefjord drainage basin, western Norway, has been calculated to about 5400 km3 by subtracting the present topography from a reconstructed preglacial (paléic) surface. This volume corresponds to a mean erosion and denudation of 440 m in the Sognefjord drainage basin. The total volume of subaerial denudation and fluvial activity amounts to about 400 km3. The remaining volume of about 5000 km3 yields a mean glacial erosion of about 400 m in the Sognefjord drainage basin. Assuming glacial erosion in a period of 1 million years during the past 2.57 million years, the average rate of glacial erosion in the Sognefjord drainage basin was about 40cm 1000 yr-1 (0.4mm yr-1).","impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[],"research_interests":[{"id":262,"name":"Human Geography","url":"https://www.academia.edu/Documents/in/Human_Geography"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874041-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874040"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30874040/Glacial_landforms_and_Quaternary_landscape_development_in_Norway"><img alt="Research paper thumbnail of Glacial landforms and Quaternary landscape development in Norway" class="work-thumbnail" src="https://attachments.academia-assets.com/51300480/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30874040/Glacial_landforms_and_Quaternary_landscape_development_in_Norway">Glacial landforms and Quaternary landscape development in Norway</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Norwegian landscape is a function of geological processes working over very long time spans, ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Norwegian landscape is a function of geological processes working over very long time spans, and first order structures might for example be traced to the ancient denudational processes, the Caledonian orogeny or break-up of the North Atlantic. However, a large portion of large-, intermediate-, and small-scale landforms in Norway owe their existence to Quaternary glaciations or periglacial processes. The Quaternary time period (the last c. 3 million years), is characterised by cool and variable climate with temperatures oscillating between relative mildness to frigid ice-age conditions. A wide spectrum of climate-driven geomorphological processes has thus been acting in Norway, but the numerous glaciations have had the most profound effect with the production of large U-shaped valleys, fjords and Alpine relief. On the other hand, interior and upland areas in Norway seem to be largely unaffected by glacial erosion and exhibit a possibly pre-Quaternary landscape with only some periglacial influence. The ice sheets in Scandinavia thus have redistributed rock mass and sediments in the landscape with the largest glaciogenic deposits being found on the continental shelf. Large Quaternary deposits and valley fills can also be found onshore and these are now valuable resources for aggregates, ground water and agriculture. Important Quaternary processes have also been acting along the Norwegian coast with denudation of the famous strandflat, where the formation processes are not fully understood. The isostatic depression of crust under the vast ice sheets have also lead to important consequences, with thick deposits of potentially unstable, fine-grained glaciomarine sediments in quite large areas of Norway. It is thus clear that much of Norway&#39;s beauty but also geohazard problems can be explained with the actions of Quaternary geomorphological processes.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-30874040-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-30874040-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375406/figure-1-first-order-glacial-erosion-landforms-are-centred"><img alt="Figure 1. First-order glacial erosion landforms are centred around the Scandinavian mountain chain with fords on the Norwegian coast and deep piedmont lakes east of the mountains " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375407/figure-2-relict-nonglacial-surfaces-east-of-the-lyngen-fjord"><img alt="Figure 2. Relict nonglacial surfaces east of the Lyngen fjord in Troms. Note that all mountains reach essentially the same altitude and the very flat appearance of the surfaces. These surfaces have probably been connected into a flat, undulating landscape which was uplifted and eroded through fluvial and glacial processes in the Neogene. Total relief in the area, including the ford, is on the order of 2 km. It is evident that glacial erosion has altered the preglacial landscape profoundly in many areas but conversely it also seems likely that pre-Quaternary topography has conditioned glacial erosion. Pre-Quaternary fluvial valleys probably focused glacier ice flow early on in the Quaternary glacial history, thus creating a positive feedback where subsequent ice flow continued to deepen these valleys. It follows, which a large body of geomorphological literature also shows, that Quaternary glaciations have eroded the landscape selectively (e.g., Sugden 1978, Nesje and Whillans 1994, Lidmar-Bergstrém et al. 2000, Li et al. 2005, Fjellanger et al. 2006, Staiger et al. 2005, Phillips et al. 2006), creating mountainous areas with deeply incised troughs and virtually nonaffected uplands. These noneroded uplands are henceforth called relict nonglacial " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375408/figure-3-was-able-to-create-features-similar-to-both"><img alt="was able to create features similar to both crescentic fractures and gouges. Up-ice concave and convex features were shown to be conditioned by the effective pressure applied by the ball bearing during these experiments, where up-ice concave features preferably formed when a high level of pressure was applied (Smith 1984). Good examples of striae, crescentic fractures and gouges can e.g., be found in the coastal landscape of southern Norway and in front of contemporary glaciers. Roches moutonées and rock drumlins are bedrock cnolls that have been polished by glacial abrasion. Depending yn bedrock joints and grains these landforms often become he glacier has evacuated pre-Quaternary) topogra ‘longated in the ice-flow direction and are thus excellent ndicators of former ice flow. Roches moutonées differ from ‘ock drumlins in that they have a plucked lee-side slope, where parts of the bedrock knoll, probably hrough freeze-on processes. It is debated whether roches noutonées and rock drumlins are governed by a pre-existing phy, perhaps akin to a stripped etch urface or if they are primarily formed by glacial abrasion Lindstr6m 1988, Johansson et al. 2001). Many areas in outhern Norway exhibit beautiful Roches moutonées and rock rumlins; this is probably due to rapid ice movement in the ‘un-up zone for the Norwegian channel ice stream (Sejrup et U. 2000, 2003). knolls that have been polished by glacial abrasion. Depending " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375409/figure-4-shaped-valley-with-overdeepened-lake-basin-at-lake"><img alt="Figure 4, U-shaped valley with overdeepened lake basin at lake Loen close to Nordford, western Norway Fjords are essentially glacial troughs cut into bedrock below today’s sea level and is perhaps the most prominent landscape feature in Norway (Figure 4). Fjords are formed much in the same way as U-shaped valleys although the overdeepening in fjords may be even more pronounced forming sills at the fford mouth (Lysa et al. 2009). It is thought that these sills were formed due to less glacial erosion at the coast where the former ice tongues spread out and became thinner (Aarseth 1997). As with U-shaped valleys, fords often follows fault zones, which may give rise to distinct fjord networks as is evident for example on the Mare coast (Gabrielsen et al. 2002). Fjords are important sinks for interglacial sediments (Aarseth 1997, Lysa et al. 2009). Indeed Aarseth (1997), calculated that about 150 km3 Holocene sediments reside in the main Norwegian fjords. Aarseth (1997) also considered most fjord sediments to be evacuated during main glaciations and, consequently, transported and deposited onto the continental shelf or shelf break. Subglacial channels may be formed by highly pressurised water, which is governed by the hydraulic potential gradient within the glacier. The subglacial water may thus defy gravity and cause subglacial meltwater channels that are at odds with topography or with an irregular longitudinal profile. Subglacial meltwater channels, naturally, require flowing water beneath the ice and thus indicate warm-based ice. Subglacial channels may be formed by highly pressurised " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375411/figure-6-smaller-glaciofluvial-erosional-landforms-include"><img alt="Smaller glaciofluvial erosional landforms include potholes (Figure 6) and P-forms. These are local features that are thought to represent highly dynamical, subglacial conditions where large volumes of meltwater are involved (Dahl 1965). formed through the catastrophic drainage of the vast “Nedre Glamsjo’ ice dammed lake about 10,300 years ago (Longva and Toresen 1991). " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_005.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375413/figure-7-end-moraines-or-more-generally-ice-marginal"><img alt="End moraines or more generally ice-marginal moraines are formed at the glacier margin by either: 1) glacier dumping of debris, 2) ablation or freeze-out of debris and, 3) glaciotectonic processes including pushing of proglacial sediments. Other pro- cesses might also be involved, such as rockfall or slope processes depositing material at the glacier margin. A vast amount of lit- erature describes the various types of ice-marginal moraines and depositional processes (e.g., Clayton and Moran 1974, Boulton and Eyles 1979, Hambrey and Huddart 1995, Bennet 2001). End moraines are important glacial landforms since they in- dicate a glacier advance or still-stand and are thus diagnostic in reconstructing ice-sheet dynamics and configurations. One orwegian end moraine, the Vassryggen Younger Dryas end moraine southeast of Stavanger, was used by Jens Esmark to support the theory of ice ages already in 1824 (Worsley 2006, Figure 7). Ice-marginal moraines are common in Norway and are commonly found in the proglacial areas of present glaciers. Many of these end moraines were formed during the ‘Little Ice Age’ (maximum at about AD 1750) and subsequent glacier re- treat (Nesje et al. 1991, Mathews 2005, Burki et al. 2009). Also other Holocene end-moraine zones are common (e.g., Nesje and Kvamme 1991, Figure 8) but the most prominent ice-marginal " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_006.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375414/figure-8-the-olfjellet-moraine-in-nordland-of-likely-pre"><img alt="Figure 8. The Olfjellet moraine in Nordland of likely Pre-Boreal age. Note multiple and complex ridges indicating an oscillating ice margin " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_007.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375416/figure-9-rogen-moraine-at-hartkjolen-in-nord-trondelag"><img alt="Figure 9. Rogen moraine at Hartkjolen in Nord-Trondelag. " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_008.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375418/figure-10-drumlins-on-lista-in-south-norway-shown-in-shaded"><img alt="Figure 10. Drumlins on Lista in South Norway shown in a shaded relief map produced through high-resolution LiDAR digital-elevation data. The drumlins show ice flow from ENE towards the Skagerrak ice stream. " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_009.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375420/figure-10-terrain-such-as-in-jotunheimen-al-hattestrand"><img alt="terrain such as in Jotunheimen. al. 1989, Hattestrand 1997). Based on extensive mapping o ribbed moraines Kleman and Hattestrand (1999) argued that ribbed moraine forms at the transition between cold-based ice and warm-based ice, which is also indicated by Sollid and Sorbe (1994). Ribbed moraine might thus be a good indication of areas beneath an ice sheet where basal temperatures have been low. Extensive areas of ribbed moraine may be found in north- ernmost and eastern Norway (Sollid and Torp 1984, Sollid and Serbel 1994) and many smaller areas can be found in elevated terrain such as in Jotunheimen. " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_010.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375422/figure-11-glacial-striae-reported-by-vorren-and-sollid-and"><img alt="Glacial striae reported by Vorren (1977, 1979) and Sollid and Torp (1984) in South Norway are perhaps the only likely Landforms from the Early and Middle Weichselian (marine isotope stages 5—3) are rare, although several localities from many parts of Norway with Early to Middle Weichselian sediments have been reported (overviews by Mangerud 2004, Mangerud et al. 2011, Olsen et al. this volume). Much of the landform record from these stages has probably been obliterated in Norway by subsequent glacial stages, although widespread glacial-landform systems of Early Weichselian age have been reported from Sweden and Finland (e.g., Lagerback 1998, Hirvas 1991, Kleman 1992, Hattestrand 1998, Fredin and Hattestrand 2002). " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_011.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375424/figure-12-in-interior-areas-in-southeast-norway-there-are"><img alt="In interior areas in southeast Norway there are numerous sets of end moraines, drumlins, Rogen moraine and glacial meltwater channels that likely predate the last glacial maximum (Sollid and Sorbel 1994, Fredin 2004). Nice examples of supposedly pre-LGM meltwater channels and marginal moraines are for example found on and around the Stwlen mountains close to lake Femunden. This general supposition is based on the observation that these landforms are generally incompatible with known LGM and deglaciation ice-flow patterns in the area and considerations of the thermal regime in the ice (Sollid and Sorbel 1994, Fredin 2004). " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_012.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375426/figure-14-shaded-relief-in-combined-bathymetric-and"><img alt="Figure 14. Shaded relief in a combined bathymetric and topographic dataset show- ing the floor of Tafjord. Note the very large submarine rock-avalanche deposits in the fjord. 11). Because the main ice divide in South Norway was situated south of the water divide, large ice-dammed lakes formed, at least partly subglacially—sublaterally, during the deglaciation leading to deposition of ice-dammed lake deposits. When these lakes drained, extensive meltwater erosional landforms were formed together with erosional marks from floating icebergs (Longva and Thoresen 1991). to deposition of ice-dammed lake deposits. When these lakes " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_013.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375428/figure-18-shorelines-are-usually-erosional-landforms"><img alt="Shorelines are usually erosional landforms indicating wave action for a prolonged time period, and are thus indicative of a sustained sea-level stand. On the Norwegian coast, shorelines are common and the most pronounced shorelines typically reflect the highest sea-level stand following the deglaciation, the Younger Dryas ‘main line’, or the Tapes transgression shoreline at around 6300 BP (cf., Andersen 1968, Svendsen and Mangerud 1987, Sorensen et al. 1987, Reite et al. 1999, Romundset et al. 2011). Shorelines may also be formed at the shores of glacial lakes and perched shorelines may be found in abandoned glacial-lake basins. Somewhat related to shorelines are coastal caves, which are also created by coastal erosion (Figure 18). They typically form where a lithological weakness zone in coastal cliffs coincides in altitude with a prolonged sea-level stand, thus allowing wave erosion to act on the weakness zone. Coastal caves are found, e.g., on the More coast and probably date to the Eemian high sea-level stand (Larsen and Mangerud 1989). " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_014.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375430/figure-16-landscape-at-ulset-dominated-by-glaciomarine-clays"><img alt="Figure 16. A landscape at Ulset dominated by glaciomarine clays with significant quick-clay slide scars. " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_015.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375432/figure-16-the-strandflat-is-flat-bedrock-platform-along-most"><img alt="The strandflat is a flat bedrock platform along most of the Norwegian west coast, which extends both above and below Norwegian west coast, which extends both above and below " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_016.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375434/figure-17-gravitational-processes-by-structural-geology"><img alt="Gravitational processes by structural geology (bedrock competence and structure) and the " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_017.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375436/figure-20-photograph-of-potential-rock-avalanche-on"><img alt="Figure 20. Photograph of a potential rock avalanche on Nornesfellet, threatening to fall into the Lyngen fjord and thus jeopardising several communities in the area. There are several similar sites in the area. All are situated on relatively steep glacial trough walls in a zone of high seismic activity (Iain Henderson, pers. comm.). " class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_018.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/39375438/figure-19-glacial-landforms-and-quaternary-landscape"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/51300480/figure_019.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-30874040-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3eedc86c7b187333bbaad19f09f428ee" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:51300480,&quot;asset_id&quot;:30874040,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/51300480/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874040"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874040"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874040; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874040]").text(description); $(".js-view-count[data-work-id=30874040]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874040; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874040']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3eedc86c7b187333bbaad19f09f428ee" } } $('.js-work-strip[data-work-id=30874040]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874040,"title":"Glacial landforms and Quaternary landscape development in Norway","translated_title":"","metadata":{"ai_title_tag":"Quaternary Glacial Processes Shaping Norway's Landscape","grobid_abstract":"The Norwegian landscape is a function of geological processes working over very long time spans, and first order structures might for example be traced to the ancient denudational processes, the Caledonian orogeny or break-up of the North Atlantic. However, a large portion of large-, intermediate-, and small-scale landforms in Norway owe their existence to Quaternary glaciations or periglacial processes. The Quaternary time period (the last c. 3 million years), is characterised by cool and variable climate with temperatures oscillating between relative mildness to frigid ice-age conditions. A wide spectrum of climate-driven geomorphological processes has thus been acting in Norway, but the numerous glaciations have had the most profound effect with the production of large U-shaped valleys, fjords and Alpine relief. On the other hand, interior and upland areas in Norway seem to be largely unaffected by glacial erosion and exhibit a possibly pre-Quaternary landscape with only some periglacial influence. The ice sheets in Scandinavia thus have redistributed rock mass and sediments in the landscape with the largest glaciogenic deposits being found on the continental shelf. Large Quaternary deposits and valley fills can also be found onshore and these are now valuable resources for aggregates, ground water and agriculture. Important Quaternary processes have also been acting along the Norwegian coast with denudation of the famous strandflat, where the formation processes are not fully understood. The isostatic depression of crust under the vast ice sheets have also lead to important consequences, with thick deposits of potentially unstable, fine-grained glaciomarine sediments in quite large areas of Norway. It is thus clear that much of Norway's beauty but also geohazard problems can be explained with the actions of Quaternary geomorphological processes.","publication_date":{"day":1,"month":6,"year":2013,"errors":{}},"grobid_abstract_attachment_id":51300480},"translated_abstract":null,"internal_url":"https://www.academia.edu/30874040/Glacial_landforms_and_Quaternary_landscape_development_in_Norway","translated_internal_url":"","created_at":"2017-01-11T05:01:33.459-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":51300480,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300480/thumbnails/1.jpg","file_name":"Glacial_landforms_and_Quaternary_landsca20170111-6810-1gmlzqp.pdf","download_url":"https://www.academia.edu/attachments/51300480/download_file","bulk_download_file_name":"Glacial_landforms_and_Quaternary_landsca.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300480/Glacial_landforms_and_Quaternary_landsca20170111-6810-1gmlzqp-libre.pdf?1484140267=\u0026response-content-disposition=attachment%3B+filename%3DGlacial_landforms_and_Quaternary_landsca.pdf\u0026Expires=1743853385\u0026Signature=P3M7srlDghzgIrV3P15aF6V3o2ABJ46TPV538WxUhxFKvcN-8GZ-Ztdq96TN4g7~YeKSpunWdR-ayRAiHT9TNypsIAlV7TUwa44dMPwUL3u7jg97sayn5Dnp-tmqZ2pRbZs0k7OFP~hp40FTbujFaKl2FW51IL0VUpeDc-ResiEojSb9aAJ0Pfvn6m5K6ISASH9E1OboA27~2YfZq5LY~8IersQH~4w7cSt5cXyDBONWQzxXxNQUIgmOtx8wpqRkA8~FOHinsbU0xG6vPvmtELzLD~A2qmiRAXYjrlzO-zXSb~TMYsnNkC~4O96tg9PxZ-07qmlpZJTGYXkyBxpU6Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Glacial_landforms_and_Quaternary_landscape_development_in_Norway","translated_slug":"","page_count":23,"language":"en","content_type":"Work","summary":"The Norwegian landscape is a function of geological processes working over very long time spans, and first order structures might for example be traced to the ancient denudational processes, the Caledonian orogeny or break-up of the North Atlantic. However, a large portion of large-, intermediate-, and small-scale landforms in Norway owe their existence to Quaternary glaciations or periglacial processes. The Quaternary time period (the last c. 3 million years), is characterised by cool and variable climate with temperatures oscillating between relative mildness to frigid ice-age conditions. A wide spectrum of climate-driven geomorphological processes has thus been acting in Norway, but the numerous glaciations have had the most profound effect with the production of large U-shaped valleys, fjords and Alpine relief. On the other hand, interior and upland areas in Norway seem to be largely unaffected by glacial erosion and exhibit a possibly pre-Quaternary landscape with only some periglacial influence. The ice sheets in Scandinavia thus have redistributed rock mass and sediments in the landscape with the largest glaciogenic deposits being found on the continental shelf. Large Quaternary deposits and valley fills can also be found onshore and these are now valuable resources for aggregates, ground water and agriculture. Important Quaternary processes have also been acting along the Norwegian coast with denudation of the famous strandflat, where the formation processes are not fully understood. The isostatic depression of crust under the vast ice sheets have also lead to important consequences, with thick deposits of potentially unstable, fine-grained glaciomarine sediments in quite large areas of Norway. It is thus clear that much of Norway's beauty but also geohazard problems can be explained with the actions of Quaternary geomorphological processes.","impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[{"id":51300480,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300480/thumbnails/1.jpg","file_name":"Glacial_landforms_and_Quaternary_landsca20170111-6810-1gmlzqp.pdf","download_url":"https://www.academia.edu/attachments/51300480/download_file","bulk_download_file_name":"Glacial_landforms_and_Quaternary_landsca.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300480/Glacial_landforms_and_Quaternary_landsca20170111-6810-1gmlzqp-libre.pdf?1484140267=\u0026response-content-disposition=attachment%3B+filename%3DGlacial_landforms_and_Quaternary_landsca.pdf\u0026Expires=1743853385\u0026Signature=P3M7srlDghzgIrV3P15aF6V3o2ABJ46TPV538WxUhxFKvcN-8GZ-Ztdq96TN4g7~YeKSpunWdR-ayRAiHT9TNypsIAlV7TUwa44dMPwUL3u7jg97sayn5Dnp-tmqZ2pRbZs0k7OFP~hp40FTbujFaKl2FW51IL0VUpeDc-ResiEojSb9aAJ0Pfvn6m5K6ISASH9E1OboA27~2YfZq5LY~8IersQH~4w7cSt5cXyDBONWQzxXxNQUIgmOtx8wpqRkA8~FOHinsbU0xG6vPvmtELzLD~A2qmiRAXYjrlzO-zXSb~TMYsnNkC~4O96tg9PxZ-07qmlpZJTGYXkyBxpU6Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-30874040-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874039"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30874039/Recycling_of_glacial_and_non_glacial_sediments_duringt_the_Little_Ice_Age_advance_around_Jostedalsbreen_south_central_Norway"><img alt="Research paper thumbnail of Recycling of glacial and non-glacial sediments duringt the &#39;Little Ice Age&#39; advance around Jostedalsbreen, south-central Norway" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Recycling of glacial and non-glacial sediments duringt the &#39;Little Ice Age&#39; advance around Jostedalsbreen, south-central Norway</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874039"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874039"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874039; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874039]").text(description); $(".js-view-count[data-work-id=30874039]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874039; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874039']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30874039]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874039,"title":"Recycling of glacial and non-glacial sediments duringt the 'Little Ice Age' advance around Jostedalsbreen, south-central Norway","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2007,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/30874039/Recycling_of_glacial_and_non_glacial_sediments_duringt_the_Little_Ice_Age_advance_around_Jostedalsbreen_south_central_Norway","translated_internal_url":"","created_at":"2017-01-11T05:01:32.779-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Recycling_of_glacial_and_non_glacial_sediments_duringt_the_Little_Ice_Age_advance_around_Jostedalsbreen_south_central_Norway","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[],"research_interests":[],"urls":[{"id":7880224,"url":"http://www.diva-portal.org/smash/record.jsf?pid=diva2:178304"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874039-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874038"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30874038/Nordic_seas_climate_variability_over_the_past_2_millennia_a_tropical_link"><img alt="Research paper thumbnail of Nordic seas climate variability over the past 2 millennia - a tropical link" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Nordic seas climate variability over the past 2 millennia - a tropical link</div><div class="wp-workCard_item"><span>Egs Agu Eug Joint Assembly</span><span>, Apr 1, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">High resolution records of mean annual and summer temperatures over the past 2 millennia have bee...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">High resolution records of mean annual and summer temperatures over the past 2 millennia have been developed for the Nordic Seas and adjacent land areas with decadal resolution. A new high quality age model for these records has been developed using a novel tree-ring correlation. The data show a very strong land-ocean coherence. Correlation to instrumental time series is also strong. A remarkable correspondance with proxy records of the nortward extent of the ITZC is apparent in the data, based on correlations to a rainfall/runoff proxy from Cariaco Basin off Venezuela. Further comparisons with long time series of North Atlantic indices based on instrumental data and proxy records are underway and will be reported. The strong tropical linkage is also noticeable in the instrumental time series, indicating possible tropical influence on decadal to century climate changes in the high latitude North Atlantic.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874038"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874038"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874038; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874038]").text(description); $(".js-view-count[data-work-id=30874038]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874038; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874038']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30874038]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874038,"title":"Nordic seas climate variability over the past 2 millennia - a tropical link","translated_title":"","metadata":{"abstract":"High resolution records of mean annual and summer temperatures over the past 2 millennia have been developed for the Nordic Seas and adjacent land areas with decadal resolution. A new high quality age model for these records has been developed using a novel tree-ring correlation. The data show a very strong land-ocean coherence. Correlation to instrumental time series is also strong. A remarkable correspondance with proxy records of the nortward extent of the ITZC is apparent in the data, based on correlations to a rainfall/runoff proxy from Cariaco Basin off Venezuela. Further comparisons with long time series of North Atlantic indices based on instrumental data and proxy records are underway and will be reported. The strong tropical linkage is also noticeable in the instrumental time series, indicating possible tropical influence on decadal to century climate changes in the high latitude North Atlantic.","publication_date":{"day":1,"month":4,"year":2003,"errors":{}},"publication_name":"Egs Agu Eug Joint Assembly"},"translated_abstract":"High resolution records of mean annual and summer temperatures over the past 2 millennia have been developed for the Nordic Seas and adjacent land areas with decadal resolution. A new high quality age model for these records has been developed using a novel tree-ring correlation. The data show a very strong land-ocean coherence. Correlation to instrumental time series is also strong. A remarkable correspondance with proxy records of the nortward extent of the ITZC is apparent in the data, based on correlations to a rainfall/runoff proxy from Cariaco Basin off Venezuela. Further comparisons with long time series of North Atlantic indices based on instrumental data and proxy records are underway and will be reported. The strong tropical linkage is also noticeable in the instrumental time series, indicating possible tropical influence on decadal to century climate changes in the high latitude North Atlantic.","internal_url":"https://www.academia.edu/30874038/Nordic_seas_climate_variability_over_the_past_2_millennia_a_tropical_link","translated_internal_url":"","created_at":"2017-01-11T05:01:32.004-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Nordic_seas_climate_variability_over_the_past_2_millennia_a_tropical_link","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"High resolution records of mean annual and summer temperatures over the past 2 millennia have been developed for the Nordic Seas and adjacent land areas with decadal resolution. A new high quality age model for these records has been developed using a novel tree-ring correlation. The data show a very strong land-ocean coherence. Correlation to instrumental time series is also strong. A remarkable correspondance with proxy records of the nortward extent of the ITZC is apparent in the data, based on correlations to a rainfall/runoff proxy from Cariaco Basin off Venezuela. Further comparisons with long time series of North Atlantic indices based on instrumental data and proxy records are underway and will be reported. The strong tropical linkage is also noticeable in the instrumental time series, indicating possible tropical influence on decadal to century climate changes in the high latitude North Atlantic.","impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[],"research_interests":[{"id":1512,"name":"Climate Change","url":"https://www.academia.edu/Documents/in/Climate_Change"},{"id":4456,"name":"Time Series","url":"https://www.academia.edu/Documents/in/Time_Series"},{"id":4753,"name":"Climate variability","url":"https://www.academia.edu/Documents/in/Climate_variability"},{"id":82675,"name":"North Atlantic","url":"https://www.academia.edu/Documents/in/North_Atlantic"},{"id":309086,"name":"High Resolution","url":"https://www.academia.edu/Documents/in/High_Resolution"},{"id":630543,"name":"Tree Ring","url":"https://www.academia.edu/Documents/in/Tree_Ring"}],"urls":[{"id":7880223,"url":"http://adsabs.harvard.edu/abs/2003EAEJA....13421J"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874038-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="25981257"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/25981257/Holocene_glacier_fluctuations"><img alt="Research paper thumbnail of Holocene glacier fluctuations" class="work-thumbnail" src="https://attachments.academia-assets.com/46331647/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/25981257/Holocene_glacier_fluctuations">Holocene glacier fluctuations</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/VJomelli">V. Jomelli</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/GregoryWiles">Gregory Wiles</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://ncsu.academia.edu/LewisOwen">Lewis A Owen</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://uib.academia.edu/AtleNesje">Atle Nesje</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/HodgsonDominic">Dominic Hodgson</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A global overview of glacier advances and retreats (grouped by regions and by millennia) for the ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A global overview of glacier advances and retreats (grouped by regions and by millennia) for the Holocene is compiled from previous studies. The reconstructions of glacier fluctuations are based on 1) mapping and dating moraines defined by 14 C, TCN, OSL, lichenometry and tree rings (discontinuous records/time series), and 2) sediments from proglacial lakes and speleothems (continuous records/ time series). Using 189 continuous and discontinuous time series, the long-term trends and centennial fluctuations of glaciers were compared to trends in the recession of Northern and mountain tree lines, and with orbital, solar and volcanic studies to examine the likely forcing factors that drove the changes recorded. A general trend of increasing glacier size from the earlyemid Holocene, to the late</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4b9c23e02878a0de47d709dce89d193c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46331647,&quot;asset_id&quot;:25981257,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46331647/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="25981257"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="25981257"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 25981257; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=25981257]").text(description); $(".js-view-count[data-work-id=25981257]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 25981257; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='25981257']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4b9c23e02878a0de47d709dce89d193c" } } $('.js-work-strip[data-work-id=25981257]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":25981257,"title":"Holocene glacier fluctuations","translated_title":"","metadata":{"abstract":"A global overview of glacier advances and retreats (grouped by regions and by millennia) for the Holocene is compiled from previous studies. The reconstructions of glacier fluctuations are based on 1) mapping and dating moraines defined by 14 C, TCN, OSL, lichenometry and tree rings (discontinuous records/time series), and 2) sediments from proglacial lakes and speleothems (continuous records/ time series). Using 189 continuous and discontinuous time series, the long-term trends and centennial fluctuations of glaciers were compared to trends in the recession of Northern and mountain tree lines, and with orbital, solar and volcanic studies to examine the likely forcing factors that drove the changes recorded. A general trend of increasing glacier size from the earlyemid Holocene, to the late"},"translated_abstract":"A global overview of glacier advances and retreats (grouped by regions and by millennia) for the Holocene is compiled from previous studies. The reconstructions of glacier fluctuations are based on 1) mapping and dating moraines defined by 14 C, TCN, OSL, lichenometry and tree rings (discontinuous records/time series), and 2) sediments from proglacial lakes and speleothems (continuous records/ time series). Using 189 continuous and discontinuous time series, the long-term trends and centennial fluctuations of glaciers were compared to trends in the recession of Northern and mountain tree lines, and with orbital, solar and volcanic studies to examine the likely forcing factors that drove the changes recorded. A general trend of increasing glacier size from the earlyemid Holocene, to the late","internal_url":"https://www.academia.edu/25981257/Holocene_glacier_fluctuations","translated_internal_url":"","created_at":"2016-06-08T00:02:19.141-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32472660,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":21101664,"work_id":25981257,"tagging_user_id":32472660,"tagged_user_id":32587852,"co_author_invite_id":null,"email":"a***h@vuw.ac.nz","affiliation":"Victoria University of Wellington","display_order":0,"name":"A. Mackintosh","title":"Holocene glacier fluctuations"},{"id":21101665,"work_id":25981257,"tagging_user_id":32472660,"tagged_user_id":6563464,"co_author_invite_id":null,"email":"g***s@wooster.edu","display_order":4194304,"name":"Gregory Wiles","title":"Holocene glacier fluctuations"},{"id":21101666,"work_id":25981257,"tagging_user_id":32472660,"tagged_user_id":34314936,"co_author_invite_id":null,"email":"r***7@gmail.com","display_order":6291456,"name":"Raymond Bradley","title":"Holocene glacier fluctuations"},{"id":21101667,"work_id":25981257,"tagging_user_id":32472660,"tagged_user_id":32571282,"co_author_invite_id":null,"email":"r***y@geo.umass.edu","display_order":7340032,"name":"R. Bradley","title":"Holocene glacier fluctuations"},{"id":21101668,"work_id":25981257,"tagging_user_id":32472660,"tagged_user_id":36843320,"co_author_invite_id":null,"email":"l***n@ncsu.edu","affiliation":"North Carolina State University","display_order":7864320,"name":"Lewis A Owen","title":"Holocene glacier fluctuations"},{"id":21101669,"work_id":25981257,"tagging_user_id":32472660,"tagged_user_id":null,"co_author_invite_id":2008903,"email":"s***a@gol.ru","display_order":8126464,"name":"Olga Solomina","title":"Holocene glacier fluctuations"},{"id":21101670,"work_id":25981257,"tagging_user_id":32472660,"tagged_user_id":33441460,"co_author_invite_id":null,"email":"a***e@geo.uib.no","affiliation":"University of Bergen","display_order":8257536,"name":"Atle Nesje","title":"Holocene glacier fluctuations"},{"id":21101671,"work_id":25981257,"tagging_user_id":32472660,"tagged_user_id":32492285,"co_author_invite_id":null,"email":"w***r@giub.unibe.ch","display_order":8323072,"name":"Heinz Wanner","title":"Holocene glacier fluctuations"},{"id":21101672,"work_id":25981257,"tagging_user_id":32472660,"tagged_user_id":40901816,"co_author_invite_id":null,"email":"d***o@bas.ac.uk","display_order":8355840,"name":"Dominic Hodgson","title":"Holocene glacier fluctuations"},{"id":28421560,"work_id":25981257,"tagging_user_id":36843320,"tagged_user_id":null,"co_author_invite_id":3010326,"email":"n***g@magnet.fsu.edu","display_order":8372224,"name":"Nicolas Young","title":"Holocene glacier fluctuations"},{"id":28421561,"work_id":25981257,"tagging_user_id":36843320,"tagged_user_id":883906,"co_author_invite_id":null,"email":"i***y@phys.ethz.ch","affiliation":"Swiss Federal Institute of Technology (ETH)","display_order":8380416,"name":"Susan Ivy-Ochs","title":"Holocene glacier fluctuations"}],"downloadable_attachments":[{"id":46331647,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46331647/thumbnails/1.jpg","file_name":"Solominaet_al.pdf","download_url":"https://www.academia.edu/attachments/46331647/download_file","bulk_download_file_name":"Holocene_glacier_fluctuations.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46331647/Solominaet_al-libre.pdf?1465369433=\u0026response-content-disposition=attachment%3B+filename%3DHolocene_glacier_fluctuations.pdf\u0026Expires=1743853386\u0026Signature=JGKSRbAhexZF3bES26dmy6K2jyO5QzXWcsjdzUL8g6rrSo6z0iYZI1GFC0Wv8dj0fkrU1H0JI7HrRQhlFpiVhs1qgNpBrwAzaEsoewwYz0SeyPdDXXaXpai45IoNqCQHLUTS8sEflGnUt52J2mVzGDxmYMxCiHiaDgOQ5V-PBfCbj69UffWJECDalrxRXzCcGf1TyFWshnq1-STlt-ESXoeAZXP1sA1RjEUlIWmb6dM2XHaA9z~q1sxlcizXvGEVPwm3n5JVIbD4gnN4I9FQOMY63qdWD09eaI37hLQzNDfRnhg4l8m0DMFAAbQqAS7Co2BS0jC-D3Vlb2lCOzNbmg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Holocene_glacier_fluctuations","translated_slug":"","page_count":26,"language":"en","content_type":"Work","summary":"A global overview of glacier advances and retreats (grouped by regions and by millennia) for the Holocene is compiled from previous studies. The reconstructions of glacier fluctuations are based on 1) mapping and dating moraines defined by 14 C, TCN, OSL, lichenometry and tree rings (discontinuous records/time series), and 2) sediments from proglacial lakes and speleothems (continuous records/ time series). Using 189 continuous and discontinuous time series, the long-term trends and centennial fluctuations of glaciers were compared to trends in the recession of Northern and mountain tree lines, and with orbital, solar and volcanic studies to examine the likely forcing factors that drove the changes recorded. A general trend of increasing glacier size from the earlyemid Holocene, to the late","impression_tracking_id":null,"owner":{"id":32472660,"first_name":"V.","middle_initials":null,"last_name":"Jomelli","page_name":"VJomelli","domain_name":"independent","created_at":"2015-06-23T12:00:38.757-07:00","display_name":"V. Jomelli","url":"https://independent.academia.edu/VJomelli"},"attachments":[{"id":46331647,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46331647/thumbnails/1.jpg","file_name":"Solominaet_al.pdf","download_url":"https://www.academia.edu/attachments/46331647/download_file","bulk_download_file_name":"Holocene_glacier_fluctuations.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46331647/Solominaet_al-libre.pdf?1465369433=\u0026response-content-disposition=attachment%3B+filename%3DHolocene_glacier_fluctuations.pdf\u0026Expires=1743853386\u0026Signature=JGKSRbAhexZF3bES26dmy6K2jyO5QzXWcsjdzUL8g6rrSo6z0iYZI1GFC0Wv8dj0fkrU1H0JI7HrRQhlFpiVhs1qgNpBrwAzaEsoewwYz0SeyPdDXXaXpai45IoNqCQHLUTS8sEflGnUt52J2mVzGDxmYMxCiHiaDgOQ5V-PBfCbj69UffWJECDalrxRXzCcGf1TyFWshnq1-STlt-ESXoeAZXP1sA1RjEUlIWmb6dM2XHaA9z~q1sxlcizXvGEVPwm3n5JVIbD4gnN4I9FQOMY63qdWD09eaI37hLQzNDfRnhg4l8m0DMFAAbQqAS7Co2BS0jC-D3Vlb2lCOzNbmg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":410,"name":"Glaciology","url":"https://www.academia.edu/Documents/in/Glaciology"},{"id":417,"name":"Paleontology","url":"https://www.academia.edu/Documents/in/Paleontology"},{"id":29499,"name":"Glacial Geomorphology","url":"https://www.academia.edu/Documents/in/Glacial_Geomorphology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-25981257-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874036"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30874036/Late_Holocene_glaciers_and_avalanche_activity_in_the_%C3%85lfotbreen_area_western_Norway_evidence_from_a_lacustrine_sedimentary_record"><img alt="Research paper thumbnail of Late Holocene glaciers and avalanche activity in the Ålfotbreen area, western Norway: evidence from a lacustrine sedimentary record" class="work-thumbnail" src="https://attachments.academia-assets.com/51300478/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30874036/Late_Holocene_glaciers_and_avalanche_activity_in_the_%C3%85lfotbreen_area_western_Norway_evidence_from_a_lacustrine_sedimentary_record">Late Holocene glaciers and avalanche activity in the Ålfotbreen area, western Norway: evidence from a lacustrine sedimentary record</a></div><div class="wp-workCard_item"><span>Norsk Geologisk Tiddsskrift</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d4214eef2cb5b251cf423f8bf574d85e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:51300478,&quot;asset_id&quot;:30874036,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/51300478/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874036"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874036"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874036; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874036]").text(description); $(".js-view-count[data-work-id=30874036]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874036; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874036']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d4214eef2cb5b251cf423f8bf574d85e" } } $('.js-work-strip[data-work-id=30874036]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874036,"title":"Late Holocene glaciers and avalanche activity in the Ålfotbreen area, western Norway: evidence from a lacustrine sedimentary record","translated_title":"","metadata":{"ai_abstract":"Lakes serve as continuous sedimentary basins that record regional climate history and glacial responses. This study investigates the lacustrine sedimentary record in the Ålfotbreen area of western Norway, focusing on the evidence for glacier dynamics over the Late Holocene. By evaluating sediment composition and structure, the research aims to clarify glacier behavior in relation to climatic factors and to differentiate glacial signals from non-glacial sedimentary influences.","publication_name":"Norsk Geologisk Tiddsskrift"},"translated_abstract":null,"internal_url":"https://www.academia.edu/30874036/Late_Holocene_glaciers_and_avalanche_activity_in_the_%C3%85lfotbreen_area_western_Norway_evidence_from_a_lacustrine_sedimentary_record","translated_internal_url":"","created_at":"2017-01-11T05:01:30.607-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":51300478,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300478/thumbnails/1.jpg","file_name":"Late_Holocene_glaciers_and_avalanche_act20170111-6807-19jil6a.pdf","download_url":"https://www.academia.edu/attachments/51300478/download_file","bulk_download_file_name":"Late_Holocene_glaciers_and_avalanche_act.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300478/Late_Holocene_glaciers_and_avalanche_act20170111-6807-19jil6a-libre.pdf?1484140087=\u0026response-content-disposition=attachment%3B+filename%3DLate_Holocene_glaciers_and_avalanche_act.pdf\u0026Expires=1743853386\u0026Signature=Imv2ET8Y5pXghXK2TfJ6SQef5AhwYBRVrarEABqOFZ-yIYEt0DohcSbVqJAIrkLZv01a1gREkbPDJeLJM6DzUEn3EQaRZhgwSUg5-M7FpZTo8hIjn8yeCZU~lqzRuAWtjpo-SrRYJMoG6Z~z~Hu8cY9MTFtvIbGtDX96g8THJE-3WvmTt4WGj-LB9dt9ZeE3LCPwtvt~GOPg96gldzVN7m4c5LfSOremfaRmzqioBZ1fz9YYwmUkTTNJirt6MAuFBudtVsGZSckOArBSyd2jXM9gd8VyCYYJz-TBgEVQW111C~QmGFSWzVwox77N~wmTV3DtOoewtTHu7iTjLD5SqQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Late_Holocene_glaciers_and_avalanche_activity_in_the_Ålfotbreen_area_western_Norway_evidence_from_a_lacustrine_sedimentary_record","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[{"id":51300478,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300478/thumbnails/1.jpg","file_name":"Late_Holocene_glaciers_and_avalanche_act20170111-6807-19jil6a.pdf","download_url":"https://www.academia.edu/attachments/51300478/download_file","bulk_download_file_name":"Late_Holocene_glaciers_and_avalanche_act.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300478/Late_Holocene_glaciers_and_avalanche_act20170111-6807-19jil6a-libre.pdf?1484140087=\u0026response-content-disposition=attachment%3B+filename%3DLate_Holocene_glaciers_and_avalanche_act.pdf\u0026Expires=1743853386\u0026Signature=Imv2ET8Y5pXghXK2TfJ6SQef5AhwYBRVrarEABqOFZ-yIYEt0DohcSbVqJAIrkLZv01a1gREkbPDJeLJM6DzUEn3EQaRZhgwSUg5-M7FpZTo8hIjn8yeCZU~lqzRuAWtjpo-SrRYJMoG6Z~z~Hu8cY9MTFtvIbGtDX96g8THJE-3WvmTt4WGj-LB9dt9ZeE3LCPwtvt~GOPg96gldzVN7m4c5LfSOremfaRmzqioBZ1fz9YYwmUkTTNJirt6MAuFBudtVsGZSckOArBSyd2jXM9gd8VyCYYJz-TBgEVQW111C~QmGFSWzVwox77N~wmTV3DtOoewtTHu7iTjLD5SqQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874036-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874035"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30874035/Holocene_mean_July_temperature_and_winter_precipitation_in_western_Norway_inferred_from_lake_sediment_proxies"><img alt="Research paper thumbnail of Holocene mean July temperature and winter precipitation in western Norway inferred from lake sediment proxies" class="work-thumbnail" src="https://attachments.academia-assets.com/51300474/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30874035/Holocene_mean_July_temperature_and_winter_precipitation_in_western_Norway_inferred_from_lake_sediment_proxies">Holocene mean July temperature and winter precipitation in western Norway inferred from lake sediment proxies</a></div><div class="wp-workCard_item"><span>The Holocene</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Reconstructions of mean July temperature (T jul ) and winter precipitation (P w ) for the last 11...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Reconstructions of mean July temperature (T jul ) and winter precipitation (P w ) for the last 11/500 years on the Folgefonna peninsula are presented. T jul was reconstructed using pollen Á/climate transfer functions and P w was reconstructed based on the exponential relationship between mean solid winter precipitation and ablation-season temperature at the equilibrium-line altitude (ELA) with a reconstructed former ELA, using T jul as the proxy for ablation-season temperature. The reconstructions from the Folgefonna peninsula suggest that the early Holocene was relatively cool and dry until c. 8000 cal. yr BP, followed by a warm and humid mid-Holocene until c. 4000 cal. yr BP with inferred T jul above 128C and P w reaching as high as 225% of the present day. Subsequent to c. 4000 cal. yr BP a reduction is seen in both inferred T jul and P w with large fluctuations during the last 500 years. In addition, new calculations of P w from two glaciers (Hardangerjøkulen and Jostedalsbreen) in southern Norway are presented. The results show that P w varied in phase at all glaciers, probably as a response to the same climate forcing factor. During the early Holocene a major shift is suggested between winds from the west and the east.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2b626bfa6982729c2b552c3fddedff48" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:51300474,&quot;asset_id&quot;:30874035,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/51300474/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874035"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874035"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874035; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874035]").text(description); $(".js-view-count[data-work-id=30874035]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874035; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874035']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2b626bfa6982729c2b552c3fddedff48" } } $('.js-work-strip[data-work-id=30874035]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874035,"title":"Holocene mean July temperature and winter precipitation in western Norway inferred from lake sediment proxies","translated_title":"","metadata":{"grobid_abstract":"Reconstructions of mean July temperature (T jul ) and winter precipitation (P w ) for the last 11/500 years on the Folgefonna peninsula are presented. T jul was reconstructed using pollen Á/climate transfer functions and P w was reconstructed based on the exponential relationship between mean solid winter precipitation and ablation-season temperature at the equilibrium-line altitude (ELA) with a reconstructed former ELA, using T jul as the proxy for ablation-season temperature. The reconstructions from the Folgefonna peninsula suggest that the early Holocene was relatively cool and dry until c. 8000 cal. yr BP, followed by a warm and humid mid-Holocene until c. 4000 cal. yr BP with inferred T jul above 128C and P w reaching as high as 225% of the present day. Subsequent to c. 4000 cal. yr BP a reduction is seen in both inferred T jul and P w with large fluctuations during the last 500 years. In addition, new calculations of P w from two glaciers (Hardangerjøkulen and Jostedalsbreen) in southern Norway are presented. The results show that P w varied in phase at all glaciers, probably as a response to the same climate forcing factor. During the early Holocene a major shift is suggested between winds from the west and the east.","publication_name":"The Holocene","grobid_abstract_attachment_id":51300474},"translated_abstract":null,"internal_url":"https://www.academia.edu/30874035/Holocene_mean_July_temperature_and_winter_precipitation_in_western_Norway_inferred_from_lake_sediment_proxies","translated_internal_url":"","created_at":"2017-01-11T05:01:30.164-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":51300474,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300474/thumbnails/1.jpg","file_name":"Holocene_mean_July_temperature_and_winte20170111-6810-qfr9yh.pdf","download_url":"https://www.academia.edu/attachments/51300474/download_file","bulk_download_file_name":"Holocene_mean_July_temperature_and_winte.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300474/Holocene_mean_July_temperature_and_winte20170111-6810-qfr9yh-libre.pdf?1484140080=\u0026response-content-disposition=attachment%3B+filename%3DHolocene_mean_July_temperature_and_winte.pdf\u0026Expires=1743853386\u0026Signature=YwttcNkNCTjn1GBeLj7xiyG2YAC1rAvyoiS1g2bg0bFVfdKp~w7OrFU~4E2XWurrupEugRQASmz182QH1M7~5KES8t3Lvxi-A8-vfor58JgDhYSbvlKIoPQj0bH-q7QgLKNRmbfAoTYjolqd3GxrPqkqxZC1Gh2fuK8EACDS2PdYyVspdwEthqJ4wHJ7QhfTiX5fWu8yKvHNZtNfXSyA6YCAeAWWUGnJuF-Rrlu3tR8x6tf8X43r0fL~cESdLa~oc8AOW56MxHDzI3tq9X4XHm4-bY~-gLhLcehvh2IxOQPXmCMwBJKyF4Nd6-RLzHXYNcDq69DFqDN~BeBU~FQujQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Holocene_mean_July_temperature_and_winter_precipitation_in_western_Norway_inferred_from_lake_sediment_proxies","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"Reconstructions of mean July temperature (T jul ) and winter precipitation (P w ) for the last 11/500 years on the Folgefonna peninsula are presented. T jul was reconstructed using pollen Á/climate transfer functions and P w was reconstructed based on the exponential relationship between mean solid winter precipitation and ablation-season temperature at the equilibrium-line altitude (ELA) with a reconstructed former ELA, using T jul as the proxy for ablation-season temperature. The reconstructions from the Folgefonna peninsula suggest that the early Holocene was relatively cool and dry until c. 8000 cal. yr BP, followed by a warm and humid mid-Holocene until c. 4000 cal. yr BP with inferred T jul above 128C and P w reaching as high as 225% of the present day. Subsequent to c. 4000 cal. yr BP a reduction is seen in both inferred T jul and P w with large fluctuations during the last 500 years. In addition, new calculations of P w from two glaciers (Hardangerjøkulen and Jostedalsbreen) in southern Norway are presented. The results show that P w varied in phase at all glaciers, probably as a response to the same climate forcing factor. During the early Holocene a major shift is suggested between winds from the west and the east.","impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[{"id":51300474,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300474/thumbnails/1.jpg","file_name":"Holocene_mean_July_temperature_and_winte20170111-6810-qfr9yh.pdf","download_url":"https://www.academia.edu/attachments/51300474/download_file","bulk_download_file_name":"Holocene_mean_July_temperature_and_winte.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300474/Holocene_mean_July_temperature_and_winte20170111-6810-qfr9yh-libre.pdf?1484140080=\u0026response-content-disposition=attachment%3B+filename%3DHolocene_mean_July_temperature_and_winte.pdf\u0026Expires=1743853386\u0026Signature=YwttcNkNCTjn1GBeLj7xiyG2YAC1rAvyoiS1g2bg0bFVfdKp~w7OrFU~4E2XWurrupEugRQASmz182QH1M7~5KES8t3Lvxi-A8-vfor58JgDhYSbvlKIoPQj0bH-q7QgLKNRmbfAoTYjolqd3GxrPqkqxZC1Gh2fuK8EACDS2PdYyVspdwEthqJ4wHJ7QhfTiX5fWu8yKvHNZtNfXSyA6YCAeAWWUGnJuF-Rrlu3tR8x6tf8X43r0fL~cESdLa~oc8AOW56MxHDzI3tq9X4XHm4-bY~-gLhLcehvh2IxOQPXmCMwBJKyF4Nd6-RLzHXYNcDq69DFqDN~BeBU~FQujQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":57433,"name":"Seasonality","url":"https://www.academia.edu/Documents/in/Seasonality"},{"id":78965,"name":"Holocene","url":"https://www.academia.edu/Documents/in/Holocene"},{"id":174781,"name":"Oscillations","url":"https://www.academia.edu/Documents/in/Oscillations"},{"id":244976,"name":"Transfer Function","url":"https://www.academia.edu/Documents/in/Transfer_Function"},{"id":338205,"name":"Early Holocene","url":"https://www.academia.edu/Documents/in/Early_Holocene"},{"id":2368477,"name":"Equilibrium Line Altitude","url":"https://www.academia.edu/Documents/in/Equilibrium_Line_Altitude"},{"id":2599525,"name":"present day","url":"https://www.academia.edu/Documents/in/present_day"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874035-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874034"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30874034/Geometry_thickness_and_isostatic_loading_of_the_Late_Weichselian_ice_sheet"><img alt="Research paper thumbnail of Geometry. thickness and isostatic loading of the Late Weichselian ice sheet" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Geometry. thickness and isostatic loading of the Late Weichselian ice sheet</div><div class="wp-workCard_item"><span>Norsk Geologisk Tidsskrift</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874034"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874034"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874034; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874034]").text(description); $(".js-view-count[data-work-id=30874034]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874034; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874034']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30874034]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874034,"title":"Geometry. thickness and isostatic loading of the Late Weichselian ice sheet","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_name":"Norsk Geologisk Tidsskrift"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/30874034/Geometry_thickness_and_isostatic_loading_of_the_Late_Weichselian_ice_sheet","translated_internal_url":"","created_at":"2017-01-11T05:01:29.726-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Geometry_thickness_and_isostatic_loading_of_the_Late_Weichselian_ice_sheet","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[],"research_interests":[{"id":35587,"name":"Quaternary","url":"https://www.academia.edu/Documents/in/Quaternary"},{"id":65140,"name":"Models","url":"https://www.academia.edu/Documents/in/Models"},{"id":958658,"name":"Ice Sheets","url":"https://www.academia.edu/Documents/in/Ice_Sheets"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874034-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874033"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30874033/Equilibrium_line_altitude_depressions_of_reconstructed_Younger_Dryas_and_Holocene_glaciers_in_Fosdalen_inner_Nord_Fjord"><img alt="Research paper thumbnail of Equilibrium-line altitude depressions of reconstructed Younger Dryas and Holocene glaciers in Fosdalen, inner Nord Fjord" class="work-thumbnail" src="https://attachments.academia-assets.com/51300473/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30874033/Equilibrium_line_altitude_depressions_of_reconstructed_Younger_Dryas_and_Holocene_glaciers_in_Fosdalen_inner_Nord_Fjord">Equilibrium-line altitude depressions of reconstructed Younger Dryas and Holocene glaciers in Fosdalen, inner Nord Fjord</a></div><div class="wp-workCard_item"><span>Norsk Geologisk Tiddsskrift</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f32e62089d4f2bd8a4ba67a01f0baf82" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:51300473,&quot;asset_id&quot;:30874033,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/51300473/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874033"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874033"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874033; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874033]").text(description); $(".js-view-count[data-work-id=30874033]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874033; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874033']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f32e62089d4f2bd8a4ba67a01f0baf82" } } $('.js-work-strip[data-work-id=30874033]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874033,"title":"Equilibrium-line altitude depressions of reconstructed Younger Dryas and Holocene glaciers in Fosdalen, inner Nord Fjord","translated_title":"","metadata":{"ai_abstract":"This study investigates the equilibrium-line altitudes (ELA) of reconstructed Younger Dryas and Holocene glaciers in Fosdalen, inner Nord Fjord, western Norway. By comparing numerous approaches for calculating ELA, significant findings reveal that the ELAs for late-glacial and Holocene periods exhibit distinctive depressions, with implications on climatic sensitivity, glacier dynamics, and historical reconstruction of glacier activity in the region.","publication_name":"Norsk Geologisk Tiddsskrift"},"translated_abstract":null,"internal_url":"https://www.academia.edu/30874033/Equilibrium_line_altitude_depressions_of_reconstructed_Younger_Dryas_and_Holocene_glaciers_in_Fosdalen_inner_Nord_Fjord","translated_internal_url":"","created_at":"2017-01-11T05:01:29.326-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":51300473,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300473/thumbnails/1.jpg","file_name":"Equilibrium-line_altitude_depressions_of20170111-6813-1ucw4x8.pdf","download_url":"https://www.academia.edu/attachments/51300473/download_file","bulk_download_file_name":"Equilibrium_line_altitude_depressions_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300473/Equilibrium-line_altitude_depressions_of20170111-6813-1ucw4x8-libre.pdf?1484140092=\u0026response-content-disposition=attachment%3B+filename%3DEquilibrium_line_altitude_depressions_of.pdf\u0026Expires=1743853387\u0026Signature=GE2w4sHhxyLDG6p9Z7x2rM-1QINtdBaApM7ymqxiysDATzEJWfvJh7EJRErKkSMrSgL39OyrhJ-qcRyIIt420a1hcyGgRIPxSIdmpaaolBAwQ10SAQG3Y3rCqqsXj3b8lJ41f2pCtmjJ3Xrh79Q-bn1noSPBsM8pErTQnQiHvxnQf4~GaLDA59MCqbBcfpfFV9KQew81ZVL0vnBbHXIo2Cdt~ucgfZEJJp~rlRiwi449D2idZY-ONDiA5aGyDxBUTMCAwpI34SlY6cA~2-TvHCFyObZ~FgvfeRXkyUzAh-GLmBiLohBIolykxiqPi0bZb~q2muU2wEh2kmfkSHoOaw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Equilibrium_line_altitude_depressions_of_reconstructed_Younger_Dryas_and_Holocene_glaciers_in_Fosdalen_inner_Nord_Fjord","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[{"id":51300473,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300473/thumbnails/1.jpg","file_name":"Equilibrium-line_altitude_depressions_of20170111-6813-1ucw4x8.pdf","download_url":"https://www.academia.edu/attachments/51300473/download_file","bulk_download_file_name":"Equilibrium_line_altitude_depressions_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300473/Equilibrium-line_altitude_depressions_of20170111-6813-1ucw4x8-libre.pdf?1484140092=\u0026response-content-disposition=attachment%3B+filename%3DEquilibrium_line_altitude_depressions_of.pdf\u0026Expires=1743853387\u0026Signature=GE2w4sHhxyLDG6p9Z7x2rM-1QINtdBaApM7ymqxiysDATzEJWfvJh7EJRErKkSMrSgL39OyrhJ-qcRyIIt420a1hcyGgRIPxSIdmpaaolBAwQ10SAQG3Y3rCqqsXj3b8lJ41f2pCtmjJ3Xrh79Q-bn1noSPBsM8pErTQnQiHvxnQf4~GaLDA59MCqbBcfpfFV9KQew81ZVL0vnBbHXIo2Cdt~ucgfZEJJp~rlRiwi449D2idZY-ONDiA5aGyDxBUTMCAwpI34SlY6cA~2-TvHCFyObZ~FgvfeRXkyUzAh-GLmBiLohBIolykxiqPi0bZb~q2muU2wEh2kmfkSHoOaw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874033-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874032"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30874032/The_lacustrine_sedimentary_sequence_in_Sygneskardvatnet_western_Norway_a_continuous_high_resolution_record_of_the_Jostedalsbreen_ice_cap_during_the_Holocene"><img alt="Research paper thumbnail of The lacustrine sedimentary sequence in Sygneskardvatnet, western Norway: a continuous, high-resolution record of the Jostedalsbreen ice cap during the Holocene" class="work-thumbnail" src="https://attachments.academia-assets.com/51300467/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30874032/The_lacustrine_sedimentary_sequence_in_Sygneskardvatnet_western_Norway_a_continuous_high_resolution_record_of_the_Jostedalsbreen_ice_cap_during_the_Holocene">The lacustrine sedimentary sequence in Sygneskardvatnet, western Norway: a continuous, high-resolution record of the Jostedalsbreen ice cap during the Holocene</a></div><div class="wp-workCard_item"><span>Quaternary Science Reviews</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="be2dd32f88dd755a7eba5b03167b6d67" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:51300467,&quot;asset_id&quot;:30874032,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/51300467/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874032"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874032"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874032; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874032]").text(description); $(".js-view-count[data-work-id=30874032]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874032; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874032']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "be2dd32f88dd755a7eba5b03167b6d67" } } $('.js-work-strip[data-work-id=30874032]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874032,"title":"The lacustrine sedimentary sequence in Sygneskardvatnet, western Norway: a continuous, high-resolution record of the Jostedalsbreen ice cap during the Holocene","translated_title":"","metadata":{"ai_abstract":"The research analyzes sedimentary records from Sygneskardvatnet, Norway, to reconstruct the climatic conditions and glacial activity associated with the Jostedalsbreen ice cap during the Holocene. Findings highlight significant variability in Holocene climate, challenging the notion of it being a stable period, with periods of both increased and decreased glacial activity recorded. The study emphasizes the importance of high-resolution sedimentary data for understanding millennial-scale climatic oscillations in the context of broader climatic patterns.","publication_name":"Quaternary Science Reviews"},"translated_abstract":null,"internal_url":"https://www.academia.edu/30874032/The_lacustrine_sedimentary_sequence_in_Sygneskardvatnet_western_Norway_a_continuous_high_resolution_record_of_the_Jostedalsbreen_ice_cap_during_the_Holocene","translated_internal_url":"","created_at":"2017-01-11T05:01:28.901-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":51300467,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300467/thumbnails/1.jpg","file_name":"The_lacustrine_sedimentary_sequence_in_S20170111-6810-1b8ls5d.pdf","download_url":"https://www.academia.edu/attachments/51300467/download_file","bulk_download_file_name":"The_lacustrine_sedimentary_sequence_in_S.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300467/The_lacustrine_sedimentary_sequence_in_S20170111-6810-1b8ls5d-libre.pdf?1484140090=\u0026response-content-disposition=attachment%3B+filename%3DThe_lacustrine_sedimentary_sequence_in_S.pdf\u0026Expires=1743853387\u0026Signature=XZy2Pf2seUjjFZbRE4PGVgDElwz6tbQpnOI8m0Bbi1yfTLRUzIzcjtW6ip3kMKEnyledgm2v9QOnGBiCCxGBLhWDMhSPYvzs3qH-YxTwPfc1~BzUUa3gYntqMwzgYfbYYAkT6geN~cGzbyMTun6a2J88bykJjKtArtiGIutac9v6ferzhv17Tj1wuWiRnRTWvuHMHci4cbEvzzDCmxjn0UPRzl6NDg02g3uF~8vRWnRKQ7RC6rxYswyoVI9VkblMQXtrLVv004fA1yJ3caRV~X1HCH6jt0X~pI02kXhwp0AS0oH3u6WvMEKe7-NyTUNgN9K07Hx5UqBHSAjROg75DQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_lacustrine_sedimentary_sequence_in_Sygneskardvatnet_western_Norway_a_continuous_high_resolution_record_of_the_Jostedalsbreen_ice_cap_during_the_Holocene","translated_slug":"","page_count":20,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[{"id":51300467,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300467/thumbnails/1.jpg","file_name":"The_lacustrine_sedimentary_sequence_in_S20170111-6810-1b8ls5d.pdf","download_url":"https://www.academia.edu/attachments/51300467/download_file","bulk_download_file_name":"The_lacustrine_sedimentary_sequence_in_S.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300467/The_lacustrine_sedimentary_sequence_in_S20170111-6810-1b8ls5d-libre.pdf?1484140090=\u0026response-content-disposition=attachment%3B+filename%3DThe_lacustrine_sedimentary_sequence_in_S.pdf\u0026Expires=1743853387\u0026Signature=XZy2Pf2seUjjFZbRE4PGVgDElwz6tbQpnOI8m0Bbi1yfTLRUzIzcjtW6ip3kMKEnyledgm2v9QOnGBiCCxGBLhWDMhSPYvzs3qH-YxTwPfc1~BzUUa3gYntqMwzgYfbYYAkT6geN~cGzbyMTun6a2J88bykJjKtArtiGIutac9v6ferzhv17Tj1wuWiRnRTWvuHMHci4cbEvzzDCmxjn0UPRzl6NDg02g3uF~8vRWnRKQ7RC6rxYswyoVI9VkblMQXtrLVv004fA1yJ3caRV~X1HCH6jt0X~pI02kXhwp0AS0oH3u6WvMEKe7-NyTUNgN9K07Hx5UqBHSAjROg75DQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":79294,"name":"Quaternary Science","url":"https://www.academia.edu/Documents/in/Quaternary_Science"},{"id":93755,"name":"History and archaeology","url":"https://www.academia.edu/Documents/in/History_and_archaeology"},{"id":150013,"name":"Late Holocene","url":"https://www.academia.edu/Documents/in/Late_Holocene"},{"id":167123,"name":"Loss on Ignition","url":"https://www.academia.edu/Documents/in/Loss_on_Ignition"},{"id":182364,"name":"Little Ice Age","url":"https://www.academia.edu/Documents/in/Little_Ice_Age"},{"id":188242,"name":"Organic production","url":"https://www.academia.edu/Documents/in/Organic_production"},{"id":198868,"name":"Ice Cores","url":"https://www.academia.edu/Documents/in/Ice_Cores"},{"id":309086,"name":"High Resolution","url":"https://www.academia.edu/Documents/in/High_Resolution"},{"id":333942,"name":"Marine Sediment","url":"https://www.academia.edu/Documents/in/Marine_Sediment"},{"id":373417,"name":"Quaternary Science Reviews","url":"https://www.academia.edu/Documents/in/Quaternary_Science_Reviews"},{"id":958194,"name":"Sedimentation Rate","url":"https://www.academia.edu/Documents/in/Sedimentation_Rate"},{"id":2007066,"name":"Return period","url":"https://www.academia.edu/Documents/in/Return_period"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874032-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874031"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30874031/Holocene_glacial_and_climate_history_of_the_Jostedalsbreen_region_Western_Norway_evidence_from_lake_sediments_and_terrestrial_deposits"><img alt="Research paper thumbnail of Holocene glacial and climate history of the Jostedalsbreen region, Western Norway; evidence from lake sediments and terrestrial deposits" class="work-thumbnail" src="https://attachments.academia-assets.com/51300471/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30874031/Holocene_glacial_and_climate_history_of_the_Jostedalsbreen_region_Western_Norway_evidence_from_lake_sediments_and_terrestrial_deposits">Holocene glacial and climate history of the Jostedalsbreen region, Western Norway; evidence from lake sediments and terrestrial deposits</a></div><div class="wp-workCard_item"><span>Quaternary Science Reviews</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The valleys surroundingthe Jostedalsbreen ice cap were deglaciated during the latter half of the ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The valleys surroundingthe Jostedalsbreen ice cap were deglaciated during the latter half of the Preboreal Chronozone. At the end of the Preboreal Chronozone, however, a glacier readvance occurred. Terminal moraines were deposited by outlet valley glaciers from the Jostedalsbreen Plateau up to 1 km beyond Little Ice A~ge moraines. Inferred from the altitude of lateral moraines formed during this readvance and calculations of the equilibrium-line altitude (ELA) depression based on an accumulation area ratio (AAR) of 0.6, the average depression of the ELA was 325 +75/-115 m below the present. By assuming a similar precipitation pattern as at present, this suggests a mean temperature decline of about 2°C. Palynological investigations from Sygneskardet, Sunndalen, indicate that climate like the present was achieved just after 9000 BP. The Holocene climatic optimum occurred during the Atlantic Chronozone, with elm (Ulmus) stands growing at the present birch (Betula) forest limit in Sunndalen and pine (Pinus) growing at Styggevatnet to an altitude of at least 1160 m. Durin[g this period the mean summer temperature is estimated to have been at least 2.7 and 1.8°C warmer than at present, with and wtthout the local climatic effect of Jostedalsbreen, respectively. An inferred rise of the ELA of about 400 m from the present altitude suggests that possibly no glaciers existed on the Jostedalsbreen Plateau during the Holocene climatic optimum. Vegetational chan~es as deduced from palynological studies, lowered tree limits and increased resedimentation in peat bogs indicate general climatic deterioration since the Late Atlantic Chronozone.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1dda190660f62119501b7ffa70db0dbc" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:51300471,&quot;asset_id&quot;:30874031,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/51300471/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874031"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874031"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874031; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874031]").text(description); $(".js-view-count[data-work-id=30874031]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874031; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874031']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1dda190660f62119501b7ffa70db0dbc" } } $('.js-work-strip[data-work-id=30874031]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874031,"title":"Holocene glacial and climate history of the Jostedalsbreen region, Western Norway; evidence from lake sediments and terrestrial deposits","translated_title":"","metadata":{"ai_title_tag":"Holocene Climate and Glacial History of Jostedalsbreen","grobid_abstract":"The valleys surroundingthe Jostedalsbreen ice cap were deglaciated during the latter half of the Preboreal Chronozone. At the end of the Preboreal Chronozone, however, a glacier readvance occurred. Terminal moraines were deposited by outlet valley glaciers from the Jostedalsbreen Plateau up to 1 km beyond Little Ice A~ge moraines. Inferred from the altitude of lateral moraines formed during this readvance and calculations of the equilibrium-line altitude (ELA) depression based on an accumulation area ratio (AAR) of 0.6, the average depression of the ELA was 325 +75/-115 m below the present. By assuming a similar precipitation pattern as at present, this suggests a mean temperature decline of about 2°C. Palynological investigations from Sygneskardet, Sunndalen, indicate that climate like the present was achieved just after 9000 BP. The Holocene climatic optimum occurred during the Atlantic Chronozone, with elm (Ulmus) stands growing at the present birch (Betula) forest limit in Sunndalen and pine (Pinus) growing at Styggevatnet to an altitude of at least 1160 m. Durin[g this period the mean summer temperature is estimated to have been at least 2.7 and 1.8°C warmer than at present, with and wtthout the local climatic effect of Jostedalsbreen, respectively. An inferred rise of the ELA of about 400 m from the present altitude suggests that possibly no glaciers existed on the Jostedalsbreen Plateau during the Holocene climatic optimum. Vegetational chan~es as deduced from palynological studies, lowered tree limits and increased resedimentation in peat bogs indicate general climatic deterioration since the Late Atlantic Chronozone.","publication_name":"Quaternary Science Reviews","grobid_abstract_attachment_id":51300471},"translated_abstract":null,"internal_url":"https://www.academia.edu/30874031/Holocene_glacial_and_climate_history_of_the_Jostedalsbreen_region_Western_Norway_evidence_from_lake_sediments_and_terrestrial_deposits","translated_internal_url":"","created_at":"2017-01-11T05:01:28.434-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":51300471,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300471/thumbnails/1.jpg","file_name":"Holocene_glacial_and_climate_history_of_20170111-6810-17x38bn.pdf","download_url":"https://www.academia.edu/attachments/51300471/download_file","bulk_download_file_name":"Holocene_glacial_and_climate_history_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300471/Holocene_glacial_and_climate_history_of_20170111-6810-17x38bn-libre.pdf?1484140105=\u0026response-content-disposition=attachment%3B+filename%3DHolocene_glacial_and_climate_history_of.pdf\u0026Expires=1743853387\u0026Signature=e~A880Cqd9dWh9ngMN4ejUu3NLTix3eSHTWo0QKZSIPjcz0kD~noUM-nYL9F9e0bwqU0MArZE39b86Ev-FLsty4ON8r5Ugwu4XhamHbQvfC8RdkbSyPxmR8pk-tsIavYctxNwX2r32MUfFO4rNz1Hhz3eeLSFwRvCN4XWjxy7Rm-d-ebMUg-foAv0cQgHceN~iBNngEOrOoWr4CnIFrPSU35BrbmJcrENFE5iw83zsQ1~UZ8c-g4B0aVToRI-Djku01wC13TmFX-nYqGYfMQQ-d1t6Cg2Tc60cGXTvpgpHHnGNBj67PRzw97qae-TI0nHtZbt7DJtScV0JxVVDdNnw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Holocene_glacial_and_climate_history_of_the_Jostedalsbreen_region_Western_Norway_evidence_from_lake_sediments_and_terrestrial_deposits","translated_slug":"","page_count":29,"language":"en","content_type":"Work","summary":"The valleys surroundingthe Jostedalsbreen ice cap were deglaciated during the latter half of the Preboreal Chronozone. At the end of the Preboreal Chronozone, however, a glacier readvance occurred. Terminal moraines were deposited by outlet valley glaciers from the Jostedalsbreen Plateau up to 1 km beyond Little Ice A~ge moraines. Inferred from the altitude of lateral moraines formed during this readvance and calculations of the equilibrium-line altitude (ELA) depression based on an accumulation area ratio (AAR) of 0.6, the average depression of the ELA was 325 +75/-115 m below the present. By assuming a similar precipitation pattern as at present, this suggests a mean temperature decline of about 2°C. Palynological investigations from Sygneskardet, Sunndalen, indicate that climate like the present was achieved just after 9000 BP. The Holocene climatic optimum occurred during the Atlantic Chronozone, with elm (Ulmus) stands growing at the present birch (Betula) forest limit in Sunndalen and pine (Pinus) growing at Styggevatnet to an altitude of at least 1160 m. Durin[g this period the mean summer temperature is estimated to have been at least 2.7 and 1.8°C warmer than at present, with and wtthout the local climatic effect of Jostedalsbreen, respectively. An inferred rise of the ELA of about 400 m from the present altitude suggests that possibly no glaciers existed on the Jostedalsbreen Plateau during the Holocene climatic optimum. Vegetational chan~es as deduced from palynological studies, lowered tree limits and increased resedimentation in peat bogs indicate general climatic deterioration since the Late Atlantic Chronozone.","impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[{"id":51300471,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300471/thumbnails/1.jpg","file_name":"Holocene_glacial_and_climate_history_of_20170111-6810-17x38bn.pdf","download_url":"https://www.academia.edu/attachments/51300471/download_file","bulk_download_file_name":"Holocene_glacial_and_climate_history_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300471/Holocene_glacial_and_climate_history_of_20170111-6810-17x38bn-libre.pdf?1484140105=\u0026response-content-disposition=attachment%3B+filename%3DHolocene_glacial_and_climate_history_of.pdf\u0026Expires=1743853387\u0026Signature=e~A880Cqd9dWh9ngMN4ejUu3NLTix3eSHTWo0QKZSIPjcz0kD~noUM-nYL9F9e0bwqU0MArZE39b86Ev-FLsty4ON8r5Ugwu4XhamHbQvfC8RdkbSyPxmR8pk-tsIavYctxNwX2r32MUfFO4rNz1Hhz3eeLSFwRvCN4XWjxy7Rm-d-ebMUg-foAv0cQgHceN~iBNngEOrOoWr4CnIFrPSU35BrbmJcrENFE5iw83zsQ1~UZ8c-g4B0aVToRI-Djku01wC13TmFX-nYqGYfMQQ-d1t6Cg2Tc60cGXTvpgpHHnGNBj67PRzw97qae-TI0nHtZbt7DJtScV0JxVVDdNnw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":93755,"name":"History and archaeology","url":"https://www.academia.edu/Documents/in/History_and_archaeology"},{"id":373417,"name":"Quaternary Science Reviews","url":"https://www.academia.edu/Documents/in/Quaternary_Science_Reviews"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874031-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874030"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30874030/Block_fields_in_southern_Norway_Significance_for_the_Late_Weichselian_ice_sheet"><img alt="Research paper thumbnail of Block fields in southern Norway: Significance for the Late Weichselian ice sheet" class="work-thumbnail" src="https://attachments.academia-assets.com/51300463/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30874030/Block_fields_in_southern_Norway_Significance_for_the_Late_Weichselian_ice_sheet">Block fields in southern Norway: Significance for the Late Weichselian ice sheet</a></div><div class="wp-workCard_item"><span>Norsk Geologisk Tidsskrift</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="31da85869277b584afe7ac3756a2fc80" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:51300463,&quot;asset_id&quot;:30874030,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/51300463/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874030"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874030"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874030; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874030]").text(description); $(".js-view-count[data-work-id=30874030]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874030; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874030']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "31da85869277b584afe7ac3756a2fc80" } } $('.js-work-strip[data-work-id=30874030]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874030,"title":"Block fields in southern Norway: Significance for the Late Weichselian ice sheet","translated_title":"","metadata":{"ai_abstract":"The geographical and altitudinal distribution of block fields in southern Norway is analyzed in the context of the Late Weichselian ice sheet's vertical extent. A new model is proposed, suggesting a low-gradient, polycentred ice sheet during maximum glaciation, with significant implications for understanding deglaciation patterns in the region.","publication_name":"Norsk Geologisk Tidsskrift"},"translated_abstract":null,"internal_url":"https://www.academia.edu/30874030/Block_fields_in_southern_Norway_Significance_for_the_Late_Weichselian_ice_sheet","translated_internal_url":"","created_at":"2017-01-11T05:01:27.946-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":51300463,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300463/thumbnails/1.jpg","file_name":"Block_fields_in_southern_Norway_Signific20170111-6810-1nyqhkh.pdf","download_url":"https://www.academia.edu/attachments/51300463/download_file","bulk_download_file_name":"Block_fields_in_southern_Norway_Signific.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300463/Block_fields_in_southern_Norway_Signific20170111-6810-1nyqhkh-libre.pdf?1484140120=\u0026response-content-disposition=attachment%3B+filename%3DBlock_fields_in_southern_Norway_Signific.pdf\u0026Expires=1743853387\u0026Signature=TzFniB14F8MYBMifU2k0qVCFunFisJSiunp9ZwccSb7YrrLXvWoFBqDj53sCdJJa6QqY-GiHU-LAkP5hsVejYrnvE~wNErnXomPzxvbAOsYoFzhEEG5f8eP~zjFrW1icSozjz~kEAAlAPHGzi~DqWXgUjyz2LJ1oM9GhNN-zQFMQQeXq3k4ePuGF5zdwp5jdqrom1xs7qfE-TgiK6H2EmQiWh5pje65yJANVwX0jCX~44lvHXC7pvE1DDHUBfXvshJloNGWje4c~x0P94rv6AMbML0pm2Hq75J4UKEOVVDC38a1t44CfAWiDgKZ84Z0Us3~jKd5nCVCrDDwANU0WyQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Block_fields_in_southern_Norway_Significance_for_the_Late_Weichselian_ice_sheet","translated_slug":"","page_count":22,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[{"id":51300463,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300463/thumbnails/1.jpg","file_name":"Block_fields_in_southern_Norway_Signific20170111-6810-1nyqhkh.pdf","download_url":"https://www.academia.edu/attachments/51300463/download_file","bulk_download_file_name":"Block_fields_in_southern_Norway_Signific.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300463/Block_fields_in_southern_Norway_Signific20170111-6810-1nyqhkh-libre.pdf?1484140120=\u0026response-content-disposition=attachment%3B+filename%3DBlock_fields_in_southern_Norway_Signific.pdf\u0026Expires=1743853387\u0026Signature=TzFniB14F8MYBMifU2k0qVCFunFisJSiunp9ZwccSb7YrrLXvWoFBqDj53sCdJJa6QqY-GiHU-LAkP5hsVejYrnvE~wNErnXomPzxvbAOsYoFzhEEG5f8eP~zjFrW1icSozjz~kEAAlAPHGzi~DqWXgUjyz2LJ1oM9GhNN-zQFMQQeXq3k4ePuGF5zdwp5jdqrom1xs7qfE-TgiK6H2EmQiWh5pje65yJANVwX0jCX~44lvHXC7pvE1DDHUBfXvshJloNGWje4c~x0P94rv6AMbML0pm2Hq75J4UKEOVVDC38a1t44CfAWiDgKZ84Z0Us3~jKd5nCVCrDDwANU0WyQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874030-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874029"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30874029/Glaciers_as_Indicators_of_Holocene_Climate_Change"><img alt="Research paper thumbnail of Glaciers as Indicators of Holocene Climate Change" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Glaciers as Indicators of Holocene Climate Change</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874029"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874029"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874029; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874029]").text(description); $(".js-view-count[data-work-id=30874029]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874029; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874029']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30874029]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874029,"title":"Glaciers as Indicators of Holocene Climate Change","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/30874029/Glaciers_as_Indicators_of_Holocene_Climate_Change","translated_internal_url":"","created_at":"2017-01-11T05:01:27.514-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Glaciers_as_Indicators_of_Holocene_Climate_Change","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874029-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874028"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30874028/The_Expression_of_the_8_2_ka_and_Younger_Dryas_Events_in_the_Eastern_Canadian_Arctic"><img alt="Research paper thumbnail of The Expression of the 8.2 ka and Younger Dryas Events in the Eastern Canadian Arctic" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">The Expression of the 8.2 ka and Younger Dryas Events in the Eastern Canadian Arctic</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The two largest climate coolings following the end of the last glaciation are the Younger Dryas a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The two largest climate coolings following the end of the last glaciation are the Younger Dryas and the 8.2 ka events. Evidence for these cold excursions is widespread around the North Atlantic and in more distant regions. Both events are well expressed in Greenland ice cores; glacier readvances occurred across much of NW Europe during the Younger Dryas and cold surface waters returned to the North Atlantic, with depressed summer temperatures in eastern North America. The 8.2 ka event has a similar pattern, but the magnitude is substantially lower, with a much shorter duration. However, surprisingly little evidence has been presented for either event from the North Atlantic Arctic. Recently acquired lake sediment records from the Eastern Canadian Arctic contain evidence for both excursions. The 8.2 ka event is recorded at two sites as a significant glacier readvance of cirque and outlet glaciers of local ice caps at 8.2±0.1 ka. In some non-glacially-dominated lakes, a reduction in primary productivity is apparent at the same time. These records suggest colder summers without a dramatic reduction in precipitation, producing positive mass balances and glacier readvances. For most local glaciers, this was the last significant readvance before they receded behind their Little Ice Age margins. Only a few lakes contain records that extend through the Younger Dryas chron. The best-dated lake record, Donard Lake, extends back to 15 ka. Lacustrine sedimentation is currently dominated by a meltwater from an outlet glacier that terminates a few hundred meters from the lake. The glacier has been within the drainage basin of the lake for the past 5.5 ka, although the contribution of glacial sediment has been larger since about 2.5 ka. Prior to 5.5 ka, there is no evidence of a glacier in the catchment of Donard Lake, suggesting that throughout the entire Neoglacial period, the local glacier has been more advanced than at any time since 15 ka. During the Younger Dryas chron, lacustrine primary productivity was greatly reduced, whether measured as the flux of organic carbon to the lake floor or as the percentage of organic matter in lake sediment. We interpret this change to reflect a substantial reduction in summer temperatures for more than 1 ka. However, this temperature drop was not accompanied by a significant glacier readvance, suggesting precipitation must have been very low. This differs from the 8.2 ka event when precipitation must have remained relatively high. These records indicate that in the Eastern Canadian Arctic, summers during the Younger Dryas were much colder than present, but precipitation was dramatically lower too, so glaciers did not advance, whereas during the briefer, and less severe summer cooling associated with the 8.2 ka event, precipitation was not dramatically reduced and glaciers readvanced.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874028"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874028"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874028; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874028]").text(description); $(".js-view-count[data-work-id=30874028]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874028; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874028']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30874028]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874028,"title":"The Expression of the 8.2 ka and Younger Dryas Events in the Eastern Canadian Arctic","translated_title":"","metadata":{"abstract":"The two largest climate coolings following the end of the last glaciation are the Younger Dryas and the 8.2 ka events. Evidence for these cold excursions is widespread around the North Atlantic and in more distant regions. Both events are well expressed in Greenland ice cores; glacier readvances occurred across much of NW Europe during the Younger Dryas and cold surface waters returned to the North Atlantic, with depressed summer temperatures in eastern North America. The 8.2 ka event has a similar pattern, but the magnitude is substantially lower, with a much shorter duration. However, surprisingly little evidence has been presented for either event from the North Atlantic Arctic. Recently acquired lake sediment records from the Eastern Canadian Arctic contain evidence for both excursions. The 8.2 ka event is recorded at two sites as a significant glacier readvance of cirque and outlet glaciers of local ice caps at 8.2±0.1 ka. In some non-glacially-dominated lakes, a reduction in primary productivity is apparent at the same time. These records suggest colder summers without a dramatic reduction in precipitation, producing positive mass balances and glacier readvances. For most local glaciers, this was the last significant readvance before they receded behind their Little Ice Age margins. Only a few lakes contain records that extend through the Younger Dryas chron. The best-dated lake record, Donard Lake, extends back to 15 ka. Lacustrine sedimentation is currently dominated by a meltwater from an outlet glacier that terminates a few hundred meters from the lake. The glacier has been within the drainage basin of the lake for the past 5.5 ka, although the contribution of glacial sediment has been larger since about 2.5 ka. Prior to 5.5 ka, there is no evidence of a glacier in the catchment of Donard Lake, suggesting that throughout the entire Neoglacial period, the local glacier has been more advanced than at any time since 15 ka. During the Younger Dryas chron, lacustrine primary productivity was greatly reduced, whether measured as the flux of organic carbon to the lake floor or as the percentage of organic matter in lake sediment. We interpret this change to reflect a substantial reduction in summer temperatures for more than 1 ka. However, this temperature drop was not accompanied by a significant glacier readvance, suggesting precipitation must have been very low. This differs from the 8.2 ka event when precipitation must have remained relatively high. These records indicate that in the Eastern Canadian Arctic, summers during the Younger Dryas were much colder than present, but precipitation was dramatically lower too, so glaciers did not advance, whereas during the briefer, and less severe summer cooling associated with the 8.2 ka event, precipitation was not dramatically reduced and glaciers readvanced."},"translated_abstract":"The two largest climate coolings following the end of the last glaciation are the Younger Dryas and the 8.2 ka events. Evidence for these cold excursions is widespread around the North Atlantic and in more distant regions. Both events are well expressed in Greenland ice cores; glacier readvances occurred across much of NW Europe during the Younger Dryas and cold surface waters returned to the North Atlantic, with depressed summer temperatures in eastern North America. The 8.2 ka event has a similar pattern, but the magnitude is substantially lower, with a much shorter duration. However, surprisingly little evidence has been presented for either event from the North Atlantic Arctic. Recently acquired lake sediment records from the Eastern Canadian Arctic contain evidence for both excursions. The 8.2 ka event is recorded at two sites as a significant glacier readvance of cirque and outlet glaciers of local ice caps at 8.2±0.1 ka. In some non-glacially-dominated lakes, a reduction in primary productivity is apparent at the same time. These records suggest colder summers without a dramatic reduction in precipitation, producing positive mass balances and glacier readvances. For most local glaciers, this was the last significant readvance before they receded behind their Little Ice Age margins. Only a few lakes contain records that extend through the Younger Dryas chron. The best-dated lake record, Donard Lake, extends back to 15 ka. Lacustrine sedimentation is currently dominated by a meltwater from an outlet glacier that terminates a few hundred meters from the lake. The glacier has been within the drainage basin of the lake for the past 5.5 ka, although the contribution of glacial sediment has been larger since about 2.5 ka. Prior to 5.5 ka, there is no evidence of a glacier in the catchment of Donard Lake, suggesting that throughout the entire Neoglacial period, the local glacier has been more advanced than at any time since 15 ka. During the Younger Dryas chron, lacustrine primary productivity was greatly reduced, whether measured as the flux of organic carbon to the lake floor or as the percentage of organic matter in lake sediment. We interpret this change to reflect a substantial reduction in summer temperatures for more than 1 ka. However, this temperature drop was not accompanied by a significant glacier readvance, suggesting precipitation must have been very low. This differs from the 8.2 ka event when precipitation must have remained relatively high. These records indicate that in the Eastern Canadian Arctic, summers during the Younger Dryas were much colder than present, but precipitation was dramatically lower too, so glaciers did not advance, whereas during the briefer, and less severe summer cooling associated with the 8.2 ka event, precipitation was not dramatically reduced and glaciers readvanced.","internal_url":"https://www.academia.edu/30874028/The_Expression_of_the_8_2_ka_and_Younger_Dryas_Events_in_the_Eastern_Canadian_Arctic","translated_internal_url":"","created_at":"2017-01-11T05:01:27.009-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Expression_of_the_8_2_ka_and_Younger_Dryas_Events_in_the_Eastern_Canadian_Arctic","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The two largest climate coolings following the end of the last glaciation are the Younger Dryas and the 8.2 ka events. Evidence for these cold excursions is widespread around the North Atlantic and in more distant regions. Both events are well expressed in Greenland ice cores; glacier readvances occurred across much of NW Europe during the Younger Dryas and cold surface waters returned to the North Atlantic, with depressed summer temperatures in eastern North America. The 8.2 ka event has a similar pattern, but the magnitude is substantially lower, with a much shorter duration. However, surprisingly little evidence has been presented for either event from the North Atlantic Arctic. Recently acquired lake sediment records from the Eastern Canadian Arctic contain evidence for both excursions. The 8.2 ka event is recorded at two sites as a significant glacier readvance of cirque and outlet glaciers of local ice caps at 8.2±0.1 ka. In some non-glacially-dominated lakes, a reduction in primary productivity is apparent at the same time. These records suggest colder summers without a dramatic reduction in precipitation, producing positive mass balances and glacier readvances. For most local glaciers, this was the last significant readvance before they receded behind their Little Ice Age margins. Only a few lakes contain records that extend through the Younger Dryas chron. The best-dated lake record, Donard Lake, extends back to 15 ka. Lacustrine sedimentation is currently dominated by a meltwater from an outlet glacier that terminates a few hundred meters from the lake. The glacier has been within the drainage basin of the lake for the past 5.5 ka, although the contribution of glacial sediment has been larger since about 2.5 ka. Prior to 5.5 ka, there is no evidence of a glacier in the catchment of Donard Lake, suggesting that throughout the entire Neoglacial period, the local glacier has been more advanced than at any time since 15 ka. During the Younger Dryas chron, lacustrine primary productivity was greatly reduced, whether measured as the flux of organic carbon to the lake floor or as the percentage of organic matter in lake sediment. We interpret this change to reflect a substantial reduction in summer temperatures for more than 1 ka. However, this temperature drop was not accompanied by a significant glacier readvance, suggesting precipitation must have been very low. This differs from the 8.2 ka event when precipitation must have remained relatively high. These records indicate that in the Eastern Canadian Arctic, summers during the Younger Dryas were much colder than present, but precipitation was dramatically lower too, so glaciers did not advance, whereas during the briefer, and less severe summer cooling associated with the 8.2 ka event, precipitation was not dramatically reduced and glaciers readvanced.","impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[],"research_interests":[{"id":42073,"name":"North Eastern North America Archaeology","url":"https://www.academia.edu/Documents/in/North_Eastern_North_America_Archaeology"},{"id":82675,"name":"North Atlantic","url":"https://www.academia.edu/Documents/in/North_Atlantic"},{"id":142810,"name":"Surface Water","url":"https://www.academia.edu/Documents/in/Surface_Water"},{"id":152776,"name":"Younger Dryas","url":"https://www.academia.edu/Documents/in/Younger_Dryas"},{"id":182364,"name":"Little Ice Age","url":"https://www.academia.edu/Documents/in/Little_Ice_Age"},{"id":198868,"name":"Ice Cores","url":"https://www.academia.edu/Documents/in/Ice_Cores"},{"id":289852,"name":"Primary Production","url":"https://www.academia.edu/Documents/in/Primary_Production"},{"id":585192,"name":"Organic carbon","url":"https://www.academia.edu/Documents/in/Organic_carbon"},{"id":970387,"name":"Organic Matter","url":"https://www.academia.edu/Documents/in/Organic_Matter"},{"id":1707373,"name":"Mass Balance","url":"https://www.academia.edu/Documents/in/Mass_Balance"},{"id":2196834,"name":"Canadian Arctic","url":"https://www.academia.edu/Documents/in/Canadian_Arctic"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874028-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874027"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30874027/Holocene_Changes_in_Atmospherical_Circulation_in_the_North_Atlantic_Region_Evidences_for_Millennial_Scale_coVariability_Between_Ocean_and_Atmosphere_Circulation"><img alt="Research paper thumbnail of Holocene Changes in Atmospherical Circulation in the North Atlantic Region - Evidences for Millennial-Scale coVariability Between Ocean and Atmosphere Circulation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Holocene Changes in Atmospherical Circulation in the North Atlantic Region - Evidences for Millennial-Scale coVariability Between Ocean and Atmosphere Circulation</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Whereas a number of records from the marine realm have demonstrated Holocene changes regarded to ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Whereas a number of records from the marine realm have demonstrated Holocene changes regarded to be related to overturning circulation in the North Atlantic region, independent information of atmospherical variability from the terrestrial realm have proven more elusive to capture in palaeo-records. This is a major concern, as several studies have suggested that atmospherical forcing may be an important factor</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874027"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874027"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874027; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874027]").text(description); $(".js-view-count[data-work-id=30874027]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874027; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874027']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30874027]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874027,"title":"Holocene Changes in Atmospherical Circulation in the North Atlantic Region - Evidences for Millennial-Scale coVariability Between Ocean and Atmosphere Circulation","translated_title":"","metadata":{"abstract":"Whereas a number of records from the marine realm have demonstrated Holocene changes regarded to be related to overturning circulation in the North Atlantic region, independent information of atmospherical variability from the terrestrial realm have proven more elusive to capture in palaeo-records. This is a major concern, as several studies have suggested that atmospherical forcing may be an important factor"},"translated_abstract":"Whereas a number of records from the marine realm have demonstrated Holocene changes regarded to be related to overturning circulation in the North Atlantic region, independent information of atmospherical variability from the terrestrial realm have proven more elusive to capture in palaeo-records. This is a major concern, as several studies have suggested that atmospherical forcing may be an important factor","internal_url":"https://www.academia.edu/30874027/Holocene_Changes_in_Atmospherical_Circulation_in_the_North_Atlantic_Region_Evidences_for_Millennial_Scale_coVariability_Between_Ocean_and_Atmosphere_Circulation","translated_internal_url":"","created_at":"2017-01-11T05:01:26.529-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Holocene_Changes_in_Atmospherical_Circulation_in_the_North_Atlantic_Region_Evidences_for_Millennial_Scale_coVariability_Between_Ocean_and_Atmosphere_Circulation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Whereas a number of records from the marine realm have demonstrated Holocene changes regarded to be related to overturning circulation in the North Atlantic region, independent information of atmospherical variability from the terrestrial realm have proven more elusive to capture in palaeo-records. This is a major concern, as several studies have suggested that atmospherical forcing may be an important factor","impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[],"research_interests":[{"id":30441,"name":"North Atlantic Ocean","url":"https://www.academia.edu/Documents/in/North_Atlantic_Ocean"},{"id":44265,"name":"North Atlantic Oscillation","url":"https://www.academia.edu/Documents/in/North_Atlantic_Oscillation"},{"id":62729,"name":"Air flow","url":"https://www.academia.edu/Documents/in/Air_flow"},{"id":82675,"name":"North Atlantic","url":"https://www.academia.edu/Documents/in/North_Atlantic"},{"id":113239,"name":"Ocean Circulation","url":"https://www.academia.edu/Documents/in/Ocean_Circulation"},{"id":150013,"name":"Late Holocene","url":"https://www.academia.edu/Documents/in/Late_Holocene"},{"id":236377,"name":"Spatial Distribution","url":"https://www.academia.edu/Documents/in/Spatial_Distribution"},{"id":303826,"name":"Atmospheric Circulation","url":"https://www.academia.edu/Documents/in/Atmospheric_Circulation"},{"id":314103,"name":"Inverse Modeling","url":"https://www.academia.edu/Documents/in/Inverse_Modeling"},{"id":2516014,"name":"temporal variation","url":"https://www.academia.edu/Documents/in/temporal_variation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874027-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874026"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30874026/Holocene_glacial_and_colluvial_activity_in_Leirungsdalen_eastern_Jotunheimen_south_central_Norway"><img alt="Research paper thumbnail of Holocene glacial and colluvial activity in Leirungsdalen, eastern Jotunheimen, south-central Norway" class="work-thumbnail" src="https://attachments.academia-assets.com/51300462/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30874026/Holocene_glacial_and_colluvial_activity_in_Leirungsdalen_eastern_Jotunheimen_south_central_Norway">Holocene glacial and colluvial activity in Leirungsdalen, eastern Jotunheimen, south-central Norway</a></div><div class="wp-workCard_item"><span>Norsk Geologisk Tidsskrift</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Two terrestrial sections have been studied in order to reconstruct the Holocene glacial and collu...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Two terrestrial sections have been studied in order to reconstruct the Holocene glacial and colluvial history in Leirungsdalen, eastern Jotunheimen. The interpretation of individual sedimentary units is based on the grain-size distribution and compared with modern analogue samples collected in the respective streams and at sites close to the present glaciers. Stages of enhanced debris flow or glacial activity are recognized as sand and silt layers, respectively, while periods of low colluvial and glacial activity in the catchment are characterised by continuous peat accumulation. Age/depth curves based on radiocarbon dates from the Svarthammarbu and Steinflybekken sections indicate debris flow activity &amp;gt; 7500, 7300-6800,6600-5500, 5800, 5700, 5300-4900,4700, 4500,4300, 2300, 2100-1500, 1300, 700-600 and 500-400 cal. yr BP. The first Holocene glacial signal is detected ca. 5300 cal. yr BP. The frequency of glacial events seems to have increased during the Late Holocene, especially...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d5b96cb3db7fcf5a11208098f5d18905" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:51300462,&quot;asset_id&quot;:30874026,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/51300462/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874026"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874026"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874026; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874026]").text(description); $(".js-view-count[data-work-id=30874026]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874026; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874026']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d5b96cb3db7fcf5a11208098f5d18905" } } $('.js-work-strip[data-work-id=30874026]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874026,"title":"Holocene glacial and colluvial activity in Leirungsdalen, eastern Jotunheimen, south-central Norway","translated_title":"","metadata":{"abstract":"Two terrestrial sections have been studied in order to reconstruct the Holocene glacial and colluvial history in Leirungsdalen, eastern Jotunheimen. The interpretation of individual sedimentary units is based on the grain-size distribution and compared with modern analogue samples collected in the respective streams and at sites close to the present glaciers. Stages of enhanced debris flow or glacial activity are recognized as sand and silt layers, respectively, while periods of low colluvial and glacial activity in the catchment are characterised by continuous peat accumulation. Age/depth curves based on radiocarbon dates from the Svarthammarbu and Steinflybekken sections indicate debris flow activity \u0026gt; 7500, 7300-6800,6600-5500, 5800, 5700, 5300-4900,4700, 4500,4300, 2300, 2100-1500, 1300, 700-600 and 500-400 cal. yr BP. The first Holocene glacial signal is detected ca. 5300 cal. yr BP. The frequency of glacial events seems to have increased during the Late Holocene, especially...","ai_title_tag":"Holocene Glacial History in Leirungsdalen","publication_name":"Norsk Geologisk Tidsskrift"},"translated_abstract":"Two terrestrial sections have been studied in order to reconstruct the Holocene glacial and colluvial history in Leirungsdalen, eastern Jotunheimen. The interpretation of individual sedimentary units is based on the grain-size distribution and compared with modern analogue samples collected in the respective streams and at sites close to the present glaciers. Stages of enhanced debris flow or glacial activity are recognized as sand and silt layers, respectively, while periods of low colluvial and glacial activity in the catchment are characterised by continuous peat accumulation. Age/depth curves based on radiocarbon dates from the Svarthammarbu and Steinflybekken sections indicate debris flow activity \u0026gt; 7500, 7300-6800,6600-5500, 5800, 5700, 5300-4900,4700, 4500,4300, 2300, 2100-1500, 1300, 700-600 and 500-400 cal. yr BP. The first Holocene glacial signal is detected ca. 5300 cal. yr BP. The frequency of glacial events seems to have increased during the Late Holocene, especially...","internal_url":"https://www.academia.edu/30874026/Holocene_glacial_and_colluvial_activity_in_Leirungsdalen_eastern_Jotunheimen_south_central_Norway","translated_internal_url":"","created_at":"2017-01-11T05:01:25.989-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":51300462,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300462/thumbnails/1.jpg","file_name":"Holocene_glacial_and_colluvial_activity_20170111-6813-108sp5p.pdf","download_url":"https://www.academia.edu/attachments/51300462/download_file","bulk_download_file_name":"Holocene_glacial_and_colluvial_activity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300462/Holocene_glacial_and_colluvial_activity_20170111-6813-108sp5p-libre.pdf?1484140117=\u0026response-content-disposition=attachment%3B+filename%3DHolocene_glacial_and_colluvial_activity.pdf\u0026Expires=1743853388\u0026Signature=ACiLdVjfr7Z-1rfBC73--WuzRNY9pxqZB8hP~26HdzOHaCmb50qQ0nvE2qnjKndSphELvR5PSs5CvIdETPznrIjA1QqomHHHb9Gu7KxeEBufG1paWAfarK9m0d0cbOwzddAt6~pvwHr5Wp3Cw-Q8AeaVt22CzV4096doLanlcZBUYUVVOulRf4kFlH~rEyfCra~ZykmhAtdWXBGM9XP1egxEQUrigHXyPEoi6CNnaO9J-6UwWZLMYiIDF5GLreA9yZW9OBWswBSrTDzg5-Retsh~HBCON0yOj9fqz3QbU4OA9ITt1SoDmwtgV1xHwfu2a6LAwogyVtduvtUif~GHuA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Holocene_glacial_and_colluvial_activity_in_Leirungsdalen_eastern_Jotunheimen_south_central_Norway","translated_slug":"","page_count":17,"language":"en","content_type":"Work","summary":"Two terrestrial sections have been studied in order to reconstruct the Holocene glacial and colluvial history in Leirungsdalen, eastern Jotunheimen. The interpretation of individual sedimentary units is based on the grain-size distribution and compared with modern analogue samples collected in the respective streams and at sites close to the present glaciers. Stages of enhanced debris flow or glacial activity are recognized as sand and silt layers, respectively, while periods of low colluvial and glacial activity in the catchment are characterised by continuous peat accumulation. Age/depth curves based on radiocarbon dates from the Svarthammarbu and Steinflybekken sections indicate debris flow activity \u0026gt; 7500, 7300-6800,6600-5500, 5800, 5700, 5300-4900,4700, 4500,4300, 2300, 2100-1500, 1300, 700-600 and 500-400 cal. yr BP. The first Holocene glacial signal is detected ca. 5300 cal. yr BP. The frequency of glacial events seems to have increased during the Late Holocene, especially...","impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[{"id":51300462,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300462/thumbnails/1.jpg","file_name":"Holocene_glacial_and_colluvial_activity_20170111-6813-108sp5p.pdf","download_url":"https://www.academia.edu/attachments/51300462/download_file","bulk_download_file_name":"Holocene_glacial_and_colluvial_activity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300462/Holocene_glacial_and_colluvial_activity_20170111-6813-108sp5p-libre.pdf?1484140117=\u0026response-content-disposition=attachment%3B+filename%3DHolocene_glacial_and_colluvial_activity.pdf\u0026Expires=1743853388\u0026Signature=ACiLdVjfr7Z-1rfBC73--WuzRNY9pxqZB8hP~26HdzOHaCmb50qQ0nvE2qnjKndSphELvR5PSs5CvIdETPznrIjA1QqomHHHb9Gu7KxeEBufG1paWAfarK9m0d0cbOwzddAt6~pvwHr5Wp3Cw-Q8AeaVt22CzV4096doLanlcZBUYUVVOulRf4kFlH~rEyfCra~ZykmhAtdWXBGM9XP1egxEQUrigHXyPEoi6CNnaO9J-6UwWZLMYiIDF5GLreA9yZW9OBWswBSrTDzg5-Retsh~HBCON0yOj9fqz3QbU4OA9ITt1SoDmwtgV1xHwfu2a6LAwogyVtduvtUif~GHuA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874026-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874025"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/30874025/Time_Series_at_Decadal_Resolution_Show_Tropical_Influence_on_Climate_Variability_in_The_Eastern_Nordic_Seas_Over_the_Past_2_Millenia"><img alt="Research paper thumbnail of Time Series at Decadal Resolution Show Tropical Influence on Climate Variability in The Eastern Nordic Seas Over the Past 2 Millenia" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Time Series at Decadal Resolution Show Tropical Influence on Climate Variability in The Eastern Nordic Seas Over the Past 2 Millenia</div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Multi-proxy paleoclimatic time series have been developed from IMAGES Sites and adjacent suppleme...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Multi-proxy paleoclimatic time series have been developed from IMAGES Sites and adjacent supplementary cores in the Eastern Norwegian Sea. The records cover the last 2000 years at decadal resolution, allowing for a detailed reconstruction of the surface hydrography of the main path of the northern limb of the north Atlantic circulation cell. Centennial to millennial scale events are recorded, such as the &amp;quot;Medieval Warm Phase&amp;quot; (MWP) and the &amp;quot;Little Ice Age&amp;quot; (LIA), which constitute the main long term century scale features. Superimposed on these are multidecadal variability of somewhat less amplitude. There is a close correspondance with continental records reflecting summer temperaure and winter precipitation in western Scandinavia over this period.SST changes are found to be in the range of 1-2 degrees. Significant land-sea correlation is observed. A cold phase in the early 20th Century, a series of cold phases in the LIA and two warm phases in the MWP are observ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874025"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874025"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874025; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874025]").text(description); $(".js-view-count[data-work-id=30874025]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874025; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874025']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=30874025]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874025,"title":"Time Series at Decadal Resolution Show Tropical Influence on Climate Variability in The Eastern Nordic Seas Over the Past 2 Millenia","translated_title":"","metadata":{"abstract":"Multi-proxy paleoclimatic time series have been developed from IMAGES Sites and adjacent supplementary cores in the Eastern Norwegian Sea. The records cover the last 2000 years at decadal resolution, allowing for a detailed reconstruction of the surface hydrography of the main path of the northern limb of the north Atlantic circulation cell. Centennial to millennial scale events are recorded, such as the \u0026quot;Medieval Warm Phase\u0026quot; (MWP) and the \u0026quot;Little Ice Age\u0026quot; (LIA), which constitute the main long term century scale features. Superimposed on these are multidecadal variability of somewhat less amplitude. There is a close correspondance with continental records reflecting summer temperaure and winter precipitation in western Scandinavia over this period.SST changes are found to be in the range of 1-2 degrees. Significant land-sea correlation is observed. A cold phase in the early 20th Century, a series of cold phases in the LIA and two warm phases in the MWP are observ..."},"translated_abstract":"Multi-proxy paleoclimatic time series have been developed from IMAGES Sites and adjacent supplementary cores in the Eastern Norwegian Sea. The records cover the last 2000 years at decadal resolution, allowing for a detailed reconstruction of the surface hydrography of the main path of the northern limb of the north Atlantic circulation cell. Centennial to millennial scale events are recorded, such as the \u0026quot;Medieval Warm Phase\u0026quot; (MWP) and the \u0026quot;Little Ice Age\u0026quot; (LIA), which constitute the main long term century scale features. Superimposed on these are multidecadal variability of somewhat less amplitude. There is a close correspondance with continental records reflecting summer temperaure and winter precipitation in western Scandinavia over this period.SST changes are found to be in the range of 1-2 degrees. Significant land-sea correlation is observed. A cold phase in the early 20th Century, a series of cold phases in the LIA and two warm phases in the MWP are observ...","internal_url":"https://www.academia.edu/30874025/Time_Series_at_Decadal_Resolution_Show_Tropical_Influence_on_Climate_Variability_in_The_Eastern_Nordic_Seas_Over_the_Past_2_Millenia","translated_internal_url":"","created_at":"2017-01-11T05:01:25.461-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Time_Series_at_Decadal_Resolution_Show_Tropical_Influence_on_Climate_Variability_in_The_Eastern_Nordic_Seas_Over_the_Past_2_Millenia","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Multi-proxy paleoclimatic time series have been developed from IMAGES Sites and adjacent supplementary cores in the Eastern Norwegian Sea. The records cover the last 2000 years at decadal resolution, allowing for a detailed reconstruction of the surface hydrography of the main path of the northern limb of the north Atlantic circulation cell. Centennial to millennial scale events are recorded, such as the \u0026quot;Medieval Warm Phase\u0026quot; (MWP) and the \u0026quot;Little Ice Age\u0026quot; (LIA), which constitute the main long term century scale features. Superimposed on these are multidecadal variability of somewhat less amplitude. There is a close correspondance with continental records reflecting summer temperaure and winter precipitation in western Scandinavia over this period.SST changes are found to be in the range of 1-2 degrees. Significant land-sea correlation is observed. A cold phase in the early 20th Century, a series of cold phases in the LIA and two warm phases in the MWP are observ...","impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[],"research_interests":[{"id":4456,"name":"Time Series","url":"https://www.academia.edu/Documents/in/Time_Series"},{"id":4753,"name":"Climate variability","url":"https://www.academia.edu/Documents/in/Climate_variability"},{"id":82675,"name":"North Atlantic","url":"https://www.academia.edu/Documents/in/North_Atlantic"},{"id":182364,"name":"Little Ice Age","url":"https://www.academia.edu/Documents/in/Little_Ice_Age"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874025-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="30874024"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/30874024/Holocene_glacier_variations_in_central_Jotunheimen_southern_Norway_based_on_distal_glaciolacustrine_sediment_cores"><img alt="Research paper thumbnail of Holocene glacier variations in central Jotunheimen, southern Norway based on distal glaciolacustrine sediment cores" class="work-thumbnail" src="https://attachments.academia-assets.com/51300464/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/30874024/Holocene_glacier_variations_in_central_Jotunheimen_southern_Norway_based_on_distal_glaciolacustrine_sediment_cores">Holocene glacier variations in central Jotunheimen, southern Norway based on distal glaciolacustrine sediment cores</a></div><div class="wp-workCard_item"><span>Quaternary Science Reviews</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Sediment cores from two glacier-fed lakes are used to reconstruct a continuous record of glacier ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Sediment cores from two glacier-fed lakes are used to reconstruct a continuous record of glacier variations since about 10,000 cal. BP in the Smørstabbtinden massif of central Jotunheimen, southern Norway. Particular attention is paid to the century- to millennial-scale, pre-Little Ice Age glacial signal based on an estimated temporal resolution of ⩽55 and ⩽25 yr cm−1 for Bøvertunsvatnet and Dalsvatnet, respectively. Visible lithostratigraphic variations, organic content/loss-on-ignition, calcium carbonate content, magnetic susceptibility and grain-size fractions (especially the fine silt) are used as proxy indicators of glacier presence and extent in the lake catchments.Following deglaciation, the early Holocene was characterized by generally small glaciers until a major advance (the Finse Event) peaking at approximately 8200 cal. BP. From 7900 to at least 5300 cal. BP glaciers appear to have been absent from central Jotunheimen. There is evidence of glacier expansion between about...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="efbc5b648b0f6c8ae6bc85406a80c6c6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:51300464,&quot;asset_id&quot;:30874024,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/51300464/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="30874024"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="30874024"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30874024; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30874024]").text(description); $(".js-view-count[data-work-id=30874024]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30874024; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='30874024']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "efbc5b648b0f6c8ae6bc85406a80c6c6" } } $('.js-work-strip[data-work-id=30874024]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":30874024,"title":"Holocene glacier variations in central Jotunheimen, southern Norway based on distal glaciolacustrine sediment cores","translated_title":"","metadata":{"abstract":"Sediment cores from two glacier-fed lakes are used to reconstruct a continuous record of glacier variations since about 10,000 cal. BP in the Smørstabbtinden massif of central Jotunheimen, southern Norway. Particular attention is paid to the century- to millennial-scale, pre-Little Ice Age glacial signal based on an estimated temporal resolution of ⩽55 and ⩽25 yr cm−1 for Bøvertunsvatnet and Dalsvatnet, respectively. Visible lithostratigraphic variations, organic content/loss-on-ignition, calcium carbonate content, magnetic susceptibility and grain-size fractions (especially the fine silt) are used as proxy indicators of glacier presence and extent in the lake catchments.Following deglaciation, the early Holocene was characterized by generally small glaciers until a major advance (the Finse Event) peaking at approximately 8200 cal. BP. From 7900 to at least 5300 cal. BP glaciers appear to have been absent from central Jotunheimen. There is evidence of glacier expansion between about...","ai_title_tag":"Holocene Glacier Changes in Jotunheimen, Norway","publication_name":"Quaternary Science Reviews"},"translated_abstract":"Sediment cores from two glacier-fed lakes are used to reconstruct a continuous record of glacier variations since about 10,000 cal. BP in the Smørstabbtinden massif of central Jotunheimen, southern Norway. Particular attention is paid to the century- to millennial-scale, pre-Little Ice Age glacial signal based on an estimated temporal resolution of ⩽55 and ⩽25 yr cm−1 for Bøvertunsvatnet and Dalsvatnet, respectively. Visible lithostratigraphic variations, organic content/loss-on-ignition, calcium carbonate content, magnetic susceptibility and grain-size fractions (especially the fine silt) are used as proxy indicators of glacier presence and extent in the lake catchments.Following deglaciation, the early Holocene was characterized by generally small glaciers until a major advance (the Finse Event) peaking at approximately 8200 cal. BP. From 7900 to at least 5300 cal. BP glaciers appear to have been absent from central Jotunheimen. There is evidence of glacier expansion between about...","internal_url":"https://www.academia.edu/30874024/Holocene_glacier_variations_in_central_Jotunheimen_southern_Norway_based_on_distal_glaciolacustrine_sediment_cores","translated_internal_url":"","created_at":"2017-01-11T05:01:24.935-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33441460,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":51300464,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300464/thumbnails/1.jpg","file_name":"Holocene_glacier_variations_in_central_J20170111-6807-jkj07j.pdf","download_url":"https://www.academia.edu/attachments/51300464/download_file","bulk_download_file_name":"Holocene_glacier_variations_in_central_J.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300464/Holocene_glacier_variations_in_central_J20170111-6807-jkj07j-libre.pdf?1484140093=\u0026response-content-disposition=attachment%3B+filename%3DHolocene_glacier_variations_in_central_J.pdf\u0026Expires=1743853388\u0026Signature=V0Qcjj4sADzukWqvWwVpgU0HOOQpiEuOmJ~YrO4BF26SJ95YG0FjnzOrWJ8hx1LVWKlxncH0JxIdmi6~HXgajg2UIWxZEDxEkr8TLgOrwdV2vPihDvVPUF~2MM-DrMke8ipJqqKSLd8BJG39712LaMozts9JWSOLSHtEtYW6fBC8giU-~8I~kCwORItSHEzsGrbFEUYK5xzVDczF5A~I47mOjRASdpZ6-IAH8uFVRB2~WrKyG5bp2wZJswKY4NdWmGECvK8QqUH4B7tEPxI1LhM9iW1OaeqN-T4OH~YFkRPcukFyAsBzU2VtdzcD9wH3QHuZ~XOcOh9VMso~nZ5wtg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Holocene_glacier_variations_in_central_Jotunheimen_southern_Norway_based_on_distal_glaciolacustrine_sediment_cores","translated_slug":"","page_count":24,"language":"en","content_type":"Work","summary":"Sediment cores from two glacier-fed lakes are used to reconstruct a continuous record of glacier variations since about 10,000 cal. BP in the Smørstabbtinden massif of central Jotunheimen, southern Norway. Particular attention is paid to the century- to millennial-scale, pre-Little Ice Age glacial signal based on an estimated temporal resolution of ⩽55 and ⩽25 yr cm−1 for Bøvertunsvatnet and Dalsvatnet, respectively. Visible lithostratigraphic variations, organic content/loss-on-ignition, calcium carbonate content, magnetic susceptibility and grain-size fractions (especially the fine silt) are used as proxy indicators of glacier presence and extent in the lake catchments.Following deglaciation, the early Holocene was characterized by generally small glaciers until a major advance (the Finse Event) peaking at approximately 8200 cal. BP. From 7900 to at least 5300 cal. BP glaciers appear to have been absent from central Jotunheimen. There is evidence of glacier expansion between about...","impression_tracking_id":null,"owner":{"id":33441460,"first_name":"Atle","middle_initials":null,"last_name":"Nesje","page_name":"AtleNesje","domain_name":"uib","created_at":"2015-07-29T13:25:19.080-07:00","display_name":"Atle Nesje","url":"https://uib.academia.edu/AtleNesje"},"attachments":[{"id":51300464,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/51300464/thumbnails/1.jpg","file_name":"Holocene_glacier_variations_in_central_J20170111-6807-jkj07j.pdf","download_url":"https://www.academia.edu/attachments/51300464/download_file","bulk_download_file_name":"Holocene_glacier_variations_in_central_J.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/51300464/Holocene_glacier_variations_in_central_J20170111-6807-jkj07j-libre.pdf?1484140093=\u0026response-content-disposition=attachment%3B+filename%3DHolocene_glacier_variations_in_central_J.pdf\u0026Expires=1743853388\u0026Signature=V0Qcjj4sADzukWqvWwVpgU0HOOQpiEuOmJ~YrO4BF26SJ95YG0FjnzOrWJ8hx1LVWKlxncH0JxIdmi6~HXgajg2UIWxZEDxEkr8TLgOrwdV2vPihDvVPUF~2MM-DrMke8ipJqqKSLd8BJG39712LaMozts9JWSOLSHtEtYW6fBC8giU-~8I~kCwORItSHEzsGrbFEUYK5xzVDczF5A~I47mOjRASdpZ6-IAH8uFVRB2~WrKyG5bp2wZJswKY4NdWmGECvK8QqUH4B7tEPxI1LhM9iW1OaeqN-T4OH~YFkRPcukFyAsBzU2VtdzcD9wH3QHuZ~XOcOh9VMso~nZ5wtg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":13839,"name":"Temporal Resolution","url":"https://www.academia.edu/Documents/in/Temporal_Resolution"},{"id":79294,"name":"Quaternary Science","url":"https://www.academia.edu/Documents/in/Quaternary_Science"},{"id":93755,"name":"History and archaeology","url":"https://www.academia.edu/Documents/in/History_and_archaeology"},{"id":149117,"name":"Magnetic Susceptibility","url":"https://www.academia.edu/Documents/in/Magnetic_Susceptibility"},{"id":150013,"name":"Late Holocene","url":"https://www.academia.edu/Documents/in/Late_Holocene"},{"id":167123,"name":"Loss on Ignition","url":"https://www.academia.edu/Documents/in/Loss_on_Ignition"},{"id":182364,"name":"Little Ice Age","url":"https://www.academia.edu/Documents/in/Little_Ice_Age"},{"id":186099,"name":"Grain size","url":"https://www.academia.edu/Documents/in/Grain_size"},{"id":338205,"name":"Early Holocene","url":"https://www.academia.edu/Documents/in/Early_Holocene"},{"id":373417,"name":"Quaternary Science Reviews","url":"https://www.academia.edu/Documents/in/Quaternary_Science_Reviews"},{"id":630941,"name":"Calcium Carbonate","url":"https://www.academia.edu/Documents/in/Calcium_Carbonate"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-30874024-figures'); } }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="6140438" id="articles"><div class="js-work-strip profile--work_container" data-work-id="29829908"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29829908/Flommer_og_flomskred_i_Gudbrandsdalen_i_et_v%C3%A6rmessig_og_klimatisk_perspektiv"><img alt="Research paper thumbnail of Flommer og flomskred i Gudbrandsdalen i et værmessig og klimatisk perspektiv" class="work-thumbnail" src="https://attachments.academia-assets.com/50300715/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29829908/Flommer_og_flomskred_i_Gudbrandsdalen_i_et_v%C3%A6rmessig_og_klimatisk_perspektiv">Flommer og flomskred i Gudbrandsdalen i et værmessig og klimatisk perspektiv</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://uib.academia.edu/AtleNesje">Atle Nesje</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://uio.academia.edu/IngarM%C3%B8rkest%C3%B8lGundersen">Ingar Mørkestøl Gundersen</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://uio.academia.edu/RebeccaCannell">Rebecca J S Cannell</a></span></div><div class="wp-workCard_item"><span>Gård og utmark i Gudbrandsdalen - Arkeologiske undersøkelser i Fron 2011-2012</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The archaeological investigations in the mid part of Gudbrandsdalen in 2011 and 2012 revealed a n...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The archaeological investigations in the mid part of Gudbrandsdalen in 2011 and 2012 revealed a number of flood/avalanche horizons, of which «Forrskredet» (ca 350–200 BC), «Gammelofsen» (ca 50–1 BC), and «Merovingertidsofsen» (ca AD 600–800) were recognised as the major events at the investigated sites. Local topography and weather conditions (such as extreme weather events) and more long-term climatic trends were most likely the triggering factors for these events. During the time interval for Forrskredet, glaciers in Jotunheimen were in an advanced position, winter precipitation in mountains in western Norway (Jostedalsbreen) was relatively high, and summer temperatures in Scandinavia, as reconstructed from tree rings, were relatively high. Gammelofsen occurred during a period with relatively small glaciers in Jotunheimen as winter precipitation was increasing in western Norway and summer temperatures were rising in Scandinavia. During Merovingertidsofsen, glaciers in Jotunheimen were in an advanced position, winter precipitation was rapidly increasing in western Norway, and summer temperatures were relatively low in Scandinavia. The prehistoric flood and avalanche events in Gudbrandsdalen, such as the subsequent historic flood events, in particular «Storofsen» (1789) and «Storflaumen» (1860), certainly had a severe impact on settlement and farming.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="95422031346673aecc3f9d6469b20b68" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50300715,&quot;asset_id&quot;:29829908,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50300715/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29829908"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29829908"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29829908; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29829908]").text(description); $(".js-view-count[data-work-id=29829908]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29829908; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29829908']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "95422031346673aecc3f9d6469b20b68" } } $('.js-work-strip[data-work-id=29829908]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29829908,"title":"Flommer og flomskred i Gudbrandsdalen i et værmessig og klimatisk perspektiv","translated_title":"","metadata":{"abstract":"The archaeological investigations in the mid part of Gudbrandsdalen in 2011 and 2012 revealed a number of flood/avalanche horizons, of which «Forrskredet» (ca 350–200 BC), «Gammelofsen» (ca 50–1 BC), and «Merovingertidsofsen» (ca AD 600–800) were recognised as the major events at the investigated sites. Local topography and weather conditions (such as extreme weather events) and more long-term climatic trends were most likely the triggering factors for these events. During the time interval for Forrskredet, glaciers in Jotunheimen were in an advanced position, winter precipitation in mountains in western Norway (Jostedalsbreen) was relatively high, and summer temperatures in Scandinavia, as reconstructed from tree rings, were relatively high. Gammelofsen occurred during a period with relatively small glaciers in Jotunheimen as winter precipitation was increasing in western Norway and summer temperatures were rising in Scandinavia. During Merovingertidsofsen, glaciers in Jotunheimen were in an advanced position, winter precipitation was rapidly increasing in western Norway, and summer temperatures were relatively low in Scandinavia. The prehistoric flood and avalanche events in Gudbrandsdalen, such as the subsequent historic flood events, in particular «Storofsen» (1789) and «Storflaumen» (1860), certainly had a severe impact on settlement and farming.","publisher":"Portal forlag","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Gård og utmark i Gudbrandsdalen - Arkeologiske undersøkelser i Fron 2011-2012"},"translated_abstract":"The archaeological investigations in the mid part of Gudbrandsdalen in 2011 and 2012 revealed a number of flood/avalanche horizons, of which «Forrskredet» (ca 350–200 BC), «Gammelofsen» (ca 50–1 BC), and «Merovingertidsofsen» (ca AD 600–800) were recognised as the major events at the investigated sites. Local topography and weather conditions (such as extreme weather events) and more long-term climatic trends were most likely the triggering factors for these events. During the time interval for Forrskredet, glaciers in Jotunheimen were in an advanced position, winter precipitation in mountains in western Norway (Jostedalsbreen) was relatively high, and summer temperatures in Scandinavia, as reconstructed from tree rings, were relatively high. Gammelofsen occurred during a period with relatively small glaciers in Jotunheimen as winter precipitation was increasing in western Norway and summer temperatures were rising in Scandinavia. During Merovingertidsofsen, glaciers in Jotunheimen were in an advanced position, winter precipitation was rapidly increasing in western Norway, and summer temperatures were relatively low in Scandinavia. The prehistoric flood and avalanche events in Gudbrandsdalen, such as the subsequent historic flood events, in particular «Storofsen» (1789) and «Storflaumen» (1860), certainly had a severe impact on settlement and farming.","internal_url":"https://www.academia.edu/29829908/Flommer_og_flomskred_i_Gudbrandsdalen_i_et_v%C3%A6rmessig_og_klimatisk_perspektiv","translated_internal_url":"","created_at":"2016-11-14T05:12:27.108-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1491189,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":25879895,"work_id":29829908,"tagging_user_id":1491189,"tagged_user_id":33441460,"co_author_invite_id":null,"email":"a***e@geo.uib.no","affiliation":"University of Bergen","display_order":-1,"name":"Atle Nesje","title":"Flommer og flomskred i Gudbrandsdalen i et værmessig og klimatisk perspektiv"},{"id":25879896,"work_id":29829908,"tagging_user_id":1491189,"tagged_user_id":1041868,"co_author_invite_id":null,"email":"r***l@gmail.com","affiliation":"University of Oslo","display_order":1,"name":"Rebecca J S Cannell","title":"Flommer og flomskred i Gudbrandsdalen i et værmessig og klimatisk perspektiv"}],"downloadable_attachments":[{"id":50300715,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50300715/thumbnails/1.jpg","file_name":"Nesje__Gundersen_og_Cannell_2016.pdf","download_url":"https://www.academia.edu/attachments/50300715/download_file","bulk_download_file_name":"Flommer_og_flomskred_i_Gudbrandsdalen_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50300715/Nesje__Gundersen_og_Cannell_2016-libre.pdf?1479129487=\u0026response-content-disposition=attachment%3B+filename%3DFlommer_og_flomskred_i_Gudbrandsdalen_i.pdf\u0026Expires=1743816992\u0026Signature=gBcUhI9mEHhGewXbZWK7z5Boy~ONvF~hgRoPJgSHoFblCcP71Nfkik6b9GcZAVU8ZHtAnf1S0FhWe9JH-3kZM2nQ8tG8mmoBvm0MEtG8Fx3WnCQQ2edOJx07tPXgyGNL~XXiWXYlE2yDeegOzDV7oDWC7kuLsXZQkxePMn04e2GNFKEjFMFNlkcvRb-vIRQirbKSeoYMryL6Gcp5eMcF3pUmatLh0QToewKaUjiADRuPqcDN3frvipAqbayQbKU7N5diToJUcCc1M6fjRoCpEkGbcgmI9EaR11wejSluO6vePsAp0wORhnB-Bom9Qed2EJIGgUjVqDHOHhwGEujilQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Flommer_og_flomskred_i_Gudbrandsdalen_i_et_værmessig_og_klimatisk_perspektiv","translated_slug":"","page_count":16,"language":"nb","content_type":"Work","summary":"The archaeological investigations in the mid part of Gudbrandsdalen in 2011 and 2012 revealed a number of flood/avalanche horizons, of which «Forrskredet» (ca 350–200 BC), «Gammelofsen» (ca 50–1 BC), and «Merovingertidsofsen» (ca AD 600–800) were recognised as the major events at the investigated sites. Local topography and weather conditions (such as extreme weather events) and more long-term climatic trends were most likely the triggering factors for these events. During the time interval for Forrskredet, glaciers in Jotunheimen were in an advanced position, winter precipitation in mountains in western Norway (Jostedalsbreen) was relatively high, and summer temperatures in Scandinavia, as reconstructed from tree rings, were relatively high. Gammelofsen occurred during a period with relatively small glaciers in Jotunheimen as winter precipitation was increasing in western Norway and summer temperatures were rising in Scandinavia. During Merovingertidsofsen, glaciers in Jotunheimen were in an advanced position, winter precipitation was rapidly increasing in western Norway, and summer temperatures were relatively low in Scandinavia. The prehistoric flood and avalanche events in Gudbrandsdalen, such as the subsequent historic flood events, in particular «Storofsen» (1789) and «Storflaumen» (1860), certainly had a severe impact on settlement and farming.","impression_tracking_id":null,"owner":{"id":1491189,"first_name":"Ingar Mørkestøl","middle_initials":null,"last_name":"Gundersen","page_name":"IngarMørkestølGundersen","domain_name":"uio","created_at":"2012-04-11T00:59:46.874-07:00","display_name":"Ingar Mørkestøl Gundersen","url":"https://uio.academia.edu/IngarM%C3%B8rkest%C3%B8lGundersen"},"attachments":[{"id":50300715,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50300715/thumbnails/1.jpg","file_name":"Nesje__Gundersen_og_Cannell_2016.pdf","download_url":"https://www.academia.edu/attachments/50300715/download_file","bulk_download_file_name":"Flommer_og_flomskred_i_Gudbrandsdalen_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50300715/Nesje__Gundersen_og_Cannell_2016-libre.pdf?1479129487=\u0026response-content-disposition=attachment%3B+filename%3DFlommer_og_flomskred_i_Gudbrandsdalen_i.pdf\u0026Expires=1743816992\u0026Signature=gBcUhI9mEHhGewXbZWK7z5Boy~ONvF~hgRoPJgSHoFblCcP71Nfkik6b9GcZAVU8ZHtAnf1S0FhWe9JH-3kZM2nQ8tG8mmoBvm0MEtG8Fx3WnCQQ2edOJx07tPXgyGNL~XXiWXYlE2yDeegOzDV7oDWC7kuLsXZQkxePMn04e2GNFKEjFMFNlkcvRb-vIRQirbKSeoYMryL6Gcp5eMcF3pUmatLh0QToewKaUjiADRuPqcDN3frvipAqbayQbKU7N5diToJUcCc1M6fjRoCpEkGbcgmI9EaR11wejSluO6vePsAp0wORhnB-Bom9Qed2EJIGgUjVqDHOHhwGEujilQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1512,"name":"Climate Change","url":"https://www.academia.edu/Documents/in/Climate_Change"},{"id":20054,"name":"Landslides","url":"https://www.academia.edu/Documents/in/Landslides"},{"id":80658,"name":"Climate history","url":"https://www.academia.edu/Documents/in/Climate_history"},{"id":158721,"name":"Floods","url":"https://www.academia.edu/Documents/in/Floods"},{"id":555122,"name":"Historical Floods","url":"https://www.academia.edu/Documents/in/Historical_Floods"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-29829908-figures'); } }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="6140585" id="books"><div class="js-work-strip profile--work_container" data-work-id="29830203"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/29830203/G%C3%A5rd_og_utmark_i_Gudbrandsdalen_Arkeologiske_unders%C3%B8kelser_i_Fron_2011_2012"><img alt="Research paper thumbnail of Gård og utmark i Gudbrandsdalen - Arkeologiske undersøkelser i Fron 2011-2012" class="work-thumbnail" src="https://attachments.academia-assets.com/50301241/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/29830203/G%C3%A5rd_og_utmark_i_Gudbrandsdalen_Arkeologiske_unders%C3%B8kelser_i_Fron_2011_2012">Gård og utmark i Gudbrandsdalen - Arkeologiske undersøkelser i Fron 2011-2012</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://uio.academia.edu/IngarM%C3%B8rkest%C3%B8lGundersen">Ingar Mørkestøl Gundersen</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/JanHenningLarsen">Jan Henning Larsen</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/OleChristianL%C3%B8naas">Ole Christian Lønaas</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://uib.academia.edu/AtleNesje">Atle Nesje</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://uio.academia.edu/RebeccaCannell">Rebecca J S Cannell</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://ntnu-no.academia.edu/KristinEriksen">Kristin Eriksen</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://niku.academia.edu/LiseLoktu">Lise Loktu</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/TVillumsen">Tina Villumsen</a>, <a class="" data-click-track="profile-work-strip-authors" rel="nofollow" href="https://independent.academia.edu/ArneJouttij%C3%A4rvi">Arne Jouttijärvi</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/AnnineMoltsen">Annine Moltsen</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/RichardMacphail">Richard Macphail</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">E6-prosjektet Gudbrandsdalen er det mest omfattende utgravningsprosjektet som er gjennomført i Op...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">E6-prosjektet Gudbrandsdalen er det mest omfattende utgravningsprosjektet som er gjennomført i Oppland noensinne, og har sin bakgrunn i etableringen av ny E6 gjennom dalføret. I 2011 og 2012 gjennomførte Kulturhistorisk museum utgravninger på 64 steder i kommunene Sør-Fron, Nord-Fron og Sel, og utgravningene avdekket blant annet en frem til da ukjent flom-, bosetnings-og jordbrukshistorikk. Omfattende undersøkelser ble også gjort i utmarka, der et stort antall kull-og fangstgroper ble gravd ut. Det samlede vitenska-pelige materialet fra prosjektet har endret forståelsen av Gudbrandsdalens arkeologi og gitt ny kunnskap om hvordan samfunnet i dalføret utviklet seg i jernalderen og middelalderen. Denne boken presenterer de viktigste faglige resultatene, setter resultatene inn i en større kulturhistorisk sammenheng og gjør rede for kunnskapsstatusen på viktige fagområder innenfor Gudbrandsdalens arkeologi.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="26d9e96d421df7975efbed293fd8c8e4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:50301241,&quot;asset_id&quot;:29830203,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/50301241/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="29830203"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="29830203"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29830203; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29830203]").text(description); $(".js-view-count[data-work-id=29830203]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29830203; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='29830203']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "26d9e96d421df7975efbed293fd8c8e4" } } $('.js-work-strip[data-work-id=29830203]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":29830203,"title":"Gård og utmark i Gudbrandsdalen - Arkeologiske undersøkelser i Fron 2011-2012","translated_title":"","metadata":{"abstract":"E6-prosjektet Gudbrandsdalen er det mest omfattende utgravningsprosjektet som er gjennomført i Oppland noensinne, og har sin bakgrunn i etableringen av ny E6 gjennom dalføret. I 2011 og 2012 gjennomførte Kulturhistorisk museum utgravninger på 64 steder i kommunene Sør-Fron, Nord-Fron og Sel, og utgravningene avdekket blant annet en frem til da ukjent flom-, bosetnings-og jordbrukshistorikk. Omfattende undersøkelser ble også gjort i utmarka, der et stort antall kull-og fangstgroper ble gravd ut. Det samlede vitenska-pelige materialet fra prosjektet har endret forståelsen av Gudbrandsdalens arkeologi og gitt ny kunnskap om hvordan samfunnet i dalføret utviklet seg i jernalderen og middelalderen. Denne boken presenterer de viktigste faglige resultatene, setter resultatene inn i en større kulturhistorisk sammenheng og gjør rede for kunnskapsstatusen på viktige fagområder innenfor Gudbrandsdalens arkeologi. ","publisher":"Portal forlag","publication_date":{"day":null,"month":null,"year":2016,"errors":{}}},"translated_abstract":"E6-prosjektet Gudbrandsdalen er det mest omfattende utgravningsprosjektet som er gjennomført i Oppland noensinne, og har sin bakgrunn i etableringen av ny E6 gjennom dalføret. I 2011 og 2012 gjennomførte Kulturhistorisk museum utgravninger på 64 steder i kommunene Sør-Fron, Nord-Fron og Sel, og utgravningene avdekket blant annet en frem til da ukjent flom-, bosetnings-og jordbrukshistorikk. Omfattende undersøkelser ble også gjort i utmarka, der et stort antall kull-og fangstgroper ble gravd ut. Det samlede vitenska-pelige materialet fra prosjektet har endret forståelsen av Gudbrandsdalens arkeologi og gitt ny kunnskap om hvordan samfunnet i dalføret utviklet seg i jernalderen og middelalderen. Denne boken presenterer de viktigste faglige resultatene, setter resultatene inn i en større kulturhistorisk sammenheng og gjør rede for kunnskapsstatusen på viktige fagområder innenfor Gudbrandsdalens arkeologi. ","internal_url":"https://www.academia.edu/29830203/G%C3%A5rd_og_utmark_i_Gudbrandsdalen_Arkeologiske_unders%C3%B8kelser_i_Fron_2011_2012","translated_internal_url":"","created_at":"2016-11-14T05:40:59.116-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1491189,"coauthors_can_edit":true,"document_type":"book","co_author_tags":[{"id":25880247,"work_id":29830203,"tagging_user_id":1491189,"tagged_user_id":40268775,"co_author_invite_id":null,"email":"j***n@khm.uio.no","display_order":1,"name":"Jan Henning Larsen","title":"Gård og utmark i Gudbrandsdalen - Arkeologiske undersøkelser i Fron 2011-2012"},{"id":25880248,"work_id":29830203,"tagging_user_id":1491189,"tagged_user_id":57107857,"co_author_invite_id":5720111,"email":"o***s@khm.uio.no","display_order":2,"name":"Ole Christian Lønaas","title":"Gård og utmark i Gudbrandsdalen - Arkeologiske undersøkelser i Fron 2011-2012"},{"id":25880249,"work_id":29830203,"tagging_user_id":1491189,"tagged_user_id":7966954,"co_author_invite_id":null,"email":"l***e@gmail.com","affiliation":"University of Oslo","display_order":3,"name":"Lars Erik Gjerpe","title":"Gård og utmark i Gudbrandsdalen - Arkeologiske undersøkelser i Fron 2011-2012"},{"id":25880250,"work_id":29830203,"tagging_user_id":1491189,"tagged_user_id":33441460,"co_author_invite_id":null,"email":"a***e@geo.uib.no","affiliation":"University of Bergen","display_order":4,"name":"Atle Nesje","title":"Gård og utmark i Gudbrandsdalen - Arkeologiske undersøkelser i Fron 2011-2012"},{"id":25880251,"work_id":29830203,"tagging_user_id":1491189,"tagged_user_id":1041868,"co_author_invite_id":null,"email":"r***l@gmail.com","affiliation":"University of Oslo","display_order":5,"name":"Rebecca J S Cannell","title":"Gård og utmark i Gudbrandsdalen - Arkeologiske undersøkelser i Fron 2011-2012"},{"id":25880252,"work_id":29830203,"tagging_user_id":1491189,"tagged_user_id":757557,"co_author_invite_id":null,"email":"k***n@gmail.com","affiliation":"Norwegian University of Science and Technology","display_order":6,"name":"Kristin Eriksen","title":"Gård og utmark i Gudbrandsdalen - Arkeologiske undersøkelser i Fron 2011-2012"},{"id":25880253,"work_id":29830203,"tagging_user_id":1491189,"tagged_user_id":3342989,"co_author_invite_id":null,"email":"l***u@gmail.com","affiliation":"Norwegian Institute for Cultural Heritage Research","display_order":7,"name":"Lise Loktu","title":"Gård og utmark i Gudbrandsdalen - Arkeologiske undersøkelser i Fron 2011-2012"},{"id":25880254,"work_id":29830203,"tagging_user_id":1491189,"tagged_user_id":2908749,"co_author_invite_id":null,"email":"t***n@gmail.com","display_order":8,"name":"Tina Villumsen","title":"Gård og utmark i Gudbrandsdalen - Arkeologiske undersøkelser i Fron 2011-2012"},{"id":25880255,"work_id":29830203,"tagging_user_id":1491189,"tagged_user_id":2088992,"co_author_invite_id":null,"email":"h***l@archaeometry.dk","display_order":9,"name":"Arne Jouttijärvi","title":"Gård og utmark i Gudbrandsdalen - Arkeologiske undersøkelser i Fron 2011-2012"},{"id":25880256,"work_id":29830203,"tagging_user_id":1491189,"tagged_user_id":2502435,"co_author_invite_id":null,"email":"n***k@c.dk","display_order":10,"name":"Annine Moltsen","title":"Gård og utmark i Gudbrandsdalen - Arkeologiske undersøkelser i Fron 2011-2012"},{"id":25880257,"work_id":29830203,"tagging_user_id":1491189,"tagged_user_id":33425042,"co_author_invite_id":null,"email":"r***l@ucl.ac.uk","display_order":11,"name":"Richard Macphail","title":"Gård og utmark i Gudbrandsdalen - Arkeologiske undersøkelser i Fron 2011-2012"},{"id":42718043,"work_id":29830203,"tagging_user_id":3342989,"tagged_user_id":10491589,"co_author_invite_id":null,"email":"l***e@gmail.com","affiliation":"University of Oslo","display_order":1073741829,"name":"Linn T. Lieng Andreadakis","title":"Gård og utmark i Gudbrandsdalen - Arkeologiske undersøkelser i Fron 2011-2012"}],"downloadable_attachments":[{"id":50301241,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50301241/thumbnails/1.jpg","file_name":"Gard_og_utmark_i_Gudbrandsdalen.pdf","download_url":"https://www.academia.edu/attachments/50301241/download_file","bulk_download_file_name":"Gard_og_utmark_i_Gudbrandsdalen_Arkeolog.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50301241/Gard_og_utmark_i_Gudbrandsdalen-libre.pdf?1479131128=\u0026response-content-disposition=attachment%3B+filename%3DGard_og_utmark_i_Gudbrandsdalen_Arkeolog.pdf\u0026Expires=1743816993\u0026Signature=B0MG-vAtImmQVRzDv3ROwuoFSz8DxA-EdhqCaVSm7bDR9n0TWTMSOKw2Z6YGbekDkc5C7wP7quJShkjg9Lcqb8Vhp~QgKgLCmPbuBJQOkA0QWjxUjjV6xDptoHvbOZWC78TycIy901PwHWRjsuR~o2NRzpfHdJZqKLhDJnH9B7cq5JxS6YRdH3UIebHkWGKNtmnuaMd0uZ6rK5cvNLIfReG3HCnsquJDtQ4uih7zEIqcoUuLEgZDoFDa0k5VZ86i7N2jqQi4bwIukkpPrtTG127jRrXlJ5mZf~mkKFQ-cAsVOt8doCrz5IZrfU7LcZnYcUn-758htxEkx57PlJtkfA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":50391999,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50391999/thumbnails/1.jpg","file_name":"Gard_og_utmark_i_Gudbrandsdalen.pdf","download_url":"https://www.academia.edu/attachments/50391999/download_file","bulk_download_file_name":"Gard_og_utmark_i_Gudbrandsdalen_Arkeolog.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50391999/Gard_og_utmark_i_Gudbrandsdalen-libre.pdf?1479461042=\u0026response-content-disposition=attachment%3B+filename%3DGard_og_utmark_i_Gudbrandsdalen_Arkeolog.pdf\u0026Expires=1743816993\u0026Signature=ZfD2A4M-9JNzk7zSdmMBP3JZKPYN3eiBdGvvbsRDUefTOAlz~BjCriOvn6YrawJ~WcxHYwbc0H~xrpYkBVxSoI1JjwbypPjRj-soiWCbaLBSQl~ixjKN1MTYfZ818t6u0xSvQnBs1WDariopQkEZd7k5WvPz584oZElRpUMQ~JLm8stUG7e3Q7cchzLDLMmOVqIB8vXsBlWC~T3uJe70r7dr6J2nRaq8qurwf-cekD6AsUUskhY81r5ZdEIUZ8Bg5LKZ6D0kEkCv-7h5Hp6-XhFSTpQ5kF2IC~OWXbKftQ9R0VlsiZJnu6Xx7oJMEFHXU9SHeq~T9oCauFJajMruWA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Gård_og_utmark_i_Gudbrandsdalen_Arkeologiske_undersøkelser_i_Fron_2011_2012","translated_slug":"","page_count":332,"language":"nb","content_type":"Work","summary":"E6-prosjektet Gudbrandsdalen er det mest omfattende utgravningsprosjektet som er gjennomført i Oppland noensinne, og har sin bakgrunn i etableringen av ny E6 gjennom dalføret. I 2011 og 2012 gjennomførte Kulturhistorisk museum utgravninger på 64 steder i kommunene Sør-Fron, Nord-Fron og Sel, og utgravningene avdekket blant annet en frem til da ukjent flom-, bosetnings-og jordbrukshistorikk. Omfattende undersøkelser ble også gjort i utmarka, der et stort antall kull-og fangstgroper ble gravd ut. Det samlede vitenska-pelige materialet fra prosjektet har endret forståelsen av Gudbrandsdalens arkeologi og gitt ny kunnskap om hvordan samfunnet i dalføret utviklet seg i jernalderen og middelalderen. Denne boken presenterer de viktigste faglige resultatene, setter resultatene inn i en større kulturhistorisk sammenheng og gjør rede for kunnskapsstatusen på viktige fagområder innenfor Gudbrandsdalens arkeologi. ","impression_tracking_id":null,"owner":{"id":1491189,"first_name":"Ingar Mørkestøl","middle_initials":null,"last_name":"Gundersen","page_name":"IngarMørkestølGundersen","domain_name":"uio","created_at":"2012-04-11T00:59:46.874-07:00","display_name":"Ingar Mørkestøl Gundersen","url":"https://uio.academia.edu/IngarM%C3%B8rkest%C3%B8lGundersen"},"attachments":[{"id":50301241,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50301241/thumbnails/1.jpg","file_name":"Gard_og_utmark_i_Gudbrandsdalen.pdf","download_url":"https://www.academia.edu/attachments/50301241/download_file","bulk_download_file_name":"Gard_og_utmark_i_Gudbrandsdalen_Arkeolog.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50301241/Gard_og_utmark_i_Gudbrandsdalen-libre.pdf?1479131128=\u0026response-content-disposition=attachment%3B+filename%3DGard_og_utmark_i_Gudbrandsdalen_Arkeolog.pdf\u0026Expires=1743816993\u0026Signature=B0MG-vAtImmQVRzDv3ROwuoFSz8DxA-EdhqCaVSm7bDR9n0TWTMSOKw2Z6YGbekDkc5C7wP7quJShkjg9Lcqb8Vhp~QgKgLCmPbuBJQOkA0QWjxUjjV6xDptoHvbOZWC78TycIy901PwHWRjsuR~o2NRzpfHdJZqKLhDJnH9B7cq5JxS6YRdH3UIebHkWGKNtmnuaMd0uZ6rK5cvNLIfReG3HCnsquJDtQ4uih7zEIqcoUuLEgZDoFDa0k5VZ86i7N2jqQi4bwIukkpPrtTG127jRrXlJ5mZf~mkKFQ-cAsVOt8doCrz5IZrfU7LcZnYcUn-758htxEkx57PlJtkfA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":50391999,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/50391999/thumbnails/1.jpg","file_name":"Gard_og_utmark_i_Gudbrandsdalen.pdf","download_url":"https://www.academia.edu/attachments/50391999/download_file","bulk_download_file_name":"Gard_og_utmark_i_Gudbrandsdalen_Arkeolog.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/50391999/Gard_og_utmark_i_Gudbrandsdalen-libre.pdf?1479461042=\u0026response-content-disposition=attachment%3B+filename%3DGard_og_utmark_i_Gudbrandsdalen_Arkeolog.pdf\u0026Expires=1743816993\u0026Signature=ZfD2A4M-9JNzk7zSdmMBP3JZKPYN3eiBdGvvbsRDUefTOAlz~BjCriOvn6YrawJ~WcxHYwbc0H~xrpYkBVxSoI1JjwbypPjRj-soiWCbaLBSQl~ixjKN1MTYfZ818t6u0xSvQnBs1WDariopQkEZd7k5WvPz584oZElRpUMQ~JLm8stUG7e3Q7cchzLDLMmOVqIB8vXsBlWC~T3uJe70r7dr6J2nRaq8qurwf-cekD6AsUUskhY81r5ZdEIUZ8Bg5LKZ6D0kEkCv-7h5Hp6-XhFSTpQ5kF2IC~OWXbKftQ9R0VlsiZJnu6Xx7oJMEFHXU9SHeq~T9oCauFJajMruWA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":399,"name":"Prehistoric Archaeology","url":"https://www.academia.edu/Documents/in/Prehistoric_Archaeology"},{"id":40780,"name":"Settlement archaeology","url":"https://www.academia.edu/Documents/in/Settlement_archaeology"},{"id":42197,"name":"Iron Age","url":"https://www.academia.edu/Documents/in/Iron_Age"},{"id":47420,"name":"Scandinavian Archaeology","url":"https://www.academia.edu/Documents/in/Scandinavian_Archaeology"},{"id":56765,"name":"Archaeological Excavation","url":"https://www.academia.edu/Documents/in/Archaeological_Excavation"},{"id":296960,"name":"Medieval charcoal production","url":"https://www.academia.edu/Documents/in/Medieval_charcoal_production"},{"id":555122,"name":"Historical Floods","url":"https://www.academia.edu/Documents/in/Historical_Floods"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-29830203-figures'); } }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="7928484" id="journalarticles"><div class="js-work-strip profile--work_container" data-work-id="35746378"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/35746378/The_chronology_of_reindeer_hunting_on_Norways_highest_ice_patches"><img alt="Research paper thumbnail of The chronology of reindeer hunting on Norway&#39;s highest ice patches" class="work-thumbnail" src="https://attachments.academia-assets.com/55621414/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/35746378/The_chronology_of_reindeer_hunting_on_Norways_highest_ice_patches">The chronology of reindeer hunting on Norway&#39;s highest ice patches</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://oppland.academia.edu/LarsPil%C3%B8">Lars Pilø</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://uio.academia.edu/JulianRobertPostMartinsen">Julian R O B E R T Post-Melbye</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://uib.academia.edu/AtleNesje">Atle Nesje</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://uio.academia.edu/BritSolli">Brit Solli</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://uio.academia.edu/VivianWangen">Vivian Wangen</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://ntnu-no.academia.edu/James_H_Barrett">James H Barrett</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The melting of perennial ice patches globally is uncovering a fragile record of alpine activity, ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The melting of perennial ice patches globally is uncovering a fragile record of alpine activity, especially hunting and the use of mountain passes. When rescued by systematic fieldwork (glacial archaeology), this evidence opens an unprecedented window on the chronology of high-elevation activity. Recent research in Jotunheimen and surrounding mountain areas of Norway has recovered over 2000 finds—many associated with reindeer hunting (e.g. arrows). We report the radiocarbon dates of 153 objects and use a kernel density estimation (KDE) method to determine the distribution of dated events from ca 4000 BCE to the present. Interpreted in light of shifting environmental, preservation and socioeconomic factors, these new data show counterintuitive trends in the intensity of reindeer hunting and other high-elevation activity. Cold temperatures may sometimes have kept humans from Norway&#39;s highest elevations, as expected based on accessibility, exposure and reindeer distributions. In times of increasing demand for mountain resources, however, activity probably continued in the face of adverse or variable climatic conditions. The use of KDE modelling makes it possible to observe this patterning without the spurious effects of noise introduced by the discrete nature of the finds and<br />the radiocarbon calibration process.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6aedb074a5bed01f2abc81c3136ed180" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:55621414,&quot;asset_id&quot;:35746378,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/55621414/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="35746378"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="35746378"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 35746378; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=35746378]").text(description); $(".js-view-count[data-work-id=35746378]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 35746378; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='35746378']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6aedb074a5bed01f2abc81c3136ed180" } } $('.js-work-strip[data-work-id=35746378]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":35746378,"title":"The chronology of reindeer hunting on Norway's highest ice patches","translated_title":"","metadata":{"abstract":"The melting of perennial ice patches globally is uncovering a fragile record of alpine activity, especially hunting and the use of mountain passes. When rescued by systematic fieldwork (glacial archaeology), this evidence opens an unprecedented window on the chronology of high-elevation activity. Recent research in Jotunheimen and surrounding mountain areas of Norway has recovered over 2000 finds—many associated with reindeer hunting (e.g. arrows). We report the radiocarbon dates of 153 objects and use a kernel density estimation (KDE) method to determine the distribution of dated events from ca 4000 BCE to the present. Interpreted in light of shifting environmental, preservation and socioeconomic factors, these new data show counterintuitive trends in the intensity of reindeer hunting and other high-elevation activity. Cold temperatures may sometimes have kept humans from Norway's highest elevations, as expected based on accessibility, exposure and reindeer distributions. In times of increasing demand for mountain resources, however, activity probably continued in the face of adverse or variable climatic conditions. The use of KDE modelling makes it possible to observe this patterning without the spurious effects of noise introduced by the discrete nature of the finds and\nthe radiocarbon calibration process."},"translated_abstract":"The melting of perennial ice patches globally is uncovering a fragile record of alpine activity, especially hunting and the use of mountain passes. When rescued by systematic fieldwork (glacial archaeology), this evidence opens an unprecedented window on the chronology of high-elevation activity. Recent research in Jotunheimen and surrounding mountain areas of Norway has recovered over 2000 finds—many associated with reindeer hunting (e.g. arrows). We report the radiocarbon dates of 153 objects and use a kernel density estimation (KDE) method to determine the distribution of dated events from ca 4000 BCE to the present. Interpreted in light of shifting environmental, preservation and socioeconomic factors, these new data show counterintuitive trends in the intensity of reindeer hunting and other high-elevation activity. Cold temperatures may sometimes have kept humans from Norway's highest elevations, as expected based on accessibility, exposure and reindeer distributions. In times of increasing demand for mountain resources, however, activity probably continued in the face of adverse or variable climatic conditions. The use of KDE modelling makes it possible to observe this patterning without the spurious effects of noise introduced by the discrete nature of the finds and\nthe radiocarbon calibration process.","internal_url":"https://www.academia.edu/35746378/The_chronology_of_reindeer_hunting_on_Norways_highest_ice_patches","translated_internal_url":"","created_at":"2018-01-24T01:27:02.216-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":183864,"coauthors_can_edit":true,"document_type":"other","co_author_tags":[{"id":30966561,"work_id":35746378,"tagging_user_id":183864,"tagged_user_id":3066100,"co_author_invite_id":null,"email":"l***o@gmail.com","display_order":-7,"name":"Lars Pilø","title":"The chronology of reindeer hunting on Norway's highest ice patches"},{"id":30966562,"work_id":35746378,"tagging_user_id":183864,"tagged_user_id":null,"co_author_invite_id":6618533,"email":"e***d@oppland.org","display_order":-6,"name":"Espen Finstad","title":"The chronology of reindeer hunting on Norway's highest ice patches"},{"id":30966564,"work_id":35746378,"tagging_user_id":183864,"tagged_user_id":50692515,"co_author_invite_id":null,"email":"j***n@khm.uio.no","affiliation":"University of Oslo","display_order":-4,"name":"Julian R O B E R T Post-Melbye","title":"The chronology of reindeer hunting on Norway's highest ice patches"},{"id":30966565,"work_id":35746378,"tagging_user_id":183864,"tagged_user_id":33441460,"co_author_invite_id":null,"email":"a***e@geo.uib.no","affiliation":"University of Bergen","display_order":-3,"name":"Atle Nesje","title":"The chronology of reindeer hunting on Norway's highest ice patches"},{"id":30966566,"work_id":35746378,"tagging_user_id":183864,"tagged_user_id":11596466,"co_author_invite_id":null,"email":"b***i@khm.uio.no","affiliation":"University of Oslo","display_order":-2,"name":"Brit Solli","title":"The chronology of reindeer hunting on Norway's highest ice patches"},{"id":30966567,"work_id":35746378,"tagging_user_id":183864,"tagged_user_id":17403740,"co_author_invite_id":null,"email":"v***n@khm.uio.no","affiliation":"University of Oslo","display_order":-1,"name":"Vivian Wangen","title":"The chronology of reindeer hunting on Norway's highest ice patches"}],"downloadable_attachments":[{"id":55621414,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/55621414/thumbnails/1.jpg","file_name":"Chronology_of_Reindeer_Hunting_RSOS_2018.pdf","download_url":"https://www.academia.edu/attachments/55621414/download_file","bulk_download_file_name":"The_chronology_of_reindeer_hunting_on_No.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/55621414/Chronology_of_Reindeer_Hunting_RSOS_2018-libre.pdf?1516787809=\u0026response-content-disposition=attachment%3B+filename%3DThe_chronology_of_reindeer_hunting_on_No.pdf\u0026Expires=1743833976\u0026Signature=SlpwjTxEmV0pk~gGwoiWV0eno-uTcguUtSkTuioZ4PSr6wwrGbWVloES43uY1TR9R3FeVfivVyKJijccdSL8R3v5R9Pq9wVmTy0S6gNO8R91ptr704H9xessmw9lXZhCJ8-Jf-4QCld3~zooTm4AhW7-eYU97LR~T-Tp0kvwmi0UxjLXeJ1NKPOuLV6pVVnXcyscgyrdc6VmuiZ7TvT54Bu47EsBNjpuPRe5wZtmoC7cki7gnsWiGc7~AxRy5xCnidTo8G5Sd1eW6GsLyXjYc~uZHlDfXFrBPJhvS4BPYUKPvwO1LBQxvMIThChznDvaErptuTTXp7dTOLasc1gUag__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_chronology_of_reindeer_hunting_on_Norways_highest_ice_patches","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"The melting of perennial ice patches globally is uncovering a fragile record of alpine activity, especially hunting and the use of mountain passes. When rescued by systematic fieldwork (glacial archaeology), this evidence opens an unprecedented window on the chronology of high-elevation activity. Recent research in Jotunheimen and surrounding mountain areas of Norway has recovered over 2000 finds—many associated with reindeer hunting (e.g. arrows). We report the radiocarbon dates of 153 objects and use a kernel density estimation (KDE) method to determine the distribution of dated events from ca 4000 BCE to the present. Interpreted in light of shifting environmental, preservation and socioeconomic factors, these new data show counterintuitive trends in the intensity of reindeer hunting and other high-elevation activity. Cold temperatures may sometimes have kept humans from Norway's highest elevations, as expected based on accessibility, exposure and reindeer distributions. In times of increasing demand for mountain resources, however, activity probably continued in the face of adverse or variable climatic conditions. The use of KDE modelling makes it possible to observe this patterning without the spurious effects of noise introduced by the discrete nature of the finds and\nthe radiocarbon calibration process.","impression_tracking_id":null,"owner":{"id":183864,"first_name":"James","middle_initials":"H","last_name":"Barrett","page_name":"James_H_Barrett","domain_name":"ntnu-no","created_at":"2010-05-10T22:35:56.011-07:00","display_name":"James H Barrett","url":"https://ntnu-no.academia.edu/James_H_Barrett"},"attachments":[{"id":55621414,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/55621414/thumbnails/1.jpg","file_name":"Chronology_of_Reindeer_Hunting_RSOS_2018.pdf","download_url":"https://www.academia.edu/attachments/55621414/download_file","bulk_download_file_name":"The_chronology_of_reindeer_hunting_on_No.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/55621414/Chronology_of_Reindeer_Hunting_RSOS_2018-libre.pdf?1516787809=\u0026response-content-disposition=attachment%3B+filename%3DThe_chronology_of_reindeer_hunting_on_No.pdf\u0026Expires=1743833976\u0026Signature=SlpwjTxEmV0pk~gGwoiWV0eno-uTcguUtSkTuioZ4PSr6wwrGbWVloES43uY1TR9R3FeVfivVyKJijccdSL8R3v5R9Pq9wVmTy0S6gNO8R91ptr704H9xessmw9lXZhCJ8-Jf-4QCld3~zooTm4AhW7-eYU97LR~T-Tp0kvwmi0UxjLXeJ1NKPOuLV6pVVnXcyscgyrdc6VmuiZ7TvT54Bu47EsBNjpuPRe5wZtmoC7cki7gnsWiGc7~AxRy5xCnidTo8G5Sd1eW6GsLyXjYc~uZHlDfXFrBPJhvS4BPYUKPvwO1LBQxvMIThChznDvaErptuTTXp7dTOLasc1gUag__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":399,"name":"Prehistoric Archaeology","url":"https://www.academia.edu/Documents/in/Prehistoric_Archaeology"},{"id":1512,"name":"Climate Change","url":"https://www.academia.edu/Documents/in/Climate_Change"},{"id":2109,"name":"Environmental Archaeology","url":"https://www.academia.edu/Documents/in/Environmental_Archaeology"},{"id":3722,"name":"Environmental History","url":"https://www.academia.edu/Documents/in/Environmental_History"},{"id":7870,"name":"Medieval Archaeology","url":"https://www.academia.edu/Documents/in/Medieval_Archaeology"},{"id":14253,"name":"Viking Age Archaeology","url":"https://www.academia.edu/Documents/in/Viking_Age_Archaeology"},{"id":32363,"name":"Historical Ecology","url":"https://www.academia.edu/Documents/in/Historical_Ecology"},{"id":38420,"name":"Viking Age Scandinavia","url":"https://www.academia.edu/Documents/in/Viking_Age_Scandinavia"},{"id":88811,"name":"Ice Patch Archaeology","url":"https://www.academia.edu/Documents/in/Ice_Patch_Archaeology"},{"id":112668,"name":"Radiocarbon Dating (Archaeology)","url":"https://www.academia.edu/Documents/in/Radiocarbon_Dating_Archaeology_"},{"id":1827948,"name":"Glacial Archaeology","url":"https://www.academia.edu/Documents/in/Glacial_Archaeology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-35746378-figures'); } }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 4 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "8221baa8faa0d25c9bff1b6e5fe067182e2335c5fd8290d9606b6247a30d08c6", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="YJYfJ38XzGM3K34taz8rHoWqfzFPEYq6NGAgJCV-aiRnt4A_l8J3XB6rIlr-KTIQDQkLxSjYwT8LlkjMIk68og" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://uib.academia.edu/AtleNesje" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="wvLoZ0HAOR24uHU7_iZK4nv40jKnKVXuTj60F-8Xb-zF03d_qRWCIpE4KUxrMFPs81umxsDgHmtxyNz_6Ce5ag" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10