CINXE.COM
DepthwiseConv1D layer
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="description" content="Keras documentation"> <meta name="author" content="Keras Team"> <link rel="shortcut icon" href="https://keras.io/img/favicon.ico"> <link rel="canonical" href="https://keras.io/api/layers/convolution_layers/depthwise_convolution1d/" /> <!-- Social --> <meta property="og:title" content="Keras documentation: DepthwiseConv1D layer"> <meta property="og:image" content="https://keras.io/img/logo-k-keras-wb.png"> <meta name="twitter:title" content="Keras documentation: DepthwiseConv1D layer"> <meta name="twitter:image" content="https://keras.io/img/k-keras-social.png"> <meta name="twitter:card" content="summary"> <title>DepthwiseConv1D layer</title> <!-- Bootstrap core CSS --> <link href="/css/bootstrap.min.css" rel="stylesheet"> <!-- Custom fonts for this template --> <link href="https://fonts.googleapis.com/css2?family=Open+Sans:wght@400;600;700;800&display=swap" rel="stylesheet"> <!-- Custom styles for this template --> <link href="/css/docs.css" rel="stylesheet"> <link href="/css/monokai.css" rel="stylesheet"> <!-- Google Tag Manager --> <script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-5DNGF4N'); </script> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','https://www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-175165319-128', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Tag Manager --> <script async defer src="https://buttons.github.io/buttons.js"></script> </head> <body> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5DNGF4N" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <div class='k-page'> <div class="k-nav" id="nav-menu"> <a href='/'><img src='/img/logo-small.png' class='logo-small' /></a> <div class="nav flex-column nav-pills" role="tablist" aria-orientation="vertical"> <a class="nav-link" href="/about/" role="tab" aria-selected="">About Keras</a> <a class="nav-link" href="/getting_started/" role="tab" aria-selected="">Getting started</a> <a class="nav-link" href="/guides/" role="tab" aria-selected="">Developer guides</a> <a class="nav-link" href="/examples/" role="tab" aria-selected="">Code examples</a> <a class="nav-link active" href="/api/" role="tab" aria-selected="">Keras 3 API documentation</a> <a class="nav-sublink" href="/api/models/">Models API</a> <a class="nav-sublink active" href="/api/layers/">Layers API</a> <a class="nav-sublink2" href="/api/layers/base_layer/">The base Layer class</a> <a class="nav-sublink2" href="/api/layers/activations/">Layer activations</a> <a class="nav-sublink2" href="/api/layers/initializers/">Layer weight initializers</a> <a class="nav-sublink2" href="/api/layers/regularizers/">Layer weight regularizers</a> <a class="nav-sublink2" href="/api/layers/constraints/">Layer weight constraints</a> <a class="nav-sublink2" href="/api/layers/core_layers/">Core layers</a> <a class="nav-sublink2 active" href="/api/layers/convolution_layers/">Convolution layers</a> <a class="nav-sublink2" href="/api/layers/pooling_layers/">Pooling layers</a> <a class="nav-sublink2" href="/api/layers/recurrent_layers/">Recurrent layers</a> <a class="nav-sublink2" href="/api/layers/preprocessing_layers/">Preprocessing layers</a> <a class="nav-sublink2" href="/api/layers/normalization_layers/">Normalization layers</a> <a class="nav-sublink2" href="/api/layers/regularization_layers/">Regularization layers</a> <a class="nav-sublink2" href="/api/layers/attention_layers/">Attention layers</a> <a class="nav-sublink2" href="/api/layers/reshaping_layers/">Reshaping layers</a> <a class="nav-sublink2" href="/api/layers/merging_layers/">Merging layers</a> <a class="nav-sublink2" href="/api/layers/activation_layers/">Activation layers</a> <a class="nav-sublink2" href="/api/layers/backend_specific_layers/">Backend-specific layers</a> <a class="nav-sublink" href="/api/callbacks/">Callbacks API</a> <a class="nav-sublink" href="/api/ops/">Ops API</a> <a class="nav-sublink" href="/api/optimizers/">Optimizers</a> <a class="nav-sublink" href="/api/metrics/">Metrics</a> <a class="nav-sublink" href="/api/losses/">Losses</a> <a class="nav-sublink" href="/api/data_loading/">Data loading</a> <a class="nav-sublink" href="/api/datasets/">Built-in small datasets</a> <a class="nav-sublink" href="/api/applications/">Keras Applications</a> <a class="nav-sublink" href="/api/mixed_precision/">Mixed precision</a> <a class="nav-sublink" href="/api/distribution/">Multi-device distribution</a> <a class="nav-sublink" href="/api/random/">RNG API</a> <a class="nav-sublink" href="/api/utils/">Utilities</a> <a class="nav-link" href="/2.18/api/" role="tab" aria-selected="">Keras 2 API documentation</a> <a class="nav-link" href="/keras_tuner/" role="tab" aria-selected="">KerasTuner: Hyperparam Tuning</a> <a class="nav-link" href="/keras_hub/" role="tab" aria-selected="">KerasHub: Pretrained Models</a> </div> </div> <div class='k-main'> <div class='k-main-top'> <script> function displayDropdownMenu() { e = document.getElementById("nav-menu"); if (e.style.display == "block") { e.style.display = "none"; } else { e.style.display = "block"; document.getElementById("dropdown-nav").style.display = "block"; } } function resetMobileUI() { if (window.innerWidth <= 840) { document.getElementById("nav-menu").style.display = "none"; document.getElementById("dropdown-nav").style.display = "block"; } else { document.getElementById("nav-menu").style.display = "block"; document.getElementById("dropdown-nav").style.display = "none"; } var navmenu = document.getElementById("nav-menu"); var menuheight = navmenu.clientHeight; var kmain = document.getElementById("k-main-id"); kmain.style.minHeight = (menuheight + 100) + 'px'; } window.onresize = resetMobileUI; window.addEventListener("load", (event) => { resetMobileUI() }); </script> <div id='dropdown-nav' onclick="displayDropdownMenu();"> <svg viewBox="-20 -20 120 120" width="60" height="60"> <rect width="100" height="20"></rect> <rect y="30" width="100" height="20"></rect> <rect y="60" width="100" height="20"></rect> </svg> </div> <form class="bd-search d-flex align-items-center k-search-form" id="search-form"> <input type="search" class="k-search-input" id="search-input" placeholder="Search Keras documentation..." aria-label="Search Keras documentation..." autocomplete="off"> <button class="k-search-btn"> <svg width="13" height="13" viewBox="0 0 13 13"><title>search</title><path d="m4.8495 7.8226c0.82666 0 1.5262-0.29146 2.0985-0.87438 0.57232-0.58292 0.86378-1.2877 0.87438-2.1144 0.010599-0.82666-0.28086-1.5262-0.87438-2.0985-0.59352-0.57232-1.293-0.86378-2.0985-0.87438-0.8055-0.010599-1.5103 0.28086-2.1144 0.87438-0.60414 0.59352-0.8956 1.293-0.87438 2.0985 0.021197 0.8055 0.31266 1.5103 0.87438 2.1144 0.56172 0.60414 1.2665 0.8956 2.1144 0.87438zm4.4695 0.2115 3.681 3.6819-1.259 1.284-3.6817-3.7 0.0019784-0.69479-0.090043-0.098846c-0.87973 0.76087-1.92 1.1413-3.1207 1.1413-1.3553 0-2.5025-0.46363-3.4417-1.3909s-1.4088-2.0686-1.4088-3.4239c0-1.3553 0.4696-2.4966 1.4088-3.4239 0.9392-0.92727 2.0864-1.3969 3.4417-1.4088 1.3553-0.011889 2.4906 0.45771 3.406 1.4088 0.9154 0.95107 1.379 2.0924 1.3909 3.4239 0 1.2126-0.38043 2.2588-1.1413 3.1385l0.098834 0.090049z"></path></svg> </button> </form> <script> var form = document.getElementById('search-form'); form.onsubmit = function(e) { e.preventDefault(); var query = document.getElementById('search-input').value; window.location.href = '/search.html?query=' + query; return False } </script> </div> <div class='k-main-inner' id='k-main-id'> <div class='k-location-slug'> <span class="k-location-slug-pointer">►</span> <a href='/api/'>Keras 3 API documentation</a> / <a href='/api/layers/'>Layers API</a> / <a href='/api/layers/convolution_layers/'>Convolution layers</a> / DepthwiseConv1D layer </div> <div class='k-content'> <h1 id="depthwiseconv1d-layer">DepthwiseConv1D layer</h1> <p><span style="float:right;"><a href="https://github.com/keras-team/keras/tree/v3.7.0/keras/src/layers/convolutional/depthwise_conv1d.py#L5">[source]</a></span></p> <h3 id="depthwiseconv1d-class"><code>DepthwiseConv1D</code> class</h3> <div class="codehilite"><pre><span></span><code><span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">DepthwiseConv1D</span><span class="p">(</span> <span class="n">kernel_size</span><span class="p">,</span> <span class="n">strides</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="s2">"valid"</span><span class="p">,</span> <span class="n">depth_multiplier</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">data_format</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">dilation_rate</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">activation</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">use_bias</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">depthwise_initializer</span><span class="o">=</span><span class="s2">"glorot_uniform"</span><span class="p">,</span> <span class="n">bias_initializer</span><span class="o">=</span><span class="s2">"zeros"</span><span class="p">,</span> <span class="n">depthwise_regularizer</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">bias_regularizer</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">activity_regularizer</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">depthwise_constraint</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">bias_constraint</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span> <span class="p">)</span> </code></pre></div> <p>1D depthwise convolution layer.</p> <p>Depthwise convolution is a type of convolution in which each input channel is convolved with a different kernel (called a depthwise kernel). You can understand depthwise convolution as the first step in a depthwise separable convolution.</p> <p>It is implemented via the following steps:</p> <ul> <li>Split the input into individual channels.</li> <li>Convolve each channel with an individual depthwise kernel with <code>depth_multiplier</code> output channels.</li> <li>Concatenate the convolved outputs along the channels axis.</li> </ul> <p>Unlike a regular 1D convolution, depthwise convolution does not mix information across different input channels.</p> <p>The <code>depth_multiplier</code> argument determines how many filters are applied to one input channel. As such, it controls the amount of output channels that are generated per input channel in the depthwise step.</p> <p><strong>Arguments</strong></p> <ul> <li><strong>kernel_size</strong>: int or tuple/list of 1 integer, specifying the size of the depthwise convolution window.</li> <li><strong>strides</strong>: int or tuple/list of 1 integer, specifying the stride length of the convolution. <code>strides > 1</code> is incompatible with <code>dilation_rate > 1</code>.</li> <li><strong>padding</strong>: string, either <code>"valid"</code> or <code>"same"</code> (case-insensitive). <code>"valid"</code> means no padding. <code>"same"</code> results in padding evenly to the left/right or up/down of the input. When <code>padding="same"</code> and <code>strides=1</code>, the output has the same size as the input.</li> <li><strong>depth_multiplier</strong>: The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to <code>input_channel * depth_multiplier</code>.</li> <li><strong>data_format</strong>: string, either <code>"channels_last"</code> or <code>"channels_first"</code>. The ordering of the dimensions in the inputs. <code>"channels_last"</code> corresponds to inputs with shape <code>(batch, steps, features)</code> while <code>"channels_first"</code> corresponds to inputs with shape <code>(batch, features, steps)</code>. It defaults to the <code>image_data_format</code> value found in your Keras config file at <code>~/.keras/keras.json</code>. If you never set it, then it will be <code>"channels_last"</code>.</li> <li><strong>dilation_rate</strong>: int or tuple/list of 1 integers, specifying the dilation rate to use for dilated convolution.</li> <li><strong>activation</strong>: Activation function. If <code>None</code>, no activation is applied.</li> <li><strong>use_bias</strong>: bool, if <code>True</code>, bias will be added to the output.</li> <li><strong>depthwise_initializer</strong>: Initializer for the convolution kernel. If <code>None</code>, the default initializer (<code>"glorot_uniform"</code>) will be used.</li> <li><strong>bias_initializer</strong>: Initializer for the bias vector. If <code>None</code>, the default initializer (<code>"zeros"</code>) will be used.</li> <li><strong>depthwise_regularizer</strong>: Optional regularizer for the convolution kernel.</li> <li><strong>bias_regularizer</strong>: Optional regularizer for the bias vector.</li> <li><strong>activity_regularizer</strong>: Optional regularizer function for the output.</li> <li><strong>depthwise_constraint</strong>: Optional projection function to be applied to the kernel after being updated by an <code>Optimizer</code> (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.</li> <li><strong>bias_constraint</strong>: Optional projection function to be applied to the bias after being updated by an <code>Optimizer</code>.</li> </ul> <p><strong>Input shape</strong></p> <ul> <li>If <code>data_format="channels_last"</code>: A 3D tensor with shape: <code>(batch_shape, steps, channels)</code></li> <li>If <code>data_format="channels_first"</code>: A 3D tensor with shape: <code>(batch_shape, channels, steps)</code></li> </ul> <p><strong>Output shape</strong></p> <ul> <li>If <code>data_format="channels_last"</code>: A 3D tensor with shape: <code>(batch_shape, new_steps, channels * depth_multiplier)</code></li> <li>If <code>data_format="channels_first"</code>: A 3D tensor with shape: <code>(batch_shape, channels * depth_multiplier, new_steps)</code></li> </ul> <p><strong>Returns</strong></p> <p>A 3D tensor representing <code>activation(depthwise_conv1d(inputs, kernel) + bias)</code>.</p> <p><strong>Raises</strong></p> <ul> <li><strong>ValueError</strong>: when both <code>strides > 1</code> and <code>dilation_rate > 1</code>.</li> </ul> <p><strong>Example</strong></p> <div class="codehilite"><pre><span></span><code><span class="o">>>></span> <span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">12</span><span class="p">)</span> <span class="o">>>></span> <span class="n">y</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">DepthwiseConv1D</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="n">activation</span><span class="o">=</span><span class="s1">'relu'</span><span class="p">)(</span><span class="n">x</span><span class="p">)</span> <span class="o">>>></span> <span class="nb">print</span><span class="p">(</span><span class="n">y</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span> <span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">36</span><span class="p">)</span> </code></pre></div> <hr /> </div> <div class='k-outline'> <div class='k-outline-depth-1'> <a href='#depthwiseconv1d-layer'>DepthwiseConv1D layer</a> </div> <div class='k-outline-depth-3'> <a href='#depthwiseconv1d-class'><code>DepthwiseConv1D</code> class</a> </div> </div> </div> </div> </div> </body> <footer style="float: left; width: 100%; padding: 1em; border-top: solid 1px #bbb;"> <a href="https://policies.google.com/terms">Terms</a> | <a href="https://policies.google.com/privacy">Privacy</a> </footer> </html>